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Abstract. Over the last few years, the interest in the analysis of the
energy consumption of Android applications has been increasing signif-
icantly. Indeed, there are a considerable number of studies which aim
at analyzing the energy consumption in the Android ecosystem, such as
measuring/estimating the energy consumed by an application or block
of code, or even detecting energy expensive coding patterns or APIs.
In this paper, we present an initial study of the impact of memoization in
the energy consumption of Android applications. We compare implemen-
tations of 18 methods from different applications, with and without using
memoization, and measure the energy consumption of both of them. The
results show that using memoization can be a good approach for saving
energy, since 13 of those methods decreased their energy consumption.
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1 Introduction

The Android ecosystem is evolving at an impressive pace. Since this system
can run on a wide variety of devices, from smartphones to tablets of several
manufacturers, to wearables, its widespread usage in the last decade is notorious.

This proliferation of Android devices increased the interest in a particular
research area: energy consumption analysis of software applications. It has been
an intensive research topic in the last few years, greatly motivated not only by
the mobile development area, characterized by powerful computing systems, yet
energy-harvesting, which run over batteries with limited capacity, but also by the
growing interest of developers in knowing more about how to develop software
in a energy-saving manner [24].

? Work financed by the ERDF - European Regional Development Fund through the
Operational Programme for Competitiveness and Internationalisation - COMPETE
2020 Programme and by National Funds through the Portuguese funding agency,
Fundação para a Ciência e a Tecnologia, project POCI-01-0145-FEDER-016718.
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Several research works focused on detecting or predicting the energy con-
sumption that is triggered by a software artifact [11, 12]. For instance, some
works presented techniques for monitoring and classifying energy consumption
of blocks of code, such as lines of code [18], methods [7], API calls [20–23], or
code patterns [17, 27]. Even the energy consumed at the testing phase can be a
concern [19], as well as the display of visual elements in the application views [8].

Nevertheless, the amount of information provided about an application that
can be used by developers to reduce its energy consumption at the development
phase, is still very low [24]. In this paper we study the influence of incremen-
tal computation, obtained via method memoization, on the energy consumption
in the context of the Android ecosystem. We present a systematic study that
shows the energy gains of applying memoization techniques to Android appli-
cations. Memoization is widely used in the context of functional programming
to speedup the execution time of programs: calls of a function are cached/mem-
oized, and next calls to that function with the same arguments are obtained
from the cache, so that the function is not call again. In order to be able to per-
form method memoization we consider side-effect free methods, only. That is,
methods that implement functions and as consequence are prone to memoization
[30]. After computing such methods (i.e., functions) in the application’s source
code, we refactor it into a semantically equivalent one which memoize/reuses its
calls. To study the impact in performance of our memoization refactoring, we
monitor the energy consumption while executing the non-incremental and the
incremental versions of several Android applications with the same inputs. Our
first experimental results show that memoization can greatly improve the energy
efficiency of an Android application, considering that such application is prone
to it, without threatening its normal functioning and/or efficiency.

To summarize, we intend to answer to the following research question: Can
memoization help reduce energy consumed by Android applications?

This paper is organized as follows. Section 2 introduces the concept of memo-
ization for Android applications and describes in detail our experimental setting.
We present the results of the experiment in Section 3, which are discussed in
Section 4, where we also answer our research question. Section 5 presents the
threats to the validity of this work. Related approaches are describeded in Sec-
tion 6. Finally, Section 7 presents our conclusions and future work directions.

2 Experimental Study

In this section, we start by explaining how to decide if a Java/Android method
can be memoized. We then describe in detail our memoization technique for
Android applications, along with the empirical study used for validation.

2.1 What Can be Memoized?

Yang et al. [29] proposed a set of three pre-conditions to classify a Java method
as memoizable:
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1. The method must be pure, that is, it must be a function;
2. The arguments must be immutable;
3. The return value cannot depend on static fields, public member fields nor

publicly exposed member fields.

In our particular case, we have simplified the application of pre-condition (2)
and used only methods that have as arguments primitive types or the Context
object of an application (since it is immutable).

In the next section we will describe in detail the experimental study we
conducted: the methods analyzed, the conditions under which such methods
were tested, and the full procedure to actually run the tests and obtain results.

2.2 Experimental Setup

This section describes the study conducted, describing the Android applications
and methods used, how methods were refactored, and the experiment setup.

Android applications and methods analysis: We used two Android appli-
cations from the MUSE repository5 (Pixate Freestyle6 and android-demos)

and another one from F-Droid7 (Chanu8). The distribution of methods analyzed
from each of these applications is described in Table 1.

Pixate Freestyle is a free framework that lets users style his native Android
views with stylesheets and is very much based on the graphical component. This
application contains 219 classes. android-demos is a very specific application
from the repository and contains 34 classes. Chanu is a well-known application
with 538 classes. Basically, it is the code of the 4chan site application where users
can browse images of various contents. This is the largest application among the
three and so it was where we most applied the technique of memoization.

Since our goal is to test each method prone to memoization individually, we
decided that it was best suited to extract such methods from these application
and run our experiments in a controlled manner. In order to do so, we created
our own application only with such methods which we literally copied from their
applications. After this process, we duplicated the application, and in the second
version all the 18 methods were using our memoization technique.

Methods Refactoring: We manually analyzed the methods for the three
selected applications. After finding memoizable methods, we created an applica-
tion to encompass all those methods. We have then created two versions of the
same application: one with all methods in their original form and the other with
the memoized ones.

Our memoization technique consisted of storing the input of the methods as
a key in a HashMap and its output as the value. So, if the method had already

5 https://opencatalog.darpa.mil/MUSE.html.
6 https://github.com/Pixate/pixate-freestyle-android
7 https://f-droid.org
8 https://f-droid.org/en/packages/com.chanapps.four.activity
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Method Input Output Application

createIntent Context,String,String Intent Chanu
countLines String int Chanu
replyText Long[] String Chanu
join List<String>, String String Chanu
threadSubject String, String String Chanu
textViewFilter String, boolean String Chanu
getUrl Context, String String Chanu
planifyText, quoteText, exifText String String Chanu
getNumeral String, String String Pixate Freestyle
removeLocaleInfoFromFloat, addNegativeSign, addPositiveSign String String Pixate Freestyle
isMobile String boolean android-demos
readableFileSize long String android-demos
dip2px; px2dip Context,float int android-demos

Table 1: Characterization of methods used in experiments.

been called for a particular input, then we just accessed its value on the map
and returned it. Otherwise, a new entry was created on the map and the result
returned. In cases where the methods only received a single input parameter, this
was directly the key of the map. However, there were cases in which more than
one argument was passed as parameter. Table 1 presents a characterization of
the methods used in our experiments, containing for each method, the respective
name, application, input and output parameters. In this table, some of such
examples can be observed. For instance, the method name getURL from the
Chanu application receives two distinct objects as an argument. For the multi-
parameter cases, a library called javatuples [29] was used. In this way, the input
values were saved in tuples which became the HashMap key.

Experiments execution: In order to test the energy impact of memoization
in these methods, we defined a usage scenario for them, consisting of invoking a
method 50 times with different parameters passed to it. This resulted in inserting
50 entries in the method’s map structure. To take advantage of memoization, this
procedure was repeated 10, 20, 30, 40, and 50 times, and each of this repetition
sets are what we consider our test cases.

To obtain a representative number of measurements, each test case was re-
peated 25 times for each method in both the original and the memoized versions
(alternatively), using a Nexus 4 running Android version 5.1.1 - API level 22.
In order to perform energy monitoring, we used the Trepn Profiler 9, an accu-
rate Energy profiler developed by Qualcomm. Before running each iteration, we
performed the initial set up, where the previously installed version of the appli-
cation under test was removed, the new version was installed and switched on
(as well as the Trepn app), and a warm-up of 5 seconds was considered. After
this set up, Trepn started profiling at the same time that the test was executed.
When the test finished, the energy results were recorded and both the app and
Trepn were switched off.

9 https://developer.qualcomm.com/software/trepn-power-profiler
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Fig. 1: Methods in favor of memoization with consumption between 0 and 175 mJ.
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Fig. 2: Methods in favor of memoization with consumption between 0 and 3000 mJ
(left hand-side chart) and between 0 and 600 mJ (right hand-side chart).

3 Results

In this section we present in detail the results obtained from the experiment
described in the previous section. Figures 1 and 2 display a box plot for each of
the 13 methods we could find a statistically significant difference between the
energy consumption of the original method and the energy consumption of the
memoized one in favor of the memoization, that is, when the memoized method
consumed less energy than the original version10.

10 We divided the methods in different charts because they have different scales of
values and to have them all in the same one would not allow to properly see the
details.
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Fig. 3: Box plots representing the energy spent by the original and memoized methods,
considering 10 to 50 executions of the tests, where the original version spent less energy.

Each box plot represents the energy measurements, in millijoules (mJ), of the
25 executions of the corresponding method showing the minimum and maximum
values (marked by the whiskers), possible outliers (marked by small circles), the
1st and 3rd quartiles (bottom and top of the box), the median (marked by the
red horizontal filled in line), and the average (marked by the blue horizontal
dashed line). Each yellow/green pair represents the original/memoized version
of the method. We also show the notch because it can be seen as an informal test
of the null hypothesis that the medians are equal, that is, if two notches overlap,
then it is not possible to reject the null hypothesis with a 95% confidence [4]. In
Section 4 we will present formal verification of the statistical differences of the
energy measurements.

Note these charts show the energy values for 10 executions of the test suite,
the first being with new values, and the remaining with repeated ones. In Sec-
tion 4 we will detail more the analysis of different numbers of executions.

In Figure 3 we show the box plots with the energy consumption of the only
two methods where the energy consumed by the memoized versions is statisti-
cally different from the original methods, but in favor of the original ones. Once
more, we refer to Section 4 to test executions greater than 10 times.

Figure 4 presents once more box plots, but now for the three methods where
no statistical difference was found for original and memoized methods. For these
three methods we executed the same test suite, but now running it 10, 20, 30,
40, and 50 times. The goal was to take more advantage of the memoization and
understand if this would turn the method better or worst the original one. Each
increment of 10 executions only makes the memoized method read the stored
values, while the original version needs to run entirely. Indeed it may be the case
the overhead of the memoization (another method call, plus the map) makes the
gain negligible. However, what we recorded for these methods is that sometimes
the memoized version is better, but sometimes the original one also is. We will
come back to this discussion in Section 4.
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Fig. 4: Box plots representing the energy spent by the original and memoized methods,
considering 10 to 50 executions of the tests with no statistical difference.
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Fig. 5: Energy losses from the original method to the memoized one of the methods
that have positive results.

The results presented until now seem to indicate that there is a positive ef-
fect in the energy consumption when memoizing method calls. In Figure 5 we
present the percentage of losses in the energy spent from the original version
of the method to the memoized one, considering the methods where memoiza-
tion produces positive results (the methods represented in Figures 1 and 2).
For each method, we calculated the percentage of energy decrease as follows.
For each of the 25 executions, we sorted, independently, the original and the
memoized values of energy consumption. We then calculated the losses of en-
ergy from the use of the original version to the memoized one using the formula
original−memoized

original × 100. Positive values represent the fact that there is indeed
a loss of energy from the original to the memoized, thus supporting the use of
memoization, and negative values imply an increase in the energy spent, thus
pointing situations where memoization does not consumes less energy.

As we can see, the gains are fairly positive. Note once more we are only
showing the results for running the test suite 10 times, as this already points to
quite positive results. We will discuss these gains further on in the Section 4.
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method 10x 20x 30x 40x 50x

exifText (87, 90) (92, 95)
textViewFilter (85, 88) (94, 94)
planifyText (77, 83) (86, 89)
quoteText (71, 78) (88, 92)
isMobile (70, 82) (84, 96)
readableFileSize (64, 82) (82, 89)
removeLocaleInfoFromFloat (59, 84) (66, 71)
replyText (44, 64) (-9, 17) (41, 76) (41, 71) (48, 76)
createIntent (35, 48) (-21, 6) (35, 54) (21, 43) (49, 66)
addNegativeSign (34, 53) (62, 80) (61, 75) (68, 94) (71, 86)
getUrl (19, 52) (32, 66) (45, 57) (37, 56) (49, 62)
getNumeral (4, 21) (-21, 2) (9, 30) (27, 45) (60, 75)
addPositiveSign (-6, 59) (40, 48) (51, 65) (36, 57) (10, 26)
join (-11, 11) (-40, -8) (-46, -18) (-30, -22) (-36, -19)
px2dip (-55, 0) (2, 60) (-27, 53) (4, 52) (-82, 5)
threadSubject (-62, 1) (-99, -54) (-92, -75) (-280, -101) (-219, -102)
countLines (-84, -7) (16, 62) (-17, 6) (-15, 21) (-53, 16)
dip2px (-161, -60) (24, 47) (-71, -35) (-281, -62) (-21, 17)

Table 2: 1st (on the left hand-side of the column) and 3rd (on the right) quartiles of the
energy losses from the use of the original method to the use of the memoized version.

To increase the reading of these results we present in Table 2 the percentage
of the energy not spent, comparing the memoized method to the original one of
the 1st and 3rd quartiles. This follows from the box plots, complementing the
information and giving central values of the losses.

Finally, Table 3 shows the percentage of times the energy spent by the mem-
oized method is lower than the original one, considering the 25 runs of each
method, for the 5 test cases. Note the underlined values are the ones where we
could not find statistical significant difference between the original and memoized
measurements. For all the other methods there is statistical significant difference
between the energy consumption of the original and the memoized method. Val-
ues in bold indicate when more than 50% of the 25 runs spend more energy
in the memoized methods than the original ones. The values with no special
formatting have statistical significance in favor of the memoized versions.

4 Discussion

The first observation is the most obvious one: memoization has a clear impact on
energy consumption in Android applications. In fact, for the majority of situa-
tions the impact is fairly positive. Considering the 18 tested methods, the energy
consumption for 13 of them has consistently decreased when using memoization
(as can be seen in Figures 1 and 2). For those methods, we can observe that the
average consumption of the 25 measurements is always lower when using mem-
oization, as well as the minimum and maximum values, and the values for the
1st and 3rd quartile. Figure 2 shows the methods that had the biggest impact.

These values allow us to answer to the research question: can memoization
be used to reduce energy consumption in Android applications?
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10x 20x 30x 40x 50x

createIntent 72 56 68 68 72
getUrl 60 72 68 76 76
replyText 68 52 84 92 84
getNumeral 56 56 64 68 84
addNegativeSign 56 88 84 100 100
addPositiveSign 56 72 80 84 80
planifyText 100 100 - - -
quoteText 100 100 - - -
textViewFilter 100 100 - - -
exifText 100 100 - - -
removeLocaleInfoFromFloat 80 88 - - -
isMobile 100 100 - - -
ReadableFileSize 88 100 - - -

join 48 32 28 28 24
threadSubject 40 36 20 12 20

countLines 36 68 48 44 44
dip2px 24 68 32 28 56
px2dip 40 56 48 64 44

Table 3: Percentage (of the 25 runs) that the memoized version consumes less energy
than the original one (For each method and for each test setting). Underlined values
have statistical significance; bold values represent more than 50% of the 25 runs spend
more energy in the memoized methods than the original ones.

To make these results more meaningful, we want to know if there is statis-
tical evidence behind these observations, that is, if the energy consumed by the
memoized version of these methods is consistently lower than the original one.
Thus, we tested the following hypothesis:

H 0 : P (A > B) = 0.5
H 1 : P (A > B) 6= 0.5

where B and A represent the act of randomly drawing a value from the set
of 25 measurements, with and without using memoization, respectively. Hence,
P (A > B) represents, when drawing from both A and B, the probability of
getting a value from A (without memoization) larger than the one drawn from
B (using memoization). Our null hypothesis is then obtaining a probability of
50%, while obtaining one different than 50% is the alternative hypothesis.

To understand if there is an overall significant relevance between the dis-
tributions of A and B, we ran the Wilcoxon signed-rank test, with a two-tail
p-value considering α = 0.0111. The test was repeated for the 13 methods where
the use of memoization led to improvements in energy consumption. At the end,
the test produced significant relevance, with the p-value < 0.01 for 11 of the 13
cases. The exceptions where getUrl and addPositiveSign, both with paramet-
ric distributions, which we will exclude for now and explain later. To calculate a
non-parametric effect size, Field [10] suggests using Rosenthal’s formula [25,26]

11 All the values obtained for this test, for the 18 methods, are in the appendix Table 4.
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to compute a correlation, and compare the correlation values against Cohen’s [5]
suggested thresholds: 0.1 for small, 0.3 for medium and 0.5 for large significance.

From the 11 scenarios, 8 were non-parametric, and the values obtained were:
0.4 (medium) for createIntent and replyText methods, and 0.6 (large) for the
remaining methods. For the remaining 3 methods, a D’Agostino and Pearson’s
test [9] revealed that we were dealing with normal distributions, and so we should
calculate the Cohen’s d coefficient to determine the magnitude of the effect size.
According to Sawilowsky [28], the reference thresholds and their respective effect
size should be 0.01 (very small), 0.2 (small), 0.5 (medium), 0.8 (large), 1.2 (very
large), and 2 (huge significance).

We obtained values of 0.4 for the getNumeral, 0.6 for addNegativeSign,
and 1.4 for the method removeLocaleInfoFromFloat. Considering these refer-
ence values, we have statistical support to say that, for these methods, using
memoization does lead to energy savings.

The effect size values calculated so far were only for the scenario where each
method was called 10 times in each measured test. It may happen that, for meth-
ods with lower significance values, repeating the experience with an increasing
number of calls could lead to results more or less supportive. Thus, we repeated
the experience with 20, 30, 40 and 50 invocations, calculated the significance
values and the effect size (see Table 3). We observe that all 13 aforementioned
methods continue to have more than 50% of the 25 tests in favor of memoization
and, although in some specific cases the statistical experiment resulted in no sig-
nificance, the percentage of memoization favorable tests kept increasing with the
increasing number of calls for all of them, and the same happened with the signif-
icance. Such cases were the previously excluded getUrl and addPositiveSign

method. Hence, we categorized these 13 methods as prone to memoization.

The use of memoization, however, does not always mean saving energy. In
some cases, it is not possible to determine whether memoization results in energy
saving or not. In our experiments, we found 3 methods fitting such criteria. The
results of such experiments are shown in Figure 4, in which the methods where
called 10 times on each test. As we can see by examining the box plots, the values
for the original version and the version using memoization are very similar.

By running the same statistical experiment performed for the 13 methods
were memoization actually decreased energy consumption, we observed that the
results for dip2px, px2dip, and countLines methods were not statistically sig-
nificant. This means that the reason behind the energy consumption being lower
is not related to the use of memoization, neither to the use of the original ver-
sion of the method. Similarly, the percentage of tests in favor of memoization
was mostly around 50%, dropping or increasing a few percentage levels unpre-
dictably when increasing the number of invocations. Therefore, we categorized
these methods as unpredictable.

For the remaining 2 methods (threadSubject and join), we observed that
the energy consumption actually increased in the majority of cases while using
memoization. In fact, if we examine Table 3, we see that for such methods the
percentage of times where the memoized version consumes less energy is always
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lower than 50%, for all test scenarios. We ran the same statistical test as before
to check if the values were consistently worse for the memoized version, and
we obtained significant relevance for all of them, except px2dip. However, the
effect size varied from “small significance” to “medium significance”. Thus, these
methods are then categorized as unfit for memoization.

The most interesting observations can, however, be seen in Table 2. The data
presented there shows the calculated gains (positive values) or losses (negative
values) when using memoization. To obtain these values, we first sorted, for each
method, the energy consumed by the original and memoized version, in order
to compare the lower/higher energy consumption values of one version with the
lower/higher values of the other. Then, we calculated the gains pairwise and
arranged them in a box plot. The first element of the pair in each table cell
is the gain calculated for the 1st quartile of the box plots, while the second
element is the gain considering the 3rd quartile. With this, we try to show
the gains/losses are independent of the energy consumption measured absolute
value. Each column contains the gains/loses for the obtained results of running
the same experiment, but varying the number of times each method is invoked.

As expected, we see that the majority of the values are positive, that is,
memoization is, in the majority of cases, a suitable technique to save energy. In
the first 7 methods, the impact is more notorious since in all the 25 measure-
ments the memoized version has a significantly lower energy consumption, and
when we repeated the experiment for 20 invocations per test, the impact is even
greater. Also, the significance values kept increasing, so we stopped measuring
and categorized them as strongly prone to memoization methods.

If we look only to the pairs with both positive gains in the column for 10
invocations (methods prone to memoization), the gains can go from 3% to 90%.
Theses values tend to increase if we increase the number of invocations: for these
same methods, considering 20 invocations, if we exclude the ones with negative
values, since they were the cases with no statistical significance (see Table 3),
they go from 31% to 96%. For the other scenarios (30, 40 or 50 invocations), the
values are always positive, as the significance keeps being maintained.

For the unpredictable methods, the gains are also unpredictable: the 3rd quar-
tile value is negative (loss), but the 1st is positive (gain). Even so, in that scenario
the statistical test showed there was no significance for both the methods, as we
increase the number of invocations and tend to decrease proportionally.

5 Threats to Validity

Measuring the energy consumption of a mobile device is complex [3]. This is
mostly due to the fact that it is quite difficult to fully isolate the code or appli-
cation under measurement. To address this issue, we executed our application
25 times, thus giving it enough slack to have in average results that correspond
to the truth and with as low side effects as possible. Moreover, we executed the
application in a factory-reseted device, in airplane mode and with the lowest
brightness level, to ensure the energy consumed by the display was as low as
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possible. Because, our memoization reuses the results of previously computed
(memoized) method calls, thus, we reduce the computations/work needed by a
program. We focus our evaluation in measuring the energy savings of the CPU.
However, a detail study on how the energy of the screen and communication
mechanisms (two known energy greedy aspects in mobile devices) are also af-
fected by memoization is needed.

To assure the data retrieved were consistent, both the memoized and non-
memoized applications were run in the same environment, half of the times
starting with the memoized version, and the other half with the non-memoized
one. Thus, this gives us confidence the differences we found between the two
versions are only due to the usage or not of memoization.

The energy consumption values were obtained by using Trepn, a tool devel-
oped by Qualcomm, a manufacturer of processors and chipsets of mobile devices.
As Trepn obtains the power values directly from the PMIC (Power Management
Integrated Circuit) present in the chipsets, the values obtained through this tool
are accurate [14], and has been used in several works [13,15,16].

Our experimentation occurred only in one smartphone and one version of
the operating system. It is expected to find different absolute values in different
smartphones and Android versions, but the differences between the memoized
versions and original ones are quite consistent and thus it is not expected to see
significant changes in the differences if changing the evaluation settings.

Another possible issue is the executed tests. Indeed, it is usually difficult to
find tests for Android applications [6–8]. Thus, we created a test suite for each
method we wanted to analyze and execute it a different number of times to
understand when using memoization is beneficial. We have shown that for most
cases to read 9 times a memoized value is sufficient. If a method is called most
of the times with different values, than memoization will not be useful.

6 Related Work

Yang et al. proposed a technique and tool to determine the functional purity
of Java methods [29]. In particular, if a method is a pure function, then it can
be memoized. In their evaluation they were able to successfully memoize several
methods from 3 different Java libraries and to reduce its execution time. As
expected the memory usage increased due to the memo table.

A quite similar approach has also been proposed by Agosta et al. [1], since
in their work they have also defined which Java methods can be memoized
based on their functional purity. They defined a theoretical model to predict
the effectiveness of the memoization in terms of energy consumption, but their
approach has been applied to a particular set of computations in a desktop
computer. In our experiments we have had a similar result. The most important
difference is that we have shown that memoization has also a positive impact in
the energy consumption in mobile devices.

Banerjee and Roychoudhury proposed a set of guidelines to improve energy
consumption of mobile devices related to the use of energy-intensive resources
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such as the GPS or the camera [2]. Based on these guidelines they propose a
set of refactorings to ensure the guidelines are followed within an application.
They have shown that this technique allows to spent between 3% and 29% less
energy. Our solution can be combined with this one as they address different
issues, possibly achieving even greater gains.

Cruz and Abreu have also proposed a set of refactorings based on performance
guidelines to improve the energy consumption of Android applications [8]. They
have shown that these refactorings improve the energy consumption, although
this does not occur for all applications and refactorings.

7 Conclusions

In this work we have explored the use of memoization in Android applications,
focusing on its impact in the energy consumption. We selected 18 methods from
3 different applications and designed an experiment to evaluate the energy con-
sumption of such methods, as well as their memoized versions. The results from
this experiment show that indeed the use of memoization promotes energy saving
in most cases. These are our first experimental results, and we will further study
the impact of these energy savings in the overall consumption of the applications.

The goal of this paper was to show the impact of memoization on energy
consumption. However, it will be also interesting to relate these results to the
execution time and energy consumption obtained with our memoization refac-
toring. We will pursue this topic in future work.
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A Appendix

A.1 Statistical Significance Values

method x10 x20 x30 x40 x50

createIntent 0,008041299 0,58122813 0,097970132 0,004530068
0,374813377 0,078006845 0,704286941 0,234020535 0,401449861

signif. NOT signif. Medium signif. NOT signif. signif.

replyText 0,008041299 0,903626797 0,000239913 0,000493159
0,374813377 0,017123454 0,519411432 1,214290831 0,492774948

signif. NOT signif. signif. Very Large signif. signif.

getNumeral 0,008041299 0,882352227 0,231167213
0,408655198 0,020928666 0,169331932 0,630904041 1,609746553
Small signif. NOT signif. NOT signif. Medium signif. Very Large signif.

removeLocaleInfoFromFloat 0,008041299
1,393672067 1,915076039

Very Large signif. Very Large signif.

addNegativeSign 0,008041299 1,23E-05 1,23E-05
0,633443528 1,929771523 1,637670151 0,618346942 0,618346942

Medium signif. Very Large signif. Very Large signif. signif. signif.

getUrl 0,174210276 0,003821977 0,011876382 0,001078559 0,002469714
0,192163204 0,409060285 0,355787318 0,462333252 0,428086345
NOT signif. signif. NOT signif. signif. signif.

addPositiveSign 0,58122813 0,000890538 0,128450538
0,078006845 0,73071236 1,149329788 0,469943676 0,214994475
NOT signif. Medium signif. Large signif. signif. NOT signif.

exifText 1,23E-05
0,618346942 4,969633412

signif. Huge signif.

textViewFilter 1,23E-05 1,23E-05
0,618346942 0,618346942

signif. signif.

planifyText 1,23E-05 1,23E-05
0,618346942 0,618346942

signif. signif.

quoteText 1,23E-05 1,23E-05
0,618346942 0,618346942

signif. signif.

isMobile 1,23E-05 1,23E-05
0,618346942 0,618346942

signif. signif.

readableFileSize 4,07E-05
0,580294823 2,881652532

signif. Huge signif.

join 0,59980234 0,032427612
0,074201633 0,536376123 0,30251435 0,948059876 0,931683899
NOT signif. Medium signif. NOT signif. Large signif. Large signif.

threadSubject 0,008041299 0,026430974 0,000363626 0,000295767
0,406992268 0,313929986 0,86293659 0,504190584 0,511801008
Small signif. NOT signif. Large signif. signif. signif.

dip2px 0,008041299 0,026430974
0,753436407 0,313929986 0,555634732 0,612999871 0,067050489

Medium signif. NOT signif. Medium signif. Medium signif. Very Small signif.

countLines 0,008041299 0,087527127 0,544909588 0,367385491
0,218636178 0,241630959 0,085617269 0,044835853 0,1274746
Small signif. NOT signif. NOT signif. Very Small signif. NOT signif.

px2dip 0,008041299 0,58122813 0,903626797
0,035701915 0,078006845 0,017123454 0,360779422 0,083062057

Very Small signif. NOT signif. NOT signif. Small signif. Very Small signif.

Table 4: Statistical significance values of the differences between the energy consump-
tion of the original and memoized methods, discussed in Section 4.


