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Abstract A modified second order viscoelastic constitutive equation is used to derive a k–
l type turbulence closure to qualitatively assess the effects of elastic stresses on fully-developed
channel flow. Specifically, the second order correction to the Newtonian constitutive equation
gives rise to a new term in the momentum equation involving the time-averaged elastic shear
stress and in the turbulent kinetic energy transport equation quantifying the interaction between
the fluctuating elastic stress and rate of strain tensors, denoted by Pw , for which a closure is
developed and tested. This closure is based on arguments of isotropic turbulence and
equilibrium in boundary layer flows and a priori Pw could be either positive or negative. When
Pw is positive, it acts to reduce the production of turbulent kinetic energy and the turbulence
model predictions qualitatively agree with direct numerical simulation (DNS) results obtained
for more realistic viscoelastic fluid models with memory which exhibit drag reduction. In
contrast, Pw<0 leads to a drag increase and numerical breakdown of the model occurs at very
low values of the Deborah number, which signifies the ratio of elastic to viscous stresses.
Limitations of the turbulence model primarily stem from the inadequacy of the k–l formulation
rather than from the closure for Pw . An alternative closure for Pw , mimicking the viscoelastic
stress work predicted by DNS using the Finitely Extensible Nonlinear Elastic-Peterlin fluid
model, which is mostly characterized by Pw>0 but has also a small region of negative Pw in
the buffer layer, was also successfully tested. This second model for Pw leads to predictions of
drag reduction, in spite of the enhancement of turbulence production very close to the wall, but
the equilibrium conditions in the inertial sub-layer were not strictly maintained.
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Nomenclature
A parameter of polymer work model, see (33)
bij tensor defined in (28)
CD parameter of turbulence model, see (23)
Ck parameter of k–l turbulence model
Cij time-average component of elastic stress tensor defined in (12)
Dk Turbulent and molecular diffusion of turbulent kinetic energy, defined in (20b)
De Deborah number based on bulk velocity of the flow
Del Deborah number of turbulence, Del ¼ u1 =l
Det friction Deborah number, DeC ¼ uC 1 =H
H channel half-height
k turbulent kinetic energy
l length scale in turbulence in order of magnitude analysis and Prandtl’s mixing length

in turbulence model
p pressure
Pk Production of turbulent kinetic energy, defined in (20a)
Pw Polymeric work, defined in (20d)
t time
Tij designates a time-average tensor
u scale of velocity fluctuations in order of magnitude analysis and streamwise velocity

component in turbulence model equations
ui fluctuating velocity vector
ûi instantaneous velocity vector
u* streamwise velocity normalized by the friction velocity, uþ ¼ u=uC
Ui time-average velocity vector
ut friction velocity in fully-developed channel flow
uv Reynolds shear stress
Re Reynolds number based on bulk velocity of the flow
Rel Reynolds number of turbulence, Rel ¼ ul=υT
Ret friction Reynolds number, ReC ¼ uCH=υT
x streamwise coordinate
xi general coordinate
v wall-normal velocity component
w spanwise velocity component
y wall-normal coordinate
y* wall-normal coordinate normalized by physical coordinates, y* ¼ y=H
y+ wall-normal coordinate normalized by wall coordinates, yþ ¼ yuC=υT
z spanwise coordinate

Greek characters
β ratio of solvent to total viscosities, β ¼ υs

�
υs þ υp
� �

δij Kronecker delta
ɛ viscous dissipation of turbulent kinetic energy
ɛij rate of viscous dissipation of the Reynolds stress tensor uiuj
ɛw rate of viscous dissipation of turbulent kinetic energy at the wall, defined in

(24)
�+ ij fluctuating rate of deformation tensor
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bg� ij instantaneous rate of deformation tensor�
*ij time average rate of deformation tensor
ηp viscosity coefficient of polymer
ηs viscosity coefficient of Newtonian solvent
κ von Kármán constant
1 relaxation time of the fluid
1 f Taylor longitudinal microscale of turbulence
μ ratio between production of turbulent kinetic energy and polymeric work
ρ fluid density
σk Turbulent Prandlt number associated with turbulent diffusion of k by the

pressure and velocity fluctuations, see (21)
σkp second turbulent Prandtl number associated with turbulent diffusion of k by

the fluctuating elastic stresses, see (22)
τik,t fluctuating total extra stress tensor
Ĉ ik;t instantaneous total extra stress tensor
teij elastic part of the polymer tensor contribution to the total extra stress tensor
τik,p fluctuating polymer tensor contribution to the total extra stress tensor
Ĉ ik;p instantaneous polymer tensor contribution to the total extra stress tensor
υp ¼ ηp

.
ρ kinematic viscosity of the polymer

υs ¼ ηs=ρ kinematic viscosity of the Newtonian solvent
υT total kinematic viscosity, uT ¼ us þ up
< 1 first normal stress difference coefficient
< 2 second normal stress difference coefficient

1 Introduction

Over the last 10 years there has been a renewed effort towards understanding turbulent drag
reduction (DR) in fully-developed pipe and channel flows of viscoelastic dilute polymer
solutions. This has been accomplished in two ways: experimentally, using advanced optical
diagnostic techniques such as laser-Doppler anemometry and particle image velocimetry [1–
5], with the emphasis placed on investigating near-wall phenomena; numerically using direct
numerical simulations (DNS) with a variety of rheological constitutive equations, such as the
Oldroyd-B, Giesekus or the FENE-P models [5–10], amongst others to probe the coupling
between turbulence and polymer conformation (or elastic stress) leading to DR.

These works provide a clear picture of the phenomenon of drag reduction and its relation
with the fluid rheology and events, e.g. coherent structure dynamics, taking place in the
various regions of the flow [11]. However, from a practical point of view the prediction of
the behavior of specific viscoelastic fluids in different turbulent flows remains a challenge,
because of the lack of robust turbulent closures to solve the time-averaged momentum and
constitutive equations. DNS results have been only recently analyzed with a view to
develop closures, such as the zero order model of Li et al. [12] and the first order model of
Shaqfeh et al. [13], and there is still a lack of coupling between the DNS and the
corresponding closures under development on one side, and the rheology of real drag-
reducing fluids on the other.

The difficulties inherent to the development of single point closures for viscoelastic
fluids based on differential viscoelastic constitutive equations, even with the help of DNS
data, have inspired a more practical approach in which fluid properties that are considered
relevant to DR are identified and they lead to the formulation of simple constitutive
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equations which are subsequently used to develop single-point closures. This approach was
used by Pinho and co-workers [14–16], who formulated several low Reynolds number k–ɛ
type models and a Reynolds stress model on the basis of a modified Generalized Newtonian
constitutive model that accounted for shear-thinning in shear viscosity and shear-thickening
of the Trouton ratio. These turbulence models have shown to perform satisfactorily in fully-
developed pipe and channel flows of polymer solutions and behave qualitatively well in
homogeneous isotropic turbulence due to the modification of the molecular viscosity. Their
constitutive equation is purely viscous and the capability of the turbulence models to
accurately predict drag reduction in shear flow is essentially due to a new damping
function. This damping function accounts for wall effects in various terms: within the
context of a k–ɛ closure it corrects the average molecular viscosity and especially the eddy
viscosity, whereas for the second order turbulence model it corrects the rate of dissipation
of the Reynolds stress tensor (ɛij) and the pressure strain. An innovative feature of the
turbulence model and its damping function is that they depend on the rheology via its four
parameters: the consistency and power indices of the shear viscosity and the consistency
and power indices of the Trouton ratio. However, neither the transport equations nor the
turbulence models contain any normal stress or memory effects associated with the
viscoelasticity of the fluid.

In this work, starting from a relatively simple viscoelastic rheological constitutive
equation, namely a simplified version of the “second order” fluid model that contains a
second order correction to the Newtonian law, we derive a simple turbulence closure for
boundary layer flows, based on Prandtl’s one-equation k–l model for Newtonian fluids. Our
objective is to investigate qualitatively the effects of elastic stresses on turbulent flow
characteristics, and, in particular, to inquire whether they can help predict drag reduction
and, if so, how significant the predicted DR effect would be. While such a model cannot be
expected to quantitatively predict the flow behaviour of viscoelastic fluids in turbulent
flows, it could be a useful tool to assess qualitatively the effect of viscoelasticity on the
spatial correlations of velocity and stress fluctuations. Such information could help future
developments of turbulent closures based on differential constitutive equations, such as the
FENE-P model. As far as we are aware investigations on turbulence of second order fluids
are scarce, one of the first carried out by Elata and Poreh [17]. In this early work the drag
reduction was related to the appearance of an additional contribution to the extra shear
stress, proportional to the vorticity correlation tensor and involving the two cross-viscosity
coefficients, but opposite in sign to the molecular (viscous) and Reynolds stresses.
Recently, in an attempt to understand the turbulent transition mechanisms for polymer
solutions, Roy et al. [18] have used second to fourth order fluids to investigate the effect of
polymers on the energy feedback from the unstable streaks to the streamwise counter-
rotating vortices. They concluded that the reduction in critical Reynolds number observed
for weakly elastic fluids can be predicted by second order fluids, whereas the subsequent
increase for more elastic fluids requires models of at least third order. Both changes were
found to be intimately connected with the response of the fluid to biaxial extensional
deformation. In this work, we focus on incorporating second order (SO) corrections into a
one equation model for turbulent channel flow to explore the influence of closure
approximations employed for the terms arising from viscoelastic corrections on predicted
DR. Of particular interest are the effects of the sign and magnitude of the correlation
coefficient associated with the viscoelastic stress-velocity gradient correlation on the DR
behavior. Since such correlations also arise when more sophisticated viscoelastic
constitutive models are used, the insights obtained with the SO model could be useful as
a limiting case scenario for relatively small DR values. From an engineering point of view,
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the stress-velocity gradient correlation coefficient may be parameterized against experi-
mental data for rheological and flow properties to obtain semi-empirical models for
predicting the DR behavior.

The remaining of this paper is organized as follows: in Section 2 the governing
equations and turbulence model are presented with new closures explained in detail. The
model is tested in fully-developed channel flow in Section 3 and the main conclusions are
drawn at the end.

2 Governing Equations and Turbulence Model

2.1 Fluid constitutive equation and momentum equation

In what follows instantaneous quantities are denoted by a hat, capital letters or an overbar
designate time-average quantities and small letters or primes denote fluctuating quantities.

The turbulent flow is governed by the continuity and the momentum equations (1) and
(2), respectively, which are here written in index notation.

@ ûi
@xi

¼ 0 ð1Þ

ρ
@ ûi
@t

þ ûk
@ ûi
@xk

� �
¼ � @ p̂

@xi
þ @ Ĉ ik;t

@xk
ð2Þ

As shown in (3) below, the total extra stress Ĉ ik;t of the fluid in (2) is split into a
Newtonian solvent component of viscosity coefficient ηs and a polymer additive stress
component Ĉ ik;p, which in turn is modeled by (4). This could be the case for a solution of
polymer molecules in a Newtonian solvent. In fact, (3) and (4) consist of the Newtonian
model with a second-order correction related to the first normal stress difference coefficient
(< 1) [19]. This is not the classical second order fluid model since the term proportional to
the square of the rate of deformation tensor �+ ij

� �
is not considered. Instead, although this

version of the second order fluid has < 1=21ηp the second normal stress difference
coefficient (< 2) is null. This is not a severe simplification since for real fluids <2j j <<
<1j j [20], but allows us to isolate first normal stress effects to better study their impact on
turbulence. The fluctuating rate of deformation tensor is defined as �+ ij ¼ @ui

�
@xj þ @uj

�
@xi,

and the corresponding time-average quantity is denoted
�
*ij. Time-averaged stresses are

represented by Tij.
Non-Newtonian behavior is characterized by several different phenomena, which can be

of purely viscous nature as well as of elastic nature. The typical purely viscous non-
Newtonian characteristic is a variable viscosity depending on the local rate of deformation,
usually imparting a shear-thinning viscosity behavior, which is very common with polymer
solutions and melts. Elasticity manifests itself in various ways: a memory effect, where the
fluid responds with a time lag to an instantaneous forcing, strain-hardening in extensional
deformations; but there are also deviations from the Newtonian behavior, such as the
appearance of normal stresses in steady shear flow that are associated with elasticity and
can also be explained by rheological constitutive equations devoid of memory effects, such
as the retarded-motion expansions [20]. The second order fluid belongs to this category.
With some well identified exceptions, retarded motion expansions are not so useful for
engineering purposes given their limitations and limited rheology capabilities [20], but
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provide valuable insight into problems. In this particular case it allows us to investigate the
role of the first normal stress difference in turbulent flow, without the accompanying effect
of memory that results from the use of more realistic viscoelastic differential constitutive
equations, such as the Oldroyd-B, the FENE-P or Giesekus models, each of which has its
own limitations and where memory and elastic stress effects are combined.

The second order fluid model is described by:

Ĉ ij;t ¼ ηs
b
+
�
ij þ Ĉ ij;p ð3Þ

Ĉ ij;p ¼ ηp
b
+
�
ij � ηp1

b
+
�
ij 1ð Þ ð4Þ

Equation (4) explicitly breaks the polymer stress into a viscous component ¼ ηp
b
+
�
ij

having a polymer viscosity coefficient hp and the second order correction is an elastic

contribution Ĉ eij

� �
given by

Ĉ eij ¼ ηp1
b
+
�
ij 1ð Þ ð5Þ

where 1 is a parameter of the constitutive equation having dimensions of time and bg� ij 1ð Þ is
the upper convected derivative of the deformation rate tensor bg� ij given by (6).

b
+
�
ij 1ð Þ ¼

@
b
+
�
ij

@t
þ ûk

@
b
+
�
ij

@xk
� b+� jk @ ûi@xk

� b+� ik @ ûj@xk
ð6Þ

Parameter 1 is the ratio of the first normal stress difference coefficient in simple
(homogeneous) shear flow to the viscosity coefficient. Since it has dimensions of time it is
called a relaxation time for memory fluids, but in the context of models devoid of memory,
such as the retarded motion expansion (the second order fluid belongs to this wider class of
constitutive equations) such nomenclature is not so appropriate. In laminar flow this model
parameter gives rise to a specific non-dimensional number, the Deborah number, the ratio
of the magnitudes of the elastic to the viscous forces, a measure of the importance of the
nonlinear terms on the flow, as will be seen at the end of Section 2.4.

After back-substitution the instantaneous momentum equation becomes:

ρ
@ ûi
@t

þ ûj
@ ûi
@xj

� 	
¼ @

@xj
�p̂δij þ ηs

b
+
�
ij þ ηp

b
+
�
ij þ Ĉ eij

� �
ð7Þ

Applying the Reynolds decomposition and time-averaging the momentum balance
becomes:

ρUj
@Ui

@xj
¼ @

@xj
�pþ ηs

�
*ij þ ηp

�
*ij þ Te

ijÞþ
@

@xj
�ρ uiuj
� �

;

�
ð8Þ

where the Reynolds stresses will be given by the eddy viscosity model of Prandtl [21].

�r uiuj ¼ rCk

ffiffiffi
k

p
l

@Ui

@xj
þ @Uj

@xi

� 	
� 2

3
rkdij ð9aÞ

In (9a) k is the turbulent kinetic energy, which scales as u2 (u is the scale of velocity
fluctuations) and l is a large scale related both to gradients of mean flow quantities and to
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the large eddies that contribute most to the turbulent kinetic energy. A parameter Ck of
approximately 0.55 ensures agreement in the log-law region provided l is Prandtl’s mixing
length [22]. This expression is used in the context of one-equation turbulence models. Since
this model will be tested in fully-developed channel flow, it is convenient to rewrite the
equations in the corresponding simplified form. In this case x, y and z refer to the
streamwise, wall-normal and spanwise directions with the corresponding velocity vector
components being u, v and w, respectively.For a mean shear flow with mean velocity vector
Ui ¼ U yð Þ; 0; 0ð Þ, the Reynolds shear stress becomes:

�ruv ¼ rCk

ffiffiffi
k

p
l
dU

dy
ð9bÞ

and the time-averaged momentum equation reduces to:

� 1

r
dp

dx
þ us þ up
� � d2U

dy2
þ d

dy
Ck

ffiffiffi
k

p
l
dU

dy

� 	
þ 1

r

dTe
xy

dy
¼ 0 ð10Þ

In the absence of elastic effects, i.e., when the last term on the l.h.s. of (10) vanishes,
average momentum balance for a Newtonian fluid with dynamic viscosity ηs+ηp is recovered.
Hence, the time-averaged shear stress is the direct non-Newtonian contribution to the overall
momentum balance. This contribution in turn depends on the correlations between the
fluctuations in elastic stress and velocity gradients, which involve all components of these two
tensors. Consequently, it is important to identify the relative importance of such correlations
and model the leading order terms accurately. This is discussed in the subsection below.

2.2 Time-averaged elastic stress

The time-averaged elastic stress Te
ij is given by:

Te
ij ¼ �ηp1 Uk

@
�
*ij

@xk
� �

*jk
@Ui

@xk
� �

*ik
@Uj

@xk
Þ � ηp1Cij

 
ð11Þ

where

Cij ¼ @2 uiukð Þ
@xj@xk

þ @2 ujuk
� �

@xi@xk
� 2

@uk
@xi

@uj
@xk

þ @uk
@xj

@ui
@xk

þ @ui
@xk

@uj
@xk

� 	
ð12Þ

Closures are required for the various terms in Cij, to be discussed next. These are based
on arguments of homogeneous isotropic turbulence for second order single point
correlations. Evidently, near the wall, the isotropic closures are not valid. However, the
objective of this analysis is to qualitatively assess the role of elastic stress-velocity gradient
correlations on the mean flow. Keeping with this objective and considering the relatively
simple models used for both turbulence and viscoelasticity, we employ isotropic closures.
Hence, the model is more appropriate for larger Reynolds numbers for which the turbulent
core is sufficiently large. According to Mathieu and Scott [23] the following relation applies
to homogeneous isotropic turbulence:

@ui
@xk

@uj
@xl

¼ 8

3

k

l2f
dijdkl � 1

4
dikdjl þ dildjk
� �� 	

ð13Þ
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where k is the turbulent kinetic energy and 1 f is the Taylor longitudinal microscale of
turbulence.

To solve the momentum equation for fully-developed pipe or channel flows, only Cxy is
needed (in (11) the contribution to Te

xy from the terms inside the brackets is null), but it is
also interesting to quantify the elastic normal stress Te

xx and this requires Cxx. The derivation
of these two Cij quantities, given in (14), is presented in detail in Appendix I.

Cxy ¼ d2uv

dy2
and Cxx ¼ �10

@u

@x

� 	2

¼ � 40

3

k

l2f
ð14Þ

and, from (11), the corresponding time-averaged elastic shear and polymer normal stresses
are:

Te
xy ¼ rupl

d2

dy2
Ck

ffiffiffi
k

p
l
dU

dy

� 	
ð15Þ

Txx ¼ Te
xx ¼ 2rupl

dU

dy

� 	2

þ10rupl
@u

@x

� 	2

ð16Þ

To arrive at (15) the Reynolds stress model in (9b) was used. As evident from (15), the
time-averaged elastic shear stress, that appears in the overall momentum balance (10), depends
on the turbulent kinetic energy. As discussed below, the balance equation for k for the non-
Newtonian case is influenced greatly by the polymer work, namely the correlation between the
components of the fluctuating elastic stress and fluctuating velocity gradient tensors.

The Cxx term in (16) (second term on the right-hand-side) can be modeled invoking
again turbulence isotropy, an adequate first approximation. In isotropic turbulence [23], the
following relation holds for the viscous rate of dissipation (ɛ) taking into account its
definition and (13).

" ¼ us þ up
� � @ui

@xj
þ @uj

@xi

� 	
@uj
@xi

¼ 15uT
@u1
@x1

� 	2

ð17Þ

This is based on the total kinematic viscosity of the fluid, so that back-substitution gives:

Txx ¼ Te
xx ¼ 2rupl

dU

dy

� 	2

þ 2

3
r
up
uT

l" ð18Þ

We now have equations for the mean velocity and for the time-averaged normal and
shear stresses as a function of k and ɛ for which closures must be provided.

2.3 Mean kinetic energy of turbulence and total viscous dissipation

The transport equation for the mean turbulent kinetic energy k � u2i
�
2

� �
in fully-developed

shear flow is:

�uv
dU

dy
þ 1

ρ
d

dy
�ρ

vu2i
2

� pvþ ηs þ ηp
� � dk

dy
þ uiC eiy

 !
� υs þ υp
� � @ui

@xj

� 	2

� 1

ρ
C eij

@ui
@xj

¼ 0

ð19Þ
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where we identify the following terms:

production of turbulence; Pk ¼ �uv
dU

dy
ð20aÞ

turbulent and molecular diffusion of k; Dk ¼ 1

ρ
d

dy
�ρ

vu2i
2

� pvþ ηs þ ηp
� � dk

dy
þ uiC eiy

 !
ð20bÞ

viscous dissipation of k by solvent and polymer; " ¼ υs þ υp
� � @ui

@xj

� 	2

ð20cÞ

Note that the kinematic viscosity multiplied by the mean-square rate of strain is equal to
the rate of viscous dissipation per unit mass defined in (17) only in homogeneous
turbulence, as is assumed here. The assumption of homogeneous turbulence is typical in
modeling of turbulence for shear flows [22];

and the polymeric work; Pw ¼ 1

ρ
C eij

@ui
@xj

: ð20dÞ

In the diffusion of k (20b) there are four terms: the molecular diffusion, the turbulent
diffusion associated with fluctuating velocities, the turbulent diffusion associated with
pressure fluctuations and a new turbulent diffusion term associated with fluctuations of the
elastic polymer stress. Molecular diffusion is exact and needs no modeling and the turbulent
diffusion by velocity and pressure fluctuations are grouped and modeled as usual [22],
invoking Boussinesq’s approximation, thus introducing a turbulent Prandtl number for k (σk).

�r
vu2i
2

� pv ¼ r
Ck

ffiffiffi
k

p
l

sk

dk

dy
ð21Þ

The turbulent diffusion due to fluctuations of the elastic polymer stress is here modeled
in a similar fashion by introducing a second turbulent Prandtl number (σkp) relating
turbulent kinetic energy and polymer stresses (22). Both Prandtl numbers here take the
numerical value of 1.

uiteiy ¼ r
Ck

ffiffiffi
k

p
l

skp

dk

dy
ð22Þ

A model for the total viscous dissipation is also required and here we adopt the model
based on the inviscid estimate of the rate of dissipation (23), as used in Prandtl’s k–l one-
equation turbulence model, where l represents a turbulent length scale (here a mixing
length) to be given later.

" ¼ CD
k3=2

l
ð23Þ

CD=0.164 to ensure the correct log-law once an equilibrium between ɛ and the
production of turbulent kinetic energy is assumed.
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It is necessary to account for the proper behavior of dissipation close to the wall, ɛw, as is
done in low Reynolds number turbulence closures. The need to use a low Reynolds number
approach stems from the fact that there is no universal behavior in drag reducing fluids [24],
therefore a universal law of the wall cannot be adopted and the calculations have to be carried
out all the way from the bulk of the flow to the wall. The dissipation rate at the wall is:

"w ¼ 2 us þ up
� � @

ffiffiffi
k

p

@y

 !2

w

ð24Þ

and complies both with the wall and near wall behaviour of k [25].
Therefore, instead of using (23), the viscous dissipation is calculated with

" ¼ CD
k3=2

l
þ 2 us þ up
� � @

ffiffiffi
k

p

@y

 !2

ð25Þ

We should mention that dropping the ɛw term results in less accurate Newtonian flow
predictions, but by no means the model is able to capture quantitatively all the features
found in DNS calculations given its extreme simplicity. Nevertheless it qualitatively
captures features of the dissipation rate in Newtonian fluids. In the next sub-section a model
for the polymeric work is presented to complete the closure of the transport equation of k.

2.4 Closure for polymeric work

The polymeric work (Pw) is given by

Pw ¼ 1

r
teij

@ui
@xj

ð26Þ

and to propose an adequate closure we start by writing the following equation for the elastic
stress fluctuations (determined as LðĈ eijÞ � LðTe

ijÞ, where operator L( ) designates the
corresponding stress equation based (5)):

C eij ¼ �ηp1
@+

�
ij

@t
þ uk

@
�
*ij

@xk
þ uk

@
�
+ ij

@xk
þ Uk

@
�
+ ij

@xk

 !
þ ηp1 bij þ bji

� �þ ηp1Cij ð27Þ

with bij given by:

bij ¼ �
+ ik

@Uj

@xk
þ �
+ ik

@uj
@xk

þ �
*ik

@uj
@xk

: ð28Þ

The polymeric work is now given by (29) resulting from the product of teij by @ui
�
@xj

and time-averaging:

C eij
@ui
@xj

¼ νp �1
@
�
+ ij
@t

@ui
@xj

þ uk
@ui
@xj

@
�
*ik

@xk
þ uk

@
�
+ ij

@xk

@ui
@xj

þ Uk
@
�
+ ij

@xk

@ui
@xj

Þ þ 1 bij
@ui
@xj

þ bji
@ui
@xj

� 	 #
:

"
ð29Þ

Next, an order of magnitude analysis of this equation is carried out using the following
scales: u is the scale of the velocity fluctuations, l is the length scale already presented
above (l is related to gradients of mean flow quantities and large eddies) and 1 f is Taylor’s
longitudinal microscale, the length scale associated with streamwise gradients of fluctuating
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streamwise quantities (in this order of magnitude analysis any Taylor microscale can be
used). Hence, in the order of magnitude analysis the mean velocity will be substituted by U,
any gradient of a mean flow quantity gives rise to a division by l, fluctuations of velocity
inside a time average are represented by u and the length scale associated with gradients of
fluctuating quantities will be substituted by Taylor’s microscale. A Reynolds number is
defined on the basis of the fluctuating velocity and the large eddy scale, i.e., Rel ¼ ul

uT
,

where υT is the total kinematic viscosity (υT=υS+υP). This turbulence Reynolds number is
typically larger than 1 and the above two length scales are also related through it as:

l

lf
�

ffiffiffiffiffiffiffi
Rel

p
� ð30Þ

We also consider steady turbulent flow, therefore the first term on the right-hand-side of
(29) is:

@
�
+ ij
@t

@ui
@xj

¼ 0: ð31Þ

The remaining terms of (29) are of four types based on the scaling analysis. Examples of
each type are shown below:

1Þ Uk
@ �+ ij
@xk

@ui
@xj

¼ Uk
@

@xk

@uj
@xi

þ @ui
@xj

� 	
@ui
@xj

/ U
u2

1 3
f

; i:e: it scales as
Uu2

1 3
f

;

2Þ �+ ik
@ui
@xj

@Uj
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¼ @uk
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@Uj

@xk
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1 2
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ð32aÞ

and
�
*ik

@uj
@xk

@ui
@xj

¼ @Uk

@xi
þ @Ui

@xk

� 	
@uj
@xk

@ui
@xj

/ U

l

u2

1 2
f

: Using ð30Þ; one concludes that these

two term scales as
Uu2

1 3
f

1ffiffiffiffiffiffiffi
Rel

p ;

ð32bÞ

3Þ @
�
*ij

@xk
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@ui
@xj

¼ @

@xk

@Uj

@xi
þ @Ui

@xj

� 	
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@ui
@xj

/ Uu2

l2λf
: Using again ð30Þ; this term scale as

Uu2

λ3
f

1

Rel
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ð32cÞ

4Þ uk
@
�
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@xk

@ui
@xj
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@

@xk

@uj
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þ @ui
@xj

� 	
@ui
@xj

/ u3

1 3
f

and
@ui
@xj

@uj
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@ui
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1 u3

1 3
f

; i:e: both scale as
u3

1 3
f :

ð32dÞ

(32b)
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Although the advective term 1 seems to be the largest contribution, this is actually not
true because it vanishes in fully-developed steady flow. Hence, the largest contributions are
actually those from the two type 4 terms, both having the same order of magnitude u3

.
1 3

f ,
and the remaining terms are dropped because they are divided by a large number (the

Reynolds number). Note that @ui
@xj

@uj
@xk

@ui
@xk

comes from �+ ik @uj
@xk

@ui
@xj

and �+ jk @ui
@xk

@ui
@xj

as part of bij
@ui
@xj

and bji
@ui
@xj

in (29), respectively, i.e., it belongs to the last term in brackets on the r.h.s. of

(29). The term uk
@ �+ ij
@xk

@ui
@xj

is the third on the r.h.s. of (29). So, this means that terms of type 4
are actually three terms in (29): one has a negative sign and two have positive signs.

In conclusion, the polymeric work of (29) can now be written as:

Pw ¼ 1

ρ
C eij

@ui
@xj

� 1

ρ
υp �1 uk

@ �+ ij
@xk

@ui
@xj

þ 1 bij
@ui
@xj

þ bji
@ui
@xj

� 	" #
� Aυp1

u3

1 3
f

ð33Þ

At first sight, parameter A can take either a positive or a negative sign, but as will be
seen, with the closure developed for Pw, only a positive value of A makes sense. We shall
see also that Pw can be viewed as a viscoelastic correction to the production of turbulent
kinetic energy (Pk) and that this plays a role in the issue of the sign of A.

The turbulent kinetic energy transport (19) can be written in compact form as:

Pk � Pw þ Dk � " ¼ 0: ð34Þ
From the adopted model for the Reynolds stresses (9b), the production of k is given by:

Pk ¼ �u1u2
dU

dy
¼ Ck

ffiffiffi
k

p
l

dU

dy

� 	2

ð35Þ

To develop a closure for Pw, we start by assuming that there is equilibrium between Pk–
Pw and ɛ, as results from inspection of (34) and the fact that diffusion of k is very small in
the equilibrium region. So, Pk � Pw ¼ " ! Pk ¼ "þ Pw. Using the inviscid approximation
to estimate the rate of dissipation of k (i.e., " � u3

�
l), which is consistent with the model

used in (23), the ratio μ between Pk and Pw is defined as:

1

μ
� Pk

Pw
� Pw þ "

Pw
! 1þ O

"

Pw

� 	
¼ 1þ

u3�
l

Aυp1 u
3
.
1 3

f

¼ 1þ
ul
υT

� �
l
u1

� �
A υp

υT

� �
l
1 f

� �3 ð36Þ

where the model for Pw in (33) was used. The normalization of (36) introduces the so-called
Deborah number Del ¼ ul

l

� �
and the solvent to total viscosity ratio b ¼ us

uT
¼ us

usþup

� �
,

which, together with the relation between l and 1 f (30) gives:

1

μ
¼ 1þ 1

A 1� βð ÞDel
ffiffiffiffiffiffiffi
Rel

p ! μ ¼ A 1� βð ÞDel
ffiffiffiffiffiffiffi
Rel

p
1þ A 1� βð ÞDel

ffiffiffiffiffiffiffi
Rel

p ð37Þ

With (37) the closed expression for the polymer work based on the above equilibrium
hypothesis can be written as

Pw ¼ mPk ¼ ACk 1� bð Þlk5=4l
A 1� bð Þlk3=4 þ ffiffiffiffiffiffiffi

uT l
p dU

dy

� 	2

ð38Þ

after using (35) for Pk and doing Del ¼ u1 =l, Rel ¼ ul=υT and also k=u2 (one could use
instead k ¼ 3u2

�
2, but here the 3/2 factor is contained within parameter A).
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New parameters of viscoelastic constitutive models introduce new nondimensional numbers
and for viscoelastic fluids one such quantity is the Deborah number which can either be viewed
as the ratio of characteristic fluid and flow time scales or the ratio between elastic and viscous
forces De � C exx

�
C xy ¼ ηp1

�
+2
.

ηp
�
+

� �
¼ 1Uc=LcÞ

�
. In the context of the SO fluid model,

devoid of memory, the second interpretation is more faithful to the physics of the model and
the Deborah number measures the nonlinear deviations from Newtonian behaviour. Here, the
characteristic length and velocity scales, Lc and Uc, are made identical to l and u, respectively.

2.5 Non-dimensional model equations

This analysis is finalized by presenting all relevant equations in normalized form using the
friction velocity utð Þ and the channel half height (H) as scales for velocity and length,
respectively. Henceforth, superscript * denotes normalization by physical coordinates
y* ¼ y=H
� �

, whereas the superscript + denotes normalization by wall coordinates
yþ ¼ yuC=υT and uþ ¼ u=uCð Þ. The normalization introduces the friction Reynolds
number, ReC ¼ uτH

υT
and the friction Deborah number, Det ¼ ut l

H , where H is the channel
half-width and uT ¼ uN þ uP is the total kinematic viscosity, the sum of the solvent and
polymer kinematic viscosity coefficients. The model equations are given below.
x-momentum equation:

1þ 1

ReC

d2Uþ

dy*
2 þ d

dy*
Ck

ffiffiffiffiffiffi
kþ

p
l*

dUþ

dy*

 !
þ dTeþ

xy

dy*
¼ 0 ð39Þ

xy-stress equation:

Tþ
xy ¼

1� β
ReC

dUþ

dy*
þ Teþ

xy ð40Þ

Teþ
xy ¼ 1� βð ÞDeC

ReC

d2

dy*
2 Ck

ffiffiffiffiffiffi
kþ

p
l*

dUþ

dy*

 !
ð41Þ

xx-stress equation:

Tþ
xx ¼

2 1� βð ÞDeC
ReC

dUþ

dy*

 !2

þ 2 1� βð ÞDeCReC
3

"þ ð42Þ

"þ ¼ CD
kþ

3=2

l*
þ 2

ReC

d
ffiffiffiffiffiffi
kþ

p

dy*

 !2

ð43Þ

Mean turbulent kinetic energy equation:

Ck

ffiffiffiffiffiffi
kþ

p
l*

dUþ

dy*

 !2

� ACk 1� βð Þ ffiffiffiffiffiffiffiffi
ReC

p
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" #
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ð44Þ

Flow Turbulence Combust (2008) 81:337–367 349



Finally, an expression is required for the large scale l*. This large scale is related to the
slope of the log-law and as a first approximation the same expression used for Newtonian
fluids is used, i.e.:

l* ¼ .y* ð45aÞ
where . is the von Kármán constant. However, since this turbulence model must be applied
straight from the wall, including the viscous sublayer and the buffer layer, there is a
damping effect that reduces l* and a modified expression is used following the arguments
of Van Driest [26] (45b):

lþ ¼ kyþ 1� exp � yþ

Aþ

� 	� �
ð45bÞ

with A+=26. Note that the normalization implied in (45b) uses wall coordinates, i.e., lþ ¼
lut
nT

leading to lþ ¼ l*ReC .
The numerical values of the other parameters are: CD=0.164, Ck ¼

ffiffiffiffiffiffiffiffiffiffiffi
0:1643

p ¼ 0:5474
and κ=0.41, following Newtonian literature [22]. Note that Cm � CDCk does not appear
explicitly in this model, but this set of values is consistent with the value of Cm=0.09
usually used. The two Prandtl numbers required in the turbulent diffusion of k are assigned
unit values, i.e., sk ¼ skp ¼ 1.

The sign and magnitude of parameter A affects the performance of the turbulence model;
a positive value of A implies an extra dissipation due to the fluid elasticity, whereas a
negative value of A leads to a more complex situation. Equations (37) and (38) imply that
A>0 always leads to Pw>0 and Pw<Pk, i.e., Pw will be a correction to Pk. In contrast, for
A<0, whenever A 1� bð ÞDel

ffiffiffiffiffiffiffi
Rel

p
< �0:5, the absolute value of μ exceeds 1 and

Pwj j > Pkj j, with Pwj j ! 1 when A 1� bð ÞDel
ffiffiffiffiffiffiffi
Rel

p ! �1. Since Del and Rel are local
values of Deborah and Reynolds numbers, for a particular value of A there will be a small
relaxation time above which no convergence is possible due to a singularity in Pw. This is
non-physical, hence a negative value of A is only acceptable provided the absolute value of
the term containing A never exceeds 0.5, i.e. A 1� bð ÞDel

ffiffiffiffiffiffiffi
Rel

p
> �0:5.

Research on DNS of channel flow for FENE-P and other differential viscoelastic model
fluids [7, 11] show viscoelasticity leading to a combination of extra production and
dissipation in different regions of the channel: at the edge of the viscous sublayer, there is a
small amount of turbulent kinetic energy production, whereas in the log-law region the
elasticity is responsible for extra dissipation of k, with the latter being significantly larger
than the former. By adopting A=+1 we are thus able to test a situation where Pw is
everywhere positive and its contribution reduces the production of turbulence. From a
physical point of view, this can be seen, instead, as an increase in the dissipation of k, but
given the specific closure adopted for Pw (Pw / @U=@y as in the case of Pk), it makes more
sense to reason in terms of turbulence production. Since adopting a negative value of A is
not allowed, except for very small Deborah numbers, we tested instead the performance of
a slightly modified version of Pw, from where the singularity was removed, which gives
Pw<0 at the edge of the viscous sublayer and Pw>0 in the buffer and inertial sub-layers, in
order to emulate qualitatively some of the findings of DNS of viscoelastic fluids described
above. Such model of Pw uses the following equation:

Pw ¼ mPk ¼ ACk 1� bð Þlk5=4l
A1 1� bð Þlk3=4 þ ffiffiffiffiffiffiffi

uT l
p dU

dy

� 	2

ð46Þ
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where A only appears in the numerator and takes the form to be discussed in Section 3.2,
and the parameter A appearing in the denominator of (38) has been substituted by a positive
coefficient A1.

3 Results and Discussion

This section is divided into two parts. In Section 3.1 the performance of the model is
assessed with A=1 and a brief set of results for A=−1 pertaining to sub-singularity cases
which limits these calculations to very small Deborah numbers. In Section 3.2 the Pw

closure of (46) is used instead of that in (38) to test a situation where viscoelasticity is
responsible for turbulence production very close to the wall and enhances the dissipation of
turbulent kinetic energy away from the viscous and buffer sublayers. The specific values of
A and A1 are presented in Section 3.2.

The numerical simulations were carried out with a finite volume code developed by
Younis [27] for boundary layer flows, but modified here for fully-developed channel and pipe
flows and also to implement the second order fluid and the currently adopted k–l turbulence
model. Hence, the transport equations did not contain advective terms and the diffusive terms
were discretized using second order central differences. For these fully-developed flow
calculations the computational domain was a slice of the channel (with length of the order of
the wall-to-wall distance), which was mapped by an orthogonal mesh containing a single
column of computational cells from wall to wall; an odd number of cells was used, so there
was always a cell center right on the symmetry axis and no need to impose symmetry
boundary conditions. Periodic boundary conditions were set to relate the transverse profiles of
velocity and turbulent kinetic energy at the inlet and outlet and for the streamwise pressure
gradient the procedure of Patankar and Spalding [28] was adopted. The pressure was
calculated in a staggered mesh to ensure pressure-velocity coupling and the tridiagonal set of
algebraic equations was solved with tridiagonal matrix algorithm (TDMA). At the walls the
velocities and k were set to zero. The non-uniform mesh used had between 99 and 199 cells
from wall to wall and at least 5 control volumes were located within each viscous sublayer
(y+<5). A mesh convergence study was carried out initially to quantify the uncertainty of the
results and Richardson’s extrapolation to the limit was used to estimate the correct result, a
standard procedure according to Roache [29]. The use of a mesh with 199 cells from wall-to-
wall provided results with accuracy below 0.1% (in which case there were about 12 cells
within each of the two viscous sublayers) and the use of 99 cells from wall-to-wall gave
results with an accuracy better than 1%.

3.1 Predictions for A=+1 and at small values of Deborah number for A=−1

One set of calculations was carried out to assess the effect of fluid elasticity upon fully-
developed pipe flow considering that viscoelasticity is responsible for reducing turbulent
kinetic energy production (A=+1). Results for three sub-critical flow conditions are also
presented in some plots using A=−1, meaning very small Deborah numbers so that the
singularity in the denominator of (38) never appears. The conditions corresponding to all
these simulations are summarized in Table 1. The friction Reynolds number and the friction
Deborah number were defined in the previous section. The table also lists the values of
Deborah (De) and Reynolds (Re) numbers based on the bulk velocity in the channel.

The drag reduction (DR) was proportional to the value of Deborah number and for these
parameters high values of DR (of the order of 38%) were attained for very small values of
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Det . The drag reduction is here defined as the relative difference between the calculated
friction factor and the corresponding Newtonian friction factor at the same friction
Reynolds number. Note that no calibration of the turbulence model against experimental
data was carried out, hence the use of A=+1 is purely arbitrary and serves the purpose of a
qualitative assessment. In fact, in a real situation these amounts of drag reduction take place
at larger values of Det , an indication that a more realistic value of Awould be smaller. For a
Newtonian fluid De;Det ¼ 0ð Þ the turbulence model performs identically, as it should,
regardless of the distribution of the total viscosity by ηp and ηs. This is shown in the first
two lines of both tables pertaining to β=1 and 0.8, respectively. There are small differences
between the predictions by the current turbulence model for Newtonian fluid and known
data from the literature, such as the Blasius-type equation for the friction factor and the log-
law. These differences are due to the limitations of the k–l turbulence model of Prandtl used
here, but they are small and irrelevant in the context of the proposed objectives.

Table 1 Variation of the Darcy friction factor and drag reduction as a function of Deτ at Reτ=1,046

DeC×10
3 De Re β f DR (%) A

0 0 20,000 1 0.0219 – 1
0 0 20,000 0.8 0.0219 – 1
2.02 0.04 20,675 0.8 0.0205 6.4 1
3.96 0.08 21,115 0.8 0.0197 10.2 1
9.54 0.2 21,950 0.8 0.0182 17.0 1
18.4 0.4 22,800 0.8 0.0169 23.0 1
35.1 0.8 23,815 0.8 0.0154 29.5 1
82.2 2.0 25,450 0.8 0.0135 38.3 1
0.21 0.004 19,920 0.8 0.0221 −0.8 −1
0.42 0.008 19,820 0.8 0.0223 −1.8 −1
1.08 0.02 19,420 0.8 0.0232 −6.1 −1
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In Fig. 1 velocity profiles are plotted in wall coordinates and compared with the
Newtonian log-law and the maximum drag reduction asymptote of Virk et al. [30] for
polymer solutions. For the Newtonian fluid the profile approaches the standard log-law,
except near the centerline where it tends to level off. With A=+1, there is a progressive
upwards shift in the velocity as the Deborah number increases, consistent with the
increasing levels of drag reduction. In contrast, for the three sub-critical simulations with
negative values of A we see a drag increase and the corresponding downward shift of the
log law. In all cases, near the wall the velocity profiles coincide with the viscous sublayer
expression (u+=y+) and at high values of y+, but away from the centerline, the slope of the
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log-law remains the same as for Newtonian fluids. This is to be expected from the imposed
model for the large length scale l (45) since the slope of the velocity profile in the inertial
region is inversely proportional to the value of κ which was kept unmodified. For A=+1,
this behavior is typical of that found for polymer solutions at low and moderate drag
reductions.

The corresponding profiles of the normalized turbulent kinetic energy kþ ¼ k
�
u2τ

� �
are

plotted in Fig. 2, and here the situation is partially different from that seen with DR fluids.
In the presence of drag reduction (A=+1) k+ is continuously decreasing as Det increases
and simultaneously its peak is moving away from the wall. This continuous decrease in the
peak k+ is in contrast with the literature for low drag reduction, where k+ remains basically
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unchanged. In fact, for polymer solutions, the streamwise normal Reynolds stress increases
initially with DR compensating for the decrease in the radial and transverse normal
Reynolds stresses. Here, in contrast, k+ always decreases with Det and since this is an
isotropic turbulence model, the predicted individual normal Reynolds stresses qualitatively
behave as k+. In the turbulent core we see an increase in k+ at low DR followed by a
decrease at large DR, whereas the DNS data for viscoelastic fluids with memory in the
literature shows a constant k+ at low DR followed by a decrease at large DR. In agreement
with the DNS data is the fact that the location of the peak k+ moves away from the wall as
DR increases.

For the drag increase simulations obtained with A=−1 the profiles of k+ are shifted
upwards everywhere and the peak moves closer to the wall. This situation is not typical of
polymer solutions and also suggests that the use of a negative constant value of A is
unphysical.

In Fig. 3 the effect of Det on the normalized rate of dissipation "þ ¼ "υT
�
u4τ

� �
is shown

and an intense decrease in ɛ
+ is observed as Det increases, when A=+1. The peak dissipation

is always seen to happen at the same location, at y+≈9. DNS results for Newtonian [31] and
polymer [7] channel flows show the maximum dissipation to occur at the wall rather than in
the buffer layer, but this deficiency of the adopted simple turbulence model does not affect the
objective of the present work. Since the dissipation is decreasing with Det and there is drag
reduction accompanied by a reduction in k+, the production of turbulence must also be
decreasing as well, as is investigated in more detail in Fig. 4. For A=−1 the opposite trend
is seen.

The three plots of Fig. 4 represent three quantities in normalized form: the production of
k due to the interaction between the Reynolds stress and the mean velocity gradient (Pk) in
Fig. 4a, the polymer work (Pw) in Fig. 4b and the difference between these two quantities,
which essentially must balance the total rate of dissipation near the wall, is shown in
Fig. 4c. These three quantities have all been normalized by the quantity used to normalize
the rate of dissipation, u4τ

�
νT , as required from (34).

Except for the two simulations at Det � 103 of 35.1 and 82.2, the amount of drag
reduction is not too large, hence the Reynolds stresses and the mean velocity profiles are
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not too different and so the production of turbulence, Pþ
k , does not change by much, as seen

in Fig. 4a. The actual dimensional Pk decreases with the Deborah number because of the
reduction in Reynolds shear stress corresponding to the calculated drag reduction, whereas
the slight increase in Pþ

k is a consequence of the reduced friction velocity used in the
normalization. Regarding the polymer contribution Pþ

w , Fig. 4b shows that it depends on
Det acting to reduce the production of turbulence for positive values of A (Pw>0) and to
increase production of turbulence for negative values of A (Pw<0), i.e., leading to drag
reduction and drag increase, respectively. As a result, the difference Pþ

k � Pþ
w , plotted in

Fig. 4c, decreases with Det for A=+1 and increases for A=−1 in order to equilibrate the
dissipation ɛ

+. Since the dissipation is proportional to turbulence, according to the theory,
the drag reduction for A>0 is a consequence of an equilibrium between Pþ

k � Pþ
w and ɛ

+
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reached for lower levels of turbulence and hence of lower Reynolds stresses. This
equilibrium is shown in Fig. 5a to be quite similar to that observed for Newtonian fluids.
The DNS results for memory fluids do not exhibit such an intense increase in Pw , but the
mechanism of drag reduction is also more complex than a second order fluid could provide
due to interactions absent here, such as strain-hardening.

At large Deborah numbers, there are strong variations in the elastic shear stress very
close to the wall (see (15)) creating some convergence problems and oscillations. This is
also clear in the oscillation seen in the profile at Det � 103 ¼ 82:2 in Fig. 5b which is the
outcome of a difference of two large values. Figures 4 and 5 also confirm that Pw<Pk, but
they tend to be equal as the Deborah number increases, and hence the drag reduction,
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is increased. Given the unphysical nature of the model with A=−1 no further results for this
case will be shown.

The effect of elasticity upon the time-averaged elastic normal stress is shown in Figs. 6
and 7. In Fig. 6 the total stress Tþ

xx is plotted, whereas Fig. 7 only shows the contribution
from turbulence (second term on the right-hand-side of (16)). The mean flow contribution
to the elastic normal stress dominates by two orders of magnitude, as is seen from a direct
comparison between the two figures. An interesting difference between the two
contributions to the elastic normal stress, obvious from inspection of (16), is that the
molecular contribution peaks at the wall, since it is proportional to the mean velocity
gradient, whereas the turbulent contribution peaks where ɛ is maximum.

3.2 Alternative model for Pw

Here we assess the performance of an alternative model for Pw, that of (46), with A1=1 and
a variable form for A, in order to create a region of negative Pw very close to the wall
(viscoelasticity enhancing production of turbulent kinetic energy close to the wall) and a
region of positive Pw in the inertial sub-region (viscoelasticity reducing turbulent kinetic
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y
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Fig. 8 Imposed variation of pa-
rameter A with distance to the
wall in wall coordinates

Table 2 Variation of the Darcy friction factor and drag reduction as a function of Deτ at Reτ=1,046 for
variable A

DeC×10
3 De Re β f DR (%)

0 0 20,000 0.8 0.0219 –
2.04 0.04 20,417 0.8 0.0210 4.0
4.05 0.08 20,694 0.8 0.0205 6.5
9.86 0.2 21,225 0.8 0.0194 11.2
19.2 0.4 21,759 0.8 0.0185 15.5
37.2 0.8 22,515 0.8 0.0173 21.1
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energy production), in an attempt to emulate what has been found in the DNS calculations
with differential viscoelastic constitutive equations. For that purpose, parameter A takes the
form of (47) plotted in Fig. 8. The numerical value of yþcrit is arbitrary, but similar to the
value where the viscoelastic stress work for FENE-P fluids changes from negative to
positive in [7] and more specifically in the data of Li et al. (2006; Personal communication
and DNS data set for FENE-P channel flow) for Ret ¼ 395, Det ¼ 25, L=30, β=0.9 and a
drag reduction of 18%. The function used to quantify parameter A was formulated taking
into account the following conditions from inspection of data in Li et al. (2006; Personal
communication and DNS data set for FENE-P channel flow): it accounts for low Reynolds
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number effects and it should have no effect for y+≥50; A=0 for y=0; there should be a
negative peak in Pw at the edge of the viscous sublayer and its sign should change to
positive at y+≈9 to 10. A possible function obeying these conditions is:

A ¼ tanh 0:1 yþ � yþcrit
� �� �

1� exp �yþ=5ð Þ½ � with yþcrit ¼ 9 ð47Þ

The simulations carried out with this model are listed in Table 2 and the plots of Figs. 9,
10, 11, 12, 13 discuss these results in more detail. In all cases drag reduction is obtained,
even though there is now a small region close to the wall where Pw produces turbulent
kinetic energy, as explained above. Elsewhere, Pw remains dissipative as for A=+1.

Now, the drag reduction is less than for the corresponding Deborah numbers with A=+1
and this is also the outcome of lower absolute values of A for y+<50 (c.f. Fig. 8). The mean
velocity profiles in Fig. 9 show the corresponding upwards shift and the turbulent kinetic
energy profiles of Fig. 10 exhibit the reduction already seen in Fig. 2, i.e. there is nothing
fundamentally different in these two last plots from a qualitative point of view.

In contrast, the plot of ɛ+ in Fig. 11 shows important qualitative differences relative to
Fig. 3. The decrease in ɛ

+ with DR is smaller than in Fig. 3 and in the viscous and buffer
sub-layers there is actually an increase in ɛ

+ compatible with the role of Pþ
w , since in this

region Pþ
w acts as an extra production of turbulence, as shown in Fig. 12b and so the

dissipation must rise to compensate. The variations of Pk and Pw inside the channel are
plotted in Fig. 12: the profiles of Pþ

k are essentially unchanged, apart from a small increase
in the inertial sub-layer, but of lesser magnitude than in Fig. 4. Pþ

w , shown in Fig. 12b, has
the desired trend with the adoption of the variable parameter A in (47): negative in the
viscous and buffer layers and positive elsewhere, with the Deborah number raising Pþ

w

 
everywhere. The consequent total production of turbulent kinetic energy, Pþ

k � Pþ
w , close to

the wall and its peak value at y+≈10 remains essentially constant, a result totally
unexpected and different from the strong decrease seen in Fig. 4c, whereas in the inertial
sub-layer a reduction in Pþ

k � Pþ
w is seen as previously for A=+1.
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The plot of Fig. 13a shows that now there is less local equilibrium than with A=+1, even
though that equilibrium seems to continue to exist on average in the inertial sub-layer; the
ratio Pk � Pwð Þ=" is not constant at 1.1 as for De=0, but oscillates around the Newtonian
plateau. It takes values above the Newtonian plateau at the edges of the inertial layer and
below the plateau well inside the log-law region. The variation of Pk=" with Det is not as
strong as seen for A=+1, but is qualitatively similar. These oscillations in Pk � Pwð Þ=" result
from the breakdown of the equilibrium condition Pk � Pwð Þ � "ð Þ at y+≤10 (c.f. Fig. 8),
which was imposed to develop the closure of Pw in Section 2.4.

0

0.05

0.1

0.15

0.2

0.25

0.3

100 101 102 103

0
2.0
4.0
9.9
19.2
37.2

P
k

+

y
+

a
De x10

3

-0.05

0

0.05

0.1

0.15

100 101 102 103

0
2.0
4.0
9.9
19.2
37.2

P
w

+

y
+

De
τ 

τ 

x10
3

b

Fig. 12 Effect of friction Debo-
rah number and A on the profiles
of a Pþ

k , b Pþ
w , c Pþ

k � Pþ
w for

channel flow at Reτ=1,046 and
β=0.8 using a variable A
according to (47)

Flow Turbulence Combust (2008) 81:337–367 361



4 Conclusions

A simplified version of the second order viscoelastic constitutive equation is used to derive
a simple turbulence closure of the k–l type to investigate qualitatively the effects of elastic
normal and shear stresses upon fully-developed channel flow of viscoelastic fluids.
Specifically, the second order correction to the Newtonian constitutive equation results into
one extra term in the balance of momentum proportional to the gradient of the time-average
elastic shear stress and two extra terms in the balance of k. The time average elastic shear
stress in turn depends on gradients of k and was found to have a small impact. The two
extra contributions in the balance of k are a small viscoelastic turbulent transport term of
negligible impact and an important interaction between all the components of the
fluctuating elastic stress and rate of strain tensors, here denoted by Pw, for which a closure
is developed to evaluate its effect on predicting turbulent drag reduction. The development
of this closure is based on arguments of homogeneous isotropic turbulence and of
equilibrium in boundary layer flows and introduces a parameter. Despite the simplicity of
the constitutive model and approximations involved, the results clearly demonstrate that the
sign of this extra term must be positive (Pw>0), i.e., Pw should act to reduce the production
of turbulent kinetic energy, to predict DR. In this case the model predictions qualitatively
agree with DNS data for viscoelastic fluids, with exceptions to this agreement being
associated with deficiencies in the k–l base turbulence model rather than on the closure
developed for Pw. In contrast, using a negative value for the parameter appearing in the
model of Pw leads to drag increase at very low Deborah number flows, and numerical
breakdown of the model to a model singularity. An alternative closure for Pw, mimicking
the viscoelastic stress work in DNS of FENE-P fluids, was also tested successfully. This
alternative model resulted also in drag reduction, in spite of the enhancement of turbulence
production very close to the wall, but the equilibrium conditions in the inertial sublayer
were not so strongly maintained.

In conclusion, even in the simplified descriptions of fluid elasticity and turbulence used
in this work, the interaction between fluctuating polymer stresses and fluctuating rates of
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strain has a direct bearing on the predicted drag reduction. These interactions can be
modeled by mimicking DNS data, which shows that they dissipate turbulent kinetic energy
in the channel except for a small region of turbulence production close to the wall. This leads
to the prediction of DR. If instead, an enhancement of turbulence production takes place in
the inertial sublayer, as a consequence of fluid elasticity, then a drag increase in observed.
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Appendix I

For fully-developed pipe or channel flows only the shear component of the extra term Cij of
the time-average elastic stress, defined in (12), is required. Since the fluid is elastic, there is
also a non-zero normal stress of elastic origin, which requires Cxx. To obtain these two
components, we start with (12), here rewritten as (48):

Cij ¼ @2 uiukð Þ
@xj@xk

þ @2 ujuk
� �

@xi@xk
� 2

@uk
@xi

@uj
@xk

þ @uk
@xj

@ui
@xk

þ @ui
@xk

@uj
@xk

� 	
ð48Þ

and use the relation between fluctuating strain rates for homogeneous isotropic turbulence
[23]. These equations are written in the indicial notation introduced by Einstein:

@ui
@xk

@uj
@xl

¼ 8

3

k

l2f
dijdkl � 1

4
dikdjl þ dildjk
� �� 	

ð49Þ

For Cxy, i=1 and j=2, hence (48) becomes:

Cxy ¼ C12 ¼ @2 u1ukð Þ
@x2@xk

þ @2 u2ukð Þ
@x1@xk

� 2
@uk
@x1

@u2
@xk

þ @uk
@x2

@u1
@xk

þ @u1
@xk

@u2
@xk

� 	
ð50Þ

For fully-developed flow only ∂/∂y ≠ 0. Therefore, the first two terms on the right-hand-
side (rhs) of (50) become:

@2 u1ukð Þ
@x2@xk

þ @2 u2ukð Þ
@x1@xk

¼ @2 u1u1ð Þ
@x2@x1

þ @2 u1u2ð Þ
@x2@x2

þ @2 u1u3ð Þ
@x2@x3

þ @2 u2u1ð Þ
@x1@x1

þ @2 u2u2ð Þ
@x1@x2

þ @2 u2u3ð Þ
@x1@x3

¼ @2 u1u2ð Þ
@x2@x2

¼ d2 uvð Þ
dy

ð51Þ

The first term inside the brackets of (50) expands to become:

@uk
@x1

@u2
@xk

¼ @u1
@x1

@u2
@x1

þ @u2
@x1

@u2
@x2

þ @u3
@x1

@u2
@x3

: ð52Þ

Each of these three terms is substituted by (49) and after application of the rule δij=0
when i≠ j and δij=1 when i= j, the following result appears naturally:

@u1
@x1

@u2
@x1

¼ 8

3

k

l2f
d12d11 � 1

4
d11d21 þ d11d21ð Þ

� 	
¼ 0 ð53aÞ

@u2
@x1

@u2
@x2

¼ 8

3

k

l2f
d22d12 � 1

4
d21d22 þ d22d21ð Þ

� 	
¼ 0; and ð53bÞ

@u3
@x1

@u2
@x3

¼ 8

3

k

l2f
d32d13 � 1

4
d31d23 þ d33d21ð Þ

� 	
¼ 0 ð53cÞ
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Similarly, for the second term inside the brackets of (50),

@uk
@x2

@u1
@xk

¼ @u1
@x2

@u1
@x1

þ @u2
@x2

@u1
@x2

þ @u3
@x2

@u1
@x3

ð54Þ

where

@u1
@x2

@u1
@x1

¼ 8

3

k

l2f
d11d2l � 1

4
d12d11 þ d11d12ð Þ

� 	
¼ 0 ð55aÞ

@u2
@x2

@u1
@x2

¼ 8

3

k

l2f
d21d22 � 1

4
d22d12 þ d22d12ð Þ

� 	
¼ 0; and ð55bÞ

@u3
@x2

@u1
@x3

¼ 8

3

k

l2f
d31d23 � 1

4
d32d13 þ d33d12ð Þ

� 	
¼ 0 ð55cÞ

For the third term, the corresponding expressions are:

@u1
@xk

@u2
@xk

¼ @u1
@x1

@u2
@x1

þ @u1
@x2

@u2
@x2

þ @u1
@x3

@u2
@x3

ð56Þ

@u1
@x1

@u2
@x1

¼ 8

3

k

l2f
d12d11 � 1

4
d11d21 þ d11d21ð Þ

� 	
¼ 0 ð57aÞ

@u1
@x2

@u2
@x2

¼ 8

3

k

l2f
d12d22 � 1

4
d12d22 þ d12d22ð Þ

� 	
¼ 0; and ð57bÞ

@u1
@x3

@u2
@x3

¼ 8

3

k

l2f
d12d33 � 1

4
d13d23 þ d13d23ð Þ

� 	
¼ 0 ð57cÞ

In conclusion, Cxy ¼ d2 uvð Þ
dy .

A similar procedure is now applied for Cxx without further comments. Starting from
(48):

Cxx ¼ C11 ¼ 2
@2 u1ukð Þ
@x1@xk

� 2 2
@uk
@x1

@u1
@xk

þ @u1
@xk

@u1
@xk

� 	
ð58Þ

The first term on the rhs of (58) is:

@2 u1ukð Þ
@x1@xk

¼ @2 u1u1ð Þ
@x1@x1

þ @2 u1u2ð Þ
@x1@x2

þ @2 u1u3ð Þ
@x1@x3

¼ 0: ð59Þ
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The first term inside the brackets of (58) is:

@uk
@x1

@u1
@xk

¼ @u1
@x1

@u1
@x1

þ @u2
@x1

@u1
@x2

þ @u3
@x1

@u1
@x3

ð60Þ

The correlations above can be evaluated as follows:
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These three terms add to zero.
The second term inside the brackets is:
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These three terms above add to 20
3

k
l2f
. Backsubstituting in (58) gives the following result:
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