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6
Microfluidic Flows of Viscoelastic Fluids
M�onica S. N. Oliveira, Manuel A. Alves, and Fernando T. Pinho

6.1
Introduction

6.1.1
Objectives and Organization of the Chapter

In this chapter we provide an overview of viscoelastic fluid flow at the microscale.
We briefly review the rheology of these nonlinear fluids and assess its implications
on the flow behavior. In particular, we discuss the appearance of viscoelastic
instabilities, which are seen to occur even under creeping flow conditions. The first
type of instability changes the flow type from symmetric to asymmetric, while the
flow remains steady. The second (andmore frequent) type of instability, which sets in
when elastic effects are enhanced, causes theflow to becomeunsteady varying in time
periodically. This unsteadiness results in a nearly chaotic flow, bringing about a
significant improvement in mixing performance.

After a brief introduction to the theme of microfluidics, its basic principles,
relevance and applications, this chapter is organized in five additional sections.
Section 6.2 provides an overviewof the problemofmixing at themicroscale and of the
current methods used to tackle this problem. Section 6.3 presents an introduction to
non-Newtonian viscoelastic fluids describing their most relevant rheological prop-
erties. Section 6.4 presents the governing equations for Newtonian and non-
Newtonian fluid flow, including the constitutive equations that describe the rheology
of thefluids. Section 6.5 dealswith passivemixingmethods in viscoelasticfluidflows,
whereas in Section 6.6 other forcing methods for promoting viscoelastic fluid flow
at the microscale are briefly described.

6.1.2
Microfluidics

6.1.2.1 Basic Principles, Relevance, and Applications
Microfluidics is a technological field that deals with the flow and handling of fluids in
submillimeter-sized systems. Commonmicrofluidic systems have features (typically
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the channel width) with characteristic dimensions on the order of 10s to 100s of
microns [1, 2]. The depth of the channels is usually of the same order of magnitude
(�10–100 mm), while channel lengths may be much larger (up to �500� the width,
that is, 5–50mm long).

One key benefit of miniaturization is the dramatic reduction in the required fluid
sample volume: a linear reduction in the characteristic dimension of the device (L) by
a factor of 103 (e.g., from 1 cm to 10 mm) amounts to a volume reduction by a factor of
109 (L3). In microfluidic devices, the sample volumes required to fill up a channel
typically range from themicroliter scale down to the nanoliter scale. Furthermore, as
a consequence of miniaturization, high surface-to-volume ratios are observed in
microfluidic devices, as illustrated in Figure 6.1.

The high surface-to-volume ratios typical of microfluidics imply that the balance
between surface forces (e.g., due to viscous friction and surface tension) and volume
forces (e.g., inertia, gravity) is shifted toward the former. This represents a major
difference relative to macroscale flows, and is crucial for several practical applica-
tions. For example, it is possible to fill up a microchannel by capillarity, which would
be unthinkable in a macro device – this principle is commonly used in commercial
systems, such as glucose and cholesterolmeters to lead the blood droplet through the
capillary in the test strip where a chemical reaction takes place.

Both macro- and microfluidic flows are commonly driven by pressure gradients
and these are frequently induced using pumps. In microfluidics, special positive
displacement pumps, such as syringe pumps, are typically employed to pump the
fluid through the device. Alternatively, electro-osmosis (EO) can be used to drive and
control liquidflows, provided thefluid contains electrolytes. Electrokineticflowshave
been used for a long time in colloidal and porous systems [3, 4], but have only really
come of age in microfluidics. The formation of an electric double layer (EDL) allows
electrically conductive fluids to be moved in the microchannels by EO (e.g., [5, 6]).
The microchannel walls (as most solid surfaces) acquire an electric charge when in
contact with an electrolyte (e.g., water) – an EDL of counter-ions will form sponta-
neously at the walls by attracting nearby counter-ions and repelling co-ions. When
an electric potential is applied across the channel, the ions in the EDL move in the
direction of the electrode of opposite polarity. This causes a motion of the fluid near
the walls, which in turn creates an advectivemotion of the bulk fluid through viscous
forces. The fluid motion exhibits a plug-like profile instead of the characteristic
parabolic velocity profile of pressure-drivenflows (PDF). Oncemore, Electro-osmotic
flows (EOF) are effective at the microscale because of the dominance of surface
effects relative to volume effects. In addition to EO, there are other electrokinetic

Figure 6.1 Surface-to-volume ratio: from macro- to microscale.
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effects important at themicroscale, namely electrophoresis, sedimentation potential,
and streaming potential. These concepts are thoroughly reviewed by Bruus [6] and
there are many other interesting references and reviews available for electrokinetic
effects in microfluidic devices (e.g., [7–11]).

The relative balance between inertial and viscous forces is normally quantified in
terms of the dimensionless Reynolds number, defined as

Re ¼ rUL
g

ð6:1Þ

where L is a characteristic dimension of the channel, U is a characteristic velocity,
usually the average velocity, and r and g are the density and shear viscosity of the
fluid, respectively. The magnitude of the Reynolds number is useful to identify the
flow regime – laminar or turbulent. The reduced length scales and the dominance of
viscous forces over inertial forces means that the flows in microfluidic channels are
typically characterized by low to moderate Reynolds numbers (usually smaller than
100, and often smaller than 1). At these low Reynolds numbers, the flow is laminar
and no turbulence occurs in contrast to what is usually found at the macroscale.
Indeed, for laminarflow to be achieved at themacroscale, highly viscousfluids or very
low velocities must be employed, whereas at the microscale, laminar flows can be
readily achieved even with low viscosity fluids such as water. This is a major change
relative to classical transport processes at themacroscale, andmay be an advantage or
a disadvantage, depending on the particular application in mind. A number of new
technological applications have emerged to take advantage of the laminar behavior of
theflow, such as bioassays [12, 13], sorting and separating products of a reaction [1], or
microfabrication using UV laminar flow patterning [14]. Conversely, many applica-
tions require intense mixing, which can be easily (and rapidly) achieved at the
macroscale as fluids mix advectively under high inertia flow conditions, but not so at
the microscale where mixing relies mainly on diffusion. Nevertheless, even at
Reynolds numbers below 100 it is possible to enhance mixing on the basis of
momentum phenomena such as flow separation as well as viscoelastic flow instabil-
ities [15]. The latter will be further discussed in this chapter.

Microfluidic systems have a number of other characteristics that can act as
advantages or challenges depending on the application. For instance, a small con-
sumption of reagents can be translated into significant savings both in terms of cost
and time. This is critical for many applications, namely in biotechnology, when
the samples to be used are costly or available only in limited amounts (e.g., blood),
or when a large number of samples are needed, for example, in high-throughput
screening [16]. Conversely, in applications that involve the detection of biomolecules,
as the volumes are reduced, the detection signals become weaker and consequently
newdetectionmethods (and improved labels when appropriate) need to be developed
for use at the microscale [17]. Furthermore, as the volume-to-surface ratio decreases,
liquid evaporation can become an issue if the processes are slow and occur at high
temperatures. Other advantages that arise as a consequence of the reduced length
scales include significant waste reduction; reduced cost of fabrication; and possibility
of producing highly integrated, disposable, and portable devices. The portability
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of microfluidic devices results from a combination of the small sizes involved
and the low energy consumptions, which makes this technology suitable for wire-
less solutions [18]. On the other hand, one of the main problems in microfluidics
is that the design and fabrication of components are technologically challenging
and in most cases cannot simply rely on a scaled down version of their macroscale
counterparts [15]. The effort spent in developing efficient microcomponents is well
apparent in the number of publications dedicated to development of micropumps,
micromixers, and so on (cf. reviews [10, 19, 20] and references therein). Like
component design, other difficulties in dealing with microfluidic systems are often
a consequence of its youth and can potentially be overcome by further research
and development. Figure 6.2 summarizes the main characteristics of microfluidic
systems as well as the resulting opportunities and challenges associated with fluidic
miniaturization.

The advantages identified, together with recent developments in microfabrication
techniques that allow for inexpensive and rapid manufacture of high-quality geom-
etries with well-definedmicron-sized features [21–23], have stimulated a remarkable

Microfluidics

• Laminar flow conditions 
• High surface-to-volume ratio 
• Strong surface effects 
• Important electrokinetic effects 
• Diffusion based processes are 

important  

Advantages

• Defined and controllable flow 
• Low sample/reagent consumption 
• Waste reduction 
• Effective heat management 
• High yields and selectivities 
• High strain rates 
• Inexpensive and rapid device 

fabrication 
• Low power consumption 
• High throughput possibility through 

parallelization  

Disadvantages

• Low detection signals 
• Liquid evaporation 
• Difficult to avoid impurities 
• Difficult component manufacture 

and design  
• Difficult manipulation 

Highly integrated and portable devices 

Lab on a chip 

Figure 6.2 Fluidic miniaturization: opportunities and challenges.
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growth and found an extensive range of applications in science and technology, as in
biology,medicine, and engineering [24]. The printing heads of inkjet printers are one
of the most mature commercial applications using microfluidic based systems [25].
Other examples include miniaturized systems for production of suspensions and
emulsions [26, 27], immunoassays [13, 28], detectionof drugs,flowcytometry [29, 30],
dynamic cell separation [31, 32], cell/protein patterning [33], single cell analysis [34],
manipulation and analysis of DNAmolecules [35–38], and fuel cells [39]. Many other
applications have been envisioned and the reader is referred to the literature for
further details (e.g., [1, 9, 40, 41]).

The commercial impact of microfluidics is becoming increasingly significant and
microfluidic research aspires to have an impact in the automation of biology and
chemistry comparable to the microchip in electronics [1, 42]. Considering only
applications in the areas of life sciences and in-vitro diagnostics, the market value
reached 500 million Euros in 2008, and is projected to exceed 2000 million Euros in
2014 [43]. More importantly, it is anticipated that the unique characteristics of
microfluidic systems have the potential to trigger a range of novel applications in
many areas of science and technology [24]. One of the greatest envisagedmicrofluidic
technological applications consists of a miniaturized laboratory where multiple
processes can be integrated into a portable platform known as a lab-on-a-chip.
Ultimately, this would correspond to shrinking a full production plant or an analysis
laboratory into a small chip [44].

6.1.2.2 Complex Fluids in Microfluidic Flows
Many of the applications mentioned in the previous section involve handling fluids
that have a complex microstructure such as polymeric solutions, whole blood or
protein solutions. The flow of these fluidsmay prompt non-Newtonian behavior and
in particular viscoelasticity [45, 46]. For instance, fluids with large polymeric
molecules often exhibit elastic behavior due to the stretching and coiling of the
polymeric chains, which significantly enrich flow behavior [45]. For the character-
ization of flows with viscoelastic fluids, in addition to the Reynolds number it is
important to quantify the Deborah number, De, the Weissenberg number, Wi, and
the Elasticity number, El. The Deborah number is defined as the ratio between the
relaxation time of the fluid (l) and the time of observation of the flow (tf ), like the
duration of the unsteady part of a flow:

De ¼ l=tf ð6:2Þ
The Weissenberg is defined as the product of the relaxation time and a charac-

teristic rate of deformation of theflow (U/L), and quantifies the nonlinear response of
the fluid

Wi ¼ lU=L ð6:3Þ
while El represents the ratio between elastic and inertial effects

El ¼ Wi
Re

¼ lg

rL2
ð6:4Þ

6.1 Introduction j135
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In steady Eulerian flows with unsteady Lagrangian characteristics, such as the
flow in a contraction, the Weissenberg and Deborah numbers are proportional and,
as pointed out by Dealy [47], there has been widespread misapplication of both
dimensionless numbers. The small length scales together with the high deforma-
tion rates and short transit times characteristic of microfluidic systems enable the
generation of high Deborah or Weissenberg number flows while keeping the
Reynolds number low, leading to high El flows. These distinctive flow conditions
result in the ability to promote strong viscoelastic effects, which are not masked by
fluid inertia, even in low viscosity/elasticity fluids that would in contrast exhibit
Newtonian-like behavior at the equivalent macroscale [48–52]. The dimensionless
Wi–Re parameter space is depicted in Figure 6.3, where the operation regions for
macro- and microscale flows are distinguished. It is clear that the geometric scale of
microfluidic devices results in flows that are distinct from those seen at the
macroscale, particularly when they are extension dominated [48, 49, 52–55].

6.1.2.3 Continuum Approximation
We end this introduction by analyzing the validity of the continuum approximation
formodelingfluidflowat themicroscale. The continuumapproximation implies that
fluid and flow properties (such as density, viscosity, velocity, stresses, etc.) are defined
everywhere in space and vary continuously throughout space [56]. Flows can be
modeled by the continuum approximation, also using molecular dynamics, which
considers a collection of individual interacting molecules, or more recently as a
combination of both approaches using multiscale techniques [57, 58]. Adopting the
continuum approach is generallymuch simpler, it easily considers large systems and

Wi

Macro

Micro

Boger fluid 

Newtonian fluid 

B
og

er
 f

lu
id

 

Re 

Figure 6.3 Operational regions in the Wi–Re
parameter space. The dotted line corresponds
to Newtonian fluids (Wi¼ 0) and the dashed
lines represent a Boger fluid (i.e., viscoelastic

fluidwith constant viscosity, cf. Section 6.3)with
low viscosity and low relaxation time in flows at
the micro- and macroscale.
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is less time consuming than the other techniques, which are still not feasible for
many realistic applications and for a sufficiently large number of molecules [42].
However, in simplified terms, for the continuum approximation to hold two main
conditions need to bemet: (i) themolecules need to be small enough compared to the
characteristic length scale of the flow; (ii) the number of molecules inside each fluid
element needs to be large enough. In classical fluid mechanics at the macroscale,
these conditions are generally satisfied and the continuum approach generally
holds [56].

The same is also true in many microfluidics systems, especially those operating
with liquids. For example, in Newtonian liquid flows at micrometer-length scales it
has been well established that under standard conditions the basic continuum laws
governing fluid flow, expressed by the equations of mass conservation and momen-
tum, and the no-slip boundary condition at walls, remain valid [25, 51, 58–60]. For
water, the continuum assumption is not expected to break down when the channel
dimensions are above 1 mm [5]. For molecules such as water, the ratio of molecular
size (�0.3 nm) to geometric length scale (typically on the order of tens to hundreds of
microns) is �10�5–10�6. As such, it is considered that there are enough molecules
at each location within the flow (the concept of fluid particle as a small volume with
a large number of molecules is useful) and that the molecules are small enough
to treat the flow under the continuum theory [24]. This remains valid even for
more complex fluid flows, including high-molecular-weight polymeric solutions, as
attested by the agreement between experimental andnumerical data inmicrofluidics,
which provides further credibility to this assumption [55, 61, 62].

However, there are a number of exceptions to the validity of the continuum
hypothesis as the characteristic length scales of theflowdecrease significantly [63, 64],
namely when considering gas flows or gas–liquid flows, in which the gas density is
very low compared to liquids. In gas flows, the Knudsen number representing the
ratio between the mean free path of molecules and the characteristic length scale of
the flow is used to evaluate the validity of the continuum approach. Based on the
experimental evidence, it is generally accepted that for Knudsen numbers below 0.01
the continuum approximation is valid. For Knudsen numbers above 0.01, there are
deviations to the continuum theory, which are handled initially with corrections and
subsequently by other theories that describe microscale flow [57, 58, 65].

The other notable exception is related to complex fluids that are composed of large
particles in suspension (e.g., red blood cells) or long molecules such as DNA or even
polymers of high molecular weight. The radius of gyration of a polymer chain or the
characteristic radius of a suspended particle typically varies from 1nm to 10mm. As
such, for particle/molecule sizes in the high end of the range, assuming a continuum
can be misleading since the working fluid may not be well approximated as
microstructurally homogeneous [66]. In this case, other methods should be used
to properly model the flow.

Although it is important to be aware of cases where the validity of the continuum
approximation breaks down, in all situations of relevance to this chapter, the typical
dimensions of molecules and channels are within the range of application of the
continuum approach.
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6.2
Mixing in Microfluidics

6.2.1
Challenges of Micromixing

Efficient mixing may be defined as a procedure for homogenizing an otherwise
inhomogeneous system in the shortest possible amount of time and using the
least amount of energy [67]. Mixing is required for many practical applications, in
particular in association with chemical reaction. Furthermore, rapid mixing is often
an essential requirement to achieve a good performance in many microfluidic
applications, namely for biochemistry analysis, drug delivery, sequencing and
synthesis of nucleic acids, protein folding, and chemical analysis or synthesis.

In macroscale devices, fluid mixing can often be readily achieved by inducing
turbulent flow. In contrast, though not impossible, turbulence is more difficult to
reach in microfluidic systems due to the reduced length scale of the channels.
Additionally, in many microfluidic applications associated with biological systems,
the velocity of theflow cannot be too high since high velocitiesmay lead to large shear
stresses that can damage cells and compromise their function [15]. Therefore, in the
largemajority of cases,microfluidic flows take place in the laminar regime, and often
at low Reynolds numbers.

The steady laminar flow of Newtonian fluids in ducts is deterministic. When the
Reynolds numbers are low, fluids do not mix advectively when different streams
come together in a straight microchannel. Instead, the fluid streams flow in parallel
as shown in Figure 6.4, with mixing occurring only due to molecular diffusion
across the interface between the streams. At this point, it is useful to introduce the
dimensionless P�eclet number, which expresses the relative importance of the
convective over the diffusive mass transport

Pe ¼ UL=D ð6:5Þ
where D is the diffusion coefficient. For typical microfluidic flow conditions, Pe is
generally higher than 10, which means that the diffusion process acts more slowly

Figure 6.4 Junction of two Newtonian fluid streams in a microfluidic device under low Re flow
conditions.
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than the hydrodynamic transport. Additionally, advection is often parallel to themain
flow direction and is not useful for the transversal mixing process [19].

Considering a two-dimensional system for simplicity, the mean residence time of
a fluid element in the channel, tR, can be estimated as the ratio between the length
of the channel, L, and the average velocity, U,

tR ¼ L=U ð6:6Þ

and the time for diffusion (tD), that is, the time amolecule takes to diffuse a distance d,
is given by

tD ¼ d2=2D ð6:7Þ

In general, the smaller the molecule, the larger the diffusion coefficient and the
faster the molecule can diffuse. Diffusion coefficients for common liquids are quite
low (as compared to gases, for example) and can vary widely. For example, small ions
in water have diffusion coefficients around D¼ 2� 10�9 m2 s�1, while a large
molecule like hemoglobin (in an aqueous solution) has a diffusion coefficient more
than two orders of magnitude lower D¼ 7� 10�12m2 s�1. Thus, small ions take
around 5 s to diffuse 100 mm in water, while hemoglobin takes almost 25min to
diffuse over the same 100 mm.

Besides the diffusion coefficient, the other crucial parameter to evaluate themixing
time due to diffusion is the relevant length for mixing (cf. Eq. (6.7)). For example, a
protein of 70 kDa requires only 1 s to diffuse 10 mm but more than 10 days to diffuse
1 cm [16]. Taken together, these two effects very often imply that mixing times due to
diffusion can be very long relative to the residence time of the fluid in the micro-
channel. Increasing the channel length implies increasing the pressure drop across
the channel and therefore the requirements for micropumping and channel struc-
tural strength becomemore demanding [68]. Additionally, inmany reactive systems,
having such long mixing times/lengths is not admissible and alternative solutions
must be sought.

In summary, liquid mixing at the microscale is not a straightforward task [9] as
typical length scales of microfluidic devices are too small to experience mixing
induced by turbulence and often too large for diffusion to happen fast enough to
provide adequatemeans ofmixing [33, 69]. Thismeans that inmost cases, alternative
strategies must be implemented for micromixing enhancement.

6.2.2
Overview of Methods for Micromixing Enhancement

Since mixing by molecular diffusion is generally not efficient, other mechanisms
need to be brought into action, such as secondary flows due to fluid nonlinearities,
flow instabilities, or external actuators. These may be categorized into passive and
active methods. Active mixers use external sources to increase the interfacial area
between fluid streams, while passive mixers rely on fixed geometrical features (i.e.,
there are no moving parts) [33], utilize no external energy input, and depend largely
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on the mechanism used for generating fluid flow through the microchannel [24].
A good introduction to the general theme of mixing is presented by Ottino [70],
and by Nguyen [15] for the particular case of micromixing, and is only briefly
summarized below.

One possible approach to enhance mixing, inspired by macromixers, is to use
active methods to perturb the low Reynolds number flows. Active mixing requires
external forcing to induce a flow disturbance and hence increases the amount of
transverse flowwithin the channel. These forcesmay come frommovingmechanical
parts and/or external actuators [71]. Active mixers usually produce high levels of
mixing, but the systems are considerably more complex, may be difficult to integrate
into microfluidic devices, and can be expensive to manufacture [24]. A particular
challenge is related to the dominance of surface effects over volume effects as the
systems are miniaturized. As a consequence, actuation concepts based on volume
forces (e.g., magnetic stirrer), which are widely used at the macroscale, become less
efficient at the microscale [15].

The actuator for active mixing can be a pump or works as an energy source,
for example, pulsating side flow [72], micropumping for stopping and restarting
the flow [73], application of unsteady electric fields acting on the fluid or on
suspended particles [74], application of potential differences across pairs of electro-
des within the microchannel in the presence of an external magnetic field [75, 76],
application of thermal gradients to induce disturbances in the flow using either
thermopneumatic actuators (based on the thermal expansion of gases), thermal-
expansion actuators (based on the thermal expansion of solids) and bimetallic
actuators (based on the difference in thermal coefficient of expansion of two bonded
solids) [15], or application of acoustic fields [77, 78]. For further details, the reader is
referred to [15, 79]. Active principles can also obviously be used in combination with
passive techniques.

Another alternative to reduce mixing times is to induce stirring by chaotic
advection [80], with final mixing by diffusion, a process that has also been used in
microfluidics [81, 82] and requires a non-negligible Reynolds number since chaotic
advection is inherently a nonlinear inertial effect. This is usually accomplished in
various ways, depending on the flow Reynolds number, but invariably the flow
becomes time-dependent and can also be three-dimensional [19]. If the Reynolds
number is low and the fluid is Newtonian, the use of 2D obstacles is usually insuf-
ficient to create chaotic advection and enhancemixing. Asymmetric and 3D arrange-
ments of flow perturbations, such as grooves, obstacles, and duct twists become
necessary to impart the stretching, reorientation, and randomizationmechanisms of
distributivemixing [19, 83]. Micromixing in Newtonian fluids by chaotic advection is
reviewed in detail by Nguyen [15].

Fluids in microsystems very often contain additives that impart non-Newtonian
characteristics to the fluids and, in particular, viscoelasticity. These rheological
characteristics introduce nonlinearities that can be explored to dramatically change
the flow dynamics, and in particular to enhance mixing [1, 54, 84]. The elasticity of
the fluids is characterized, among other things, by the appearance of anisotropic
normal stresses, which produce secondary flows [85] and/or elastic instabilities even
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at extremely low Reynolds number. Although weak, these secondary flows help
the appearance of flow instabilities and reduce mixing times, because they create
conditions similar to those of chaotic advection, that is, 3D flow which we call here
chaotic elastic flow (inertia is negligible). The elastic instabilities have been shown
to exist even in the absence of inertia and are associated with strong curvature
of streamlines and large normal stresses [86]. When the elastic instabilities become
very intense, reaching a saturated nonlinear state, fluctuations even become random
over a wide range of length and time scales [87], very much like inertial turbulence,
in spite of negligible Reynolds numbers. This has prompted Groisman and
Steinberg [88] to call it �elastic turbulence.� So, elastic effects are used to reduce
the critical conditions for the existence of chaoticflowand enhancedmixing, allowing
the use, at lower Reynolds numbers, of passive techniques usually associated with
higher Reynolds number flows. This type of passive mixing is discussed in detail in
Section 6.5. Before that, however, we introduce in Section 6.3 some basic concepts
about non-Newtonian fluids, as well as the governing equations required for flows of
complex fluids (Section 6.4).

6.3
Non-Newtonian Viscoelastic Fluids

In this section, we present a brief overview of the rheology of non-Newtonian fluids.
More detailed descriptions are found in [45, 46], among others. Rheometry is also
described in [89, 90].

The rheology of fluids is assessed through their behavior in a small set of
controllable (and quasi-controllable) flows, whose kinematics are known and
independent of fluid properties. For shear-based properties, this is the Couette
flow schematically shown in Figure 6.5 in the planar (2D) version. Technologically,
the Couette flow is usually implemented in an axisymmetric version, as in the
concentric cylinders, cone–plate, or plate–plate geometries for which the applied
torque and rotational speed are directly proportional to the shear stress and
shear rate, respectively. The use of small gaps in these geometries ensures a
controllable flow and a nearly constant shear rate across the gap. For extensional-
based properties the ideal flow is a purely extensional flow, such as the uniaxial
extension, but it is not always possible to implement it easily, especially for low-
viscosity fluids.

U1
x2u1 = U1
H

x2

x1

H

Figure 6.5 Plane Couette flow and coordinate system.
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6.3.1
Shear Viscosity

Shear viscosity is defined as the ratio between shear stress (t12) and the shear rate ( _c)
in the Couette flow of Figure 6.5, where subscripts 1 and 2 denote streamwise and
transverse directions, respectively:

g ¼ t12
du1=dx2

¼ t12
U1=H

¼ t12
_c

ð6:8Þ

Typically, non-Newtonian fluids have a shear-thinning behavior with a low shear
rate constant viscosity plateau, as shown in Figure 6.6. A second lower constant
viscosity plateau at high shear rates is also frequent, but often this is not observed in
rheometricflows before the onset offlow instabilities. Some suspensions of irregular
solids, or surfactant solutions, exhibit a shear-thickening behavior, but this is often
limited to a narrow range of shear rates.

There are materials for which the first Newtonian plateau of the shear viscosity is
not observed, and the shear viscosity grows to infinity at vanishingly small shear rates.
Thesematerials possess some formof internal structure forwhich aminimumstress
is required prior to yielding – the yield stress – and often their viscosity depends not
only on the shear rate but also on time – thixotropy or anti-thixotropy, depending on
whether the shear viscosity increases or decreases over time. Examples are tooth-
paste, mayonnaise, blood, and suspensions of particles, in which the effect is
enhanced if macromolecules are present. Dilute and semidilute polymer solutions
do not exhibit yield stress and thixotropy, so these properties will not be considered

10-3

10-2

10-1

100

10-1 100 101 102 103 104

0.2% XG
0.4% CMC

η 
(P

a.
s)

γ (s-1)

Newtonian

Second Newtonian
plateau

Law of Carreau

Shear-thickening
behavior

.

Figure 6.6 Shear viscosity of aqueous solutions of 0.2% by weight xanthan gum (XG) and 0.4% by
weight carboxy methyl cellulose (CMC) and typical behavior of some rheological models.
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further. The interested reader is referred to Larson [46] and additional papers on
issues and techniques involving yield stress fluids [91–95].

6.3.2
Normal Stresses

Viscoelastic fluids develop normal stresses in shear flow, which are known within a
constant value, so their differences are the useful material properties. For a pure
shearflowas illustrated in Figure 6.5, thefirst normal stress difference (N1) is defined
as the difference between the streamwise normal stress (t11) and the transverse
normal stress (t22), and gives rise to the material property designated as first normal
stress difference coefficient, Y1:

Y1 � N1

_c2
¼ t11�t22

_c2
ð6:9Þ

The second normal stress difference is N2 � t22�t33 and the corresponding
coefficient isY2 ¼ N2= _c

2. N2 is usually small, with maximum values not exceeding
20% ofN1 and with an opposite sign toN1. Measurement ofN2 is difficult and can be
done using a special cone–plate apparatus [96].

The typical behavior of a viscoelastic fluid regardingY1 is included in Figure 6.7,
which pertains to an aqueous solution of polyacrylamide (PAA) at a weight concen-
tration of 300 ppm [97]. In the limit of small shear rates,Y1 tends to a constant value,
to which corresponds N1 ! 0. So, even though the behavior of Y1 depicted in
Figure 6.7 is shear-thinning, the normal stresses grow quickly as N1 varies with the
square of the shear rate (whenY1 is constant).N1 is responsible for some spectacular
phenomena, such as the Weissenberg effect [45]. Today, the capability of measure-
ment of N1 is standard in commercial rotational rheometers.

Figure 6.7 Material functions of a 300-ppm PAA solution under steady shear and SAOS flows.
Details of fluid composition can be found in [97].
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6.3.3
Storage and Loss Moduli

In small amplitude oscillatory shear (SAOS) flow of a viscoelastic fluid, an oscillat-
ing shear stress, t ¼ t0 sinðv tÞ, is applied to one of the walls of the Couette cell
(alternatively, an oscillatory deformation can be applied, c ¼ c0 sinðv tÞ, and the
corresponding shear stress measured). The ensuing fluid deformation will be given
by c tð Þ ¼ c0 sin v tþ dð Þ, and is out of phase by d relative to the applied stress.
Provided the amplitude of deformation is small, the response of thematerial depends
only on the forcing frequency and the resulting storage (G0) and loss (G00) moduli are
mathematically defined as

G0 ¼ v g00 � t0
c0

cos d; G00 ¼ v g0 � t0
c0

sin d ð6:10Þ

which measure the amount of energy stored reversibly by the material (G0, defor-
mation in phase with the stress) and consequently can be recovered, and the energy
irreversibly lost by viscous dissipation (G00, deformation out of phase with the stress).
Sometimes the components g0 and g00 of the complex dynamic viscosity (g�) are used
instead, where g� ¼ g0�i g00, with i representing the imaginary number (i2 ¼ �1).

For a Newtonian fluid, the response in this test would be obvious (G0 ¼ 0,
G00 ¼ t0=c0) so the loss angle (d) would be maximum and given by d ¼ p=2 (note
that tan d ¼ G00=G0).

6.3.4
Extensional Viscosity

In a pure extensional flow, the velocity vector only varies in its direction, as in a
traction or compression experiment. If a fluid sample is subject to an extensional
flow, such as the flow in a contraction or in a pulling device (cf. Figure 6.8), it
undergoes an extensional deformation and develops normal stresses proportional to
the normal strain rate ( _e). The ratio between the normal stress difference and the
strain rate defines the extensional viscosity

gE � t11�t22
@u1=@x1

¼ t11�t22
_e

ð6:11Þ

1x

2x

(a)

2x

1x

(b) 

Figure 6.8 Schematic representation of a flow with a strong extensional deformation: (a) smooth
contraction flow; (b) extensional flow device.

144j 6 Microfluidic Flows of Viscoelastic Fluids

msno
Sticky Note
the"*" should be in superscript

msno
Sticky Note
the"*" should be in superscript



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Note that all fluids, including Newtonian fluids, have a nonzero extensional
viscosity. For Newtonian fluids, the uniaxial extensional viscosity equals three times
the shear-viscosity, so no distinction is required, but for viscoelastic fluids the ratio
between the extensional and shear viscosities, called the Trouton ratio, varies with the
rate of deformation and can largely exceed the value of three, attaining sometimes
values of the order of 100 or higher. An impressive consequence of a very high
extensional viscosity is the tubeless siphon experiment [45].

The measurement of the extensional viscosity is not easy, because it is difficult
to ensure that fluid particles are under a constant strain rate for a sufficiently
long time to eliminate transient start-up effects, especially at high strain rates.
Additionally, for the mobile systems of interest here it is difficult to impose a con-
stant strain rate flow and so the extensional viscosity can only be directly measured
with such devices as the capillary break up extensional rheometer (CaBER) [98]. A
variant of the CaBER is the filament stretching extensional rheometer (FiSER)
based on the work of Tirtaatmadja and Sridhar [99], where the fluid filament
between plates is deformed as the plates move with a velocity increasing expo-
nentially with time. This allows the measurement of strain-dependent extensional
viscosity [100].

Alternatively, there are flows with a strong extensional nature from which an
extensional viscosity indexer can be obtained, such as the pressure drop enhance-
ment in a contraction flow or the tensile force required to sustain fluid stretching in
the space between two nozzles in the opposed jet rheometer, but in these flows the
fluids are not subject to a constant strain rate and the flow is contaminated by
secondary effects that may overwhelm the main measurement. In contrast, the high
consistency of polymer melts facilitates the integrity of fluid samples under uniaxial
extension and a number of devices can be used tomeasure their extensional viscosity,
such as the Sentmanat device [101].

6.3.5
Other Rheological Properties

The rheological properties discussed can today be reliably measured and are
standard. However, it is clear to rheologists and fluid dynamicists alike that the set
does not guarantee that if a rheological constitutive equation is able to predict all of
them for a particularfluid, it will be able to predict accurately all types offlowwith that
fluid [102, 103], a situation quite similar to the prediction of Newtonian turbulent
flows. This indicates the need for other fluid properties, especially those related to
time-dependency and nonlinear effects.

Other tests, such as the creep and the stress relaxation flows in shear and strain,
are good examples. One may also consider the response of fluids to a sequence
of steps in normal or shear strain, since here the response of fluids is different from
that to a single step. To assess nonlinear viscoelasticity, meaningful interpretation
of data from large amplitude oscillatory shear flow (LAOS) is currently under
development [104].
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6.4
Governing Equations

Viscoelastic fluid flow is governed by the momentum and continuity equations
together with a rheological constitutive equation adequate for the fluid. If heat
transfer is involved, the energy equation must be included with the corresponding
thermal constitutive equation, usually Fourier�s heat law. To consider chemical
reaction, the mass conservation equation for each chemical species needs to be
solved in combination with the mass transport constitutive equation, usually Fick�s
law. To assess mixing performance, it may be necessary to solve a transport equation
for an adequate scalar. These equations are coupled in a variety of ways: dependence
of fluid properties on temperature, molecular orientation and/or fluid composition,
through new terms in the governing equation, such as buoyancy in the momentum
equation or extra terms in the constitutive equation, which can be traced back to the
effect of temperature on the mechanisms acting at microscopic level. The treatment
of these extra terms of the constitutive equations is an advanced topic not considered
here. For a more in-depth discussions, the reader is referred to [105–107].

In general, the fluid dynamics and heat transfer problems are coupled and the set
of governing equations has to be solved simultaneously. For a general flow problem,
this can only be done numerically, but under simplified conditions, such as
temperature-independent fluid properties (a good approximation, if temperature
variations are small), it is possible to solve for the flow without consideration for the
thermal problem (although not the other way around). Other times, the solution can
still be obtained assuming temperature-independent properties, but a correction is
introduced to compensate for the neglected effect. This is a fairly successful approach
for simple geometries and simple fluids (such as inelastic fluids), but for viscoelastic
fluids a more exact approach may be required for accurate results [108].

The governing equations are presented in the next sections in tensor notation for
generality. The reader is referred to the appendices of Bird et al. [45, 109, 110] for an
extensive presentation of their form in various coordinate systems.

6.4.1
Continuity and Momentum Equations

The continuity equation is written as

@r

@t
þr � ruð Þ ¼ 0 ð6:12Þ

and the momentum equation as

@ ruð Þ
@t

þrðu �rÞu¼�rpþrgþr�ttþreE�
1
2
E �E20r2 þ20

2
r r

@ 2
@r

E �E
� �

ð6:13Þ
whereu is the velocity vector, p is the pressure,r is thefluid density, and thefluid total
extra stress (tt) is given by an adequate rheological constitutive equation. The last
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three terms on the right-hand side take electrokinetic effects into account, where re
denotes the net electric charge distribution within the fluid, E represents the applied
electric field (or induced streaming potential in flows with electroviscous effects), 20

is the dielectric permittivity of vacuum, and 2 is the dielectric constant of the fluid.
The last term accounts for permittivity variations with fluid density and is only rele-
vant at gas–liquid interfaces or in ionized gas flows, whereas the penultimate term
accounts for spatial variations in the dielectric constant of the fluid. Thus, for incom-
pressible fluids of constant dielectric permittivity only the first of the three terms is
required, which is known as Lorentz force.

The applied electric field intensity can be related to the imposed electric potential
E ¼ �rw and similarly the induced charge is related to the induced potential  .
In this chapter, we will assume that they are independent of each other and there-
fore they can be linearly combined into the total electric potentialW ¼ wþ . This is
admissible when the EDL is thin, and also requires a weak applied streamwise
gradient of electrical potential, that is, Dw=L �  0=�, where Dw is the potential
difference of the applied electricalfield,L is the distance between the electrodes, and �
is the Debye layer thickness. In this case, the transverse charge distribution is
essentially determined by the potential at the wall,  0, the so-called zeta potential.
If the local EOF velocities are small and/or parallel to the walls, as in thin EDLs,
the effect of fluid motion on the charge distribution can also be neglected. These
simplifications are part of the so-called standard electrokinetic model, in which case
Eq. (6.13) becomes

@ ruð Þ
@t

þ rðu � rÞu ¼ �rpþrgþr � tt�rerW ð6:14Þ

6.4.2
Rheological Constitutive Equation

The fluid total extra stress (tt) is given as the sum of an incompressible solvent
contribution having a viscosity coefficient gs and a polymer/additive stress contri-
bution tp, as

tt ¼ 2gs IID; IIIDð ÞDþ tp ð6:15Þ
The solvent viscosity coefficient in Eq. (6.15) has been made to depend on the

second and third invariants (IID, IIID) of the rate of deformation tensorD defined as

D ¼ 1
2

ruþruT
� � ð6:16Þ

to consider both the possibility of having a Newtonian (constant viscosity) or a non-
Newtonian (variable viscosity) solvent. In this way, Eq. (6.15) includes the class of
inelastic non-Newtonian fluids known as generalized Newtonian fluids (GNF) for
which the polymer contribution is set to zero (tp ¼ 0). Then, the viscosity coefficient
depends on invariants of the rate of deformation tensor, themost common being the
second invariant, defined in the next section. For viscoelastic fluids, gs is set to zero
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for polymer melts or to a nonzero constant when dealing with a polymer solution
based on a Newtonian solvent.

Usually the non-Newtonian fluids are treated as incompressible fluids, so the con-
tinuity equation simplifies tor �u ¼ 0. Some very limited phenomena may require
consideration of liquid compressibility, an issue not considered here.

6.4.2.1 Generalized Newtonian Fluid Model
The purely viscous GNF model is defined in Eq. (6.15) with tp ¼ 0 and the fluid
viscositygs IID; IIIDð Þdepending on invariants of the rate of deformation tensor [111].
Themost commonmodels consider only dependence on the second invariant andwe
can write many of them in a compact form as

gs IIDð Þ ¼ g1�g2ð Þ aþ LIIDð Þa½ 	n�1
a þg2 with IID �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D : D

p
ð6:17Þ

Equation 6.17 includes the Newtonian fluid model (viscosity coefficient g),
the Ostwald de Waele power law (consistency index K and power index n), the
Carreau–Yasudamodel (zero shear viscosityg0, infinite shear rate viscosityg1, power
index n, transition coefficient a, and transition time scaleL), the simplified Carreau
model and the Sisko model, with the corresponding coefficients given in Table 6.1.

6.4.2.2 Viscoelastic Stress Models
The previous constitutive models cannot predict viscoelastic characteristics, such as
any shear-induced normal stresses in Couette flow, or memory effects. There is a
class of models, which is still explicit on the stress tensor that can predict some of
these elastic effects.One suchmodel, theCriminale–Eriksen–Filbey (CEF) equation,
should only beused in steady shearflow inwhich case it provides accurate results [45].
The CEF model can be written as

t ¼ 2g _cð ÞD�Y1 _cð ÞDr þ 4Y2 _cð ÞD2 ð6:18Þ
with _c � IID and D

r
representing the upper-convected derivative of D, defined as

D
r � @D

@t
þ u � rð ÞD�ruT �D�D � ru ð6:19Þ

Table 6.1 Values of parameters in generalized viscosity function of Eq. (6.17) for some typical
viscosity models.

N a a g1 g2 L ��

Newtonian 1 Any Any g 0 Any
Power law N Any 0 � 0 � K ¼ g1L

n�1

Carreau–Yasuda N Any 1 g0 g1 L

Simplified Carreau N 2 1 g0 0 L

Sisko n Any 0 � g1 � K ¼ ðg1�g2ÞLn�1
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Other stress explicit models for viscoelastic fluids are contained in Eq. (6.18), such
as the second-order fluid (constant g, Y1, and Y2) or the Reiner–Rivlin equation
(Y2 ¼ 0). The use of thesemodels should be restricted toweakly elasticfluids and low
Weissenbergnumberflows, that is, tofluids deviating slightly fromNewtonian and to
slow flows, since outside these conditions they lead to physically incorrect predic-
tions. So, these models are essentially useful to investigate deviations from the
behavior of Stokes fluids.

More useful are the integro-differential viscoelastic fluid models. The polymeric
contribution to the extra-stress tensor in Eq. (6.15) can in general be represented as a
set of N modes

tp ¼
XN
k¼1

tk ð6:20Þ

where each polymer mode obeys a rheological equation of state of integral or
differential nature. An example of the latter is the following general equation:

f tr tð Þtþ l

F tr t; L2ð Þ t
& þ al

gp
t2 ¼ 2gpD ð6:21Þ

which includes such models as the upper-convected Maxwell (UCM) model, the
Phan-Thien–Tanner model (PTT), the Johnson–Segalman (JS) model, the Giesekus
model or the FENE-MCR model, according to Table 6.2. For conciseness and since
very often a singlemode is used, the subscript indicating themodehas been dropped.
Note that for each mode the model parameters can have different numerical values.

Function f tr tð Þ takes either the exponential form, f tr tð Þ ¼ exp½ðel=gpÞtr t	, or a
simpler linearized form f tr tð Þ ¼ 1þ el=gp

� �
tr t, and F tr t; L2ð Þ ¼ 1�tr t=L2ð Þ�1.

The temperature influences exponentially the polymer viscosity coefficient, gp, and
the relaxation time, l ¼ lðT0ÞaT where T0 is a reference temperature, and aT is the
nondimensional shift factor, usually described using the Williams–Landel–Ferry
(WLF) equation [112]. The shear modulus, G ¼ gp=l, is only weakly dependent on
the temperature, as discussed by Wapperom et al. [113]. The same correction for
temperature is valid for the material functions in the constitutive equation (6.17)

Table 6.2 Model parameters of Eq. (6.21) for some viscoelastic constitutive equations.

Models e a L2 j b

UCM 0 0 1 0 0
Oldroyd-B 0 0 1 0 ]0, 1[
PTTa) >0 0 1 [0, 2] 0b)

FENE-MCR 0 0 >0 0 ]0, 1[
Giesekus 0 ]0, 1[ 1 0 0b)

a) If j ¼ 0 it is also called the simplified PTT (sPTT) model. The original PTT relies on the
exponential form of f ðtrtpÞ, a linearized form uses the linear version of f ðtrtpÞ.

b) Strictly speaking b¼ 0 for the PTTor Giesekus models. Today their use is widespread to model
polymer solutions with a solvent contribution (b 6¼ 0) and the designation stands.
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and (6.18). F tr t; L2ð Þ is the stretch function that depends on the trace of the stress
tensor and on the extensibility parameter L2, representing the ratio of the maximum
to the equilibrium average dumbbell extensions for a FENE-MCR model (from
finitely extensible nonlinear elastic, with the Chilcott–Rallison approximation) [114].
The stress coefficient function f tr tð Þ introduces the dimensionless parameter e,
which is closely related to the steady-state elongational viscosity in extensional flow
(gE / 1=e for low e), while a is the dimensionless mobility factor of the Giesekus
equation. Finally, t

&
p denotes the Gordon–Schowalter derivative of the extra-stress

tensor, which is a mixture of the upper (j ¼ 0) and lower (j ¼ 2) convected
derivatives, and is defined as

t
& ¼ Dt

Dt
�t � ru�ruT � tþ j D � tþ t �DT

� � ð6:22Þ

Parameter j accounts for the slip between the molecular network and the
continuum medium and provides nonzero second normal stress differences in
pure shear flow. However, the use of j 6¼ 0 can lead to unphysical behavior of the
model, which are calledHadamard instabilities, if the solvent contribution is weak or
nonexistent. b in Table 6.2 denotes the solvent ratio, defined as b ¼ gs=ðgs þgpÞ.

TheUCMmodel is the simplest viscoelastic differentialmodel and is characterized
by a constant shear viscosity, equal to gp, a constant first normal stress difference
coefficient (Y1 ¼ 2gpl), and a zero second normal stress difference (N2 ¼ 0). Note
that the UCM model requires the solvent viscosity in Eq. (6.15) to be set to zero
(b; gs ¼ 0). If the solvent viscosity is a nonzero constant (gs 6¼ 0),wehave the so-called
Oldroyd-Bmodel, which has the same elastic properties as the UCMmodel, whereas
for the viscous properties it suffices to add the contribution from the Newtonian
solvent. The normal stresses/extensional viscosities of the UCMandOldroyd-B fluid
become unbounded in extensional flowwhen the rate of deformation tends to 1=ð2lÞ
as is clear from the steady-state uniaxial extensional viscosity given by

gE ¼ 3gp
1

1þ l _eð Þ 1�2l _eð Þ þ 3gs ð6:23Þ

Nevertheless, these two models contain many of the essential features of visco-
elasticity and for this reason they are still extensively used, especially in the devel-
opment of numerical methods or in preliminary calculations with viscoelastic
fluids (a robust method for the UCM and Oldroyd-B models is likely to be robust
for other constitutive equations). Additionally, the Oldroyd-B model is adequate to
describe the behavior of Boger fluids (constant viscosity elastic fluids). These are
mostly dilute polymer solutions in high-viscosity Newtonian solvents, but it is also
possible to manufacture themwith solvents of moderate viscosity provided these are
poor solvents [115].

Regarding the response to SAOS flow, the described viscoelastic models behave
identically with their loss and storage moduli given by

G0 ¼ g00v ¼ gplv
2

1þ lvð Þ2 ; G00 ¼ g0v ¼ gsvþ gpv

1þ lvð Þ2 ð6:24Þ
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Figure 6.7 showsG0 andG00 (via g0) as a function of the frequency of oscillation for
a 300-ppm aqueous solution of PAA and the corresponding fit by a three-mode
polymer model with a Newtonian solvent contribution.

The prediction of variable viscosity and normal stress difference coefficients
is provided by the more complex models, such as the PTT, Giesekus, or others.
The nonlinear fluid properties are precisely introduced by the nonlinear terms of
the equations, with different parameters having different impacts onto the model.
Usually, the addition of shear-thinning to the shear viscosity also leads to shear-
thinning of Y1 and for Y2 6¼ 0 it is necessary for the coefficient j inside the
Gordon–Schowalter derivative to be nonzero, or instead to have the quadratic stress
term switched on, as in the Giesekus model.

There aremoremodels for polymer solutions and lately they have been derived on
the basis of molecular kinetic theories for polymer molecules, such as the FENE-P
model (finitely extensible nonlinear elastic with Peterlin�s approximation). For
polymermelts, there is also a large set of complex network-basedmodels. Allmodern
constitutive equations have an involving formulation, frequently introducing the
concepts of conformation tensor, or of stretch and orientation tensors, among others.
As an example, we give below the constitutive equation for the FENE-Pmodel written
in terms of the conformation tensorA, which up to a scaling factor corresponds to the
second moment of the distribution function of the end-to-end vector of the model
dumbbell, < QQ >, via [107]:

tp ¼
gp

l
f tr Að ÞA�I½ 	 ð6:25Þ

with

f tr Að ÞAþ lA
r ¼ I and f trAð Þ ¼ L2

L2�tr A
ð6:26Þ

where L2 represents the maximum extensibility of the dumbbell.
Formore details andmodels, see theworks of Larson [116], Bird et al. [45, 109], and

more recently Huilgol and Phan-Thien [117], Larson [46], and Tanner [103].

6.4.3
Equations for Electro-Osmosis

To solve Eq. (6.14) for electrically drivenflows, it is necessary to determine the electric
charge distribution density. Figure 6.9 illustrates the principle of EO in a simple
channel. Basically, when a polar fluid is brought in contact with a surface chemical
equilibrium leads to a spontaneous charge being acquired by the wall and simul-
taneously by the layers of fluid nearer to the surface (with ions of opposite sign, the
counter-ions), thus forcing the formation of a near-wall layer of immobile ions
followed by a second layer of mobile ions, both of which contain a higher concen-
tration of counter-ions as the co-ions are repelled by the wall [118]. The layer of
immobile ions, the Stern layer, and the immediate layer withmobile ions, the diffuse
layer, form together the so-called EDL. EOF is obtained when an external field
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E ¼ �rw (w is the potential in the streamwise direction) is applied between the
channel inlet and outlet thus creating Coulomb forces acting on the charges within
the EDL. The motion of these ions drags the remaining fluid laying outside the EDL
along the channel. To determine the Coulomb force (last term on the right-hand side
of Eq. (6.14)), it is necessary to quantify the net electric charge density, re, which is
given by

re ¼ e
X
i

zini ð6:27Þ

where e is the elementary charge, ni is the bulk number concentration of positive/
negative ion i, and zi is the corresponding ion valence. Note that the bulk number
ionic concentrationn is related to themolar concentration of ions (ci) in the electrolyte
solution via ni ¼ NAci, whereNA is Avogadro�s number [4]. The simplest case is that
of electrolytes with equally charged ions of valence z� – zþ for which the above
general Eq. (6.27) simplifies to re ¼ e zðnþ�n�Þ.

The spontaneously induced potential  near the interface/wall is given by

r2 ¼ �re
2 ð6:28Þ

whereas the imposed streamwise potential is such that

r2w ¼ 0 ð6:29Þ
To determine the ionic concentration, their transport equations, also called the

Nernst–Planck equations, need to be solved. These are expressed as

@ n
ð Þ
@t

þu � rn
 ¼ r � D
rn

� �
r � D
n


ez
kBT

r wþ ð Þ
	 


ð6:30Þ

whereD
 are the diffusion coefficients of the n
 ions, respectively, kB is Boltzmann�s
constant, and T is the absolute temperature. Simpler models can be used in simpler

Figure 6.9 Illustration of EO driven flow. The blue and red arrows are Coulombic repulsive and
attractive forces on the counter and co-ions, respectively. Adapted from [118].
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situations: when flow is essentially unidirectional, steady, and parallel to walls, the
ionic distribution becomes stationary and the EDL is restricted to the wall vicinity, so
significant variations of n
 and only occur in the direction normal to thewall and in
its vicinity. Then, the Nernst–Planck equations reduce to the stable Boltzmann
distribution and the corresponding electric charge density is given by

re ¼ �2 n e z sinh
ez
kBT

 

� �
ð6:31Þ

Equations (6.28) and (6.31) constitute the so-called Poisson–Boltzmann model,
which is still quite general.When the ratio between the electric to thermal energies is
small, synonymous of a small value of e z  0= kBTð Þ ( 0 is the zeta potential), the
hyperbolic sine function can be linearized (sinh x � x) and the electric charge
density becomes

re ¼ � 2 k2 ð6:32Þ
where k2 ¼ 2e2z2n= 2 kBTð Þ is the Debye–H€uckel parameter related to the thickness
of the EDL, � ¼ 1=k. Equations (6.28) and (6.32) constitute the Poisson–Boltzmann–
Debye–H€uckel model.

6.4.4
Thermal Energy Equation

For nonisothermal flows, it is necessary to include in the set of governing equations
the following special form of the energy equation:

rc
DT
Dt

¼ �r � qþ _q1 þ tt : D ð6:33Þ

where c is the specific heat of the fluid, q is the conduction heat flux to be quantified
below, and _q1 is a source, here representing Joule heating per unit volume. The last
term on the right-hand side represents the mechanical energy supply by the visco-
elastic medium (the viscoelastic stress work), which includes the viscous dissipation.
This is an important term since many non-Newtonian viscoelastic fluids are highly
viscous and have non-negligible internal viscous dissipation, which precludes an
isothermal approach. The small channel dimensions in microfluidics, if coupled
with large fluid velocities, lead to large shear rates, and the viscoelastic stress work
becomes non-negligible.

In rigorous terms, the last term of Eq. (6.33) should have been multiplied by a
coefficient k and an extra term multiplied by 1�kð Þ should have been added to the
energy equation in order to account for internal energy storage by the viscoelastic
medium [107]. The connection between viscoelasticity and thermal energy and the
more specific issue of the numerical value of k are still topics of research [119] and
numerical simulations of Peters and Baaijens [120] have also shown that the results
fromsuch an extended equation for viscoelasticfluids arenot toodifferent from those
obtained with the simpler Eq. (6.33), which neglects the extra internal energy storage
term (for pure shear flow, the results are actually exactly the same).
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For the diffusive heat flux, Fourier�s law of heat conduction is assumed with an
isotropic thermal conductivity k

q ¼ �krT ð6:34Þ

For materials possessing some form of orientational order, such as liquid crystals,
the thermal conductivity can have an anisotropic behavior and is now a second-order
tensor (k), in which case the heat flux is given by q ¼ �k � rT.

The Joule heating effect is a consequence of the application of an electric field
across a conductive fluid (as in EO) and is given in complete form by

_q1 ¼
1
s

reuþsEð Þ � reuþsEð Þ ð6:35Þ

where s represents the electrical conductivity of the fluid. Under the conditions of
validity of the Debye–H€uckel approximation in EO, this Joule heating effect is
essentially that due to the electric field, because of the very low velocities, so Eq. (6.35)
reduces to _q ¼ sE �E.

In principle, all fluid properties may depend on temperature and this strongly
couples the rheological equation of state and themomentum equation on one side,
with the thermal energy equation on the other. There are obvious advantages in
considering fluid properties independent of temperature, because the fluid dynam-
ics becomes independent of the thermal energy, simplifying the problem. The
thermal energy equation, however, is always coupled with the flow via the velocity
field and its gradients; therefore it can never be dealt with independently from the
momentum equation.

6.5
Passive Mixing for Viscoelastic Fluids: Purely Elastic Flow Instabilities

6.5.1
General Considerations

As discussed in Section 6.1, the small length scales of microfluidics increase
significantly the role offluid elasticity beyondwhat can be achieved at themacroscale,
andmajor differences in behavior are expected [1]. Indeed, complex flows of complex
fluids often generate flow instabilities, even under inertialess (or creeping) flow
conditions (i.e., when Re� 1), which are typically encountered at the microscale.
These are called purely elastic flow instabilities and can play an important role in the
context of mixing improvement at the microscale in viscoelastic fluid flows. In this
section, we present an overview of elastic flow instabilities and focus on practical
examples related to their development and enhancement at the microscale. As
discussed in Section 6.1, flows at the microscale can be driven mainly by imposed
pressure gradients, which are considered in this section, or using electrokinetic
effects, which are considered in Section 6.6.
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6.5.2
The Underlying Physics

The remarkable properties of complex fluids arise from the interaction between
their molecular structure and the flow. The flow conditions induce a local
molecular rearrangement, with the polymer chains being stretched and oriented.
This nonequilibrium configuration generates large anisotropic normal stresses,
which themselves influence the flow field. This feedback mechanism can lead to
flow destabilization, and is more pronounced above the so-called coil–stretch
transition that occurs when the strain rate exceeds half the inverse of the molecu-
lar relaxation time ( _e � 1=2l). Under these conditions, the polymer molecules
experience a transition from the coiled (equilibrium) configuration, to almost
full extension.

The onset of elastic instabilities at highWi is a hallmark of viscoelastic fluids, even
under creeping flow conditions. Such purely elastic instabilities have been observed
experimentally in a number of flow geometries, such as Taylor–Couette, cone-and-
plate, contraction, and lid-driven cavity flows, among others [86, 121, 122]. For a
thorough overview of purely elastic instabilities in (shear-dominated) viscometric
flows, see the review paper by Shaqfeh [123].

Currently, it is widely accepted that the underlying mechanism for the onset of
purely elastic instabilities in shear flows is related to streamline curvature, and the
development of large hoop stresses, which generates tension along fluid streamlines
leading to flow destabilization [86, 121, 122]. Pakdel and McKinley [86, 124] showed
that the critical conditions for the onset of elastic instabilities can be described for a
wide range of flows by a single dimensionless parameter, M, which accounts for
elastic normal stresses and streamline curvature in the formffiffiffiffiffiffiffiffiffiffiffiffiffi

lU
R

t11
t12

s
� M � Mcrit ð6:36Þ

where l is the relaxation time of the fluid, U is the local streamwise fluid velocity,
t11 is the local tensile stress in the flow direction, t12 is the shear stress (t12 ¼ g _c),
and R is the streamline local radius of curvature. When the flow conditions are
such that M locally exceeds a critical value, Mcrit, elastic instabilities develop, as
discussed by Pakdel and McKinley [86, 124] for several flow configurations. The
value of Mcrit is slightly dependent on the flow, and for simple flows, where the
radius of curvature is known, Mcrit can be estimated. As discussed by McKinley
et al. [122], for Taylor–Couette flowMcrit � 5:9 and for torsional flow in a cone-and-
plate arrangement, Mcrit � 4:6. For more complex flows, the spatial variation of
M needs to be taken into account to identify the critical regions where the largest
value of M occurs. This mechanism for the onset of purely elastic instabilities
and the applicability of the M parameter to identify the critical conditions for the
onset of elastic instabilities was confirmed numerically by Alves and Poole [125]
for creeping flow of UCM fluids in smooth contractions, for a wide range of
contraction ratios.
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6.5.3
Viscoelastic Instabilities in Some Canonical Flows

Purely elastic flow instabilities at the microscale have been observed experimentally
and predicted numerically in several geometrical arrangements, such as those
illustrated in Figure 6.10. The flows have been categorized in four main groups:
(i) contraction/expansion flows; (ii) flows with interior stagnation points; (iii) wavy
channels; and (iv) other flows. In all cases, the onset of the instability can be linked to
the ubiquitous presence of large normal stresses and streamline curvature in shear
dominatedflows (e.g., wavy channels), extensional dominatedflows (e.g., stagnation/
flow focusing devices), or mixed kinematic flows (e.g., contraction/expansions).

Perhaps the most widely studied configuration associated to viscoelastic fluid flow
is the contraction geometry. In fact, viscoelastic flow in contraction geometries has
been the subject of numerous investigations (e.g., [126, 127]). Despite relying on a
simple geometrical arrangement, contraction flows usually lead to complex flow
patterns, which are very sensitive to the rheological properties of the fluid, and in

Contraction/Expansion 
flows 

Stagnation and flow-focusing flows 

Wavy channels 

                                                     

 

 

 

Other flows 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) (h) (i) (j) 

(k) (l) (m) (n) 

(o) (p) (q) 

Figure 6.10 Sketch of several canonical geometrical arrangements investigated at the microscale
using complex fluids that generate purely elastic flow instabilities.
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particular to their extensional viscosity, geometrical details (e.g., significant differ-
ences of flow patterns are observed simply by rounding the re-entrant corner
[128–130]), or the contraction ratio [131–133]. Due to their complex nature and
geometrical simplicity, viscoelastic flows in abrupt contractions were established as
one of the benchmark flow problems in computational rheology, during the Vth
International Workshop on Numerical Methods for Non-Newtonian Flows [134], and
since then they have been thoroughly investigated experimentally and numerical-
ly [127, 135–137]. Recent predictions of creeping flow in a 4: 1 planar contraction
using the Oldroyd-B model were able to reproduce the main flow features and
instabilities observed experimentally in contraction flows, up to the quasi-chaotic
flow observed at high Weissenberg numbers [138].

Viscoelastic flows in microscale contractions/expansions have emerged in the
past decade, after the pioneering work by McKinley and co-authors [51, 139].
Microscale contraction–expansion geometries (cf. Figure 6.10a–c) enable the explo-
ration of previously unattained regions in the Wi–Re parameter space [139], and
highly elastic flow conditions can be achieved even for dilute polymer solutions as
illustrated in Figure 6.3. This opens the possibility of investigating the rheology of
dilute polymer solutions, particularly if hyperbolic contractions are used, as illus-
trated in Figure 6.10b and c, which generate a nearly constant strain rate along the
centerline [61, 66]. Interestingly, the instabilities promoted at highly elastic flow
conditions provide ameans to enhancemixing at themicroscale, as demonstrated in
the experiments of Rodd et al. [51] for simple abrupt contraction/expansions and
extensively investigated by Gan et al. [53, 140] and Lam et al. [141] who patented a
modified contraction/expansion microgeometry, shown in Figure 6.10d, with addi-
tional transverse streams to trigger the instability. This microfluidic contraction/
expansion device was demonstrated to work efficiently formixing purposes at lowRe
and can be used with biocompatible (viscoelastic) fluids, such as polyethylene oxide
(PEO) polymer solutions [142].

Viscoelastic fluid flow in contractions is usually associated with enhanced pressure
drop at large Wi, when the extensional viscosity of the working fluid has a strain-
hardening behavior. The different strainhistories experienced in smooth contraction/
abrupt expansions and abrupt contraction/smooth expansions lead to anisotropic
flow resistance and can be used to develop diode-like fluidic elements, as done by
Groisman and Quake [49], who used a microfluidic device consisting of a series of
connected triangular elements. For the same pressure gradient applied in each
direction, they achieved flow rate ratios of about 2. More recently, Sousa et al. [52]
proposed a modified design of the microfluidic device, consisting of a series of
hyperbolic elements, as inFigure 6.10e.Thepressuredrop in theflowdirection shown
in Figure 6.10ewas found to bemore than four times higher than the pressure drop in
the opposite direction, at the same flow rate, making such a microfluidic device
suitable as a fluidic equivalent of an electronic diode. The enhanced flow resistance
observed in such device was found to be linked with the onset of purely elastic flow
instabilities, since the corresponding purely viscous Newtonian fluid flow showed no
rectification effect at these lowRe. The unsteadyflowof viscoelasticfluids generated at
high Wi can also be used to promote efficient mixing at low Re flow conditions.
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The strong extensional flow generated in microcontraction/expansions and the
large strain rates that can be achieved (of about 105 s�1, or higher) make this
geometrical configuration particularly interesting to study the stretching of long
molecules, and in particular of DNA, under strong extensional fields. Following this
idea, Gulati et al. [38] investigated the flow of semidilute solutions of l-DNA in a 2 : 1
abrupt planar microcontraction at small Re (below 0.1) and high Wi (up to 629),
corresponding to large elasticity numbers. Significant vortex enhancement was
observed, particularly at high Wi, due to the highly elastic flow conditions. More
recently, Hemminger et al. [143] investigated the flow of entangled DNA solutions, at
different concentrations, using a 4 : 1 abrupt planar microcontraction. An unusual
time-dependent shear banding flow was observed at the contraction entrance for the
highest concentrations. Besides these important studies involving dilute and
entangled DNA solutions, flow visualizations of the stretching and relaxation
processes of individual DNA molecules in a microfluidic cross-slot geometry
(cf. Figure 6.10g) have been done by Perkins et al. [144, 145], among others. The
dynamics of singleDNAmolecules in post-arrays, as those illustrated inFigure 6.10p,
have been investigated experimentally and numerically by Teclemariam et al. [146],
showing that an appropriate design of post-array distribution controls DNA con-
formation and guides the location where the hooking events take place. A thorough
review of the dynamics of a single DNA molecule in flow was presented by
Shaqfeh [36].

Viscoelastic flows at high De (or high Wi) also exhibit purely elastic flow
asymmetries in perfectly symmetric geometries. This steady symmetric to steady
asymmetric flow transition was observed experimentally in the flow in a microscale
cross-slot geometry [147] and were qualitatively captured by the 2D numerical
simulations of Poole et al. [148] using the UCM model. Figure 6.11 displays a set
of flow patterns predicted in the cross-slot geometry under creeping flow conditions
for the UCM model for a range of De values. The Deborah number was defined as
De ¼ lU=H [148], whereU is the average velocity on each arm of the cross-slot, with
width H, as sketched in Figure 6.11. The numerical results are in qualitative
agreement with the experiments of Arratia et al. [147] and show a progressive
increase in the steady asymmetry above a critical Deborah number, Decrit � 0:31.
At higher flow rates, a second instability sets in, at De � 0:5, and the flow becomes
time-dependent. At significantly higher flow rates, the amplitude of oscillations
increases and the flow eventually becomes chaotic, with a good mixing performance
as measured by Arratia et al. [147].

Other extension-dominated flows have shown similar flow bifurcations and
instabilities, as observed in the mixing–separating geometry [149], the six-arms
3D cross-slot [150], the flow-focusing device [54] (Figure 6.10h), the microfluidic
T-junction geometry [55] (Figure 6.10i), or the flip–flop microfluidic device [48]
(Figure 6.10j). For all these cases, the steady asymmetric instability occurs when
large normal stresses are generated and with its onset a progressive transition from
an extensionally dominated flow to a shear flow is observed to take place. This is
shown in Figure 6.12 for a flow-focusing device, where the streamline patterns are
superimposed onto the contour plots of theflow-type parameter, j � ð1�RÞ=ð1þRÞ;
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with R ¼ trðW2Þ=trðD2Þ, where W is the relative rate of rotation tensor and D is the
strain-rate tensor [151]. This invariant is illustrated in Figure 6.12 and varies from
j ¼ �1, corresponding to solid-like rotation flow, up to j ¼ 1, corresponding to pure
extensional flow. Shear flow corresponds to j ¼ 0 and is easily identified near the
walls, and along the channels under fully developed flow conditions.

Figure 6.11 (a) Sketch of the cross-slot
geometry. Streamline patterns predicted under
creeping flow conditions for (b) a Newtonian
fluid, and a UCM model at (c) De¼ 0.3 and (d)

De¼ 0.5. The contours in (b–d) represent the
normalized normal stress, tyy=ðgU=HÞ.
Adapted from [148].

Figure 6.12 Extensional flow of a UCM fluid in a flow focusingmicrogeometry under creeping flow
conditions. (a) Sketch of the geometry; (b) De¼ 0.3; (c) De¼ 0.34. Adapted from [54].
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Despite the success in the prediction of elastic-driven steady asymmetric flow
instabilities, the underlying mechanisms are yet to be fully understood, particularly
the cascade of events from the first �well-behaved simple� transition to the quasi-
chaotic behavior observed at very highWi. In fact, a significantlymore complex elastic
instability, also not yet fully understood, is the phenomenon of elastic turbulence
which also occurs for creeping flow conditions. The transition to turbulence at
extremely smallRewas reported for the first time by Groisman and Steinberg [88] for
torsionalflowof a dilute solution of a high-molecular-weight polyacrylamide between
two parallel disks. In the elastic turbulence regime, despite the Reynolds number
being arbitrarily small, the hallmark characteristics of classical turbulence at high Re
are observed, such as enhanced flow resistance, enhanced mass and heat transfer
rates, enhanced mixing, and a wide range of temporal and spatial fluctuations, as
demonstrated in several subsequent experimental studies (e.g., [87, 152]), including
the torsional flow between parallel plates or the flow in a wavy channel (with a square
section of 3� 3mm2, so not in the microfluidic range), as sketched in Figure 6.10k.
Other investigations at the microscale involving wavy channels include the work of
Groisman et al. [48] using a channel with a similar shape to that in Figure 6.10l.When
using polymer solutions, suchmicrofluidic devices work as the fluidic equivalent of a
nonlinear resistor, producing a nearly constant flow rate for a wide range of pressure
drops across the channel.Other studies involving zigzag channels anddilute polymer
solutions showed the goodmixing properties that can be achieved at highWi, due to
the onset of elastic instabilities [50] (Figure 6.10m). In contrast, for Newtonian fluids,
a decrease in themixingperformance is observedwhen theflow rate is increased, due
to the reduction inmixing time, which for lowReNewtonian flows ismainly induced
by diffusion. Recently, Li et al. [153] used surfactant solutions with viscoelastic
behavior (cetyltrimethyl ammonium chloride/sodium salicylate, CTAC/NaSal) and
observed the onset of chaotic motion in three types of microchannels that include
curved streamlines, such as wavy channels (Figure 6.10n), flow past a confined
cylinder in a rectangular microchannel (Figure 6.10o), and flow in a round micro-
fluidic cavity (Figure 6.10q). Again, the viscoelasticity of the surfactant solution
together with the curved streamlines were responsible for the onset of elastic
instabilities, leading to chaotic behavior and generating enhanced mixing for elastic
turbulence flow conditions.

6.5.4
Elastic Turbulence

The transition to elastic turbulence depends strongly on the strain history experi-
enced by the fluid, which is induced by the shape of the flow geometry, and on the
rheological properties of the polymer solution. Nevertheless, using polymer solu-
tions with sufficiently high elasticity, one expects that this turbulent-like motion
can be excited at arbitrarily low velocities and in arbitrarily small geometries, even
for very dilute polymeric solutions [154]. The elasticity of the flow increases with
the inverse of the square characteristic length scale of the flow geometry (cf. Eq. (6.4))
and consequently, in microscale flows adding minute amounts of long molecules
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to the solution (on the order of 10 ppm, or above), is usually sufficient to induce
non-Newtonian behavior at large deformation rates, which are typical of microscale
flows [52, 87, 155].

So far, most of the works concerning elastic turbulence have been primarily
experimental [87, 88, 152, 154, 156], and theoretical [155, 157]. The numerical
simulation of elastic-driven flow instabilities has been restricted to the initial phases
of flow transitions [125, 138, 148]. Only recently some preliminary attempts to
simulate the elastic turbulence regime have been successful, for simplified 2D flow
arrangements, such as the periodic Kolmogorov shear flow with constant forc-
ing [158, 159]. Using direct numerical simulations (DNS) and the Oldroyd-B model
to describe the fluid rheology, these authors demonstrated the occurrence of flow
destabilization induced by the elastic forces due to the dynamics of polymer
molecules in the solution. At large Wi, the basic phenomenology found in exper-
imental studies of elastic turbulence was reproduced in this idealized geometrical
configuration, with the appearance of coherent structures in the form of �elastic
waves� [159]. Despite the use of an idealized geometrical configuration with the
corresponding limitations, namely the assumptionof 2Dflow,Berti andBoffetta [159]
demonstrated that the use of simple viscoelastic models, such as the Oldroyd-B
constitutive equation, can capture the essential features of elastic turbulence,
opening a window to more realistic simulations using real 3D microfluidic flow
geometries and more adequate constitutive equations.

Much more needs to be investigated regarding the progressive transitions
to elastic turbulence and this must be accomplished experimentally, using fluids
of well-controlled rheology, and complemented with computational and theoretical
studies for better insight of the complex underlying mechanisms of flow instabil-
ities. Although there are important similarities between inertial and elastic
turbulence, this does not imply that the underlying physical mechanism is the
same in both cases. Indeed, elastic turbulence is accompanied by significant
stretching of the polymer molecules, which is the main cause of the observed
increase in the elastic normal stresses and the inherent increase in flow resistance,
a ubiquitous characteristic of turbulence. The stretching of the molecular chains
leads to a strong increase in flow resistance due to the increase in the extensional
viscosity, a characteristic of long macromolecules in extensional flow [45], very
much like the production of large Reynolds stresses in inertial turbulence of
Newtonian fluids, but contrasting with the severe damping of the same Reynolds
stresses that accompany polymer-induced drag reduction in high Re inertial
turbulence. Understanding the nature and mechanisms that lead to elastic turbu-
lence will have important practical applications, either for enhancing mixing
and/or heat and mass transfer rates at the microscale, or for allowing the operation
of extrusion processes at higher throughputs, by minimizing the driving forces
that lead to the onset of flow instabilities. Additionally, understanding the driving
mechanisms of elastic turbulence and comparison with classical inertial-driven
turbulence of Newtonian fluids may allow us to obtain further insights into the
driving mechanisms of inertial turbulence in Newtonian and in viscoelastic
fluid flows.
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6.6
Other Forcing Methods

The previous section discussed instabilities at high Wi flows of complex fluids
driven by a pressure gradient. Here we briefly describe important works that use
electrokinetic forcing to promote complex fluid flow, with emphasis on EO and
electrophoresis. EOF are important in the context of viscoelastic fluids, including
the development of instabilities and their possible application in micromixing
enhancement. To finalize this chapter, electrophoresis is also considered, not in the
framework of mixing, but rather because of its importance in the limiting case of
the manipulation and separation of individual macromolecules, and of its close
link with EO.

6.6.1
Electro-Osmosis

Currently, about 90% of microfluidic devices operate by either pressure-driven or
EOF forcing, essentially due to their versatility and simplicity of operation [160]. PDF
are still leading the number of applications of microfluidics; however as the size of
the microchannels is further reduced, say to dimensions below around 10 mm,
forcing by pressure becomes particularly inefficient due to the significant increase in
viscous losses [160]. In contrast, for this range of dimensions EO becomes a
particularly convenient and efficient way of promoting flow in microfluidic devices,
as long as the fluid has ions. A major disadvantage of EOF is the strong electric
gradients that typically need to be applied to promote the flow at average velocities
above 1mms�1. This limitation can be circumvented by further miniaturization,
thusmaking EOFmore efficient as the size is reduced, with important applications in
nanofluidics where smaller electrical potentials are sufficient to promote the flow.
A thorough discussion on the advantages and disadvantages of PDF and EOF is
presented in [160].

Rigorous modeling of EOF in microchannels has been the subject of several
studies, particularly for Newtonian fluids. A thorough review with various appli-
cations of EO is presented in [58, 161]. Exact analytical solutions have been derived
under fully developed flow conditions for Newtonian fluids, as described by
Afonso et al. [162]. Newtonian fluid flow in complex geometries has been modeled
in several works, and accurate results have been obtained for different applications.
Of particular interest are electrokinetic instabilities (EKI) that arise under high
electric fields in the presence of electrical conductivity gradients. Electrokinetic
flows of Newtonian fluids become unstable when electroviscous advection of con-
ductivity fields dominates over dissipation through viscosity and molecular diffu-
sion [163, 164]. Likewise, EKI can be triggered using time-periodic fields, as
demonstrated by Shin et al. [165] using a flow-focusing device (Figure 6.10h).

Surface patterning with different materials has been exploited to generate
regions with different zeta potentials, and chaotic mixing in EOF can be driven by
spatiotemporal surface charge modulation [166]. Other examples of nonlinear

162j 6 Microfluidic Flows of Viscoelastic Fluids



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

electrokinetic phenomena with great potential in microfluidics mixing and pump-
ing are induced-charge electro-osmosis (ICEO) and AC electro-osmosis (ACEO), as
reviewed by Bazant and Squires [167].

In contrast, EOF of complex fluids are still poorly studied, except for fully
developed flows between parallel plates and in a circular tube, thus constituting
a fertile ground for research. The theoretical study of EO flows of non-Newtonian
fluids is recent and the preliminary works considered GNF, such as the power-law
model [168, 169]). Berli and Olivares [170] considered the existence of a small wall
layer depleted of additives (the skimming layer), in which the fluid behaves as a
Newtonian fluid, and the non-Newtonian behavior is restricted to the electrically
neutral region outside the EDL. More recently, the theoretical analysis of EO
flows was extended to viscoelastic fluids by Park and Lee [171], who derived the
Helmholtz–Smoluchowski velocity for pure EOF of PTT fluids in rectangular
channels and provided a simple numerical procedure for its calculation. Afonso
et al. [162] considered the PTT and FENE-P constitutive equations, and derived
analytical expressions for fully developedflowbetweenparallel plates and in a circular
pipe, under combined pressure and electrokinetic forcings. This analysis was
extended by Afonso et al. [172] to consider different zeta potentials on both walls,
whereas Sousa et al. [173] considered the existence of a skimming layer near the wall
depleted of polymer molecules.

EOF of polymer solutions have also been studied experimentally in simple
geometries. Bello et al. [174] investigated the flow of polymer solutions in capillaries,
and observed a progressively suppressed EOF, suggesting a dynamic coating of
the polymer molecules onto the capillary wall. Baumler et al. [175] and Chang and
Tsao [176] observed drag reduction in EOF of polymer solutions, due to polymer
depletion in theEDL,which leads to a reduction in shear viscositywith corresponding
enhancement of the measured Helmholtz–Smoluchowski velocity.

High Weissenberg number flows are prone to purely elastic instabilities, as
discussed in the previous section. EOF of polymer solutions are no exception, and
Dhinakaran et al. [118] predicted a constitutive-related instability for EO flow
between parallel plates of PTT fluids, when the shear rate exceeds a critical value.
Purely elastic instabilities can also be generated in EOflows, and such electroelastic
instabilities were recently observed experimentally in a microfluidic channel
consisting of a series of 2 : 1 sudden contraction/expansions (Figure 6.10f), using
dilute viscoelastic PAA solutions [177, 178]. EOF are an excellent platform to
generate strong extensional flows because shear effects are typically circumscribed
to the EDL region. The experimental results of Bryce and Freeman [177, 178]
suggest that the electroelastic instability occurs for flow conditions corresponding
to the coil–stretch transition, without the observation of a dominant frequency of
the flow, an indication of chaotic-like behavior. Despite this unstable behavior, the
mixing rates found were smaller than those observed in polymer-free solutions,
with diffusion appearing to be the dominant mixing mechanism [177]. This is a
surprising result, and further investigations of electroelastic instabilities are
required to enlighten the mechanism of purely elastic instabilities and mixing in
microfluidic EO flows of polymer solutions.
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6.6.2
Electrophoresis

In many ways, DNA can be considered as an ideal model polymer. It is naturally
monodisperse, large enough to be imaged in a microscope using fluorescence
techniques, and the relaxation time is typically of the order of seconds [179]. DNA
is a polyelectrolyte, making it easy to be manipulated through electrophoresis by
applying electric fields. We note, however, that the (micro)fluidic channels used
usually have charged surfaces, which also induce a global transport through EO,
unless special treatments are applied to the surfaces to minimize electro-osmotic
transport [180].

In a strict sense, electrophoresis is usually not included in the field of rheology.
However, since it involves deformation and flow of matter, albeit in a single mole-
cule framework, this tacit distinction is becoming obsolete, with experiments
using biopolymers progressively creating an important influence on rheology [179].
Likewise, some tools developed for microrheology are expected to be increasingly
used in the manipulation of single DNA molecules. A growing interaction between
rheology and biophysics is leading to important insights into the flow properties of
polymers and biomolecules [181]. Electrophoresis of macromolecules has several
applications in molecular biology, including the transport, separation, or elongation
at the molecular level, with important applications in biotechnology and medicine,
with DNA sequencing being one of the most prominent. A recent review of electro-
phoretic microfluidic separation techniques was presented by Wu et al. [182],
summarizing important milestones in the separation of small molecules, DNA,
and proteins.

Specificmicrofluidic devices have been proposed and optimized in order to study
individual molecules, and DNA in particular. Stretching of DNAmolecules is a key
technology in emerging DNA-mapping devices such as direct linear analysis [183],
and single-molecule studies of DNA have expanded our knowledge on the funda-
mentals of polymer physics. Additionally, understanding the response of individual
polymers at themolecular level can provide valuable information to developmodels
applicable to entangled systems. Electrophoresis stretching and relaxation of DNA
molecules have been undertaken in several flow configurations that promote a
strong extensional field, such as hyperbolic contractions, cross–slot, and T-junction
arrangements. Juang et al. [184] used a cross-slot microfluidic channel to induce a
fairly homogeneous 2D elongational flow, allowing the determination of the
amount of DNA stretching. Kim and Doyle [183] used hyperbolic contractions,
which generate a nearly constant strain rate, with additional lateral streams to
enhance DNA stretching. Balducci and Doyle [185] also used hyperbolic contrac-
tions, but included an obstacle array upstream of the contraction region for
conformational preconditioning, leading to an increase in the average deformation
of the DNA molecule in the contraction. Tang and Doyle [186] proposed a
microfluidic T-shaped channel which can trap and significantly stretch single
DNA molecules using electrophoresis, without requiring any special end functio-
nalization to trap the DNA molecule.
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The relaxation process of DNA is also of interest as it allows for the determination
of the molecular relaxation time, which is an important parameter for the charac-
terization of DNA dynamics as shown in several experimental studies [187–189].

6.7
Conclusions and Perspectives

Flow systems built aroundmicrofluidics are becoming increasingly popular in awide
range of industrial applications dealing with both gas and liquids. They associate low
production costs with low power consumption and waste reduction, allow for easy
integration with electronics toward the lab-on-chip devices, but require demanding
manufacturing facilities and highly efficient signal detection systems. Many of their
applications are in biotechnology and in health related areas, where the liquids are
made of complex structures and macromolecules that impart nonlinear rheological
behavior and in particular viscoelasticity. Since microscale flows are characterized
by high surface-to-volume ratios, the flow dynamics is significantly affected by
fluid rheology and other physical phenomena, such as surface tension, in compar-
ison with macroscale flows. In particular, the time scale of the flows, tf � L=U,
decreases significantly to become much smaller than (or at least on the order of) the
relaxation time of the fluid structures, keeping the flowReynolds number small. As a
consequence, microscale flows of complex fluids are characterized by large elastic
effects in comparison to the corresponding Newtonian flows and both exhibit large
ratios of viscous to inertial forces, in contrast to the corresponding macroscale flows
dominated by inertia.

The large elastic effects found in microfluidic flows of complex fluids allow for
enhanced mixing due to purely elastic instabilities, which are a consequence of the
nonlinear nature of the corresponding terms of the rheological constitutive equation.
In fact, the onset of elastic instabilities has been found to take place over a wide range
of flow types (flows dominated by extension or shear, as well as flows having mixed
kinematics), whenever there are large normal stresses of elastic origin coupled with
streamline curvature. The dynamics of these instabilities, which exist even in the
limit of creeping flow, do have some resemblance to inertial instabilities found in
high Reynolds number flows of Newtonian fluids, in the sense of a progressive
cascade of instabilities from simple transitions between steady flows to transitions to
periodic unsteady and subsequently chaotic flows leading eventually to elastic
turbulence, where the unstable flow structures exist over a continuous wide range
of length and time scales. The path of these transitions is only now being discovered
and remains an active topic of research. The onset of elastic turbulence in regions of
parallel shear flow is currently particularly challenging.

The presence of macromolecules in microscale flow systems thus allows for
enhanced mixing in low Reynolds number flows via elasticity-driven instabilities.
These not only exist in pressure-gradient driven flows, but also for electrically driven
flows, which are potentially very useful given their ease of implementation at these
scales. The combination of EO with viscoelasticity is a new topic of research, where
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most things remain to be done and it suffices to think here that it is not only direct
but also alternate current that has to be considered. Additionally, electrokinetic
effects can be combined with surface patterning, which can also be used to enhance
other surface phenomena, such as the generation of surface tension gradients. Their
combination with complex fluids is in its infancy and is certainly worth exploring to
find possible and unexpected flow features and applications.
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Abstract

Viscoelastic fluids possess nonlinear rheological behavior that drives flow instabil-
ities at the low Reynolds numbers typically found at the microscale. These elastic-
driven instabilities are linked to the presence of large normal stresses and streamline
curvature, and appear at criticalWeissenbergnumbers in awide range offlows, either
dominated by shear, by extension, or having mixed kinematics. The Weissenberg
number is a dimensionless number inversely proportional to a characteristic length
scale of the flow. Therefore, elastic instabilities are easily present in microfluidic
flows, where they constitute a useful passive mixing mechanism that in the limit of
very high Weissenberg numbers can exist in the form of elastic turbulence. In this
chapter, we report and discussmicrofluidicflows of complexfluids and elastic-driven
instabilities in a large set of flow geometries. We also present an overview of the
relevance of microfluidic systems operating with viscoelastic fluids and describe the
main rheological material properties and the governing equations for pressure-
gradient and electro-osmotic driven non-Newtonian fluid flows.

Keywords: viscoelastic fluids; microfluidic systems; Reynolds number;
Newtonian fluids; Couette flow;Weissenberg effect; small amplitude oscillatory
shear (SAOS).
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