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Abstract 

The analytical solution for heat transfer in a dynamic and thermally fully-developed 

channel flow of the simplified Phan-Thien— Tanner fluid induced by combined 

electro-osmosis and pressure gradient was obtained assuming that material properties 

are independent of temperature. The flow forcing was quantified by an appropriate 

dimensionless parameter and its effect and that of all other relevant dimensionless 

numbers is presented and discussed. Specifically, the forced convection occurs under 

conditions of constant wall heat flux and the solution includes the effects of 

Weissenberg number, electric double layer (EDL) thickness, forcing ratio parameter, 

viscous dissipation as well as of Joule heating due to the electric currents and was 

obtained under the simplifying Debye-Hückel approximation. Generally speaking the 

Joule effect is stronger than the viscous dissipation except in very narrow channels, 

but these fall outside the validity of the Debye-Hückel conditions. For pure electro-

osmosis, viscous dissipation is restricted to the near wall region and virtually non-

existent elsewhere, so it is irrelevant for thin electric double layers and Joule heating 

is more relevant. As the EDL thickens and/or the pressure gradient contribution 

increases the role of viscous dissipation grows and shear-thinning effects appear also 

more clearly on the Nusselt number. Generally speaking, an increase in internal 

heating results in lower Nusselt numbers and this effect is stronger than the effect of 

shear-thinning, which is responsible for a slight increase in the Nusselt number.  

 

Key words: Viscoelastic fluid; sPTT model; electro-osmosis; constant wall heat flux; 

Nusselt number; analytical solution. 
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Nomenclature 

Br - Brinkman number, 
,

8
w P w

Br u q!= ! , [-] 

c - Specific heat, [J kg-1 K-1] 

h
D  - Hydraulic diameter, 4

h
D H= , [m] 

e - Elementary electronic charge [1.602176487(40) ! 10–19  C] 

EDL - Electrical Double Layer 

Ex - x-component of the applied electrical field, [V m-1] 

h - Convective heat transfer coefficient, [W m-2 K-1] 

H - Microchannel half-height, [m] 

H
+ - Channel height normalized by the Debye layer thickness, H H!

+
= , [-] 

Jo - Joule number, 2

x h wJo E D q!= ! , [-]  

kB - Boltzmann constant, [1.3806503 ! 10-23 J K-1]  

kth - Thermal conductivity of the fluid, [W m-1K-1] 

no - Ionic density, [m-3]  

Nu - Nusselt number,  /
h th

Nu h D k= ,[-]  

Pe - Péclet number,   
h th

Pe RePr u D c k!= = , [-] 

Pr - Prandtl number, 
th

Pr c k!= , [-] 

p - Pressure, [Pa] 

p,x - Pressure gradient, p,x=dp/dx, [Pa m-1] 

q!  - Joule heating per unit volume, [W m-3] 

w
q!  - Wall heat flux (positive if transferred to the fluid), [W m-2] 

Re - Reynolds number, 
h

Re uD! "= , [-] 

T - Absolute temperature, [K] 

T
+  - Normalized temperature difference, 0 w h th( ) /( )T T T q D k+

= ! ! , [-] 

T
+  - Average normalized temperature difference, [-] 

w
T

+  - Normalized wall temperature difference, [-] 

0
T  - Reference temperature (a constant value such as an inlet bulk temperature), 

[K] 

u - Stream wise velocity, [m s-1] 

u  - Average velocity for the sPTT fluid, [m s-1] 

ush - Helmholtz-Smoluchowski electro-osmotic velocity 
0
/

sh x
u E! "= #$ , [m s-1] 
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uN - Average velocity for fully-developed Poiseuille flow of a Newtonian fluid 

subjected to the same pressure gradient, 2

,
/ 3N xu H p != " , [m s-1] 

u
+ - Stream wise velocity normalized by the bulk velocity, u u u

+
= , [-] 

w - Microchannel width, w! 2H, [m] 

Wi - Weissenberg number, Wi u H!= , [-]   

Wi
!

 - Weissenberg number, 
sh

Wi u
!

"!= , [-] 

N
Wi  - Weissenberg number, ( )3

N N
Wi u H Wi H

!
"

+
= = # $ , [-] 

x - Stream wise coordinate, [m] 

x! - Normalized stream wise coordinate,   ' ( )
h

x x D RePr= , [-] 

y - Transverse coordinate, [m] 

y
+ - Transverse coordinate normalized by the Debye layer thickness, y y!

+
= , [-] 

z - Valence of the ions, [-] 

 

Tensors and vectors 

D - Rate of deformation tensor, [s-1] 

E - Applied external electric field, [V m-1] 

u - Velocity vector, [m s-1] 

"  - Polymeric extra-stress tensor, [Pa] 

 

Greek symbols 

!!  - Velocity gradient, d du y , [s-1] 

! +
!  - Normalized velocity gradient, d du y

+ + , [-] 

# - Dimensionless ratio between electro-osmosis and pressure gradient forcings, 

( )2

, 0 N sh
3x xH p E u u!" = # $ = # , [-] 

! - Extensibility parameter of the sPTT model, [-] 

! - Permittivity of the solution, the product of the dimensionless dielectric 

constant by the vacuum permittivity [C V"1m-1] 

 
!

r
 - Dielectric constant of the solution, the ratio between the permittivities of the 

solution and vacuum [-] 

!  - Imposed potential field, [V] 

" - Polymer viscosity coefficient, [Pa!s] 
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# - Relaxation time, [s] 

$ - Induced potential field, [V] 

$o - Zeta (wall) potential, [V] 

2
!  - Debye- Hückel parameter, [m-2] 

!  - Debye layer thickness (also referred to as the EDL thickness) 1! "= , [m] 

% - Fluid density, [kg m-3] 

%e - Net electrical charge density in the fluid, [C m-3] 

!  - Electrical conductivity of the liquid, [$-1m-1] 

xy
!  - Shear stress, [Pa] 

xy
!

+  - Normalized shear stress, 
, Pxy xy w

! ! !
+
= , [-] 

,Pw
!  - Particular wall shear stress (defined in Eq. 24), [Pa]  
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1. Introduction 

The advent of new micro-manufacturing techniques has fostered the development of 

microfluidic systems and their industrial application in a variety of systems and 

processes is gaining momentum (Stone et al. 2004). Examples go from separation 

processes in biofluids to dewatering of kelp or cooling of microelectronic 

components, amongst others. As the flow systems are miniaturized, the overall impact 

of surface forces increases in detriment of volume forces (Stone et al. 2004; Bruus 

2008), hence electrokinetic or capillary effects, which are usually negligible in macro-

processes, can dominate the flow characteristics. In addition, the earlier development 

of micro-electronics allows today for the integration of electric and flow systems at 

the micro-scale, hence electrokinetics is bound to be ever more frequent as a forcing 

flow mechanism in microfluidics, while preserving a low cost for the miniaturized 

systems. 

Electrokinetic effects can exist when dielectric surfaces are brought in contact 

with polar fluids and are exploited by the application of external electric potentials in 

the flow direction as well as by adequate modifications of the spontaneous wall 

potentials (Park and Choi 2009). Electro-osmosis and electrophoresis are commonly 

used to separate and synthesize biological and chemical components as in the 

separation and manipulation of DNA molecules, biopolymers and large proteins 

(Jendrejack et al. 2003, Berthier and Silberzan 2006). These and other biofluids are 

complex fluids containing macromolecules and consequently possess a complex 

rheology characterized by shear-thinning viscosity, viscoelasticity, thixotropy and 

yield stress, in isolation, but most often in combination (Larson 1999).  

Theoretical studies of electro-osmosis of non-Newtonian fluids are very recent 

and mostly concerned with inelastic rheological constitutive equations. The common 

model to most existing studies is the Generalized Newtonian Fluid (GNF) model with 

a power law viscosity function. This is a purely viscous model unable to predict 

viscoelastic fluid flow features such as memory effects or shear-induced normal 

stresses in general flows. Additionally, the power law model only captures the 

variable viscosity typical of intermediate shear rates, while most non-Newtonian 

fluids are characterized by a constant viscosity plateau at low shear rates. These 

various features are captured by some viscoelastic differential constitutive equations, 

such as the Phan-Thien—Tanner model (Bird et al. 1987). Therefore, only when the 

relevant flow shear rates are well beyond the constant viscosity plateau and in the 
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absence of time effects (fully-developed flow), the power law model will provide a 

good approximation to the velocity profile of the viscoelastic fluid. Das and 

Chakraborty (2006) and Chakraborty (2007) obtained analytical solutions for velocity, 

temperature and concentration distributions in electro-osmotic microchannel flows for 

power law fluids and for blood flow. Chakraborty (2005) used the same constitutive 

equation in spite of the evidence that blood has other non-Newtonian characteristics, 

which are especially strong in small blood vessels (Easthope and Brooks 1980, Dutta 

and Tarbell 1996, Moyers-Gonzalez et al. 2008). Other purely viscous models were 

analytically investigated by Berli and Olivares (2008), who considered, amongst other 

things, the effect upon the flow characteristics of the existence of a wall layer depleted 

of macro-molecules. These theoretical results have also been validated by 

experimental data by Olivares et al. (2009), who investigated the flow of 

carboxymethyl cellulose (CMC) solutions in fused silica capillaries. 

For viscoelastic rheological constitutive equations Park and Lee (2008) deduced 

the Helmholtz-Smoluchowski velocity for fluids described by several forms of the 

Phan-Thien—Tanner model, including its simplified version, and provided a simple 

procedure to numerically calculate its value. Afonso et al. (2009) derived analytically 

the velocity profile for fully-developed channel flow of sPTT fluids under combined 

electro-osmotic/ pressure gradient forcing, including the quantification of the 

streaming potential. In contrast to the Newtonian fluid case, they showed that for the 

sPTT fluid the solution is not just the result of a linear superposition of the pure 

Poiseuille and pure electro-osmotic flows, but includes a non-linear term proportional 

to both forcing mechanisms. It is important to realize that the viscoelastic results of 

Afonso et al. (2009), and those of many earlier works for Newtonian and non-

Newtonian fluids, were obtained under simplified conditions, where the induced 

electric potential was governed by a linear form of the so-called Poisson- Boltzmann 

equation. More recently, Sousa et al. (2011) extended this solution of Afonso et al. 

(2009) to include the effect of a Newtonian skimming layer near the wall. When this 

electric double layer (EDL) is much thinner than the skimming layer, the flow is 

essentially controlled by the Newtonian fluid occupying this skimming layer and the 

flow characteristics are identical to what would be obtained if the whole channel was 

to be occupied by the Newtonian fluid. However, when the thickness of the skimming 

and EDL layers approach each other and/or the pressure forcing is large relative to the 
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electro-osmotic forcing, the rheology of the non-Newtonian fluid in the bulk cannot 

be neglected. 

Promising applications of these systems involve cooling or heating, such as in 

the cooling of microchips, therefore heat transfer is an important process at the 

microscale. Miniaturization is changing the design of heat exchangers. These have 

evolved from the classical designs to compact plate heat exchangers with channels of 

3 to 10 mm size and now the advent of cheap micro-manufacturing is leading the 

industry to the production of highly compact heat exchangers with micro-channels of 

the order of 100 to 300 #m, which are characterized by very high heat transfer 

coefficients and low pressure drops. These will increasingly be used to deal with a 

variety of complex and synthetic fluids, such as biofluids or fluids for the food 

industry, which exhibit viscoelastic rheology and it is only a matter of time for the 

miniaturized heat exchangers to adopt forcing by electro-osmosis for certain 

applications, since it can be more efficient than pressure forcing at very small scales. 

The small sizes involved can make internal viscous dissipation an important part 

of these processes, but in addition the presence of an electric current also induces 

heating by the Joule effect. Research on heat transfer in microchannels in the presence 

of electro-osmosis was carried out by Mala et al. (1997) and Yang et al. (1998) for 

fully-developed flow, the former for weak wall potentials, the latter for strong wall 

potentials. Note that for weak wall potentials a simpler solution is obtained by using a 

linearization, known as the Debye-Hückel approximation (cf. Debye and Hückel 

1923). Soong and Wang (2003) extended the weak wall potential solution to deal with 

asymmetric wall conditions for both the wall potential and the wall heat transfer, a 

common situation in micro-manufacturing, where channels often have opposite walls 

made of different materials (2006). These early works did not include the effect of 

viscous dissipation, which was extensively investigated by Koo and Kleinstreuer 

(2004) to conclude that it should not be neglected for liquid flows in channels smaller 

than about 50 #m in thickness. Viscous dissipation can be very important even at low 

Reynolds number flows, when the fluids have a large viscosity (a feature of many 

viscoelastic fluids) and when the aspect ratio of the duct deviates from unity, the case 

of a channel flow.  

For high zeta potentials, the solution is more elaborate and sometimes it is only 

semi-analytical given the non-linear nature of the equation governing the induced 

electric potential. Very recently, a heat transfer solution was obtained for the parallel-
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plate micro-channel flow of Newtonian fluids by Elazhary and Soliman (2009), 

considering also the effect of viscous dissipation. They compared it with the simpler 

solution based on the linearized Poisson- Boltzmann equation, but the Joule heating 

effect was not accounted for in any of their results. 

A mathematical model was developed by Tang et al. (2003) to investigate the 

effect of Joule heating in pure electro-osmosis and capillary electrophoresis for 

Newtonian fluids including the conjugate wall heat conduction. Here, the fluid 

properties were made to depend on fluid temperature and consequently the governing 

equations were solved numerically, showing non-negligible effects of Joule heating 

on fully-developed channel flow. Assuming temperature independent fluid properties 

and very thin electric double layers (plug velocity profiles), Horiuchi and Dutta 

(2004) were able to derive analytical solutions for the flow heat transfer problem for 

imposed constant surface temperature as well as constant wall heat flux, but 

neglecting viscous dissipation. These authors also showed that viscous dissipation was 

important for small channels (less than 20 #m thick), but negligible otherwise, 

whereas Joule heating effects would be enhanced as the channel thickness increased 

since it is a volume effect. In fact, the more detailed numerical investigations of Tang 

et al. (2004) on the effect of Joule heating with temperature dependent viscosity 

showed increases of more than 70% in the pure electro-osmotic velocity for fully-

developed flow in a 200 #m thick channel relative to the Helmholtz-Smoluchowski 

velocity for temperature-independent viscosity and no Joule heating, whereas for a 50 

#m channel the increase was only 5%. These authors also showed that under high 

electric field strengths, temperature changes due to Joule heating can be sufficiently 

high to vaporize the liquid inside the channels. The subsequent experiments of Tang 

et al. (2006) using PDMS channels validated some of their earlier findings.   

All of the above heat transfer works pertain to Newtonian fluids, and extensions 

for non-Newtonian fluids are scarce. Das and Chakraborty (2006) did it for inelastic 

power law non-Newtonian fluids, but heat transfer investigations for viscoelastic 

fluids in the presence of electro-osmosis have yet to be carried out.  

In this work we investigate analytically the heat transfer of viscoelastic fluids, 

described by the simplified Phan-Thien—Tanner model, in dynamic and thermally 

fully-developed channel flow forced by a combination of electro-osmosis and 

pressure gradient under conditions of constant wall heat flux, including the effects of 



9 

viscous dissipation and the most relevant effects of Joule heating. The flow geometry, 

its dimensions and the co-ordinate system used are schematically shown in Figure 1. 

The next section presents the governing equations, followed by the definition of 

all relevant non-dimensional quantities and ends with the presentation of the 

normalized equations. Then, the heat transfer solution is presented in Section 3 and 

results are discussed in Section 4 prior to a summary of the main conclusions. 

 

2. Governing equations 

A general problem of forced convection requires the simultaneous solution of the 

equations governing mass conservation, momentum and thermal energy, in addition to 

the rheological constitutive equation, even under fully-developed conditions. If the 

flow is forced by electrokinetic effects, the momentum equation is modified to include 

the electric force and it is also necessary to include the equations governing the 

distribution of ions due to flow transport and the total electric potential (the Nernst-

Planck equations), the equation governing the induced electric potential (the Poisson 

equation) and the definition of the net electric charge. Under certain conditions, such 

as in fully-developed channel flow where the electric double layers are in equilibrium, 

the Nernst-Planck equations simplify to the Boltzmann distribution and the induced 

potential and electric charge distribution can be calculated by the so-called Poisson- 

Boltzmann model.  

Now, if the assumption is made that all model parameters are independent of 

temperature, the dynamic solution and the solution of the Poisson-Boltzmann equation 

become decoupled from the thermal solution and can be obtained separately as in 

isothermal flow. This assumption is here invoked limiting the temperature differences 

to small values, but it is also one of convenience, since an analytical solution would 

not be possible with the fully coupled problem. The fluid properties most affected by 

temperature are the polymer viscosity and the permittivity of the medium. The 

viscoelastic polymer solutions used in micro channels are usually based on water for 

which the viscosity has a variation of approximately 2%/K. Catenaccio et al. (2003) 

report for the permittivity of water a dependence of the order of 0.5%/K, i.e., four 

times lower. Therefore, the small temperature difference required for the validity of 

the analytical solution is mostly imposed by the viscosity. Hence, this analytical 

solution should also be viewed as an approximation to the exact solution for large 
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temperature differences. As such, it will also allow in a simple manner to identify the 

correct trends and the role of all relevant quantities in a more complex setting.  

The problem under analysis is that of forced convection in fully developed 

channel flow of viscoelastic fluids forced by electro-osmosis and pressure gradient. 

The fluids are described by the simplified version of the Phan-Thien—Tanner model 

(sPTT), and the assumption of temperature independent fluid properties makes the 

isothermal flow solution of Afonso et al. (2009) as the fluid dynamic solution for this 

problem. All assumptions invoked by Afonso et al. (2009) must also apply here. 

These are the validity of the so-called standard electrokinetic model and the Debye- 

Hückel approximation of the Poisson- Boltzmann potential model, as briefly 

explained below. Full details are given in Afonso et al. (2009). 

 

2.1. Equations governing isothermal flow 

The equations solved by Afonso et al. (2009) for fully-developed channel flow were 

the mass conservation (Eq. 1) and momentum (Eq. 2) equations 

0!" =u  (1) 

e
p !"# +#$ + =E 0% , (2) 

where u is the velocity vector, p is the pressure and "  is the polymeric extra-stress 

tensor contribution. The body force per unit volume of electro-osmosis is 
e

! E , where 

E != "#  is the applied external electric field (!  is the corresponding imposed electric 

potential) and 
e

!  is the net electric charge density in the fluid, which here depends 

only on the induced electric potential (in general it depends on the total electric 

potential). 

The polymer stress is given by the sPTT rheological constitutive equation, 

( ) tr 2f ! "
#

+ = D$ $ $ , (3) 

where the rate of deformation tensor is T( ) / 2= ! +!D u u , # is the fluid relaxation 

time, " is the polymer viscosity coefficient and 
!

"  represents the upper-convected 

derivative of ! :  

TD

Dt

!

= "! # " #!u u
$

$ $ $  (4) 



11 

The function of the trace in Eq. (3) is given by the linear form,  

( )  tr 1 trf
!"

#
= +$ $  (5) 

introducing parameter !, which imposes an upper limit to the extensional viscosity. 

In steady fully-developed channel flow, convective terms are null, including 

those in the Nernst- Planck equations governing the transport of ions, thus implying 

that there is equilibrium in the ionic distribution in the thin electric double layer 

(EDL) forming spontaneously near the dielectric walls (Russel et al. 1991). As a 

consequence, the Nernst-Planck equations are well approximated by the Boltzmann 

distribution (Tang et al. 2003, Park et al. 2007, Park and Choi 2009), where the net 

electric charge density for an electrolyte solution in equilibrium near a charged 

surface is determined by  

2 2

0 0
2 sinh 2

e e

B B

ez e z
n ez n

k T k T
! " ! "

# $
= % & ' %( )

* +
, (6) 

and the induced potential is given by the Poisson equation  

2 e
!

"# = $
%

. (7) 

In this Poisson-Boltzmann model !  is the induced potential at the EDL, ! is the 

permittivity of the fluid, n0 is the ionic density, e is the elementary charge and z is the 

valence of the ions. It is also assumed that the gradient of the induced electric 

potential is much larger than the gradient of the imposed electric potential, a feature of 

the so-called standard electrokinetic theory (Afonso et al. 2009). 

In their solution of the Poisson-Boltzmann model, Afonso et al. (2009) 

finally invoked the Debye-Hückel approximation (Debye and Hückel 1923), which is 

only valid for weak wall potentials (approximately < 26 mV for monovalent ions and 

< 13 mV for divalent electrolytes) in order to have a small value of /
B

ez k T! . This 

allows the linearization of the hyperbolic sine function ( sinh( )x x! ) and leads to the 

simplified expression on the right-hand side of Eq. (6). 

Afonso et al. (2009) presented the fully-developed solution for combined electro-

osmosis/Poiseuille flow of sPTT fluids in dimensional and dimensionless form by 

providing expressions for the velocity profile (u), the velocity gradient (!! ), the shear 

stress (
xy

! ), and for the distributions of the induced potential (! ) and of the net 
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electric charge density (
e

! ). However, the use of their dimensionless solution leads to 

a more complex heat transfer analytical solution, so in this work we normalize the 

dynamic solution differently, as explained in detail in Section 2.4. 

 

2.2 Heat transfer governing equation 

Only the thermal energy transport equation needs to be solved, which for dynamic and 

thermally fully-developed steady channel flow is  

( ) thc T k T q! "# = #" # + +u D !$ :  (8) 

where 
th
k  is the thermal conductivity of the fluid, D! :  represents the viscoelastic 

stress work and q!  is a source, here representing Joule heating per unit volume. Under 

these fully-developed flow conditions, the viscoelastic stress work becomes the 

viscous dissipation (often denoted as ! ), which simplifies to 
xy

! "# = =D !! : . Even 

though for general flows of viscoelastic fluids the thermal energy equation has extra 

terms related to the rheological equation, it reduces to this form under fully-developed 

conditions (cf. Pinho and Coelho 2006, Coelho and Pinho 2009). 

The Joule heating effect is a consequence of the application of an electric field 

across a conductive fluid and is given in complete form as,  

( ) ( )
1

e e
q ! " ! "

"
= + # +u E u E! , (9) 

where !  represents the electrical conductivity of the fluid. 

However, we neglect the convective contribution in comparison to the electric 

conduction contribution as was done by Das and Chakraborty (2006). To show that 

the contribution of the velocity field to the Joule heating is negligible in comparison 

with the direct effect of the imposed electrical field, consider fully-developed channel 

flow, the velocity is of the order of the Helmholtz- Smoluchowski velocity and that 

the net electric charge density takes the maximum value allowed here by the validity 

of the Debye-Hückel approximation (
0

~ 1
B

ez k T!  and consequently 
0
26! "  mV for 

water). In addition, consider also typical values of other properties for water at 20 °C 

(!  = 0.001 Pa s, 
r

! = 80) and a solute concentration of 1 mM ( 23

0
6.022 10n = !  m-3) 

to arrive at 



13 

0
2

0
50 0

2

2

2 sinh(1)
2

~ 10

x

e

x x

E
en

u en

E E

!"
# !$
" " $

%

&' (
) *+ , + ,&

- -) *. / . /
0 10 1 ) *

) *2 3

. (10) 

The numerical calculations of Tang et al. (2004) confirmed this conclusion 

without invoking the Debye- Hückel approximation, and considering also the effects 

of temperature on flow properties and higher concentrations of solute. Hence, we use 

the following equation for the Joule heating effect: 

2

x
q E! != "E E =! . (11) 

To integrate the thermal energy equation the following two boundary conditions 

are used: constant wall heat flux ( wq!  at y H= ± ) and the symmetry condition on the 

centreline (
0
0

y
T y

=
! ! = ).  

 

2.3 Relevant dimensionless numbers and normalized energy equation  

For the sake of generality we work with the normalized form of the energy equation 

and present the results in dimensionless form. Here, we do not use exactly the 

normalization introduced by Afonso et al. (2009), which is based on the Helmholtz- 

Smoluchowski velocity as a velocity scale, but instead rely on a mixture of velocity 

scales, including also the bulk velocity. This has advantages regarding the heat 

transfer solution, the physical interpretation of its results and the use of some 

dimensionless numbers directly related to heat transfer, such as the unified Brinkman 

number (Coelho and Pinho 2009). The dimensionless temperature (T+), transverse 

coordinate (y+), stream-wise coordinate ( x! ), shear stress (
xy

!
+ ) and stream wise 

velocity (u+ ) are defined as: 

0

w h th

T T
T

q D k

+ !
=
!

, y y!
+
= ,  

  
h

x
x

D Re Pr
! = , 

w, P

xy

xy

!
!

!

+
= , 

u
u

u

+
=  (12) 

where u  stands for the flow area-averaged velocity (also denoted as bulk velocity), 

Dh is the channel hydraulic diameter (
h
4D H= ), 

0
T  is a reference temperature, which 

was taken to be inlet bulk temperature (it can be any constant temperature value) and 

,Pw
!  is a very particular shear stress to be defined below. The Reynolds and Prandtl 
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numbers are defined as   
h

Re u D! "=  and  
th

Pr c k!= , respectively, and their 

product is the viscosity independent Péclet number,   
h th

Pe u D c k!= . 

The solution, given in terms of these dimensionless quantities, is also a function 

of various other non-dimensional numbers; some appear through the fluid dynamic 

solution, namely the group  

2
Wi

!
"  related to fluid non-linearity, where the 

Weissenberg number (Wi&) is the product of the fluid relaxation time by a 

characteristic flow shear rate based on the Helmholtz-Smoluchowski velocity 

(
0sh x

u E! "= #$ ) and on the EDL thickness (Afonso et al. 2009), whereas others 

originate in the thermal energy equation. In this second group of dimensionless 

numbers we emphasize the unified Brinkman number (Br) (Coelho and Pinho 2009), 

relating the energy generated internally by the viscous stress work with the heat flux 

at the wall and the Joule number (Jo) relating the heat generated internally by the 

Joule heating effect with the wall heat flux (Tang et al. (2006) defined alternatively 

the Joule number as the non-dimensional ratio of Joule heating to diffusion heat 

transfer). All these quantities are defined as 

  
sh

=Wi u
!

" ! , 
 

 

w, P

w
8

u
Br

q

!
=
!

, 
  

2

h

w

xE D
Jo

q

!
=

!
 and N

N

u
Wi

H

!
= .  (13) 

An additional Weissenberg number (
N

Wi ) defined in equation (13) is also used 

and relates the relaxation time, the channel width (H) and an equivalent Newtonian 

velocity to be defined below. As will be further discussed, it can be used as a 

complement to Wi& and there is a third Weissenberg number (Wi) that can be used as 

an alternative, which uses the bulk velocity as the velocity scale, Wi=
 
!u H . This is 

the standard definition in pressure-based flows. From a physical point of view a single 

Weissenberg number is required and the usual definition is this last one, Wi=
 
!u H . 

However, the analytical form of the thermal solution to be derived would be 

extremely more complex if cast in terms of Wi instead of relying on both Wi&   
and 

N
Wi  

for simplicity. Note also that in their previous work Afonso et al. (2009) called the 

non-dimensional groups built with the relaxation time as Deborah numbers, but since 

this is a steady flow the correct interpretation is that of a Weissenberg number, the 

designation used throughout this paper. 
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These non-dimensional parameters can be positive or negative, depending on the 

signs of 
sh
u  and 

w
q! . A positive 

w
q!  is assumed when the heat is transferred to the fluid 

and negative when there is surface cooling. 

After simplification and normalization, the dimensionless thermal energy 

equation that needs to be integrated becomes 

  

!
2
T

+

!y
+2

+
8 Br

"D
h

#
xy

+
d u

+

d y
+
+

Jo

"
2
D

h

2
=

u
+

"
2
D

h

2

 !T
+

!  $x
 (14) 

subject to boundary conditions 
w

T T
+ +
=  at y H

+ +
=  and  

0
/ 0

y
T y

+

+ +

=

! ! = , where 

H H!
+
=  (or H !

+
"  as used by Afonso et al. 2009). It is important to realize that 

 
T

w

+  varies along the wall and that normalizing the wall heat flux boundary condition 

(
   
k

th
!T !y

y=H
= !q

w
) leads to  ( / )

y H
T y

+ +

+ +

=

! ! = h1/( )D! =  1/(4 )H
+ , a result that can 

be used to confirm the equation for  !T
+
!y

+ that will be obtained from integration of 

Eq. (14). 

 

2.4 Normalized flow solution and relevant dimensionless numbers  

The solution for viscoelastic flow depends on three independent dimensionless 

numbers as shown by Afonso et al. (2009). They used H + , which was represented as 

! ,  Wi
!

"  and the non-dimensional ratio of the electro-osmosis and pressure 

gradient forcings 2

, 0/( )
x x

H p E!" = # $ . Here we will use the same set of 

dimensionless numbers, except for the limiting condition of pure Poiseuille flow. 

Regarding the velocity profile, Afonso et al. (2009) normalized it by the Helmholtz-

Smoluchowski velocity, which is inconvenient for the same limiting case. To avoid 

this and also arrive at a more compact expression than Afonso et al. (2009), which 

simplifies the heat transfer solution, we renormalize their velocity profile by the bulk 

velocity of the sPTT fluid (u ) and additionally, we use the equivalent Newtonian 

bulk velocity (
N
u ) that would be observed for the corresponding flow of a Newtonian 

fluid under the sole influence of a pressure gradient, 2

, /(3 )N x
u H p != " , which 

actually leads to the second Weissenberg number (
N

Wi ) defined in Eq. (13). There is 

a relationship between those two Weissenberg numbers via the non-dimensional ratio 

between the electro-osmosis and pressure gradient forcings, ! , which is 
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 (3 )
N

Wi Wi H
!

+
= " # , that is equivalent to 

N sh
/ 3u u = !" . In the analysis of the 

results in Section 4, we will use the non-dimensional number  
N

Wi!  as a measure of 

elasticity instead of  Wi
!

" , when the latter and !  both lose their significance, i.e. in 

the limit of pure Poiseuille flow, 1
0

!
" # .  

The integration of the velocity profile given by Afonso et al. (2009) leads to the 

following equation for the average velocity, u : 

1 2 3 4 5 6 7

8

cosh(3 ) sinh(3 ) cosh(2 ) sinh(2 ) cosh( ) sinh( )

cosh( )
sh

u H H H H H H

u H

! ! ! ! ! ! !

!

+ + + + + +

+

+ + + + + +
= (15) 

with, 

3

   
2

1 160 (2 3 )c H H!
+ +

= + "  

2

   
2

2 110 [2 (2 9 ) 9 ]c H!
+

= " + # + # ; 

  
   

2

3 1 2720 [ (2 1) 12 ] c c H H!
+ +

= " # + + # ;

  

4 2

   4 1 2360 [2 (1 12 ) 24 ]c c H H!
+ +

= + + " + " ;

{ }       
2 5 3 2 2 3 2

5 2 2 1 118 16 (5 ) 80 (6 1 / 3) [20 (3 2 / 3) 10 ]c H H c c H c H!
+ + + +

= "# + + "# " " # " # ; 

2 4 2

      
2 2 2 2

6 1 1 2 218[10 (6 ) 5 240 80 (1 6 )]c H c c H H c!
+ + +

= " # " # " " + , 

  
    

4 2

7 1 2480 ( 3 18 )c c H H H!
+ + +

= " + # + #  and 
3

8
1440H!

+
= . (16) 

where, 

   

  1 2 2

2 2  
;  

cosh( )
k k

c Wi c Wi
H H

! !
+

+

"
= # = .         (17) 

The velocity profile given by Afonso et al. (2009) and now normalized by this 

bulk velocity (u u u
+
! ) is written as 

2

1 2 3 cosh(3 ) [2 sinh(2 ) cosh(2 )] [ cosh( ) 2 sinh( )]u y y y y y y y y! ! !
+ + + + + + + + +
= + " + "  

2 4

4 5 6 7 - cosh( )y y y! ! ! !
+ + +
" + +  (18) 

with  

2

1 1 3 2 1 1 4 2 3 3 2 1 4 2 3/12; ( 2 ) /8; (2 )c c c c c c c c c c c c! ! != = + = +  

2 2 2

4 1 3 1 2 4 3 2 5 1 4 1 2 3 4

2

6 2 4

[3 16 4 (1 2 )] / 4; ( 2 2 ) / 4 ;

/ 4

c c c c c c c c c c c c c

c c

! !

!

= " " + = + "

=

  

7 1 2 cosh(3 ) [2 sinh(2 ) cosh(2 )]H H H H! ! !
+ + + +

= " " "  
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2 2 4

3 4 5 6 [ cosh( ) 2 sinh( )] cosh( )H H H H H H H! ! ! !
+ + + + + + +

" " + + "  (19) 

and 

3

1

cosh( )

sh
u

c
u H

+
= ! ; 

24

sh
u

c
uH

+

!
= . (20) 

The normalized transverse profile of velocity gradient can be written as (Afonso et al. 

2009): 

( ) ( )
2 2

1 2 3 4 5 6

d
sinh(3 ) cosh(2 ) sinh( )

d

u
z y z y y z z y y y z y z

y
!

+

+ + + + + + + +

+
= = + " + " +!  (21) 

with  

  

2 2 2

1 1 3 2 1 2 3 1 4 3 3 1/ 4;  / 2;  (3 4) / 4;z c c z c c c c c z c c= = + = !  

        

2 2

4 2 1 4 2 3 5 2 4 6 1 4 1 2 3 44 (2 ) / 4;  ; ( 2 2 ) / 2z c c c c c z c c z c c c c c c= ! + = ! = + !  (22) 

where c1, c2 are given in Eq. (17) and and c3 and c4 in Eq. (20).  

Finally, to solve the energy Eq. (14) it is also necessary an expression for the 

non-dimensional shear stress. The transverse profile of shear stress is given in Afonso 

et al. (2009), and its dimensionless form 
xy

!
+  is here defined as   

 
,

, ,

1
sinh( )

cosh( )

xy x sh
xy

w p w p

p u
y y

H

! " #
!

! ! #
+ + +

+

$ %
= = &' (

) *
 (23) 

with 
,w p

!  defined as 

,

0 0

1 d d
d d

d d

H H

w p xy xy

u u
y y

u y y
! ! !

+
+

+

+
= =" "  (24) 

The product 
,

2
w p
u!  is the power dissipation by viscous effects, and for Poiseuille 

flow it can be shown that 
,w p

!  corresponds to the wall shear stress. Integration of Eq. 

(24) leads to the following expression: 

 

  , 1 1 2
2

1 1 2 sinh(3 )
sinh(4 ) cosh(3 )

8 cosh( ) 6 cosh( ) 3

w p

sh

z z z H
H H H

u H HH

!

" #

+

+ + +

+ ++

$ %$ %&
= ' + ' '( )( )

* + * +
 

2

4 1 2 3 4
2 2

1 2 2 2 2
4 sinh(2 )

8 cosh( ) cosh( ) cosh( )

H z z z z z
z H

H H HH

+

+

+ + ++

! "# +
+ + # + + +$ %

& '

 

2

  2 41 2
cosh(2 )

4 cosh( )

z z
H H

HH

+ +

++

! "#
$ +% &

' (
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2

2 
5 2 5 6

4 3 4

1 6 2 12 2
6 ( 6 ) sinh( )

2 cosh( ) cosh( )

H z z z z
z z z H

H HH

+

+

+ ++

! "# + +
+ # $ + + $% &

' (

 

 

2

2

5 2 5 6
4 3 4 

1 2 2 12 2
2 ( 6 ) cosh( )

2 cosh( ) cosh( )

H z z z z
z z z H H

H HH

+

+ +

+ ++

! "# + +
$ # $ + + $% &

' (
 

3

2

  

  
6 4 3

5

1 10 5 15
6

30 cosh( ) cosh( )

z z H z
H z

H HH

+

+

+ ++

! "# $%
& % + + +' () *

+ ,- .
 (25) 

with coefficients z1 to z6 given in Eq. (22). 

 
3. Analytical solution for heat transfer 

Integration of Eq. (14) from the centre plane to the wall, 

  

!2
T

+

 !y
+2

+
8 Br

"D
h

#
xy

+
d u

+

d y
+
+

Jo

" 2
D

h

2

$

%
&

'

(
)

0

H+

* d y
+
=

1

" 2
D

h

2

!  T
+

!  +x
u
+

0

H+

* d y
+  (26) 

leads to the following equation, that shows the stream wise temperature gradient to be 

a constant, independent of y+  as expected in thermally fully-developed flow:  

  

 !T
+

!  "x
=

d T
+

d "x
= 4 + Jo + 32 Br , (27) 

where T +  represents the mass-averaged temperature at a fixed x position, calculated 

by definition as 

 

0

1
d

H

T u T y
H

+

+ + + +

+
= ! . (28) 

To obtain Eq. (27) the boundary conditions  h( / ) 1 / ( )
y H

T y D!
+ +

+ +

=

" " = = 

1/(4 )H
+  and  

0
( / ) 0

y
T y

+

+ +

=

! ! =  were used, together with Eq. (24) 

(    

0

(d / d ) d 1xy

H

u y y!

+

+ + + +
=" ). It is also possible to arrive at Eq. (27) by an integral 

energy balance to the channel just invoking thermally and dynamically fully 

developed flow (heat input through the wall plus internal viscous dissipation and 

Joule heating equals internal energy increase). In any of the methods, 
  
!T

+
!x '  is then 

used to determine  !T
+
!y

+  and the distribution of  T
+  by successive integration of 

Eq. (14). The mass-weighted average temperature T +  is obtained from this transverse 

temperature distribution using Eq. (28).  
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The dimensionless temperature gradient can be computed from integration of  

Eq. (14) subject to the boundary condition   

0
( / ) 0

y
T y +

+ +

=
! ! = . This results in the 

following expression: 

  

!  T
+

!  y
+
= "

1
sinh(4y

+ ) #"
2 

y
+ cosh(3y

+ ) +"
3
sinh(3y

+ ) + ("
4  

y
+2
+"

5
)sinh(2y

+ )  

  

3 2

6 7 8 9 10+ cosh(2 ) ( )cosh( ) ( )sinh( )y y y y y y y! ! ! ! !
+ + + + + + +

+ + " +  

5 3

11 12 13
y y y! ! !
+ + +

" " "  (29) 

with coefficients 
1

!  to 
13
!  given in Eq. (A.1) of the Appendix. 

We note that Eq. (29) verifies the condition 
  
(!  T

+ / !y
+ )

y
+
=H

+
= 1 / ("D

h
) , which 

can be obtained from normalization of 
   
k

th
!T !y

y=H
= !q

w
, as explained in Section 

2.3. Integrating the temperature gradient of Eq. (29) and applying the boundary 

condition 
w

T T
+ +
=  at y H

+ +
=  allows the determination of the dimensionless 

temperature profile: 

( ) ( )wT T f H f y+ + + +
! = !  (30) 

where 

  

2

1 2 4
1 2( ) cosh(4 ) cosh(3 ) sinh(3 ) cosh(2 )

4 3 2

y y
f y y y y y

! ! !+ +

+ + + + +
" #

= + $ % + + $& '
( )

 

( ) ( )2 2

3 4 5 7 6+ sinh(2 ) cosh( ) sinh( )y y y y y y y!
+ + + + + + +

" # " + " + + "  

( )     

2

4 2

11 12 13
2 3 6

12

y
y y! ! !

+
+ +

" + +  (31) 

and 

2 3 4 5 6 6 4

1 2 3 4 7 9

3 2
; ; ; 3 ;

9 4 2

! ! ! ! ! ! !
! !

+ + " "
# = # = # = # = +  

5 7 8 9 10 6 5 10
6 2 ; ! ! ! ! !" = + + + " = " #  (32) 

Since the wall heat flux (
w
q! ) is imposed, and by definition  

( )w wq h T T= !! , (33) 

where h represents the convective heat transfer coefficient and the two temperatures 

are at the same stream wise position, the Nusselt number can be determined as, 
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 1
h

th w

h D
Nu

k T T
+ +

! =
"

 (34) 

with the dimensionless temperature difference being defined as 

   

0

1
( )d

w w

H

T T u T T y
H

+

+ + + + + +

+
! = !"  (35) 

and given by the following expression: 

1 2 3 4sinh(7 ) cosh(6 ) sinh(6 ) cosh(5 )
w
T T H H H H

+ + + + + +
! =" +" +" +" +  

5 6 7 8sinh(5 ) cosh(4 ) sinh(4 ) cosh(3 )H H H H
+ + + +

! +! +! +! +  

9 10 11 12sinh(3 ) cosh(2 ) sinh(2 ) cosh( )H H H H
+ + + +

! +! +! +! +  

13 14sinh( )H
+

! +!  (36) 

with coefficients !
1
 to !

14
 given in Eq. (A.3) of the Appendix. 

For pressure-driven flows, this expression can be greatly simplified, and the 

solution of Pinho and Oliveira (2000) can be recovered (cf. their Eq. 40 – note that a 

different definition of Br and the opposite convention for 
w
q!  were used by Pinho and 

Oliveira 2000). Further simplifications can be obtained when  0
N

Wi! =  (i.e., 

constant viscosity fluids, either Newtonian or Boger fluids), leading to the following 

simplified equation (for Jo = 0 and 1
0

!
" # ): 

  

140

17 72
Nu

Br
=

+
 (37) 

Additionally, for pure electro-osmosis with high H +  the velocity profile 

approaches a plug, and in the absence of viscous dissipation and Joule heating the 

Nusselt number expression simplifies to 12Nu = , as it should. 

 

4. Results and Discussion 

The solution of forced convection in dynamic and thermally fully-developed channel 

flow of a simplified Phan-Thien—Tanner fluid induced by combined electro-osmosis 

and pressure gradient forcings was derived in the previous sections for constant wall 

heat flux and including the effects of viscous dissipation and Joule heating. In this 

Section we analyse the effect of the relevant dimensionless parameters on the 

velocity, shear stress and temperature profiles, and their influence on the resulting 
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Nusselt number. Even though Afonso et al. (2009) investigated in detail these effects 

on the velocity profiles, it is worth doing it here because of the different velocity 

normalization used, which affects significantly the shape of the profiles as well as the 

understanding of the dynamic and thermal problems.  

The discussion starts with the analysis of the variation of the ratio between the 

bulk and the Helmholtz- Smoluchowski velocities, u u
sh

, as a function of the relevant 

dimensionless groups. We note that in Figure 1 the electric field is assumed positive 

and 
 
!

0
< 0 , leading to a positive Helmholtz-Smoluchowski velocity. When the 

pressure gradient is favourable it forces flow in the same direction of electro-osmosis, 

N sh
3 / 0u u! = " < , whereas for an adverse pressure gradient the pressure-induced 

flow is opposed to the Helmholtz-Smoluchowski velocity and 0! > . The analytical 

solutions derived in this work are general and allow for any sign in the applied electric 

field and pressure gradient. Since these two forcing mechanisms appear always 

combined it only matters the variation of one relative to the other. Figure 2 shows the 

variation of 
sh

u u  as a function of  Wi
!

" , with the EDL thickness, H + , and !  as 

parameters. The influence of H +  is analysed considering a relatively low value, 

20H
+
=  (dashed curves), and another case with a thinner Debye layer, 100H

+
=  

(solid curves). In the absence of pressure gradient ( 0! = ) 
sh

u u increases with 

 Wi
!

"  on account of the shear-thinning viscosity, which reduces the viscous 

resistance to motion at the wall. By reducing the thickness of the EDL (higher H + ) 

the plug of velocity is slightly wider and consequently the flow rate is slightly larger. 

Adding a favourable pressure gradient ( 0! < ) further enhances the growth of 
sh

u u , 

with this effect being stronger with thicker EDL’s. This is so because the region of 

lower shear viscosity (on account of shear-thinning behaviour) is wider for thicker 

EDL’s and this more effectively contributes to enhance the flow rate associated with 

the pressure contribution than to reduce the corresponding electro-osmosis 

contribution (the width of the central plug decreases on going from the thin to the 

thick EDL), even though the viscosities may not be as low and the Helmholtz-

Smoluchowski velocity as high as for the thin EDLs (this also helps reduce the EO 

flow rate for thick EDL relative to thin EDL).  

The most intriguing results in Figure 2 concern adverse pressure gradient 

conditions. There is an overall reduction in /
sh

u u  with increasing !  because pressure 
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driven flow opposes electro-osmosis (i.e., whatever their shape, all lines for 0! >  are 

below the line for 0! = ). Still for 1! =  electro-osmosis is stronger than pressure 

flow and the bulk flow remains positive. Further increasing !  increases pressure-

driven flow so much that a reverse bulk velocity sets in. For 100H
+
=  and 10! =  the 

zero bulk flow condition occurs at  2.5Wi
!

" # , meaning that the backward flow 

induced by the adverse pressure gradient equals the forward flow associated with 

electro-osmosis. For thin EDL the overall viscosity decrease associated with shear-

thinning is more localized and it impacts more upon the forward electro-osmosis flow 

than over the backward pressure-driven flow and so a backward bulk velocity is only 

observed for low values of  Wi
!

"  and we always observe an increase in /
sh

u u  with 

 Wi
!

" . As for favourable pressure gradient, thickening the Debye layer for 10! =  

suffices to enhance significantly the reversed flow driven by the adverse pressure 

gradient to levels exceeding the enhancement of forward electro-osmosis flow (this 

variation is relative to a constant viscosity fluid), with the consequence that the flow 

rate continuously increases in the reverse direction (negative values of /
sh

u u ). The 

change of sign in 
sh

u u , depending on the dimensionless parameters H + , !  and 

 Wi
!

" , will obviously have a strong impact upon the progression of the velocity 

profiles, as discussed below. 

Velocity profiles are presented in Figure 3 for  3Wi
!

" = . As expected, 

increasing H +  leads to higher velocity gradients near the wall, which can have a 

significant influence on the dimensionless velocity profile, as shown for a strong 

adverse pressure gradient flow, 10! =  (cf. cases for  10! =  and 20H
+
=  and 100, 

and the previous discussion of Figure 2). For viscoelastic fluids the velocity profiles 

are flatter than for Newtonian fluids (not shown), a typical consequence of shear 

thinning, and an inversion of the velocity profile is observed for 10! =  and 

 3Wi
!

" = , as discussed above. In this case the maximum normalized velocity 

occurs near the wall, and the minimum value is found on the centre of the channel. 

For 10! =  and 100H
+
=  the change of sign in 

  
u / u

sh
 observed in Figure 2 at 

 2.5Wi
!

" #  is responsible for the inversion of the dimensionless velocity profile 

near the walls, as shown in Figure 3. Also, the large velocity overshoot observed near 

the wall for 10! = , 100H
+
=  and  3Wi

!
" =  occurs due to both the enhanced local 
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EO velocity (the true Helmholtz-Smoluchowski velocity has increased due to the low 

local value of the shear-thinning viscosity) in addition to the normalization by a low 

average velocity for these flow conditions (cf. Figure 2). In fact the integral of the 

normalized velocity is always 1, by definition, and since the bulk velocity is close to 

zero, this implies positive and negative values, which are artificially increased with a 

normalization by a small value.  

Figure 4 illustrates the influence of !  on the transverse profiles of the 

dimensionless shear stress, 
xy

!
+ , for a sPTT fluid at  3Wi

!
" = , assuming a value of 

100H
+
= . All the profiles show the strong gradients of shear stress near the wall, 

induced by the local high shear rates, and a quasi-linear variation elsewhere. For 

20! =  we observe a change of sign of 
xy

!
+  near the wall, which is induced by the 

change of sign of  u  and hence of the normalizing stress 
  
!

w, p
 (cf. Eq. 24). This 

parameter is represented in Figure 5 as function of !  for a range of  Wi
!

"  values, 

including the limiting case of Newtonian fluid (  0Wi
!

" = ).  This particular solution 

includes both the Newtonian case and the sPTT case with 0! = , i.e., the upper-

convected Maxwell (UCM) model solution. For convenience, the 
,w p

!  parameter is 

here normalized by the shear stress at the wall for pure Poiseuille flow of a Newtonian 

fluid flowing at the same average velocity (   
,

3 /
w N

u H! "= ), thus leading to the 

asymptotic behaviour illustrated in Figure 5 at large values of   !  for Newtonian 

fluid flow:   , /(3 / ) 1
w p

u H! " # . As shown in Figure 5,   , /(3 / )
w p

u H! "  is a positive 

quantity, therefore the sign of 
,w p

!  is coincident with the sign of u . For the Poiseuille 

flow of a viscoelastic fluid ( 1
0

!
" # ), Figure 5 shows that   , /(3 / )

w p
u H! "  decreases 

continuously when the viscoelastic non-linear behaviour is enhanced (by increasing 

 Wi
!

" ), because the shear thinning nature of the sPTT fluid reduces the wall shear 

stress and enhances the flow rate/bulk velocity (u ). The vertical asymptotes shown in 

Figure 5 correspond to flow conditions with a vanishing net flow rate (#=
0

! ), or null 

average velocity, which occur for adverse pressure gradient flow conditions at 

increasingly higher 
0

!  values when  Wi
!

"  increases. This condition corresponds to 

the cases when the flow induced by electro-osmosis is equal in strength, but of 

opposite sign, to that produced by the adverse pressure gradient. 
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Figure 6 shows transverse profiles of the dimensionless temperature difference, 

w
T T

+ +
! , for different values of Jo and Br. All cases correspond to a specific situation 

with a zero dimensionless axial temperature gradient, which occurs when 

 32 4Jo Br+ = !  (cf. Eq. 27). Figure 6 considers the limiting cases of pure electro-

osmotic flow, and pure pressure-driven flow. In both cases comparison is made 

between the Newtonian case (right part of the figures) and a viscoelastic case (left 

part) at a significantly high elasticity level (  10Wi
!

" =  for pure EO and 

 10
N

Wi! =  for pure Poiseuille flow). When the heat generation is due solely to 

Joule effect, the temperature profiles coincide for all cases, independently of the 

viscoelasticity level and the flow mechanism (i.e. for any ! ). This is easily 

understood from Eq. (14), which for  0Br = ,  4Jo = !  and d / d 0T x
+

! =  leads to the 

general solution 2[1 ( / ) ] /8
w
T T y H

+ +
! = ! . The influence of the viscous dissipation is 

confined to the region with non-negligible shear rate, and for the pure electro-osmotic 

flow this is particularly enhanced with the temperature variation being limited to the 

Debye layer region. Shear-thinning of the sPTT model influences the heat generated 

by viscous dissipation and leads to a reduction of the heat generated. The curves C in 

Figure 6 for 0! =  also indicate that viscous dissipation is not very important in 

electro-osmotic flows with large H +  values (which are typically observed in 

microfluidics – the case illustrated in Figure 6 corresponds to 100H
+
= ), but for 

pressure-driven flows or mixed kinematic flows the influence of viscous dissipation is 

more significant. The curves A and B ( 0Jo ! ) illustrated in Figure 6 for pure 

Poiseuille flow ( 1
0

!
" # ) should be regarded as the limiting behaviour at large   ! , 

because the flow is induced exclusively by a pressure gradient forcing and no 

electrical field is expected to be applied. This limiting case can also be observed when 

both a pressure gradient and an electrical field are applied to the system, but the zeta 

potential is vanishingly small, and no electro-osmotic flow is induced, but Joule 

heating occurs. This is not a common situation, but serves to test the limiting 

behaviour of the analytical solution.  

Figure 7 plots the transverse profiles of the dimensionless temperature 

difference for a favourable pressure gradient flow ( 1! = " ), considering wall cooling 

with Br = -0.1 (Figure 7a, implying negative values for 
w
q!  and Jo) and wall heating 

with Br = 0.1 (Figure 7b, implying positive values for 
w
q!  and Jo) for a range of Jo 
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values. We look first to the right-half part of Figure 7a, pertaining to Newtonian 

fluids (or viscoelastic fluids of constant viscosity, such as the UCM model) and 

Br = -0.1. Here, the case  0.1Jo = !  and  0.1Br = !  corresponds to a situation where 

the wall cooling is slightly higher than the internal heat generation, but the normalized 

temperature gradient is positive (
  
!T

+
!x ' > 0 ), because in spite of a reduction in real 

temperature (
  
!T !x < 0 ) the wall heat flux is negative (

w
0q <! ). The other cases, with 

 1Jo ! "  concern high Joule heating leading to an increase in dimensional temperature 

(
  
!T !x > 0 ), but since there is cooling at the wall the non-dimensional temperature 

gradient ends up as negative (
  
!T

+
!x ' < 0 ). The plotted profiles refer to 

( ) ( )w w w h th
T T T T q D k+ +

! = ! ! , a quantity which also changes sign with 
w
q! . For 

 0.1Jo = !  and  1Jo = ! , 
w

T T>  everywhere across the channel, but w( )T T
+ +
!  ends 

up as a positive quantity because of the negative 
w
q! . The dimensional temperature T 

continuously decreases from the axis towards the wall and the concavity of the 

dimensionless profile is everywhere the same. However, on increasing the Joule 

heating to  10Jo = !  (in absolute terms), the internal heat generation exceeds by far 

the amount of heat removed at the wall and not only the dimensional temperature 

increases in the stream wise direction, as pointed out above, but the fluid at around 

  0.5 < y H < 0.7  cools to the wall as well as towards the centre, i.e., instead of the 

single peak value of w( )T T
+ +
!  at the centre line there is a positive peak in the vicinity 

of 0.6y H ! +  (and at 0.6y H ! "  by symmetry) and a local minimum at the 

centreline, which even becomes negative at higher Joule heating conditions, as 

displayed in Figure 7a for Jo = -15. This change in the dimensionless temperature 

difference profile is synonymous to the onset of a change of concavity of temperature 

on the channel symmetry axis (y = 0), and the critical value of Jo at which this occurs 

is given by 
  
Jo

cr
= u

+

y
+
=0

(!T
+
!x ')  as easily deduced from Eq. (14). Using Eq. (27) 

one ends up with the following expression: ( ) (4 32 ) (0) 1 (0)
cr

Jo Br u u
+ +

= + ! . For a 

Newtonian fluid at  ! = "1 and 100H
+
=  the centreline velocity is (0) 1.1335u

+
= , 

therefore for 0.1Br = !  we obtain 6.8
cr

Jo = ! , and the corresponding temperature 

profile is also included in Figure 7a. For the viscoelastic case, at  ! = "1, 100H
+
=  

and  10Wi
!

" =  the centreline velocity is (0) 1.00587u
+

=  and 137
cr

Jo = !  for 
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0.1Br = ! , showing that the influence of Jo on the temperature profile is much less 

significant as shown in Figure 7a (there would be no such influence for a constant 

velocity profile). As the internal heat generation further increases above 
cr

Jo  the bulk 

temperature will eventually become lower than the wall temperature, i.e., the positive 

Nu goes to infinity and changes sign, as shown later.  

For positive values of Br and Jo (illustrated in Figure 7a) the fluid is being 

heated at the wall ( 0
w
q >! ) and 

w
T T> , so we have again w( ) 0T T

+ +
! > . In addition 

to the wall heating, the fluid heats also internally by viscous dissipation and Joule 

heating effects, hence it is no surprise that the temperatures differences w( )T T
+ +
!  

inside the fluid are now larger than for negative values of Br and Jo. The Joule 

heating is essentially uniform across the channel and independent of the velocity 

profile shape so it affects the magnitude of the temperature, but not the shape of 

w( )T T
+ +
! . If the Brinkman number was higher the shape would also be similar, 

because wall heating forces 
w
T T>  near the wall and viscous dissipation acts more 

intensively near the wall. Here, it raises the temperature (T) locally, while keeping 

w
T T> . This effect is transmitted across the duct as heat flows towards the centre and 

heats the fluid (note that at the centre itself the heat flux is null). Thus, this 

mechanism maintains the shape of w( )T T
+ +
! , but with a different magnitude for 

different internal heating. 

Changing from a Newtonian fluid to a strong shear-thinning fluid characterized 

by  10Wi
!

" =  there is a reduction of the viscosity in the wall region, typical of 

shear-thinning behaviour. Then, we see the mean velocity increases significantly due 

both to the EO contribution (when the wall viscosity decreases the true Helmholtz-

Smoluchowski velocity increases, cf. Afonso et al. 2009) as well as by the pressure 

contribution as hinted in Figure 2 (although  10Wi
!

" =  is outside the range in this 

plot, the corresponding line for 1! = "  and 100H
+
=  indicates that the ratio 

sh
u u  is 

now very large). Additionally, and this is the most important reason to explain the 

slight decrease in the sPTT profiles of 
w
T T

+ +
!  for  10Wi

!
" =  relative to the 

corresponding Newtonian profiles in Figure 7, by reducing the wall viscosity the 

velocity profile becomes flatter, i.e., the distribution of the total flow rate across the 

channel is changed and there is now more flow near the wall and a concomitant 

decrease of flow away from the wall than for the Newtonian flows. Since the 
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proportion of fluid flowing close to the wall increases with 
  
!  Wi

"
, shear-thinning 

reduces the thermal resistance, hence it increases the heat transfer coefficient (Nusselt 

number) and the temperature differences can be lower for the same wall heat flux. 

This also makes the shear-thinning profiles less sensitive to the variation of Jo (as 

mentioned above complete insensitivity, 
cr

Jo !" , comes for a plug velocity profile).  

The Nusselt number is also an important parameter that was quantified in the 

theoretical analysis of the previous section, and Figures 8 - 10 illustrate how Nu is 

influenced by the relevant parameters, namely ! ,  Wi
!

"  (or  
N

Wi!  for pressure-

driven flow), Jo and Br. In all cases analysed with electro-osmosis 100H
+
=  was 

used, but this parameter also influences the Nusselt number, except for pure pressure-

driven flow. 

Figure 8 illustrates the influence of Br and Jo on the Nusselt number of 

Newtonian and viscoelastic fluid flow for the situation where / 0T x
+

!" " = , a 

particular case of wall cooling. Pure electro-osmosis ( 0! = ), pure Poiseuille flow 

( 1
0

!
" # ) and weak favourable and adverse pressure gradient flow conditions 

( 1! = "  and 1, respectively) are considered, assuming a constant axial temperature 

profile, / 0T x
+

!" " = , which implies the relation  32 4Jo Br+ = ! , as already 

discussed. The results show that the minimum Nu values are observed for pure 

Poiseuille flow, and large Nu values are observed when viscous dissipation increases 

(large   Br ). Viscous dissipation is stronger near the wall, so larger values of Br are 

synonymous to situations where the amount of heat to be removed at the wall comes 

in a higher proportion from fluid closer to the wall than from the centre. This is 

equivalent to a lower thermal resistance and hence higher Nu. Since normalization 

implies the same cooling at the wall, wall temperature gradients will be essentially the 

same, but with less heat coming proportionally from the centre of the channel the 

temperature difference ( )
w
T T

+ +
!  is reduced. This is consistent with the temperature 

profiles shown in Figure 6 and the relationship between Nu and ( )
w
T T

+ +
!  in 

Eq. (34).  

For pure electro-osmosis, 0!" , with very large H + , negligible viscous dissipation 

and / 0T x
+

!" " =  (i.e. 4Jo = ! ), the asymptotic value of 12Nu =  is approached as 

shown next, the classical solution for plug flow (Burmeister 1983) (actually, in the 

absence of viscous dissipation and for a plug flow velocity profile 12Nu =  regardless 



28 

of   !T
+

/ ! "x ). In this limiting case the velocity profile  ( )u y u!  (except within the 

Debye layer, which reduces in width as H +  increases), or 1u
+
!  and the energy Eq. 

(14) simplifies to 2 2 2

d / d / (16 ) 0T y Jo H
+ + +

+ =  with 4Jo = ! , which can be 

integrated twice to give the temperature profile 21 ( / ) /8
w
T T y H

+ + + +! "# = #$ % . Using 

Eq. (35) the average temperature difference is 1/12
w
T T

+ +
! = , and consequently 

1/( ) 12
w

Nu T T
+ +

= ! = . The corresponding / 0T x
+

!" " =  Newtonian solution for 

pressure driven flow ( 1
0

!
" # ) and no Joule heating has Jo = 0 and Br = -0.125, 

leading to Nu = 17.5 as easily calculated using Eq. (37) and observed in Figure 8. 

Figure 9 illustrates the influence of Jo on the Nusselt number for Newtonian and 

viscoelastic fluid flow with wall heating. Again, pure electro-osmosis ( 0! = ), pure 

Poiseuille flow ( 1
0

!
" # ) and weak favourable and adverse pressure gradient flow 

conditions ( 1! = "  and 1, respectively) are considered, assuming that /100Br Jo= . 

The simultaneous variation of Br and Jo can be achieved experimentally varying the 

heat flux transferred through the wall, and a significantly larger Jo was assumed 

(  100Jo Br= ), as expected for microfluidic applications. Indeed, as discussed by 

Maynes and Webb (2004), viscous heating will contribute significantly to the total 

temperature rise of the fluid, and consequently to changes in Nu, only in nanoscale 

channels, where H +  is typically small, a condition not considered here due to the use 

of the Debye-Hückel approximation. The results show that increasing the internal heat 

generation relative to wall heating (i.e. increasing Jo and Br) also leads to a reduction 

of the Nusselt number, particularly at high Jo (and Br) values, where Nu is found to 

be inversely proportional to Jo. This is so because as internal heating increases, the 

fluid bulk temperature increases, the temperature difference ( )
w
T T

+ +
!  also increases 

and by so much that for the same wall heat flux the convection coefficient (and Nu) is 

progressively reduced. Actually, for high values of Jo (and Br) the fluid heats 

significantly more by the internal heating than by the wall heating, so that 

( )
w
T T

+ +
! " #  as Jo (and Br) increase and correspondingly Nu! 0 , cf. Eq. (34). 

This is consistent with the temperature profiles shown in Figure 7b and the 

corresponding discussion. 

Finally, in Figure 10 we show the influence of fluid rheology on the Nusselt 

number for pure electro-osmosis ( 0! = ), Poiseuille flow ( 1
0

!
" # ) and weak 

favourable and adverse pressure gradient flow conditions ( 1! = ± ) using a range of Jo 
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values and assuming either that /100Br Jo=  or Br Jo=  (wall heating).  This latter 

situation is less probable in microfluidic applications, but allows to better highlight 

the influence of Br on Nu. In all cases the influence of viscoelasticity is not very 

important, and increasing either Jo or Br leads to a reduction of Nu, in agreement with 

the results displayed in Figure 9 and the explanation given to explain such variations. 

To finalize, and for the purpose of benchmarking we provide in Table 1 a set of 

Nusselt number values under various conditions. The negative Nusselt numbers 

correspond to very intense internal heating for wall cooling as discussed in regard to 

Figure 7a. Negative Nusselt numbers are not uncommon in the literature (e.g. Vick 

and Özisik 1981, Ong and Owen 1991) and tend to occur in specific situations, such 

as when there is a strong internal heat generation that reverses the magnitude of the 

temperature difference used in the definition of the heat transfer coefficient (here Eq. 

34), but the local wall heat flux sign remains unchanged. 

 

 

Table 1 – Influence of the relevant dimensionless parameters on the Nusselt number 

( 100H
+
= ; /100Br Jo= ). Note that 0Jo >  corresponds to wall heating and 0Jo <  

to wall cooling conditions. 

 10! =   10! = "  

 Wi
!

"  0Jo =  10Jo =  10Jo = !   0Jo =  10Jo =  10Jo = !  

0 7.169 3.249 -34.770  8.905 4.411 -472.853 

1 6.521 2.759 -17.951  9.390 4.664 -695.361 

10 12.757 7.472 43.592  11.644 6.374 67.294 

 

 

5. Conclusions 

The analytical solutions for flow and heat transfer in a fully-developed channel flow 

of a simplified Phan-Thien—Tanner fluid forced by combined electro-osmosis and 

pressure gradient are presented and discussed. This solution invokes the standard 

electrokinetic conditions and the Debye-Hückel approximation. Even though the flow 

solution was previously obtained by Afonso et al. (2009), the present solution uses the 

bulk velocity, rather than the Helmholtz-Smoluchowski velocity, as a velocity scale 

thus allowing for a more compact expression. As a consequence of the different 
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normalization used here there are some conceptual differences in the fluid dynamical 

solution relative to Afonso et al. (2009). 

For the forced convection solution a constant wall heat flux is imposed and it is 

assumed that temperature differences are sufficiently small for the model parameters 

to be independent of temperature. In addition to the dependence on the non-

dimensional numbers controlling the flow solution, i.e., on the normalized electric 

double layer (EDL) thickness, Weissenberg number and ! , the ratio between the 

electro-osmotic and pressure gradient forcings, the thermal solution includes the 

effects of viscous dissipation and of Joule heating by the electric current. These two 

effects are quantified in the non-dimensional Brinkman and Joule numbers, 

respectively. 

For pure electro-osmosis and thin EDL viscous dissipation is concentrated at the 

near wall region and its effect is negligible by comparison with Joule heating which is 

whole-field and hence more relevant. When there is equilibrium between internal 

heating and wall cooling ( / 0T x
+

!" " = ) and the former is solely by Joule effect the 

invoked decoupling of the material properties and temperature implies the thermal 

solution is independent of the amount of viscoelasticity and type of flow (! ) since 

Joule heating does not depend on the specific form of the velocity profile in contrast 

to viscous dissipation, which is proportional to the shear rate. For this reason, viscous 

dissipation is restricted to the near wall region in pure electro-osmosis flow, so it is 

essentially irrelevant for very thin electric double layers. However, for   !T
+

/ ! "x # 0  

the effects of Joule and Brinkman heating are coupled with any cause of variation in 

the bulk flow velocity, and hence of u+ , as is obvious from inspection of Eq. (14). As 

the EDL thickens and/or the pressure gradient contribution increases the region 

affected by viscous dissipation grows and non-linear rheological effects, such as 

shear-thinning viscosity, appear more clearly to affect all dynamic and thermal 

quantities. In practical terms for viscous dissipation to become very important 

requires very small channels (nano-channels), but then the Debye-Hückel 

approximation ceases to be valid. Alternatively the fluid viscosity and/or flow rate 

must be increased, but then the pressure losses become so large that the channels 

might suffer structural damage. As known from Pinho and Oliveira (2000) in the 

absence of viscous dissipation enhancing shear-thinning for pure Poiseuille flow 

increases Nu, whereas for pure electro-osmosis it decreases Nu by a small amount. For 

wall heating, increasing levels of internal heat generation, by whatever mechanism, is 
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seen to increase significantly the temperature differences within the fluid and 

consequently to reduce the corresponding Nusselt numbers, whereas for wall cooling 

there is a reduction in temperature differences within the fluid as internal heat 

generation increases.  
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Appendix 

For the sake of conciseness of the main body of the paper, this appendix presents the 

mathematical expressions for the coefficients appearing in Eqs. (29) and (36).  

The normalized temperature gradient of Eq. (29) is a function the following 

coefficients:  
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and 
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The normalized temperature profile of Eq. (36) is a function the following 

coefficients: 
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Figure 1 - Schematic representation of the flow geometry and coordinate system. 
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Figure 2 – Dimensionless average velocity as function of   Wi
!

"  for various 

pressure to electro-osmotic forcing ratios, ! . Dashed curves correspond to 20H
+
=  

and continuous curves to 100H
+
= .  
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Figure 3 – Dimensionless velocity profiles for viscoelastic fluid flow at  3Wi
!

" = . 

Influence of the pressure to electro-osmotic forcing ratio !  and the inverse 

dimensionless EDL thickness, H
+ .  
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Figure 4 – Transverse profiles of normalized shear stress for viscoelastic fluid flow at 

 3Wi
!

" = . Influence of the pressure to electro-osmotic forcing ratio,! , forH
+ = 

100.  
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Figure 5 – Variation of the normalized 
,w p

!  as function of pressure to electro-osmotic 

forcing ratios, ! , and generalized Deborah number,  Wi
!

" , for 100H
+
= .  
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Figure 6 – Transverse profiles of normalized temperature difference when 

' 0T x
+

! ! =  for pure electro-osmosis ( 0! = ; 100H
+
=  - full lines) and pure 

Poiseuille flow ( 1
0

!
" #  - dashed lines). Comparison between Newtonian (positive 

/y H  axis) and viscoelastic cases (negative /y H  axis -  10Wi
!

" =  for 0! =  and 

 10
N

Wi! =  for 1
0

!
" # ). A: Jo = -4; Br = 0;  B: Jo = -2; Br = -0.0625; C: Jo = 0; 

Br = -0.125. 
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Figure 7 – Transverse profiles of normalized temperature difference for 1! = "  and 

100H
+
= . Comparison between Newtonian (positive /y H  axis) and a strong 

viscoelastic case,  10Wi
!

" =  (negative /y H  axis) for a range of Jo values: (a) wall 

cooling and Br = -0.1; (b) wall heating and Br = 0.1. 
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Figure 8 – Variation of Nusselt number with Br and Jo for constant axial temperature 

(wall cooling), d / d 0T x
+

! =  (cf. Eq. 31) for several values of !  and 100H
+
=  

considering a Newtonian and a viscoelastic fluid.  
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Figure 9 – Variation of Nusselt number with Br and Jo, assuming that /100Br Jo=  

and wall heating conditions. 100H
+
=  was assumed for 0! =  and 1! = ±  cases. 

Comparison between Newtonian and viscoelastic fluids. 
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Figure 10 – Influence of the elasticity on the Nusselt number for a range of Br and Jo 

parameters, considering wall heating conditions. (a) Pure electro-osmosis ( 0! =  and 

100H
+
= ); (b) Poiseuille flow; (c,d) Mixed driving forces with adverse and 

favorable pressure gradients ( 1! =  and -1, respectively), assuming 100H
+
= .  
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Figure 10    (conclusion) 
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