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Abstract	  
Drag and heat transfer reductions (DR and HTR) by additives can be as high as 80% 

compared with Newtonian flows and are found in many industrial applications from long 

distance fluid transport to thermal fluids in district heating and cooling systems to oil and 

gas drilling and shipping. It has motivated extensive research and the wealth of data has 

allowed a comprehensive phenomenological description of DR in boundary layers , but 

modern engineering simulation tools are still unable to predict bulk turbulent flow 

characteristics from rheological properties. The understanding of the relationship between 

DR and fluid rheology has only started to unravel by Direct Numerical Simulations (DNS). 

Engineering computational tools depend on reliable turbulence models, which for non-

Newtonian fluids are still in their infancy and are based exclusively on the Reynolds 

Average Navier-Stokes (RANS) methodology. Most existing non-Newtonian turbulence 

models are for inelastic fluids, unrelated to rheology or based on simplified viscoelastic 

rheology with no memory. Only very recent models [1-3] are based on true viscoelastic 

fluid models, such as the Finitely Extensible Non-Linear Elastic model with Peterlin's 

approximation (FENE-P). The models should be checked against DNS data for low DR, up 

to maximum DR.  

This thesis is aimed at further developing this area and this is achieved through various 

more specific objectives, namely the extension of existing RANS turbulence model to 

maximum DR, in particular the development of improved 1st and 2nd order closures for the 

Reynolds stresses, the development of the first ever turbulence model to predict heat 

transfer in turbulent flows of viscoelastic fluids, which involves the development of 

closures for the Reynolds scalar fluxes and finally the beginning of the development of a 

new family of turbulence models based on large eddy simulation (LES). In all cases the 

developments will be grounded on DNS data provided by research partners, even though it 

is not excluded that some reduced set of DNS can be obtained as part of this thesis. 
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Introduction 

It has been known for quite sometime that the addition of polymers to turbulent flows of 

Newtonian fluids can dramatically reduce turbulent friction coefficient. It has been shown 

experimentally that very small amounts of polymers are sufficient to reduce drag up to 

80%. Comprehensive reviews of the early literature in this area are given in Hoyt [4], 

Lumley [5,6] and Virk [7].  

Several theories have been proposed to describe the complex mechanism of turbulent drag 

reduction (DR) with dilute polymer solutions. Lumley [5] proposed a mechanism based on 

the extension of the polymers, suggesting that the stretching of coiled polymers, in regions 

with strong deformations such as the buffer layer, increases the effective extensional 

viscosity. This would dampen small eddies, thicken the viscous sublayer and consequently 

lead to drag reduction. Lumley also related the onset of drag reduction with to the situation 

where the time scale of the polymers becomes larger than the time scale of the flow.  

In his extensive experimental data analysis Virk [8

between the viscous sublayer and the logarithmic zone and he suggested 

that this layer plays a crucial role in drag reduction. Virk [7] observed an increase in the 

thickness of this layer with drag reduction to eventually fill the whole logarithmic region at 

maximum drag reduction, thus introducing the concept of maximum drag reduction 

asymptote. De Gennes[9] postulated that drag reduction is caused by the elastic rather than 

the viscous properties of polymer additives. This idea is supported by experiments showing 

that drag reduction also occurs when the polymers are injected at the centre of the pipe (e.g. 

McComb & Rabie 1979, 1982), but these authors nevertheless concluded that in this case 

drag reduction was still a wall effect localized in the buffer la

is that the shear waves, which are caused by the elasticity of the polymers prevent 

10-12] proposed 

different theories on the mechanisms of DR.  

Over the last 15 years, the development of accurate and efficient numerical and 

experimental methods have made it possible to investigate in detail turbulent drag reduction 

in dilute polymer solutions [13-16]. It is now generally accepted that DR is associated with 

increased fluid resistance due to the high extensional viscosity of the viscoelastic polymer 

solutions leading to a reduction in the vortex dynamic activities that are characteristic of 
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turbulence. The crucial events take place near the wall, in the viscous and buffer sublayers, 

where the molecules become more extended. This is essentially in agreement with the 

original proposals of Metzner and Lumley [5,10]. 

A wealth of DNS investigations on fully-developed turbulent channel flow have been 

carried out since early this century aimed at shedding light on understanding different 

aspect of DR from the effect of polymer rheological parameters to the mechanisms of drag 

reduction [17-18]. These numerical simulations use constitutive equations based on the 

dumbbell where the two beads are usually connected by a nonlinear elastic spring, cf. Bird 

et al. 1987 [19]. The polymer dynamics is then entirely described by the evolution of the 

end-to-end vector connecting the two beads, represented as the phase-averaged 

configuration tensor. In a flow field, the evolution of the end-to-end vector is governed by 

the stretching and restoring forces acting on the dumbbell. The polymer model most often 

implemented for the study of DR is the FENE-P model [19] (FENE-P stands for finitely 

competing models (e.g., FENE, Oldroyd-B, PTT), the FENE-P model is preferred because 

of its physical background for dilute polymer solutions, its accounting of finite extensibility 

of the molecule and simplicity (it uses a simple second-order closure model in the equation 

for the polymer stress tensor). Aside from being physically consistent with real polymers, 

finite extensibility reduces numerical instabilities, whereas the model simplicity reduces 

computational costs. Although the single dumbbell FENE-P model can capture the basic 

rheological properties of polymer solutions in many types of flows, there are clear 

circumstances in which the model does not capture the correct physics (Somasi et al. 2002).  

DNS simulation of turbulent viscoelastic flow is extremely expensive, significantly more 

expensive than Newtonian DNS, because of the larger number of primary variables in the 

former than in the latter. Additionally, as DR increases, the near wall streaks become 

progressively stabilized and elongated, thus requiring the use of longer simulation boxes in 

particular for high DR values [20]. Consequently, for a given Reynolds number, the CPU-

time and memory requirements for the DNS of viscoelastic flows are at least one order of 

magnitude larger as compared to the Newtonian case, and it is not feasible for most of the 

engineering purposes Hence, Reynolds-averaged Navier Stokes (RANS) type or other 
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numerically inexpensive models have to be developed for modeling turbulent flows of 

dilute polymer solutions. 

The earlier attempts to develop turbulence closures for non- Newtonian fluids started by 

modifying the von Kármán coefficient in order to calculate drag reduction. Subsequent 

turbulence models included only variable viscosity effects, described by such rheological 

constitutive equations as the power law or Bingham law for yield stress fluids [21,22]. In an 

attempt to incorporate viscoelastic fluid rheology into turbulence models for drag reducing 

fluids, Pinho et.al. [23,24] developed several first-order turbulence models for a modified 

version of the generalised Newtonian fluid constitutive equation, where the dependence of 

strain hardening of the fluid on the third invariant of the rate of deformation tensor was 

included. This family of models also included an anisotropic version to capture the 

increased Reynolds stress anisotropy [24].   

Leighton et al. [25] proposed the first turbulence model for polymer flows based on the 

FENE-P dumbbell constitutive equation model. In their closure, transport equations for the 

Reynolds and the polymer stresses were added to the mean flow equation and closures for 

the unknown correlations were developed and the model tested in channel flow, but the 

model was not made available in the open literature. Pinho et al. [1] devised a new RANS 

model for FENE-P fluids, which is an extension of the low Reynolds number k-

for Newtonian fluids. This model provided closures for various terms of the governing 

equations, but only worked for low DR. Subsequently, Resende et al. [2] developed several 

sophisticated and complex closures for the nonlinear turbulent term of the conformation 

tensor equation and improved previous closures of Pinho et al. [1] for the viscoelastic stress 

work and the viscoelastic turbulent transport of the turbulent kinetic energy (k) extending 

the model to intermediate levels of drag reduction and showing the limitations of a simple 

k-  approach to modeling. In fact, since turbulence anisotropy increases with DR, the 

inherent turbulence isotropy of k-  leads to some conflicting variations. Hence, and even 

though their predictions are good for low and intermediate DR, their model cannot predict 

high DR and it has an excessive number of damping functions and coefficients, which 

makes it unattractive. 

A contemporary model was that of Iaccarino et al. [3], who introduced a k- -v2-f model for 

fully developed channel flow which is capable of predictions over the whole range of DR. 
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It is a fairly simple model, introducing the concept of turbulent polymer viscosity to 

account for the effects of polymers in the momentum equation that depends on the 

turbulent kinetic energy, the polymer relaxation time and the trace of constitutive equation. 

The model of the nonlinear terms in the conformation tensor equation relied on the 

turbulent dissipation rate, but the main characteristic of Iaccarino et al. model [3], imported 

from the corresponding Newtonian model, was the ability to input into the Reynolds stress 

tensor closure the effect of wall normal turbulence via the scalar v2 and the role of pressure 

strain, quantities that are significantly modified by polymer additives which enhanced 

turbulence anisotropy. However, although their model predicts accurately the amount of 

drag reduction, in our opinion their predictions of polymer shear stress in the Reynolds-

averaged momentum, turbulent kinetic energy and evolution equation for the conformation 

tensor are not in agreement with DNS results. In this work we aim to address these 

shortcomings by presenting two models of turbulence for FENE-P fluids, with closures at 

different level, i.e., one being a four model equation still invoking a Boussinescq 

hypothesis, the other developing closures for the full Reynolds stress tensor. We also aim to 

develop the first ever RANS type of model for the Reynolds calar fluxes, and finally we 

aim to start developing a new class of models based on the concept of large eddy 

simulation. 
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1-1 Basic principles 

Constitutive equations are relations that describe the complex rheological 

behavior of materials relating the stress tensor with the kinematic quantities. 

Depending on the mathematical relationship, the equation can be linear, quasi-

linear or non-linear, but mostly are non-linear. This classification applies to 

viscoelastic fluids and the linear rheological constitutive equation is based on 

a simple principle where the response at any time is directly proportional to 

the value of the input signal, i.e., for example, for a fixed stress we obtain a 

directly proportional strain rate. The differential equations, in the linear 

viscoelasticity theory, are linear and the coefficients of the time differentials 

are defined by the material parameters. These material parameters such as, for 

example, the viscosity coefficient and the rigidity modulus, are constant not 

depending on variables such as strain or strain rate. The simplest constitutive 

equation used for viscoelastic fluids is based on the generalized Newtonian 

fluids constitutive equation, in these kind of models the viscosity is not 

constant and depends on the shear rate, capturing only the shear 

thinning/thickening effect of the polymeric solutions. This type of model is 

not viscoelastic because it is not able to predict the elastic contribution, i.e., it 

neither has memory effect nor normal stress effects [26]. A more severe 

limitation of the linear constitutive models is that they do not obey the 

for general validity. The quasi-linear constitutive models solved this problem 

onvected derivates. For 

example, both the Upper Convected Maxwell (UCM) and the Oldroyd-B 

models result from a substitution of the material derivatives by the 
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contravariant convected derivate, and have the capacity to predict the first 

normal stress coefficient and are invariant to coordinate system changes. 

The quasi-linear models are capable of describing time-dependent flows, 

however, these models are not able to portray well the rheological properties 

of the polymeric solutions. For example, the deficiencies of constant viscosity 

and normal stress coefficients in steady shear flow and the infinitive 

elongational viscosity at finite elongation rates. 

 

 

1-2 F E N E-P Model 

In studying dilute polymeric solutions, the polymer molecules are often 

modeled as dumbbells consisting of two beads connected by a spring. In a 

viscous force exerted on the beads by the solvent. In the simplest model, the 

elastic force between the beads is taken to be proportional to the separation 

between the beads. This is the so-called Hookean dumbbell model. In addition 

force due to the thermal agitation by the surrounding solvent molecules. It can 

be shown that the constitutive equation associated with the Hookean dumbbell 

model is identical to the macroscopic Oldroyd-B equation. Due to its 

simplicity the model has some serious drawbacks, the most important being 

the fact that the shear viscosity is constant and that the dumbbells can be 

unbounded value of the elongational viscosity at high strain rate. A way to 

overcome these problems is to replace the Hookean spring by a non-linear 

spring to limit the dumbbell extension to a maximum value. An important 
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example of such a non- -linear elastic 

(FENE) spring introduced by Warner [27].  

A major drawback of the FENE model is that it does not yield a closed-form 

constitutive equation for the polymer stress. For this reason it is not suited for 

force is replaced by its ensemble averaged value,   it is possible to close the 

model. This pre-averaging is known as the Peterlin approximation and the 

resulting model as the FENE-P model.  

The issue of whether a FENE-P is an adequate representation of the FENE 

model in the context of turbulent flow, and in particular turbulent channel 

flow, as also been investigated by Zhou and Akhavan [28], who concluded 

that the FENE-P dumbbell was accurate only in the steady state, incurring 

large errors at all phases of transient elongational flows. Contrasting to the 

FENE model demonstrated a good approximation in transient elongational 

flows. So, it is clear that an important step is the correct choice of the 

constitutive equation and as demonstrated they can be more or less complex, 

capturing more or less rheological properties. Sometimes a complex model is 

not the best choice, for example in channel turbulent flow without hysteretic 

behaviour, both FENE-P and FENE-LS models predict with the same 

accuracy, but the numerical complexity of the FENE-LS model increase 

significantly, and so the FENE-P model should be preferred instead of the 

FENE-LS model, at least at this initial stage of turbulence modelling of 

viscoelastic fluids. Note that the non-linear viscoelastic models do not resume 

the models described before. It is worth mentioning that besides the FENE-P 

models merits, there is some inaccurate predictions in direct numerical 

simulation of the channel flow, for example, in the experiments of Ptasinski et 

al. [15] the stream wise turbulence (u2) increases slightly by increasing DR 
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with a peak of urms reaching around 3.2 corresponding to a peak for k of 

around 5.5. On the other hand their corresponding DNS results over-predict 

those peak values (maximum urms of around 4.5, and maximum k of around 

8.5). They extensively discuss this difference and state that this might be due 

to shortcomings in the FENE-P model. 
 

 

1-3 F E N E-P Constitutive Equation 

 

In this work the FENE-P model is used to calculate an extra stress due to the 

polymeric presence, and so the total stress is a combination of a solvent stress 

and polymeric stress, given by the following Eq. (1-1), 

pijsijij ,,   
  

ijssij S2,  

(1-1) 
 

(1-2) 

where the s is solvent stress, S is the rate of deformation tensor and s is the 

constant shear viscosity of the solvent. The polymeric stress of the Eq. (1-1) 

( p) is based on the FENE-P model and given by Eq. (1-3), but presented now 

in dimensionless form 

ijijkk
p

pij LfCCf )()(,   

(1-3) 

where p is the polymeric viscosity coefficient and Cij is the conformation 

tensor which is deter

convective derivate of Cij to keep the material objectivity, i.e. 
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(1-4) 

The functions appearing in the polymer stress are 
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and  

1)(Lf  

where L2 is the maximum extensibility of the dumbbell model. 

Reynolds-averaging the above equations, the time-averaged polymer stress 

pij ,  is now given by:  

ijkkkk
p

ijijkk
p

pij ccCfLfCCf )()()(,  
(1-6) 

where the last term on the right hand side also needs an approximation. 

The time-averaged form of the conformation tensor evolution equation is: 

p

pij
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(1-7) 

which after substitution of eq. (6), becomes: 
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uC )()()(  
(1-8) 

On the left hand side of Eqs. (8) the mean flow advective term contained 

within the Oldroyd derivative of C ij ( i jC ) is null for fully developed channel 

flow.  The mean flow distortion term of i jC by the mean flow is Mij and is 

given by: 
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(1-9) 

Mij is finite, but is exact therefore its needs no closure. The remaining two 

terms are related to turbulence and following the analysis and nomenclature of 

Li et al. [20] they are labeled as 

k

ij
kij x

c
uCT  

(1-10) 

which represents the contribution to the advective transport of the 

conformation tensor by the fluctuating velocity field, and  

k

j
ik

k

i
jkij x

u
c

x
ucNLT  

(1-11) 

which accounts for the interactions between the fluctuating components of the 

conformation tensor and of the velocity gradient tensor. This term originates 

from the Oldroyd derivative and is the fluctuating counterpart of Mij. Both CTij 

and NLTij require closure approximations. 
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Turbulence 

2-1. Introduction 

Many of the flows we encounter in daily life are turbulent. Typical examples 

are flow around (as well as in) cars, airplanes and buildings. The boundary 

layers and the wakes around and after bluff bodies such as cars, airplanes and 

buildings are turbulent. Also the flow and combustion in engines, both in 

piston engines and gas turbines and combustors, are highly turbulent. Air 

movements in rooms are turbulent, at least along the walls where wall-jets are 

formed. Hence, when we compute fluid flow it will most likely be turbulent. 

There is no definition on turbulent flow, but it has a number of characteristic 

features (see Pope [29] and Tennekes & Lumley [30]) such as:  

 

I . I r regularity. Turbulent flow is irregular, random and chaotic. The flow 

consists of a spectrum of different scales (eddy sizes). We do not have any 

exact definition of turbulent eddy, but we suppose that it exists in a certain 

region in space for a certain time and that it is subsequently destroyed (by the 

cascade process or by dissipation). It has a characteristic velocity and length 

(called velocity and length scales). The region covered by a large eddy may 

well enclose also smaller eddies. The largest eddies are of the order of the 

flow geometry (i.e. boundary layer thickness, jet width, etc). At the other end 

of the spectra we have the smallest eddies which are dissipated by viscous 

forces (stresses) into thermal energy resulting in a temperature increase. Even 

though turbulence is chaotic it is deterministic and is described by the Navier-

Stokes equations for Newtonian fluids. 
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I I . Diffusivity. In turbulent flow the diffusivity increases. The turbulence 

increases the exchange of momentum in e.g. boundary layers, and reduces or 

delays thereby separation at bluff bodies such as cylinders, airfoils and cars. 

The increased diffusivity also increases the resistance to motion (wall friction) 

and heat transfer in internal flows such as in channels and pipes. 

 

I I I . Large Reynolds Numbers. Turbulent flow occurs at high Reynolds 

number. For example, the transition to turbulent flow in pipes occurs at ReD = 

2300 and in boundary layers at Rex ~ 500,000. 

 

I V . Three-Dimensional. Turbulent flow is always three-dimensional and 

unsteady. However, when the equations are time averaged, we can treat the 

flow as two-dimensional or even one-dimensional. 

 

V . Dissipation. Turbulent flow is dissipative, which means that kinetic energy 

in the small (dissipative) eddies are transformed into thermal energy. The 

small eddies receive the kinetic energy from slightly larger eddies. The 

slightly larger eddies receive their energy from even larger eddies and so on. 

The largest eddies extract their energy from the mean flow. This process of 

transferring energy from the largest turbulent scales (eddies) to the smallest is 

called the cascade process. 

 

V I . Continuum. Even though we have small turbulent scales in the flow they 

are much larger than the molecular scale and we can treat the flow as a 

continuum. 
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 2-2. Governing Equations 

 
In this section time- averaged equations are presented. In what follows, upper-

case letters or overbars denote time-averaged quantities and lower-case letters 

or primes denote fluctuating quantities. A hat denotes an instantaneous 

quantity.  

 
Continuity and momentum equations 
	  
The time-averaged equations appropriate for incompressible FENE-P fluid 

are: 

 
    Continuity: 
 

0i

i

U
x

 
(2-1) 

     
     Momentum: 
 

k

ik
ki

kik

i
k

i

x
uu

xx
P

x
UU

t
U )''(

  
 

(2-2) 

where ik is the time-averaged total extra stress tensor, iU is the mean 

velocity, P  is the mean pressure,  is the fluid density and i ku u  is the 

Reynolds stress tensor. The extra stress tensor ij  in eq. (2-2) describes the 

rheology of the fluid and is given in eq. (2-3) as the sum of a Newtonian 

solvent contribution of viscosity  with a polymeric contribution pij ,  

described by the FENE-P rheological constitutive model. 
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pijij ijs S ,2  (2-3) 

 is the rate of strain tensor defined as 

i

j
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i
ij x

U
x
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2
1

 
(2-4) 

In eqs. (2-2) and (2-3) the Reynolds stress and time-averaged polymer stress 

need approximations. Regarding the former, it can be calculated by models 

developed for Newtonian fluids but modified to account for the effects of 

viscoelasticity, whereas the latter must be calculated with the rheological 

constitutive equation. 

 

The Exact ' 'i ku u  T ransport Equation 

The most comprehensive Reynolds averaged turbulence model is based on the 

exact transport equations for the turbulent stresses. An exact equation for the 

Reynolds stresses can be derived from the Navies-Stokes equation. It is 

emphasized that this equation is exact; or, rather, as exact as the Navier-Stokes 

equations. The derivation follows the steps below. More details can also be 

found in [29-31] 
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Except for the last two terms on the right hand side, the other terms are 

classical terms appearing in Newtonian fluid models and represent the 

turbulence production by the mean strain (Pij), molecular diffusion ( ,i j vD ), 

turbulent transport ( ,i j tD ), viscous dissipation by the solvent ( i j ) and the 

pressure strain term ( ,i j v ). The last two terms are viscoelastic terms represent 

the viscoelastic turbulent transport ( ,i j pD )  and the viscoelastic stress work ( ,i j p

). 
 
 
The Boussinesq assumption 
 
 
In the Boussinesq assumption an eddy (i.e. a turbulent) viscosity is introduced 

to model the unknown Reynolds stresses in Eq. (2-2). The stresses are 

modeled as 

2 2' ' 2
3 3

ji
iji j T ij T ij

j i

uuu u k S k
x x

 
(2-6) 

           

 

The last term is added to make the equation valid also when it is contracted 

(i.e taking the trace); after contraction both left and right side are equal (as 

they must be) and equal to ' 'i iu u = 2k. When above equation is included in 

Eq. (2-2) we replace 6 turbulent stresses with one new unknown (the turbulent 

viscosity, T). This is of course a drastic simplification. 

) is physical parameters which 

depend on the fluid (e.g. water or air) and its conditions (e.g. temperature). 

However, the turbulent viscosity ( T), depends on the flow (e.g. mean flow 

gradients and turbulence). 
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The transport equation of k 

The turbulent kinetic energy is the sum of all normal Reynolds stresses, i.e. 

'2 '2 '2 ' '
1 2 3

1 1
2 2 i ik u u u u u  

(2-7) 

By taking the trace (setting indices i = j) of the equation for ' '
i ju u and dividing 

by two we get the equation for the turbulent kinetic energy: 

 

i
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jk
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x
P

x
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(2-8) 

 

Except for the last two terms on the right hand side, the other terms are classical terms 

appearing in Newtonian fluid models and represent the advection of k, turbulence 

production by the mean strain ( 22 ijtk SP ), dissipation ( ), molecular diffusion and 

turbulent diffusion, and two viscoelastic terms respectively. The two viscoelastic terms 

require closure and represent the viscoelastic turbulent transport ( ji
p
ijp xuQ / )  and the 

viscoelastic stress work ( ji
p
ijp xu / ).  

 

The transport equation of  (rate of dissipation by the solvent) 

Two quantities are usually used in eddy-viscosity model to express the 

turbulent viscosity, k and , in previous section we introduced the transport 

equation of the k for FENE-P fluids. The transport equation of  based on [29] 

for viscoelastic fluid can be written as 

1 2
t

j p
j j j

u c P c E
t x k x x

 
  (2-9) 
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for the last term (Ep) representing the viscoelastic contribution to the transport 

equation of . The definition and exact form of pE  were derived by Pinho et 

al. [1-2] and is given by: 

ikqqppmm
mkm

ip
sp CccfCf

xxx
u

L
E '

3
2 2  

(2-10) 
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During the first year, a tensorially consistent near-wall four equation model is 

developed to model turbulent flow of dilute polymer solutions. The model is 

validated up to the maximum drag reduction limit, by utilizing the data 

obtained from direct numerical simulations using the Finitely Extensible 

Nonlinear Elastic-Peterlin (FENE-P) constitutive model. Eight sets of direct 

numerical simulation (DNS) data are used to analyze budgets of relevant 

physical quantities, such as the nonlinear terms in the FENE-P constitutive 

equation, the turbulent kinetic energy, the wall normal Reynolds stress and 

dissipation transport. Closures were developed in the framework of the k- - 2v -

f model for the viscoelastic stress work, the viscoelastic destruction of the rate 

of dissipation, the viscoelastic turbulent viscosity, and the interactions 

between the fluctuating components of the conformation tensor and of the 

velocity gradient tensor terms. Predicted polymer stress, velocity profiles and 

turbulent flow characteristics are all in good agreement with the literature, and 

independent DNS data over a wide range of rheological and flow parameters, 

and show significant improvements over the corresponding predictions of 

other existing models. The published paper is presented in appendix A. 
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According to the time averaged governing equations presented in the first and 

second chapters the unknown terms which require closures in the time 

averaged FENE-P constitutive equation are: 

1) Second term on the right-hand-side of Eq. 12 : ( ' ) 'kk kk ijf C c c   

2) First term on the left-hand-side of Eq. 14, CTij  :  
'

' ij
k

k

c
u

x
 

3) Second term on the left-hand-side of Eq. 14, NLTij  :  
''' ' ji

jk ik
k k

uuc c
x x   

and unknown terms appearing in the Reynolds stress transport equation can be 

summarize as: 

1) viscoelastic turbulent transport ,i j pD   

 2) the viscoelastic stress work ,i j p  

Finally, the only term which requires closure in the dissipation transport 

equation is the viscoelastic contribution to the dissipation transport equation 

(Ep). 

Fifteen sets of DNS results were used to quantify the budgets of these 

unknown terms, Moreover the DNS data are used to capture the influence of 

the rheological (Wi , L2), and flow (Re) parameters in order to devise a 

powerful model. The work is not finished yet, however some predictions can 

be summarized as follows. 
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Fig. (4-1) Predictions of RSM closure a) mean velocity b) urms,vrms, wrms c) shear 
Reynolds stress d) polymer length rheological parameters: Wi=50, L2=900 at 

Rew=395 
 

 
 
 
 

(a)  
(b)  

(c)   (d)  
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G RID A ND SUB G RID SC A L E IN T E R A C T I O NS IN 
V ISC O E L AST I C T URBU L E N T C H A NN E L F L O W B Y T H E 

A ID O F DIR E C T NU M E RI C A L SI M U L A T I O N 
(Ongoing work) 
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The concept of energy cascade was introduced by Richardson in 1922 and 

briefly the idea is that kinetic energy of turbulence enters the turbulence 

(through the production mechanism) at the largest scales of motion, it is then 

transferred (by inviscid processes) to smaller and smaller scales until, at 

smallest scales, the energy is dissipated by viscous action. With the presence 

of polymers, the energy cascade is different from the one described earlier. As 

it was already mentioned, and based on Cai et al. [32], Casciola and De 

Angelis [33], polymers absorb turbulent kinetic energy from large and 

intermediate scales flow structures to feed the micro-structure at a different 

scale and dissipate it by elasticity and at small scales the energy is transferred 

from polymer micro-structures to the small-scale flow structures. The main 

goal of this section is to understand the routes of the turbulent kinetic energy, 

i.e. the interaction between grid scale (GS) and subgrid scale (SGS), between 

SGS and the polymer kinetic energy. For this reasons different kinds of filters 

are applied on instantaneous DNS data to identify the appropriate filter size 

for viscoelastic turbulent channel flow. The appropriate transport equations for 

the GS and SGS kinetic energy were derived for viscoelastic FENE-P fluids 

and the budgets of different terms were analyzed. In figures (5-1), (5-2) 

instantaneous DNS statistics are used to identify different terms in GS/SGS 

kinetic energy transport equations and different filter sizes are used to filter 

these quantities. Note that here only results of the box filter only are being 

presented.  
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The transport equation for the GS kinetic energy (the    denotes filtering 
operator), is: 
 

(1) (3)(2) (5)(4)

,
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(5-1) 

 
 

The transport equation for the SGS kinetic energy, is: 

(10) (13)(11) (12) (14)

(15)

(16)
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(5-2) 

 
 
 

For the following cases the flow and rheological parameters are: Rewall=395, 
Wiwall =50, L2=3600, Grid: 128x129x64 
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 Fig. (5-1) Last 4 terms in GS equation (spatial averaged)    

 

 
Fig. (5-2) Last 6 terms in SGS equation (spatial averaged) 
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Fig. (5-3) Solid line: DNS, symbols: Box filter, a)Mean velocity profile, b) RMS of 
streamvise velocity fluctuation component, c) RMS of wall normal velocity 

fluctuation component, d) RMS of spanwise velocity fluctuation component (filter 
x=3) 
 
 
 
 
 
 
 
 
 
 

     

     

(c)   (d)  

(a)   (b)  



36  
  

  

  

  

          Fig. (5-4)  Q-criteria visualization of Newtonian channel flow by 
      using different size of box filter 
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Fig. (5-5) Q-criteria visualization of Viscoelastic channel flow by using  
                                                       different size of box filter 
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Work Plan  

The overall objective is the development of reliable turbulence closures for 

viscoelastic fluids, represented by the FENE-P viscoelastic constitutive 

equation. This will be accomplished via: Reynolds-Average Navier-Stokes/ 

Reynolds-Average Conformation Evolution (RANS/RACE) models. These 

approaches will be developed with a-priori and a-posteriori testing using 

adequate post-processing of existing Direct Numerical Simulation (DNS) data 

for fully developed channel flow.  

The development of turbulence closures will be carried out via canonical 

flows for which the transport equation are simple. Therefore, for the 

RANS/RACE work we will not be using 3D codes, but specific 1D and 2D 

codes, which are small, effective and simple to program and run. This follows 

the method used by the host research group in previous work [1,2]. 

The candidate wishes to pursue the RANS/RACE turbulence model 

developments along the following lines: 

 

1) The existing model is for low and intermediate levels of drag reduction and 

needs to be extended to the whole range of DR. This will be accomplished on 

the basis of a different base model, the k-epsilon-v2-f  model of Durbin [34]. A 

major feature of viscoelastic wall flows is the severe reduction of transverse 

normal Reynolds stress, and the k-epsilon-v2-f  model offers the possibility of 

an improved closure in the context of first order models. 

Note that this part of the work has been accomplished to a large extent at the 

moment of writing this document and as documented in chapter 3. 

 

2) Develop a low Reynolds number second order Reynolds stress model for 

FENE-P fluids for all regimes of DR. This involves the development of the 
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closures for NLTij, and the viscoelastic stress work for all components of 

Reynolds stress tensor, even though with more emphasis for their traces, as I 

have done for k-epsilon-v2-f model above, So, the novelty here, in addition to 

adaptations of the closures for NLTij, and the viscoelastic stress work tensor, 

will be the modification of the pressure strain closure to include effects of 

viscoelasticity. These modifications will be essential to reduce the transfer of 

turbulent energy between Reynolds stress tensor components as the 

Weissenberg number and DR increases. 

 

3) A Reynolds scalar flux model for FENE-P fluids will be developed also 

with the help of DNS data for fully-developed dynamic and thermal flow in a 

channel [35] and incorporated into the 1st and 2nd order turbulence models. 

 

4) In collaboration with the partners of the project at IDMEC-IST I will start 

analyzing DNS data of flows of FENE-P fluids in turbulent channel flows, in 

order to assess the performance of the developed RANS/RACE closures so 

that at the end the turbulence models described above are able to predict both 

turbulent flows of FENE-P fluids near and away from walls. 

 

5) The DNS results will be filtered in order to analyze energy cascade by 

analyzing the energy transfer between large and small flow scales in different 

zones of the energy spectrum. The separation between scales will be done 

using filtering operations in the physical space and the results will be  

analyzed using statistical tools. With the results obtained it will be possible to 

plan how to do LES of viscoelastic turbulent channel flows. 
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The above description involves a significant amount of work and by itself 

constitutes enough material for a PhD thesis. Neverthless, there might also be 

the possibility to start developing a simple LES based turbulence model for 

FENE-P fluids in collaboration with the same team from IDMEC-IST. This 

requires new sets of DNS data with specific filtering still to be carried out. 

 

Work Break Down 

Task Stage Deliverables 

Literature review  (mandatory) Done Internal Report 

Finding the most stable and more 

relevant sort of Newtonian 

turbulent model 
(mandatory) Done Internal Report 

Developing governing equations 

for viscoelastic turbulent flow 
(mandatory) Done Internal Report 

k-epsilon-v2-f (mandatory) Done Published (App. a) 

Reynolds stress model (RSM) 

 

Most of the Task is 

finished 

(mandatory) 

(Internal review) 

Performing DNS in FEUP 
Done 

(Optional) 
Internal Report 

LES budgets and GS/SGS 

Interactions 

(Collaboration with C.Silva 

IST) 

In the middle 

(Optional) 
In Progress 

RANS Scalar fluxes model for 

FENE-P fluids 

0% 

(mandatory) 
0% 

DNS of the Jet flow or Elastic 

turbulence (h

yet) 

0% 

(Optional) 
0% 
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Published k- -v2-f model for turbulent viscoelastic fluids 
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a b s t r a c t

A tensorially consistent near-wall four equation model is developed to model turbulent flow of dilute
polymer solutions. The model is validated up to the maximum drag reduction limit, by utilizing the data
obtained from direct numerical simulations using the finitely extensible nonlinear elastic-Peterlin (FENE-
P) constitutive model. Eight sets of direct numerical simulation (DNS) data are used to analyze budgets of
relevant physical quantities, such as the nonlinear terms in the FENE-P constitutive equation, the turbu-
lent kinetic energy, the wall normal Reynolds stress and dissipation transport. Closures were developed
in the framework of the k! e! v2 ! f model for the viscoelastic stress work, the viscoelastic destruction
of the rate of dissipation, the viscoelastic turbulent viscosity, and the interactions between the fluctuating
components of the conformation tensor and of the velocity gradient tensor terms. Predicted polymer
stress, velocity profiles and turbulent flow characteristics are all in good agreement with the literature,
from which six independent DNS data sets were used covering a wide range of rheological and flow
parameters, including high Reynolds number flows, and showing significant improvements over the cor-
responding predictions of other existing models.

! 2013 Elsevier B.V. All rights reserved.

1. Introduction

It has been known for quite over 60 years that the addition of
polymers to turbulent flows of Newtonian fluids can dramatically
reduce the turbulent friction drag up to 80%. Comprehensive
reviews of the early literature in this area are given in Hoyt [1],
Lumley [2,3] and Virk [4]. Several theories have been proposed to
describe the complex mechanism of turbulent drag reduction
(DR) in dilute polymer solutions. Lumley [2] proposed a mecha-
nism based on the extension of the polymers, suggesting that the
stretching of coiled polymers, in regions with strong deformations
such as the buffer layer, increases the effective extensional viscos-
ity. This would dampen small eddies, thicken the viscous sublayer
and consequently lead to drag reduction. Lumley also related the
onset of drag reduction with the time scale of the polymers becom-
ing larger than the time scale of the flow.

In his extensive experimental data analysis Virk [5] introduced
the concept of an ‘‘elastic sublayer’’ between the viscous sublayer
and the logarithmic zone where crucial events in drag reduction
take place. Virk [5], Castro and Squire [6], and Giles and Pettit [7]

observed an increase in the thickness of the elastic sublayer with
drag reduction to eventually fill the whole logarithmic and outer
layer regions at maximum drag reduction, thus introducing the
concept of maximum drag reduction asymptote. On the other
hand, Tabor and de Gennes [8] postulated that drag reduction is
caused by the elastic rather than the viscous properties of polymer
additives. This idea is supported by experiments showing that drag
reduction also occurs albeit by a different amount, when the poly-
mers are injected at the center of the pipe (heterogeneous drag
reduction). Their explanation was that the shear waves, caused
by the elasticity of the polymers prevented production of turbulent
velocity fluctuations at the small scales.

Over the last 15 years, the development of accurate and effi-
cient numerical and experimental methods has made it possible
to investigate in detail turbulent DR in dilute polymer solutions
[9–12]. It is now generally accepted that DR is associated with inhi-
bition of turbulent motion by the action of polymer additives; the
high extensional viscosity of the viscoelastic polymer solutions
leads to a reduction in the vortex dynamic activities that are char-
acteristic of turbulence taking place near the wall in the viscous
and buffer sublayers. This is essentially in agreement with the
original proposals of Lumley [2]. More recently, Kim et al. [13,14]
proposed the weakening of hairpin vortices by polymer counter-
torques as a key mechanism of DR. The torques created by
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straining the polymers inherently oppose the rotation of the legs
and heads of the hairpin vortices in the log layer as well as the qua-
si-streamwise vortices in the buffer layer.

Several DNS investigations of fully-developed turbulent channel
flow have been carried out to understand the effect of rheological
parameters on turbulent structure and statistics [15]. Most of these
numerical simulations used constitutive equations based on the
FENE-P (finitely extensible nonlinear elastic-Peterlin) model which
allows one to probe the effect on the flow of the polymer relaxation
time, the chain extensibility and the polymer to solution viscosity
ratio on the flow.

DNS simulation of turbulent viscoelastic flow is significantly
more expensive than Newtonian DNS for two reasons: first, be-
cause of the larger number of primary variables in the former than
in the latter and secondly, as DR increases, the near wall streaks
become progressively stabilized and elongated, thus requiring
the use of longer simulation boxes in particular for high DR values
[16]. Consequently, for a given Reynolds number, the CPU-time and
memory requirements for DNS of viscoelastic flows are at least one
order of magnitude larger as compared to the Newtonian case, and
so it is not feasible for most of the engineering purposes. Hence,
Reynolds-averaged Navier–Stokes (RANS) type or other computa-
tionally less demanding models have to be developed for modeling
turbulent flows of dilute polymer solutions in engineering
applications.

In an attempt to incorporate viscoelastic fluid rheology into tur-
bulence models for drag reducing fluids, Pinho [17], and Resende
et al. [18] developed several first-order turbulence models for a
modified version of the generalized Newtonian fluid constitutive
equation, where the dependence of strain hardening of the fluid
on the third invariant of the rate of deformation tensor was in-
cluded. This family of models also included an anisotropic version
to capture the increased Reynolds stress anisotropy [18], and a sec-
ond order version, where the Reynolds stress tensor was computed
from the corresponding transport equations [19].

Leighton et al. [20] proposed the first turbulence model for
polymer flows based on the FENE-P dumbbell constitutive equa-
tion model. In their closure, transport equations for the Reynolds
and the polymer stresses were added to the mean flow equation
and closures for the unknown correlations were developed and
the model tested in channel flow, but the model was not made
available in the open literature. Pinho et al. [21,22] devised a
new RANS model for FENE-P fluids, which is an extension of the
low Reynolds number k–e closure for Newtonian fluids. This model
provided closures for various terms of the governing equations, but
only worked for low DR. Subsequently, Resende et al. [23] devel-
oped several sophisticated and exceedingly complex closures for
the nonlinear turbulent term of the conformation tensor equation
and improved previous closures of Pinho et al. [21] for the visco-
elastic stress work and the viscoelastic turbulent transport of the
turbulent kinetic energy (k) extending the model to intermediate
DR levels and showing the limitations of a simple k–e approach
to modeling polymer solutions up to high DR. In fact, since turbu-
lence anisotropy increases with DR, the inherent turbulence isot-
ropy of the k–e model does not allow the simultaneous accurate
prediction of mean velocity, turbulent kinetic energy and its rate
of dissipation at high DR.

Iaccarino et al. [24] introduced a k! e! v2 ! f model for fully
developed channel flow, which is capable of predictions over the
whole range of DR. The concept of turbulent polymer viscosity
(or viscoelastic eddy viscosity) was used to account for the com-
bined effects of turbulence and viscoelasticity on the polymer extra
stress tensor term in the momentum equation. The turbulent poly-
mer viscosity was made to depend on the turbulent kinetic energy,
the polymer relaxation time and the trace of conformation tensor,
an idea that is adopted here with a new improved closure. The

model of the nonlinear terms in the conformation tensor equation
relied on the turbulent dissipation rate, but the main characteristic
of Iaccarino et al.’s model [24], imported from the corresponding
Newtonian model, was the ability to incorporate into the Reynolds
stress tensor closure the wall damping effect upon the wall normal
turbulence via the scalar v2 and the role of pressure strain. Both of
these quantities are significantly modified by polymer additives
and enhance turbulence anisotropy. However, although their mod-
el predicts accurately the amount of drag reduction, their predic-
tions of the polymer shear stress in the Reynolds-averaged
momentum, of the budgets of the turbulent kinetic energy and of
the evolution equation for the conformation tensor are not in
agreement with DNS results. In this work we aim to address these
shortcomings by presenting a new k! e! v2 ! f model for FENE-P
fluids and test it in fully-developed turbulent channel flow, which
is essential to a future extension to other flows.

The single-point turbulence model developed here is based on
the time-averaged governing equations for viscoelastic fluids pre-
sented by Dimitropoulos et al. [25]. An important contribution of
the present work is the development of new closures for the non-
linear fluctuating terms appearing in the FENE-P rheological con-
stitutive equation, and for the polymer stress work terms in the k
and v2 transport equations. The model is assessed against different
sets of DNS data covering a wide range of flow and fluid conditions
quantified by theWeissenberg number (Wi), Reynolds number (Re)
and maximum polymer extensibility (L2). The paper is organized as
follows: Section 2 introduces the instantaneous and time-averaged
governing equations and identifies the viscoelastic terms requiring
modeling. In Section 3, the turbulent closures are developed and
Section 4 presents model predictions for fully developed turbulent
channel flow over the whole range of DR. Conclusions are offered
in Section 5.

2. Governing equations

In what follows, upper-case letters or overbars denote Rey-
nolds-averaged quantities and lower-case letters or primes denote
fluctuating quantities. A hat denotes an instantaneous quantity. In
this work steady flows are dealt with and the reader should be
aware that the terms ‘‘time-averaging’’ and ‘‘Reynolds-averaging’’
are used indiscriminately to denote ‘‘Reynolds-averaging’’.

2.1. Continuity and momentum equations

The Reynolds-averaged equations appropriate for incompress-
ible flow of FENE-P fluids are:

continuity:

@Ui

@xi
¼ 0 ð1Þ

and momentum:

q @Ui

@t
þ qUk

@Ui

@xk
¼ ! @P

@xi
! @

@xk
ðquiukÞ þ

@sik
@xk

ð2Þ

where sik is the time-averaged extra stress tensor, Ui is the mean
velocity, P is the mean pressure, q is the fluid density and !quiuk

is the Reynolds stress tensor. The extra stress tensor sij describes
the rheology of the fluid and is given in Eq. (3) as the sum of a New-
tonian solvent contribution of viscosity gS with a polymeric contri-
bution sij;p described by the FENE-P rheological constitutive model:

sij ¼ 2gsSij þ sij;p ð3Þ

where Sij is the rate of strain tensor defined as:

Sij ¼
1
2

@Ui

@xj
þ @Uj

@xi

! "
ð4Þ
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In Eqs. (2) and (3) the Reynolds stress and the time-averaged poly-
mer stress need approximations. The former can be calculated by
models developed for Newtonian fluids but modified to account
for the effects of viscoelasticity, whereas the latter must be calcu-
lated with the Reynolds-averaged rheological constitutive equation.

2.2. Constitutive equation

To develop a model for sij;p, we start with the instantaneous
FENE-P equation for the polymeric stress [26,27]. The instanta-
neous polymeric contribution to the total extra stress is given as
an explicit function of the instantaneous conformation tensor ĉij

ŝij;p ¼
gp

k
½ f ðĉkkÞĉij ! f ðLÞdij' ð5Þ

where the different f ðĉkkÞ and f(L) functions take here the forms
used by Li et al. [16,28] and are given by

f ðĉkkÞ ¼
L2 ! 3
L2 ! ĉkk

and f ðLÞ ¼ 1 ð6Þ

where L denotes the maximum dimensionless extensibility of the
model dumbbell. Other functions are discussed in [29]. The required
conformation tensor obeys a hyperbolic differential equation of the
form:

f ðĉkkÞĉij þ k
@ĉij
@t

þ ûk
@ĉij
@xk

! ĉjk
@ûi

@xk
! ĉik

@ûj

@xk

! "
¼ f ðLÞdij ð7Þ

Using Eqs. (5) and (7) can be alternatively written as

@ĉij
@t

þ ûk
@ĉij
@xk

! ĉjk
@ûi

@xk
! ĉik

@ûj

@xk

! "
¼ ! ŝij;p

gp
ð8Þ

The terms in the parenthesis in Eqs. (7) and (8) denote Oldroyd’s
upper convective derivative of the instantaneous conformation ten-
sor. The first two terms represent the local and advective deriva-
tives (together they form the material derivative) and the other
two terms account for the distortion of cij by the instantaneous flow.
The other parameters of the polymer constitutive equation are the
relaxation time of the fluid k and the polymer viscosity coefficient
gp.

Reynolds-averaging the above equations, the time-averaged
polymer stress sij;p is obtained:

sij;p ¼
gp

k
½ f ðCkkÞCij ! f ðLÞdij' þ

gp

k
f ðCkk þ ckkÞcij ð9Þ

where the last term on the right hand side also needs an approxi-
mation.The time-averaged form of the conformation tensor evolu-
tion equation is:

Cij

r
þuk

@cij
@xk

! cjk
@ui

@xk
þ cik

@uj

@xk

! "
¼ !sij;p

gp
ð10Þ

which after substitution of Eq. (9), becomes:

kCij

r
þk uk

@cij
@xk

! cjk
@ui

@xk
þ cik

@uj

@xk

! "! "

¼ !½ f ðCkkÞCij ! f ðLÞdij þ f ðCkk þ ckkÞcij' ð11Þ

On the left hand side of Eqs. (10) and (11), the mean flow advective

term contained within the Oldroyd derivative of Cij (denoted by Cij

r
)

vanishes for fully developed channel flow. The mean flow distortion

term of Cij

r
is Mij and is given by:

Mij ¼ Cjk
@Ui

@xk
þ Cik

@Uj

@xk

! "
ð12Þ

Mij is non-zero, but it needs no closure. The remaining two terms
are related to turbulence correlations and, following the analysis

and nomenclature of Li et al. [28] and Housiadas et al. [30], they
are labeled as

CTij ¼ !uk
@cij
@xk

ð13Þ

which represents the contribution to the advective transport of the
conformation tensor by the fluctuating velocity field, and

NLTij ¼ cjk
@ui

@xk
þ cik

@uj

@xk
ð14Þ

which accounts for the interactions between the fluctuating compo-
nents of the conformation tensor and of the velocity gradient ten-
sor. This term originates from the Oldroyd derivative and is the
fluctuating counterpart of Mij. Both CTij and NLTij require closure
approximations.

In this study we investigate fully developed channel flow of
FENE-P fluids over a wide range of conditions as described in
Table 1, which lists the DNS data sets. All DNS cases correspond
to b = 0.9, the Reynolds number Res0 is defined as Res0 ( h Us/mo
based on the friction velocity (Us), the channel half-height (h)
and the zero shear-rate kinematic viscosity of the solution, i.e.,
the sum of the kinematic viscosities of the solvent and polymer
m0 = mp + ms. All kinematic viscosities are defined with the total
solution density. The Weissenberg number is Wis0 ( kU2

s=m0 and
b is the ratio between the solvent kinematic viscosity and the zero
shear-rate kinematic viscosity of the solution, b ( ms/m0. A semi-
implicit method is used for time-integration of the governing
equations. In space, a spectral method is used with Fourier
representations in the streamwise and spanwise directions, and
Chebyshev expansion in the wall-normal direction. To achieve
stable numerical integration of Eq. (8), a stress diffusion term
ðj@2ĉij=@x2kÞ is introduced, where j denotes a constant, isotropic,
artificial numerical diffusivity. As in earlier studies [10,14], the
dimensionless artificial numerical diffusivity is taken to be
j=hus ) Oð10!2Þ. Periodic boundary conditions are applied in the
streamwise (x) and spanwise (z) directions, and the no-slip bound-
ary condition is imposed on velocity at the solid walls. Details of
the numerical approaches used in this work can be found in [16].

In normalizing the governing equations and inherently the var-
ious physical quantities, the velocity scale is taken to be the friction
velocity (leading to the use of superscript +), the length scale is
either the channel half-height ðxi ¼ x*i hÞ or the viscous length
ðxi ¼ xþi vo=UsÞ, leading to superscripts * and +, respectively. When
mixing the two types of normalization, i.e. using wall/viscous and
physical quantities, the superscript used is *, e.g. Mij ¼ M*

ijU
2
s=m0.

The conformation tensor is already in dimensionless form.

2.3. Reynolds stresses

To compute the Reynolds stress tensor, we adopt Boussinesq’s
turbulent stress–strain relationship:

!quiuj ¼ 2qmTSij !
2
3
qkdij ð15Þ

where mT is the eddy viscosity and k is the turbulent kinetic energy,
uiui=2. The eddy viscosity is modeled according to the k! e! v2 ! f
model [31]. This particular choice is justified by the fact that the
polymer drag reduction is mostly a near wall phenomenon, and it
requires a modification to the turbulence redistribution mecha-
nism. This model of Lien and Durbin [31] represents a comprehen-
sive and accurate approach to capture these aspects of turbulent
boundary layers within a Boussinesq framework. Durbin’s original
proposal [32] for a near-wall eddy viscosity model is inspired by
the physics of the full Reynolds stress transport model, but retains
only the wall-normal fluctuating velocity variance, v2, and its

M. Masoudian et al. / Journal of Non-Newtonian Fluid Mechanics 202 (2013) 99–111 101



source, kf, representing the redistribution by pressure fluctuations.
Then, in the classical closure for the eddy viscosity (mT / k2=e) the
wall damping effect is obtained by substituting one instance of k
by v2 as:

mT ¼ Clv2Tt ð16Þ

where Tt is the turbulent time scale defined as:

Tt ¼ max
k
e ;6

ffiffiffi
m
e

r( )
ð17Þ

Thus, the turbulence model for Newtonian fluids has three trans-
port equations for k, e and v2, and one elliptic equation for f, and
it accurately reproduces the parabolic decay of v2=k down to the so-
lid wall without introducing the wall-distance or low-Reynolds
number damping functions in the eddy viscosity and k–e equations,
which would then need to be modified to account for viscoelastic
fluids. The absence of these damping functions is a major strength
of this type of closures. However, most v2 ! f variants suffer from
numerical stiffness making them impractical for industrial or un-
steady RANS applications, while the one version available in major
commercial codes often tends to lead to unrealistic solutions. Lien
and Durbin [31] proposed a variant to address these shortcomings.

In the v2 ! f model suggested by Lien and Durbin [31], the sca-
lar v2, and its source term f, are retained as variables in addition to
the traditional k and e quantities. The turbulent kinetic energy
transport equation is derived formally from the Reynolds-averaged
momentum equation and, therefore, in this case contains extra
terms originating from the polymer stresses.

The transport equations for the turbulent kinetic energy and its
dissipation rate share similarities with the classical k–e model
equations, but contain additional terms for viscoelastic fluids, as
reported by Pinho et al. [21]. The transport equation of k for turbu-
lent flow of viscoelastic fluids is

Uj
@k
@xj

¼ Pk ! eþ @

@xj
mþ mT

rk

! "
@k
@xj

! "
! spij

@ui

@xj

! "

þ @

@xj
spijui

$ %
ð18Þ

Except for the last two terms on the right hand side, the other terms
are classical terms appearing in Newtonian fluid models and repre-
sent the advection of k, turbulence production by the mean strain
(Pk ¼ 2tTS2ij), viscous dissipation by the solvent, molecular diffusion
and turbulent diffusion. The two viscoelastic terms require closure
and represent the viscoelastic turbulent transport ðQp ( @ ðspijuiÞ=
@xjÞ and the viscoelastic stress work ðep ( spij@ui=@xjÞ.

The balance of turbulent kinetic energy is plotted in Fig. 1 for
low (18%) and high (63%) drag reductions using normalization by
wall quantities (e.g. e ¼ eþu4

s=m0). The turbulent kinetic energy
budgets in Fig. 1 show that the qualitative behavior of the various
terms is not affected by the level of drag reduction, although the
thickening of the sublayer is clearly noticeable from the shift of
the peak of kinetic energy production away from the wall. As for

a Newtonian fluid, the main contributions in the log-law region
are from the production of k on one side, and the dissipations by
the Newtonian solvent and by the viscoelastic stress work on the
other. This is why the viscous dissipation due to the solvent is low-
er in the viscoelastic case than for a Newtonian fluid at the same
Reynolds number. Well inside the viscous sublayer molecular dif-
fusion takes over the role of production, and dissipation by the sol-
vent is greater than the viscoelastic stress work. The viscoelastic
turbulent transport term is usually small and only relevant within
the buffer layer, but even there smaller than the turbulent diffu-
sion (DN), hence this term will not have a dramatic impact on mod-
el predictions.

The dissipation by the Newtonian solvent (e) appearing on the
right hand side of Eq. (18), is obtained from its own transport
equation:

Table 1
DNS parameters.

Case Res0 Domain size Nodes (Nx, Ny, Nz) Artificial diffusivity (j/hus) L2 Wis0 DR (%)

(A) 395 Lx:8ph, Lz:ph 512 + 129 + 128 0.02 900 25 18
(B) 395 Lx:8ph, Lz:ph 512 + 129 + 128 0.02 900 100 37
(C) 395 Lx:16ph, Lz:ph 1024 + 129 + 128 0.025 3600 100 51
(D) 395 Lx:16ph, Lz:ph 1024 + 129 + 128 0.025 14,400 100 63
(E) 180 Lx:7h, Lz:ph 64 + 97 + 64 0.02 900 25 19
(F) 180 Lx:14h, Lz:ph 128 + 97 + 64 0.02 900 100 38
(G) 180 Lx:14h, Lz:ph 128 + 97 + 64 0.02 3600 100 54
(H) 180 Lx:28h, Lz:ph 128 + 97 + 64 0.02 14,400 100 71

Fig. 1. Balance of turbulent kinetic energy at Res0 = 395 (a) case A, and (b) case D.
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Uj
@e
@xj

¼ Ce1Pk ! Ce2e
Tt

þ @

@xj
mþ mT

re

! "
@e
@xj

! "
! Ep ð19Þ

Here, all terms are conceptually identical to those for a Newtonian
fluid except for the last term (Ep) representing the viscoelastic con-
tribution to the transport equation of e. The definition of Ep was de-
rived by Pinho et al. [21] and is given by:

Ep ¼ 2ms
gp

kðL2 ! 3Þ
@ui

@xm
@

@xk
@

@xm
f ðCmmÞf ðĉppÞc0qqCik

h i& '
ð20Þ

This term is clearly nonlinear and a closure is needed for its
calculation.

The other two equations needed to compute the eddy viscosity
(cf. Eq. (16)) are the transport equation for the scalar v2, which is
derived from the transport equation for the wall normal turbulent
fluctuations according to [24], and the equation for the turbulence
energy redistribution process (f) that plays a crucial role in produc-
ing v2 (cf. Eq. (22)). In the context of a second order model for the
full Reynolds stress tensor such role is played by the pressure-
strain correlations from which the f-equation1 gets derived. The
equations for v2 and f are given below:

Uj
@v2

@xj
¼ kf þ @

@xj
mþ mT

rk

! "
@v2

@xj

 !
! 6

e
k
v2 ! ep;yy þ Qp;yy ð21Þ

f ! L2t
@2f

@xj@xj
¼ C1

2
3 !

v2

k

$ %

Tt
þ C2

Pk

k
! 5ev

2

k
þUp

yy ð22Þ

where the eddy viscosity and time scale are given in Eqs. (16) and
(17), and the length scale is defined as:

L2t ¼ C2
L max

k3

e2 ;C
2
g

ffiffiffiffiffi
m3
e

r( )
ð23Þ

As reported in [31] the coefficients appearing in the above equa-

tions are: Cl ¼ 0:19;rk ¼ 1;re ¼ 1:3;Cs1 ¼ 1:4½1þ 0:05
ffiffiffiffiffiffiffiffiffiffiffi
k=v2

q
';

Cs2 ¼ 1:9;C1 ¼ 1:4;C2 ¼ 0:3;CL ¼ 0:23;Cg ¼ 70. The transport
equation for v2, a scalar representing the local wall-normal Rey-
nolds stress, is also modified relative to the corresponding Newto-
nian equation due to the presence of polymer additives in a similar
manner to the k transport equation. The last two terms in Eq. (21)
are the viscoelastic turbulent transport of v2 (Qp,yy) and the visco-
elastic stress work of v2 (ep,yy), and correspondingly they also need
closures. The qualitative behavior of ep,yy, Qp,yy, and kf depicted in
Fig. 2 shows that for the low drag reduction case the peaks of kf
and ep,yy occur close to the wall, and then the quantities fall signif-
icantly by moving away from the wall. On the other hand for the
high drag reduction case the maximum values of the dimension-
less quantities are much lower than at low DR and sharp peaks
are no longer observed near the wall. Instead, there is a wide re-
gion where those quantities are close to the maximum. In addition,
when increasing DR the ratio ep,yy/(kf) increases, i.e., the wall nor-
mal viscoelastic stress work becomes an increasing proportion of
kf and this suggest that wall normal velocity fluctuations tend to
decrease as DR increases. The last term in Eq. (22), Up

yy is represent-
ing the viscoelastic contribution to the f equation. Note that sub-
script yy used in this work denotes the wall-normal direction.

3. Development of closures

In this section closures are developed for all unknown turbulent
cross-correlations identified in the previous section. All closures

are developed on the basis of the DNS data case (B) (Res0 = 395
and DR = 37% in Table 1) and subsequently compared with the
other DNS data sets.

3.1. A model for the time-averaged polymer constitutive equation

For fully developed channel flow the polymer shear stress given
by the FENE-P constitutive equation reduces to:

sxy;p ¼
gp

k
½f ðCkkÞCxy ! f ðLÞdij' þ

gp

k
f ðCkk þ ckkÞcxy ð24Þ

which contains a nonlinear term, f ðCkk þ ckkÞcxy. This quantity is
compared with its mean value f(Ckk)Cxy in Fig. 3 for both low (case
A) and high (case D) drag reductions, and confirms the assertion
that, in Eq. (24), it is justifiable to neglect the last term on the
right-hand-side by comparison with the first term, as also found
previously [24,21]. Consequently for fully developed channel flow
the polymer shear stress can in principle be calculated by:

sxy;p ¼
gp

k
f ðCkkÞCxy ð25Þ

Eq. (25) implies that in fully-developed turbulent channel flow of
viscoelastic fluids described by the FENE-P model we need the trace
of the conformation tensor (Ckk) and the mean shear polymer con-
formation component (Cxy) to calculate the polymer shear stress.

Fig. 2. DNS data for the normalized budgets of m2 for cases A (LDR, DR = 18%) and D
(HDR, DR = 63%) at Res0 = 395.

Fig. 3. Comparison between f ðCkk þ ckkÞcxy and f(Ckk)Cxy for cases A (LDR, DR = 18%)
and D (HDR, DR = 63%) at Res0 = 395.

1 Note that f and f(Cij) denote two different unrelated quantities: f is the velocity
fluctuation redistribution function of the turbulence model (Eq. (22)), whereas f(Cij) is
the function of the conformation tensor in the FENE-P model (Eq. 6).
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Still the polymer stress depends on turbulent quantities since
the conformation tensor is highly dependent on turbulent flow
characteristics as shown by Eqs. (11)–(14). The consequence of
that cascade of dependencies is that small differences in the clo-
sures of those quantities result in inaccurate prediction of the poly-
mer stress. Hence, instead of using Eq. (25) Iaccarino et al. [24]
introduced the concept of viscoelastic kinematic viscosity (mT,p) in
order to directly account for the effect of turbulence on Cij. They re-
lated the viscoelastic kinematic viscosity to the turbulent kinetic
energy, and proposed a closure for mT,p and sxy;p as:

sxy;p ¼
q

f ðCkkÞ
ðmp þ mT;pÞSxy where mT;p ¼ bkk; b ¼ 0:1 ð26Þ

We follow some of those ideas, but model the Reynolds-averaged
polymer shear stress differently and as follows. In order to account
for the variations in the mean polymer shear stress we utilized the
trace of the Cij tensor, as in Eq. (25). However, to capture the effect
of turbulence upon Cij we followed the concept of turbulent kine-
matic viscosity (mT,p) introduced by Iaccarino et al. [24]. This is
something like introducing a concept of viscoelastic turbulent Pra-
ndtl number, which is a decomposition of total viscoelastic momen-
tum diffusivity into molecular and turbulent contributions. The
turbulent viscoelastic kinematic viscosity (mT,p) describes the effect
of the turbulent fluctuations on the polymer stresses, and relies
on a Boussinesq-like relationship meaning an alignment of the vis-
coelastic stresses with the mean strain (consistent with a dumbbell
spring). Fig. 4 compares DNS data for the kinematic eddy viscosity,
the viscoelastic kinematic viscosity ðmT;p ¼ sxy;p=ðqdUx=dyÞÞ and the
closure developed in [24]. The behavior of the turbulent viscoelastic
kinematic viscosity, mT,p, can be rationalized as follows. In the vis-
cous sublayer (y+ < 5), where the turbulence is severely dampened,
it is possible to calculate the polymer stress neglecting any effect of
turbulence upon the constitutive equation, i.e., by using the laminar
constitutive equation. The polymer stress in fully-developed lami-
nar channel flow has the exact solution given by [21] as:

sxy;lam;p ¼
qmp
f ðCkkÞ

dUx

dy
ð27Þ

Eq. (27) is sufficient to describe the polymer stress in the viscous
sublayer (y+ < 5 region) while ensuring the compatibility of the
polymer stresses in laminar flows. As depicted in Fig. 4 the turbu-
lent viscoelastic viscosity attains its maximum away from the wall
and then decreases slowly towards the centerline as is also the case
with the eddy viscosity (mT). Moreover, a correct closure for the

polymer shear stress should naturally follow the dynamics imposed
by the constitutive FENE-P Eq. (25) in regard to f(Ckk) and the poly-
mer relaxation time. By analyzing the DNS data and experimental
results of [12], we observed that away from the wall there is a par-
tial correspondence between the eddy viscosity and the viscoelastic
eddy viscosity and consequently we propose a closure for the visco-
elastic turbulent viscosity in the whole domain as:

Fig. 6. Contributions to the trace of the conformation tensor (Eq. (31)) in fully
developed channel flow for (a) case A, and (b) case D.

Fig. 5. Comparison between current model for the polymer mean shear stress, the
model of [24] and DNS data for case B (DR = 37% and Res0 = 395).

Fig. 4. Variation of mT,p and mT for DR = 37% (case B in Table 1) across the channel and
comparison with the model of mT,p developed by [24].
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mT;p ¼
mp

f ðCkkÞ
þ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2=Wiso

q
f ðCkkÞmT

! "
ð28Þ

and the time averaged polymer shear stress becomes:

sxy;p ¼ q mp
f ðCkkÞ

þ a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2=Wiso

q
f ðCkkÞmT

! "
dUx

dy
; ð29Þ

where the first term on the right hand side dominates in the near
wall region and the second term captures the effect of turbulence
far from the wall. By utilizing the turbulent term of mT,p, the turbu-
lent viscoelastic Prandtl number (Pr T,p) is defined as:
PrT;p ¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2=Wiso

q
f ðCkkÞ. The model for the kinematic turbulent

viscoelastic viscosity developed with data for case B (DR = 37%) is
compared in Fig. 5, in terms of the polymer stress, with DNS data
and the model of Eq. (26) previously proposed by Iaccarino et al.
[24]. While this latter model describes well the rise of the shear
stress very close to the wall it severely under-predicts the polymer
stress away from the wall, a feature corrected by the proposed
closure.

To compute the polymer stress according to the model of Eq.
(29) we also need the extension of the chains via Ckk and this can
be computed directly via the corresponding Reynolds-averaged
equation, which is obtained as the trace of the Reynolds-averaged
conformation Eq. (11):

Mkk þ NLTkk þ CTkk þ
1
k
ð3! f ðCkkÞCkkÞ ¼ 0 ð30Þ

In Eq. (30) Mkk is the trace of the mean flow distortion term of Cij

r
,

NLTkk accounts for the interactions between the fluctuating

Fig. 10. Comparison between current model for ep against DNS data and the model
of [24] for (a) case C, and (b) case D.

Fig. 7. Comparison between the predictedMkk by current method with the model of
[24], and DNS data for case B.

Fig. 8. Comparison between predicted NLTkk and DNS data for case B.

Fig. 9. Comparison between predicted and DNS data of skk,p for case B.
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components of the conformation and velocity gradient tensors, and
CTkk is the contribution to the transport of the conformation tensor
by the fluctuating advection.

Fig. 6 compares the first three terms on the left-hand-side of Eq.
(30) for low (case A) and high (case D) drag reductions, showing
CTkk to be negligible regardless of the amount of DR, in agreement
with the findings of Housiadas et al. [30] and Li et al. [16]. In con-
trast, NLTkk is not negligible, and its closure constitutes a main task
in this work. Apart from NLTkk, the other main contribution comes
from the exact mean flow term (Mkk), especially in the viscous sub-
layer and buffer layer.

Provided the model for mT,p is robust, Mkk is easily computed
from its definition. For fully-developed flow we have Myy =Mzz = 0
and

Mxx ¼ 2Cxy
dU
dy

! Mkk ¼ 2
ksxy;p

gpf ðCkkÞ
dU
dy

 !
ð31Þ

Fig. 6 shows that this term is an important term in Eq. (30).
Although Mkk is exact, Iaccarino et al. [24] proposed the following
model to compute it:

Mkk ¼
2k

f 2 Ckkð Þ
dUx

dy

! "2

ð32Þ

which is the exact solution for laminar channel flow. Fig. 7 com-
pares the predictions of Mkk using our method (Eq. (31)) and the
model of Iaccarino et al. [24] (Eq. (32)) and includes also the corre-
sponding DNS data. The use of the exact definition of the Mkk, based
on our model for the turbulent polymer viscosity is able to predict
better the distribution of Mkk all across the channel.

NLTkk accounts for the interactions between the fluctuating
components of the conformation tensor and of the velocity gradi-
ent tensor. For low and intermediate DR a closure for NLTij was de-
rived by Resende et al. [23], but that is a very complex model. An
alternative simpler closure had been previously derived by Pinho
et al. [21,22], but in this work we develop a specific model for
the trace NLTkk, simpler than any of the previous existing closures,
and here NLTkk is related to its mean value (Mkk) and the eddy vis-
cosity via:

NLTkk ¼ a2Mkk
mT
mo

ð33Þ

Mathematically NLTkk originates from the Oldroyd derivative and it
is the fluctuating counterpart of Mkk. The closure of Eq. (33) was
developed after an extensive analysis of DNS data and the constant
coefficient appearing in it was fixed on the basis of the data for case

B (DR = 37%, Table 1). Fig. 8 compares its predictions and perfor-
mance against DNS data. The model developed by Iaccarino et al.
[24] relates NLTkk with e, which according to Fig. 1, on account of
the location of the peak in e and its behavior far from the wall is less
accurate compared with DNS. As a result of the developed closures
for Mkk, and NLTkk the trace of the polymer stress (skk) is depicted in
Fig. 9, which is calculated from Eq. (30) while neglecting CTkk.

The proposed closure for NLTkk is always positive, whereas the
DNS data of Fig. 8 shows a small incursion of NLTkk into negative
values near the wall. However, Fig 6(a) and (b) also shows these
negative peaks in NLTkk to be negligible as compared with Mkk,
which is nearly 100 times bigger than NLTkk close to the wall, so
that neglecting the negative peak of NLTkk is of no consequence
to the predictions of Ckk, as seen in Fig. 9, and in addition it pre-
vents possible numerical divergence.

3.2. Development of closures needed by k, e, and v2 equations

Closures are required for two terms in the transport equation of
k, namely for the viscoelastic turbulent transport (Qp) and the vis-
coelastic stress work (ep). Similarly, the corresponding terms need
to be modeled in the transport equation of v2, namely the trans-
verse viscoelastic turbulent transport (Qyy,p) and the transverse vis-
coelastic stress work (eyy,p). Finally, it is also necessary to provide a

Fig. 13. Comparison between predictions (lines) and DNS data (symbols) of
normalized shear stresses for case B.

Fig. 12. Comparison between predicted and DNS data of e+, for case B.

Fig. 11. Comparison between predicted and DNS data of k+ and v2 for case B.
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closure for the term accounting for the viscoelastic contribution to
the transport equation of e denoted by Ep. Figs. 1 and (2) showed
the budgets of k and v2 obtained from DNS data, respectively. In
both cases the viscoelastic turbulent transport is negligible as also
found previously [21] and in particular also by the independent
DNS data of [24,33].

The viscoelastic stress work (ep) appearing in the transport
equation of k is defined as

ep ¼
1
qs

p
ij
@ui

@xj

¼
gp

qk Cijf ðCmm þ cmmÞ
@ui

@xj
þ cijf ðCmm þ cmmÞ

@ui

@xj

( )
ð34Þ

Pinho et al. [21,23] showed that in low drag reduction the triple cor-
relation can be decoupled into a product of function f(Ckk) by the
remaining double correlation, which is NLTkk/2, therefore they
approximated the viscoelastic stress work by

ep ,
gp

2qk f ðCmmÞ cij
@ui

@xj

( )
¼

gp

2qk f ðCmmÞNLTkk ð35Þ

Fig. 10 shows that this closure remains valid for intermediate and
high drag reductions without the need for the coefficient of 1.076
introduced in [21].

By contrast Iaccarino et al. [24] modeled the viscoelastic stress
work by

ep ¼ bkkS2 ð36Þ

where b is a constant, k is the polymer relaxation time, k is the tur-
bulent kinetic energy, and S represents the magnitude of the strain
rate. Fig. 10 compares performance of both closures with DNS data
for intermediate and high drag reduction. Clearly the model of Iac-
carino et al. [24] excessively dampens ep far from the wall, whereas
the current model (Eq. (35)) is a better representation of DNS data
all across the channel.The other term that needs closure is the
transverse component of the viscoelastic stress work eyy,p. Fig. 2
shows the budgets of different terms in v2 equation. For Newtonian
fluids, Lien and Durbin [31] modeled the transverse component of
the velocity–pressure gradient term by the source term (kf) in the
v2 transport equation. The true closure for eyy,p must be a function
of NLTyy as presented in Eq. (34), however due to the fact that in this
work we only considered the trace of the time averaged constitutive
equation in the following an alternative approach is introduced. The
DNS data plotted in Fig. 2 include the source term (kf) and the trans-
verse component of the viscoelastic stress work for LDR and HDR.
Regardless of the amount of drag reduction the transverse compo-
nent of the polymer stress work follows nearly the same trends as
the source term (kf), which suggests that the largest positive quan-
tity in the v2 transport equation, i.e. the pressure strain term (here
kf), is the main responsible for accounting for the energy absorbed
by the polymers. Therefore, to close the transverse component of
the viscoelastic stress work the source term (kf) in the v2 transport
equation was used together with the turbulent viscoelastic Prandtl
number (PrT,p) as:

ep;yy ¼ a3
ffiffiffiffiffiffiffiffiffiffi
Wis0

p
PrT;pkf ð37Þ

The last term in Eq. (22) (Up
22) represents the viscoelastic contribu-

tion to the f equation. Leighton et al. [20] introduced an explicit
modification to the pressure–strain correlation to account for the
polymer-induced turbulence energy redistribution, but Iaccarino
et al. [24] tested this formulation and found that it did not produce
acceptable results for high drag reduction. Similarly, we tested this
term and found that by using it there is an excessive damping of the
wall normal fluctuations leading to a complete flow laminarization.
Therefore, this term was neglected as was also previously the case

in [24]. Fig. 11 compares DNS and predicted k and v2 by using the
above developed closures, all across the channel.

The last quantity that needs to be modeled is the viscoelastic
contribution to the transport equation of e, denoted as Ep. A closure
was developed by Resende et al. [23], but here we adopt a much
simpler approach. Ep is assumed to be a destruction term [23]
and to devise its closure we followed the same approach as for
the classical Newtonian destruction term in the e equation, but
involving a viscoelastic quantity, i.e., we assumed that this rate is
proportional to the ratio of the viscoelastic stress work (usually
acting as a viscoelastic dissipation of k, cf. Fig. 1) and the time scale
1/Tt. The viscoelastic destruction term is therefore modeled as
equation (38).

Ep ¼
Ce1ep
Tt

ð38Þ

Consequently the solvent dissipation rate transport equation is
closed as

Uj
@e
@xj

¼ Ce1ðPk ! epÞ ! Ce2e
Tt

þ @

@xj
mþ mT

re

! "
@e
@xj

! "
ð39Þ

Fig. 12 shows the performance of the model in predicting the
dissipation rate.

We next compare in Fig. 13 the overall shear stress balance for
case B (Table 1), as predicted by this model, with the corresponding
DNS balance. It includes the Reynolds stress, the solvent stress, and
the polymer stress.

Fig. 14. Turbulent kinetic energy and m2, (a) case A (LDR), and (b) case D (HDR).
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3.3. Summary of the model (See footnote in page 5)

Utilizing the closures developed in the previous subsections, the
governing and model equations are given below.

q @Ui

@t
þ qUk

@Ui

@xk
¼ ! @P

@xi
þ q @

@xk
ðms þ mT þ mT;pÞ

@Ui

@xk

( )
ð40Þ

Uj
@k
@xj

¼ Pk ! eþ @

@xj
ms þ

mT
rk

! "
@k
@xj

! "
! ep ð41Þ

Uj
@e
@xj

¼ Ce1Pk ! Ce2e
Tt

þ @

@xj
ms þ

mT
re

! "
@e
@xj

! "
! Ep ð42Þ

Uj
@v2

@xj
¼ kf þ @

@xj
ms þ

mT
rk

! "
@v2

@xj

 !
! 6

e
k
v2 ! ep;yy ð43Þ

f ! L2t
@2f

@xj@xj
¼ C1

2
3 !

v2

k

$ %

Tt
þ C2

Pk

k
! 5ev

2

k
ð44Þ

Mkk þ NLTkk þ
1
k
ð3! f ðCkkÞCkkÞ ¼ 0 ð45Þ

where

mT;p ¼
mp

f ðCkkÞ
þ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2=Wiso

q
f ðCkkÞmT

! "
ð46Þ

Mkk ¼ 2
k

f ðCkkÞ
mT;p
mp

dU
dy

! "2
( )

ð47Þ

NLTkk ¼ a2Mkk
mT
mo

ð48Þ

Fig. 17. Comparison between predictions and DNS data of e+ for case A (LDR), and
case D (HDR).

Fig. 15. Comparison between predictions (lines) and DNS data (symbols) for (a)
Polymer stress, and (b) polymer length normalized by polymer maximum length, at
Res0 = 395.

Fig. 16. Comparison between predictions (lines) and DNS data (symbols) for
normalized shear stresses (a) case A (LDR), and (b) case D (HDR).
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ep ¼
gp

2qk f ðCmmÞNLTkk ð49Þ

ep;yy ¼ a3
ffiffiffiffiffiffiffiffiffiffi
Wis0

p
PrT;pkf ð50Þ

Ep ¼
Ce1ep
Tt

ð51Þ

Relative to the model of Lien and Durbin [31] this model has 3 extra
coefficients to incorporate the polymer effects, a1 = 0.02, a2 = 0.16
and a3 = 0.15. Other coefficients arise from the Newtonian model
and take the same numerical values as reported in [31], the coeffi-
cient Cl also exists in the context of Newtonian fluid models, but
here it was modified to take the numerical value of 0.16 instead
of the original value of 0.19. The boundary conditions are those of
no slip for velocities, k and v2, whereas for the dissipation by the
solvent and f we used the standard conditions of Newtonian fluids
described in [31].

4. Results and discussion

In this section, results from several predictions of fully-devel-
oped channel flow using this model are presented and assessed
against other sets of DNS data for FENE-P fluids as in Table 1. All

viscoelastic flow calculations were carried out using the same
channel dimensions and friction velocity as for the DNS. Note that
some comparisons involve DNS data for Res0 = 180, and also the
independent DNS results of [24,33,36].

The predicted k and m2 profiles are shown in Fig. 14 for cases A
and D. It is well known [30,34,35] that streamwise velocity fluctu-
ations u2 increase with DR, while the wall normal and spanwise
components m2 and w2 monotonically decrease. The increase of
u2 is larger than the decrease of m2 and w2 and as a consequence
the turbulent kinetic energy slightly increases. Moreover the peak
location of k shifts away from the wall as DR increases, which is
consistent with the upward shift of the logarithmic region in the
mean velocity profile. As it is shown in Fig. 14 the predictions have
a satisfactory agreement with DNS data and the model captures
both the physical characteristics of turbulent channel flow of dilute
polymer solutions in terms of the slight increase in k and the up-
ward shift of its peak location by increasing DR, as reported in
the DNS results and in the experimental findings of Ptasinski
et al. [12]. Nevertheless, at HDR (case D in Fig. 14) the model un-
der-predicts the peak value of k+. As is well known from experi-
ments [12], DR is associated with a decoupling between the
streamwise and transverse turbulence accompanied by a reduction
in v2 and this causes a decrease in the Reynolds shear stress,
whereas the streamwise turbulence may even increase slightly be-
fore a decrease at very high DR. In the model the reduction in uv is
accomplished by the eddy viscosity and by adopting Durbin’s mod-
el of Eq. (16) and this reduction can be achieved via a decrease in
turbulent time scale and/or wall normal Reynolds stress. The
reduction in v2 is accurately predicted for all cases, but is insuffi-
cient to reduce uv as much as needed at HDR, so the turbulent time
scale must also decrease and this can be achieved via a decrease in
k and/or an increase in e. However, since e is also reduced (cf.
Fig. 1a and b), there is still the need for a reduction in k at HDR
and this explains the discrepancy. One remedy in the context of

Fig. 18. Normalized velocity profiles in wall coordinates for Newtonian and FENE-P
fluids with rheological parameters defined in Table 1, at Res0 = 395.

Fig. 19. Normalized velocity profiles in wall coordinates for Newtonian and FENE-P
flows with rheological parameters defined in Table 1, at Res0 = 180.

Table 2
Independent DNS data.

DNS data Case Res0 L2 Wis0

Iaccarino et al. [24] (a) 300 10,000 36
Iaccarino et al. [24] (b) 300 10,000 120
Thais et al. [36] (c) 395 10,000 116
Thais et al. [36] (d) 590 10,000 116
Thais et al. [33] (e) 1000 900 50
Thais et al. [33] (f) 1000 10,000 115

Fig. 20. Comparison between predictions and independent DNS data of the
normalized velocity profiles in wall coordinates for turbulent FENE-P flows with
flow conditions defined in Table 2.
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this model could be the use of a damping function for the eddy vis-
cosity, which we decided not to do in order to maintain the original
idea of Durbin’s theory (the elimination of damping functions). The
other remedy can be the use of a higher level turbulence model,
but this is beyond the scope of this work.

We should add that this problem is here limited to HDR and is
much more alleviated than with two equation models that do not
rely on v2, as discussed in Resende et al. [23] where a severe reduc-
tion in kwas observed already at intermediate DR even when using
damping functions.

Finally, we should also mention that the discrepancy may be
somewhat fictitious: in the experiments of Ptasinski et al. [12]
the stream wise turbulence (u2) increases slightly by increasing
DR with a peak of urms reaching around 3.2 corresponding to a peak
for k of around 5.5. On the other hand their corresponding DNS re-
sults over-predict those peak values (maximum urms of around 4.5,
and maximum k of around 8.5). They extensively discuss this dif-
ference and state that this might be due to shortcomings in the
FENE-P model.

Predictions of the trace of the polymer stress and of the confor-
mation tensor are compared with DNS data in Fig. 15(a) and (b),
respectively for case A (LDR) and D (HDR). Note that the region
of high chain dumbbell extension is limited to the near wall region
(y+ < 50), which is in agreement with findings of [28].

In a fully developed state, the total shear stress must follow a
straight line across the channel varying from zero at the centerline
to the wall shear stress (sw) at the wall. Here the total shear stress
is the sum of three contributions, namely, the Reynolds stress, the
viscous stress of the solvent and the polymer stress. The total shear
stress profile and its three components are plotted in Fig. 16 nor-
malized by the wall shear stress for low and high drag reduction
(cases A and D) and compared with the corresponding DNS. In both
cases the total shear stress follows the expected linear profiles over
the channel height, indicating that a stationary fully developed
state has been reached. In low drag reduction case the polymer
stress contribution is relatively small, and it occurs mainly in the
near wall region. However, as DR increases, the Reynolds stress is
significantly reduced, and correspondingly the polymer stress in-
creases to ensure the balance and becomes comparable to the Rey-
nolds stress. Specifically, at HDR the Reynolds stress is significantly
reduced as compared to the LDR regime, but it remains non-zero.
In the LDR case the proposed model predicts the peak and the gen-
eral trend of all stresses very well. In HDR case the polymer contri-
bution becomes important and clearly the prediction of the
proposed closure is good. These observations are consistent with
the numerical findings of [28] and the experimental results of Pta-
sinski et al. [12].

In Fig. 17 the predictions of the dissipation rate are compared
with the DNS data for both LDR (case A) and HDR (case D). At
LDR the predictions are accurate near and far from the wall, while
at HDR the predictions are accurate far from the wall, but overpre-
dicted close to the wall.

We present predicted transverse profiles of the mean stream-
wise velocity for a large set of data covering the whole range of
DR, different values of L2, Reynolds numbers, and Weissenberg
numbers in Figs. 18–20, and comparing the profiles with the corre-
sponding DNS data. For the sake of comparison the profiles for
Newtonian flow at each Reynolds number have also been included.
All profiles in the viscous sublayer collapse on the linear distribu-
tion U+ = y+. Further away from the wall the mean velocity of the
drag reduced flows increases as compared to that in Newtonian
flows. Specifically in the LDR regime, the logarithmic profile is
shifted upwards but remains parallel to that of the Newtonian flow
as is also found in the DNS results. The upward shift of the logarith-
mic profile can be interpreted as a thickening of the buffer layer. In
the HDR regime, the slope of the mean velocity has augmented as
the thickened buffer layer occupies nearly the whole channel. In
addition, the slope increases as a function of DR and the predic-
tions and DNS are consistent and this is seen to be the case at both
high and low Reynolds numbers in Figs. 18 and 19.

We also assessed the model performance in predicting drag
reduction against independent DNS data provided by [24,33,36],
which corresponds to Res0 = 300, 395, 590, 1000, i.e., including high
Reynolds number flows. As seen in Fig. 20, the agreement between
the predictions and the DNS profiles of the mean velocity for the
cases in Table 2 is fairly good regardless of the Reynolds number.
The comparisons between the DNS data and the predictions in
terms of k, v2, and Ckk for the high Reynolds number flow case
(e) (Res = 1000) are presented in Figs. 21 and 22 and show again
a good agreement, similar to that observed at lower Reynolds num-
ber flows.

5. Conclusions

The k! e! m2 ! f model of Lien and Durbin [31] is modified for
modeling turbulent channel flow of dilute polymer solutions up to
the maximum drag reduction. Fluid rheology is described by the fi-
nitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive
equation and to help develop the model eight sets of recent direct

Fig. 21. Comparison between predictions and DNS for the transverse profiles of k+

and m2 for Res0 = 1000, Wes0 = 50, and L2 = 900 (case (e) in Table 2).

Fig. 22. Comparison between predictions and DNS for the polymer length
normalized by polymer maximum length for Res0 = 1000, Wes0 = 50, and L2 = 900
(case (e) in Table 2).
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numerical simulations (DNS) data are analyzed. To account for the
polymer shear stress term in the Reynolds averaged momentum
equation the procedure proposed by Iaccarino et al. [24] is used
and a turbulent viscoelastic viscosity is introduced in order to cal-
culate the polymer shear stress via a Boussinesq-like relationship
which is consistent with current DNS and independent DNS
simulations.

Analysis of the DNS results confirms the previously developed
closure [21] for the viscoelastic stress work on the basis of NLTkk,
which is a new contribution to the transport equation of k, but
now with a unit coefficient. A simple closure for NLTkk is proposed
by using Mkk and the turbulent eddy viscosity. A closure was also
proposed for the transverse polymer stress work in the m2 transport
equation leading to a modification of the original Newtonian
source term developed by Lien and Durbin [31] to account for
the reduction of the pressure-strain redistribution term. The f
equation remained the same as for Newtonian fluids. Finally, the
closure for the viscoelastic destruction of the rate of dissipation
by the solvent has similarities with the classical Newtonian
destruction term.

All closures were developed on the basis of DNS data for 37%
drag reduction at Res0 = 395 and the performance assessed against
sets of DNS data for a wide range of Reynolds numbers (Res0 = 180,
300, 395, 590 and 1000) over a wide range of Weissenberg num-
bers together with different values of L2 and b and also against
independent DNS results.

The predictions in fully-developed channel flow compare very
well with DNS data in terms of mean velocity, turbulent kinetic en-
ergy and viscoelastic stresses at all ranges of drag reduction. The
turbulence model here developed does not require wall damping
functions as the original model of Lien and Durbin [31] and the
new closures required to account for viscoelastic fluid behavior
are simple and numerically inexpensive with the model showing
effectively a better predictive capability than existing models for
FENE-P fluids.
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