
Electro-osmotic and pressure-driven flow of viscoelastic fluids in
microchannels: Analytical and semi-analytical solutions
L. L. Ferrás, A. M. Afonso, M. A. Alves, J. M. Nóbrega, and F. T. Pinho 
 
Citation: Physics of Fluids 28, 093102 (2016); doi: 10.1063/1.4962357 
View online: http://dx.doi.org/10.1063/1.4962357 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/28/9?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Flow patterning in Hele-Shaw configurations using non-uniform electro-osmotic slip 
Phys. Fluids 27, 102001 (2015); 10.1063/1.4931637 
 
Electro-osmotic flow of semidilute polyelectrolyte solutions 
J. Chem. Phys. 139, 094901 (2013); 10.1063/1.4820236 
 
Effects of non-Newtonian power law rheology on mass transport of a neutral solute for electro-
osmotic flow in a porous microtube 
Biomicrofluidics 7, 044113 (2013); 10.1063/1.4817770 
 
Analytical solution of electro-osmotic flow in a semicircular microchannel 
Phys. Fluids 20, 063105 (2008); 10.1063/1.2939399 
 
On electro-osmotic flows through microchannel junctions 
Phys. Fluids 18, 117108 (2006); 10.1063/1.2391701 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  146.164.6.222

On: Thu, 29 Sep 2016 20:12:55

http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1380577834/x01/AIP-PT/PoF_ArticleDL_092116/PTBG_instrument_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=L.+L.+Ferr�s&option1=author
http://scitation.aip.org/search?value1=A.+M.+Afonso&option1=author
http://scitation.aip.org/search?value1=M.+A.+Alves&option1=author
http://scitation.aip.org/search?value1=J.+M.+N�brega&option1=author
http://scitation.aip.org/search?value1=F.+T.+Pinho&option1=author
http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://dx.doi.org/10.1063/1.4962357
http://scitation.aip.org/content/aip/journal/pof2/28/9?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/27/10/10.1063/1.4931637?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/139/9/10.1063/1.4820236?ver=pdfcov
http://scitation.aip.org/content/aip/journal/bmf/7/4/10.1063/1.4817770?ver=pdfcov
http://scitation.aip.org/content/aip/journal/bmf/7/4/10.1063/1.4817770?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/20/6/10.1063/1.2939399?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/18/11/10.1063/1.2391701?ver=pdfcov


PHYSICS OF FLUIDS 28, 093102 (2016)

Electro-osmotic and pressure-driven flow
of viscoelastic fluids in microchannels:
Analytical and semi-analytical solutions

L. L. Ferrás,1,a) A. M. Afonso,2,b) M. A. Alves,2,c) J. M. Nóbrega,1,d)

and F. T. Pinho3,e)
1Institute for Polymers and Composites/I3N, University of Minho, Campus de Azurém,
4800-058 Guimarães, Portugal
2Departamento de Engenharia Química, Centro de Estudos de Fenómenos de Transporte,
Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n,
4200-465 Porto, Portugal
3Departamento de Engenharia Mecânica, Centro de Estudos de Fenómenos de Transporte,
Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n,
4200-465 Porto, Portugal

(Received 29 March 2016; accepted 18 August 2016; published online 29 September 2016)

In this work, we present a series of solutions for combined electro-osmotic and
pressure-driven flows of viscoelastic fluids in microchannels. The solutions are
semi-analytical, a feature made possible by the use of the Debye–Hückel approx-
imation for the electrokinetic fields, thus restricted to cases with small electric
double-layers, in which the distance between the microfluidic device walls is at least
one order of magnitude larger than the electric double-layer thickness. To describe
the complex fluid rheology, several viscoelastic differential constitutive models were
used, namely, the simplified Phan-Thien–Tanner model with linear, quadratic or
exponential kernel for the stress coefficient function, the Johnson-Segalman model,
and the Giesekus model. The results obtained illustrate the effects of the Weissenberg
number, the Johnson-Segalman slip parameter, the Giesekus mobility parameter,
and the relative strengths of the electro-osmotic and pressure gradient-driven forc-
ings on the dynamics of these viscoelastic flows. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4962357]

NOMENCLATURE

Symbols Definition
a Non-affine slip parameter
C Ion concentration
D Rate of deformation tensor
E External electric field
e Elementary charge
erf (·) Error function
Ex ≡ −dφ/dx Constant streamwise gradient of electric potential generated by electrodes
f (trτ) Scalar function of the trace of the polymer extra stress tensor
H Half-channel width/thickness
kB Boltzmann constant
NA Avogadro’s number
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no Ion density
p,x Streamwise pressure gradient
p Pressure
Q̄ Dimensionless flow rate
t Time
T Absolute temperature
u Velocity vector
u Streamwise velocity component
ush Helmholtz-Smoluchowski electro-osmotic velocity
U Mean velocity
Wi Weissenberg number for the pure pressure driven case
Wiκ Weissenberg number
x Streamwise coordinate
y Transverse coordinate
z Valence of the ions
.̄ The overline represents a dimensionless quantity

Greek Symbols Definition
α Mobility parameter
Γ Ratio of pressure to electro-osmotic driving forcings
ε Parameter of the Phan-Thien–Tanner model
ϵ Electrical permittivity of the solution
ζ Wall zeta potential
η Polymer viscosity coefficient
κ2 Debye–Hückel parameter
λ Relaxation time of the fluid
ξ Electric double layer thickness
ρ Fluid density
ρe Net electric charge density
τ Polymeric extra-stress tensor
τxy Shear stress
τxx Normal stress
τy y Normal stress
Φ Electric potential
φ Electric potential in the streamwise direction (imposed)
ψ Potential field in the transverse direction (induced)

I. INTRODUCTION

Electro-osmosis1 is currently a rich research topic due to its applicability in micro- and nano-
devices with applications in medicine, biochemistry, and several other industrial processes, but the
idea of creating motion using an external electric field goes back two centuries ago, when Reuss2

investigated this phenomenon experimentally, using a porous clay. Experimental, theoretical, and
numerical efforts for the understanding of such physical phenomenon have intensified in recent
years, with several research groups contributing actively to the subject. A large number of applica-
tions in microfluidics use biofluids, which are usually complex in their structure requiring equally
complex constitutive equations to describe their rheology and the ensuing flows. In particular,
viscoelastic fluids usually exhibit normal stress differences, shear-thinning viscosity, and memory
effects and their rheological behavior can be described by differential viscoelastic equations, which
are related or are contained in the Phan-Thien—Tanner (PTT)3,4 and Giesekus6 models, as in the
case of blood,7,8 synovial fluid,9 or other biofluids possessing long chain molecules. Therefore,
analytical solutions are useful not just to describe the phenomena at hand but also to improve our
understanding about them.
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For Newtonian fluids, Burgreen and Nakache10 presented an analytical study of electrokinetic
flow inside very fine capillary channels of rectangular cross section, extending previous studies that
were restricted to channels of large electrokinetic radius (the electrokinetic effects are confined to
the area close to the capillary wall) or to interfaces with low surface potentials, whereas Rice and
Whitehead11 presented the corresponding flow solution for a cylindrical geometry. Arulanandam
and Li12 investigated numerically the electro-osmotic flow (EOF) in rectangular microchannels by
solving the 2D Poisson-Boltzmann and momentum equations, whereas Dutta and Beskok13 studied
analytically the 2D mixed electro-osmotic/pressure-driven flow. For non-Newtonian inelastic fluids
described by the Ostwald–de Waele Power-Law model, Das and Chakraborty14 presented analytical
solutions that describe the transport characteristics in channel flow and Berli and Olivares15 intro-
duced a theoretical description of electro-osmotic flow through slits and cylindrical microchannels
using also the Power-Law model, and also the Bingham and Eyring models. Zhao and Yang16

investigated theoretically the electro-osmotic mobility of Power-Law fluids in channel flows, which
was later generalized for the Carreau model.17 Hence, the description of these simple flows for
generalized Newtonian fluids is essentially complete.

For non-Newtonian viscoelastic fluids, the existing analytical solutions are more recent because
of their associated complexity. Afonso et al.18,19 provided analytical solutions of mixed electro-
osmotic/pressure-driven flows of viscoelastic fluids in microchannels, including the case of electro-
osmotic flow under asymmetric zeta potentials at both walls. Earlier, Park and Lee20 extended the
theory of the Newtonian Helmholtz-Smoluchowski velocity to incorporate the viscoelastic behavior
described by the simplified Phan-Thien—Tanner model (sPTT) in rectangular channels. Sousa
et al.21 extended the analysis of Afonso et al.18,19 by considering the formation of a skimming
layer without polymer additives near the walls, and Dhinakaran et al.22 analyzed the channel flow
for the full PTT model with non-zero second normal-stress difference by considering the full
Gordon-Schowalter convected derivative but restricting the analysis to pure electro-osmosis flow
(without a pressure gradient). Recently, Afonso et al.23 presented analytical solutions for fully
developed EOF by considering polymer solutions described by the sPTT and FENE-P24 models
with a Newtonian solvent. Hayat et al.25 presented an exact solution for the electro-osmotic flow of
a generalized Burgers fluid and more recently Afonso et al.26 also solved analytically the channel
flow of stratified immiscible fluids driven by electro-osmosis assuming a planar interface between
the two viscoelastic immiscible fluids, an arrangement usually employed for fluid pumping using
electrokinetic effects.

In this work, analytical solutions are presented for electro-osmotic and pressure-driven fully
developed channel flows of viscoelastic fluids modeled by the quadratic and exponential PTT
model,3,4 the Johnson-Segalman27 model, and the Giesekus6 model. For the quadratic PTT model,
the solution is applicable for simultaneous electro-osmotic and pressure driven flows, while for
the remaining viscoelastic models the analytical solution is only given for the pure electro-osmotic
flow. The derived solutions complete the set of possible cases, as summarized in Table I, and
allow a better understanding of the viscoelastic flow behavior in the presence of an electric
field. In this paper, we extend previous works to more complex and realistic viscoelastic models,

TABLE I. Analytical (A) and semi-analytical (SA) solutions for the sPTT, PTT, Johnson-Segalman and Giesekus models.
Only the solutions tagged with “This work (A)” are presented in this work.

Pure EO EO and PD Pure PD

Linear sPTT Afonso et al.18 (A) Afonso et al.18 (A) Oliveira and Pinho30 (A)
Quadratic sPTT This work (A) This work (A) This work (A)
Exp. sPTT This work (A) (SA) Oliveira and Pinho30 (A)
Linear PTT Dhinakaran et al.22 (A) (SA) Alves et al.31 (A)
Exp. PTT (SA) (SA) (SA)
Johnson-Segalman Dhinakaran et al.22 (A) (SA) Alves et al.31 (A)
Giesekus This work (A) (SA) Yoo and Choi33 (A)
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and these theoretical studies can also be useful to computational rheology, either for verifica-
tion purposes of their numerical methods or to define fully developed inlet boundary condi-
tions.

The remainder of this paper starts with the formulation of the problem and the set of governing
equations, including the nonlinear Poisson–Boltzmann equation that governs the electric double
layer field and the added body force to the momentum equation, caused by the applied electrical
field. We then arrive at the basic set of equations for all the analytical solutions, and afterwards
each viscoelastic model is analyzed in detail and the simplifications required to obtain the analytical
solutions are presented. A discussion of the effects of the various relevant dimensionless parameters
upon the flow characteristics is presented before the Conclusions of the work.

II. PROBLEM FORMULATION AND GOVERNING EQUATIONS

Consider the combined electro-osmotic and pressure-driven flow of a viscoelastic fluid between
two parallel plates. The flow geometry and coordinate system are shown in Fig. 1. The streamwise
coordinate and velocity component are x and u, respectively, the transverse coordinate is y and
there is no flow or gradients in the spanwise direction z, which is assumed to be much larger than
H (2H is the channel width). The flow direction in the conditions illustrated in Fig. 1 is from left to
right, but the solutions described here remain valid for the corresponding opposed flow conditions.
The migration of ions naturally arises due to the interaction between the dielectric walls and the
polar fluid. Here, the two negatively charged walls of the microchannel attract counter-ions forming
layers of positively charged fluid near the walls and repel the co-ions. Very thin layers of immobile
counter-ions cover the walls, known as the Stern layers, followed by thicker more diffuse layers of
mobile counter-ions, the two layers near the wall forming what is called the Electrical Double Layer
(EDL). The global charge of the flow domain remains neutral, but since the two EDLs are very thin
the core is essentially neutral. Applying a DC potential difference between the two electrodes at the
inlet and outlet generates an external electric field that exerts a body force on the ions of the EDL,
which move along the channel dragging the neutral liquid core. The pressure difference that can also
be applied between the inlet and outlet can act in the same direction of the electric field or in the
opposite direction. Due to the symmetry of the geometry, only half of the channel (0 ≤ y ≤ H) is
considered in the analysis. At the wall, the no-slip condition applies; whereas on the centreplane,
y = 0, the symmetry condition was used. Since the flow is fully developed, the velocity and stress
fields only depend on the transverse coordinate y .

The steady, fully developed flow of the incompressible viscoelastic fluid is governed by the
continuity,

∇ · u = 0 (1)

and the momentum equation,

FIG. 1. Schematic of the flow in a planar microchannel.
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ρ
Du
Dt
= ∇ · τ − ∇p + ρeE, (2)

where u is the velocity vector, p the pressure, ρ the fluid density, τ the fluid extra-stress tensor, E the
electric field, and ρe is the net electric charge density in the fluid.

A. Constitutive equations

In order to obtain a closed system of equations, a constitutive equation for the polymeric
extra-stress tensor, τ, must be employed. Several constitutive relations for viscoelastic fluids have
been proposed in the literature.3,4,6,24,27 The development of efficient, more realistic models is still
a fertile ground in rheology,28 and so far no model is generally exact, since the adequate choice of
the constitutive equation for a particular application depends on both the physical characteristics
of the working fluid and type of flow. Therefore, the ideal scenario where for each fluid there is a
model describing correctly its fluid rheological and flow properties has not yet been fully achieved.
For instance, models presenting constant shear viscosity, such as the Upper-Convected Maxwell
(UCM) model, Oldroyd-B, or FENE-CR29 models, should not be used when the viscosity of the
real fluid varies with the shear rate, as with shear-thickening or shear-thinning fluids. Such types
of fluid should instead be described by the PTT,3,4 Giesekus6 or FENE-P24 models in their original
or modified forms,5 amongst others. Therefore, and as stated before, in this work we adopted three
constitutive equations that are capable to represent well a large number of biofluids used in mi-
crofluidic applications.7–9 Those various rheological equations of state can be written in a compact
form as the following generic equation:

f (trτ) τ + λ
(
∂τ

∂t
+ u · ∇τ −

(∇u)T · τ + τ · ∇u

+ (1 − a) (D · τ + τ · D)

)
+ α

λ

η
τ · τ = 2ηD,

(3)

where D =
�
▽u + ▽uT

�
/2 is the rate of deformation tensor, λ the relaxation time of the fluid, η the

polymer viscosity coefficient, f (trτ) is a scalar function of the trace of the polymer extra-stress
tensor, a is the non-affine slip parameter, and α is the mobility parameter.

Eq. (3) allows the choice of a specific constitutive model by an appropriate selection of parame-
ters α, ε, and a. For instance, the simplified Phan-Thien and Tanner (sPTT) model,3,4 derived on the
basis of network theory arguments, can be obtained assuming α = 0, a = 1 and the stress coefficient
function, f (trτ), can take any of the following forms:

f (τkk) =




1 +
ελ

η
τkk linear PTT

1 +
ελ

η
τkk +

1
2

(
ελ

η
τkk

)2

quadratic PTT

exp
(
ελ

η
τkk

)
exponential PTT

(4)

with ε being an extensibility parameter of the model which limits the fluid extensional vis-
cosity. Note that Einstein’s convention of summation over repeated indices is used in Eq. (4).
The sPTT model presents shear-thinning viscosity and a zero second normal-stress difference
coefficient.

The full PTT model is obtained by setting a , 1 and the same scalar stress functions of Eq. (4).
In this model, the slip parameter, a, takes into account the non-affine motion between the polymer
molecules and the continuum.

The Giesekus model6 is recovered when α , 0, ε = 0, and a = 1. This model was derived
on the basis of the kinetic theory for packed polymer chains, as for the full PTT model, and
it also exhibits a non-zero second normal-stress difference in steady shear flows. Finally, the
Johnson-Segalman constitutive equation,27 used to describe some dilute polymer solutions, is ob-
tained when α = 0, ε = 0, and a , 1. Eq. (3) reverts to the UCM model when α = 0, ε = 0, and
a = 1.
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B. Electric potential

The electrostatic field is related to the electric potential, Φ, by E = −∇Φ and Φ is gov-
erned by ∇2Φ = − ρe

ϵ
with ϵ representing the electrical permittivity of the solution. The elec-

tric potential is the sum of two different contributions, Φ = φ + ψ, one generated by the elec-
trodes, placed at the inlet and outlet of the flow geometry, φ, and the other, ψ, associated to the
charge spontaneously acquired by the fluid near the walls. The imposed potential is described
by a Laplace equation, ∇2φ = 0, while the induced potential is given by a Poisson equation,
∇2ψ = − ρe

ϵ
.

In many circumstances, when the flow (and the ionic distribution) is steady, the electric double
layers are thin and do not overlap at the center of the channel, significant variations of ψ occur
only in the normal direction to the channel walls, and a stable Boltzmann distribution of ions in the
electric double layer can be assumed. In this situation, the net electric charge density in the fluid, ρe,
can be obtained by the Boltzmann distribution (see Ref. 1),

ρe = −2noez sinh
(

ez
kBT

ψ

)
, (5)

where no is the ion density (no = CNA is the bulk number concentration of ions in the elec-
trolyte solution, C is the molar concentration of ions, and NA is Avogadro’s number), T is the
absolute temperature, kB is the Boltzmann constant, e is the elementary charge, and z is the
valence of the ions. In order to obtain the velocity field, first we need to solve for the net
charge density distribution (ρe). The charge density field can be calculated by combining the Pois-
son equation for the induced potential equation, which for fully developed steady flow reduces
to

d2ψ

dy2 = −
ρe
ϵ
, (6)

and the Boltzmann equation (5) to obtain the well-known Poisson–Boltzmann equation,

d2ψ

dy2 =
2noez
ϵ

sinh
(

ez
kBT

ψ

)
. (7)

For a channel flow with electrically charged walls and an applied potential difference between
the channel inlet and outlet, a longitudinal electric field is generated that exerts a body force on
the counter-ions of the EDL, which move along the channel dragging the neutral liquid core. In
general, the distribution of the charged species in the domain is governed by the potential at the
walls and by the externally applied electric field. However, when the EDL thickness is small and
the potential at the walls is not large, this distribution is essentially governed by the potential
at the wall, and the charge distribution near the walls can be determined independently of the
applied external electric field. In this work, the charge redistribution is considered to be exactly
null as is also the inertial term of the momentum equation, since electro-osmotic (EO) flows are
typically slow. Then, for small values of ψ, it is also possible to conduct further simplifications by
invoking the Debye–Hückel linearization principle.1,35,36 Under this approximation (sinh x ≈ x), in
Eq. (7), ezζ/kBT is assumed small (ζ is the maximum value of ψ at the wall), which is synony-
mous of a small ratio of electrical to thermal energies, i.e., we assume that the temperature effect
on the potential distribution is negligible. In practical terms, involving say a z+- z− electrolyte
in water, at ambient temperature this implies a zeta potential of less than about 26 mV to have
ezζ
kBT
∼ 1.
Under the Debye–Hückel assumption, the Poisson–Boltzmann equation for the channel flow

becomes

d2ψ

dy2 = κ
2ψ, (8)

where κ2 =
2noe2z2

ϵkBT
is the Debye–Hückel parameter, related with the thickness of the Debye layer,

ξ = 1
κ

(normally referred to as the EDL thickness).
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The induced electric field, ψ, is then given by

ψ = ζ
cosh (κ y)
cosh (κH) (9)

for 0 ≤ |y | ≤ H (see Fig. 1) and the corresponding net charge density distribution is

ρe = −ϵζ κ2 cosh (κ y)
cosh (κH) . (10)

For more details on the derivation of these equations, refer to Afonso et al.18 and Bruus.1

III. RESULTS AND DISCUSSION

The momentum equation, Eq. (2), for a fully developed channel flow reduces to

dτxy
dy
= −ρeEx + p,x, (11)

where p,x is the streamwise pressure gradient (p,x = dp/dx) and Ex ≡ −dφ/dx is the imposed con-
stant streamwise gradient of electric potential under fully developed flow conditions. Regardless
of the selected viscoelastic model, Eq. (11) can be integrated yielding the following shear stress
distribution across the channel:

τxy = ϵζExκ
sinh (κ y)
cosh (κH) + p,x y. (12)

A. PTT models

For the simplified PTT model (sPTT), the extra-stress components that result from application
of this constitutive equation to the unidirectional flow of Fig. 1 are given by

f (τkk)τxx = 2λ
du
dy

τxy, (13)

f (τkk)τxy = η du
dy

, (14)

where the trace of τ is τkk = τxx since τy y and τzz are zero,30 and du
dy

is the velocity gradient. Upon
division of Eq. (13) by Eq. (14) the following relation between the normal and shear stresses is
obtained:

τxx = 2
λ

η
τ2
xy, (15)

leading to the following transverse distribution of the normal stress:

τxx = 2
λ

η

(
ϵζExκ

sinh (κ y)
cosh (κH) + p,x y

)2

. (16)

Combining Eqs. (12), (14), and (16) allows obtaining the following explicit equations for the
normalized velocity gradient for the quadratic and exponential PTT models (cf. Eq. (4)), respec-
tively,

d(u/ush)
d(y/H) ≡

dū
d ȳ
=


1 + 2

εWi2
κ

κ̄2

(
Γ ȳ − κ̄ sinh (κ̄ ȳ)

cosh (κ̄)
)2
*
,
1 +

εWi2
κ

κ̄2

(
Γ ȳ − κ̄ sinh (κ̄ ȳ)

cosh (κ̄)
)2
+
-



(
Γ ȳ − κ̄ sinh (κ̄ ȳ)

cosh (κ̄)
)
, (17)

d (u/ush)
d(y/H) ≡

dū
d ȳ
=


exp *

,
2
εWi2

κ

κ̄2

(
Γ ȳ − κ̄ sinh (κ̄ ȳ)

cosh (κ̄)
)2
+
-



(
Γ ȳ − κ̄ sinh (κ̄ ȳ)

cosh (κ̄)
)
, (18)

where ush is the Helmholtz-Smoluchowski electro-osmotic velocity, defined as ush = − ϵζEx
η

, Wiκ =
λush
ξ
= λκush is the Weissenberg number, ū = u/ush, ȳ = y/H , κ̄ = κH , and the dimensionless
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parameter Γ = −H2

ϵζ

(
p,x
Ex

)
represents the ratio of pressure to electro-osmotic driving forcings. The

velocity profiles for each model can be obtained from integration of the corresponding velocity
gradient profile subjected to the no-slip boundary condition at the top (+) or bottom (-) walls,
ū (±1) = 0,

ū ( ȳ) = −
1
ȳ

f ( ȳ) d ȳ = F ( ȳ) − F (1) , (19)

where f ( ȳ) represents the right-hand-side of Eqs. (17) and (18) and F ( ȳ) represents the integral of
f ( ȳ). For the linear stress function, the reader is referred to the works of Afonso et al.18,23 for the
velocity profiles for the simplified PTT models, without and with a solvent viscosity contribution,
respectively.

1. Quadratic PTT model

For the quadratic sPTT model, the final expression of the dimensionless velocity profile, ū ( ȳ),
is given by

ū ( ȳ) = 1 +
6Γ2ε

�
κ̄2 + 2

�
Wi2

κ

κ̄4 +
10Γ4ε2 �κ̄4 + 12κ̄2 + 24

�
Wi4

κ

κ̄8 −
Γ
�
3κ̄4 + 2Γ4ε2Wi4

κ + 3Γ2εκ̄2Wi2
κ

�

6κ̄4 +

Γ ȳ2 �3κ̄4 + 2Γ4ε2Wi4
κ ȳ

4 + 3Γ2εκ̄2Wi2
κ ȳ

2�

6κ̄4 −
5Γε2Wi4

κsech4(κ̄) cosh(4κ̄ ȳ)
64κ̄2 +

sech5(κ̄)
(
−5ε2Wi4

κ cosh(3κ̄)
24

+
ε2Wi4

κ cosh(5κ̄)
40

+
5ε2Wi4

κ cosh(3κ̄ ȳ)
24

−
ε2Wi4

κ cosh(5κ̄ ȳ)
40

)
+

cosh(κ̄ ȳ) *
,
−

5ε2Wi4
κsech5(κ̄)
4

+ sech3(κ̄) *
,

15Γ2ε2Wi4
κ

�
κ̄2 ȳ2 + 2

�

κ4 +
3εWi2

κ

2
+
-
+
-
+

cosh(κ̄ ȳ) *
,
sech(κ̄) *

,
−

10Γ4ε2Wi4
κ

�
κ̄4 ȳ4 + 12κ̄2 ȳ2 + 24

�

κ̄8 −
6Γ2εWi2

κ

�
κ̄2 ȳ2 + 2

�

κ̄4 − 1+
-
+
-
+

sech(κ̄) sinh(κ̄ ȳ) *
,

40Γ4ε2Wi4
κ ȳ

�
κ̄2 ȳ2 + 6

�

κ̄7 +
12Γ2εWi2

κ ȳ

κ̄3
+
-
+

sech3(κ̄)
(
−

10Γ2ε2Wi4
κ sinh(3κ̄)

9κ̄3 +
10Γ2ε2Wi4

κ ȳ sinh(3κ̄ ȳ)
9κ̄3 −

30Γ2ε2Wi4
κ ȳ sinh(κ̄ ȳ)
κ̄3

)
+

sech3(κ̄) *
,
cosh(3κ̄) *

,

5Γ2ε2 �9κ̄2 + 2
�
Wi4

κ

27κ̄4 +
εWi2

κ

6
+
-
+ cosh(3κ̄ ȳ) *

,
−

5Γ2ε2Wi4
κ

�
9κ̄2 ȳ2 + 2

�

27κ̄4 −
εWi2

κ

6
+
-
+
-
+

sech4(κ̄)
(

5Γε2Wi4
κ cosh(4κ̄)

64κ̄2 −
5Γε2Wi4

κ cosh(2κ̄)
4κ̄2 +

5Γε2Wi4
κ sinh(2κ̄)

2κ̄
−

5Γε2Wi4
κ sinh(4κ̄)

16κ̄
− 15

8
Γε2Wi4

κ

)
+

sech4(κ̄)
(

5ε2Wi4
κ

4
+

15
8
Γε2Wi4

κ ȳ
2 +

5Γε2Wi4
κ cosh(2κ̄ ȳ)
4κ̄2 +

5Γε2Wi4
κ ȳ sinh(4κ̄ ȳ)
16κ̄

−
5Γε2Wi4

κ ȳ sinh(2κ̄ ȳ)
2κ̄

)
−

12Γ2εWi2
κ tanh(κ̄)

κ̄3 −
40Γ4ε2 �κ̄2 + 6

�
Wi4

κ tanh(κ̄)
κ̄7 +

sech2(κ̄) *
,

5Γ3ε2 �6κ̄2 + 3
�
Wi4

κ cosh(2κ̄)
4κ̄6 +

30Γ2ε2Wi4
κ tanh(κ̄)

κ̄3 −
15Γ2ε2 �κ̄2 + 2

�
Wi4

κ

κ̄4 −
5Γ3ε2Wi4

κ

�
6κ̄2 ȳ2 + 3

�
cosh(2κ̄ ȳ)

4κ̄6
+
-
+

sech2(κ̄) *
,

ΓεWi2
κ

�
3κ̄2 + 5Γ2εWi2

κ

�

2κ̄2 +
3ΓεWi2

κ cosh(2κ̄)
4κ̄2 −

3εWi2
κ

2
−
ΓεWi2

κ ȳ
2 �3κ̄2 + 5Γ2εWi2

κ ȳ
2�

2κ̄2 −
3ΓεWi2

κ cosh(2κ̄ ȳ)
4κ̄2

+
-
+

sech2(κ̄) *
,
sinh(2κ̄) *

,
−

5Γ3ε2 �2κ̄2 + 3
�
Wi4

κ

2κ̄5 −
3ΓεWi2

κ

2κ̄
+
-
+ sinh(2κ̄ ȳ) *

,

5Γ3ε2Wi4
κ ȳ

�
2κ̄2 ȳ2 + 3

�

2κ̄5 +
3ΓεWi2

κ ȳ

2κ̄
+
-
+
-
. (20)

For the inverse problem (determination of the ratio of forcings, Γ, for a given dimensionless flow
rate, Q̄), the velocity profile must be integrated,

Q̄ =
Q

2Hush
=

U
ush
=

 1

0
ū ( ȳ) d ȳ , (21)

resulting in the following implicit equation for Γ:

a5Γ
5 + a4Γ

4 + a3Γ
3 + a2Γ

2 + a1Γ + a0 = 0 (22)

with coefficients,
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a5 = −
2ε2Wi4

κ

7κ̄4 ,

a4 =
240ε2Wi4

κ(κ̄ − tanh(κ̄))
κ̄9 −

240ε2Wi4
κ tanh(κ̄)

κ̄9 +
240ε2Wi4

κ

κ̄8 −
240ε2Wi4

κ tanh(κ̄)
κ̄7 +

120ε2Wi4
κ

κ̄6 −
40ε2Wi4

κ tanh(κ̄)
κ̄5

+
10ε2Wi4

κ

κ̄4 +
40ε2Wi4

κ

�
κ̄
�
κ̄2 + 6

�
− 3

�
κ̄2 + 2

�
tanh(κ̄)�

κ̄9 −
120ε2Wi4

κ

��
κ̄2 + 2

�
tanh(κ̄) − 2κ̄

�

κ̄9

−
10ε2Wi4

κ

��
κ̄4 + 12κ̄2 + 24

�
tanh(κ̄) − 4κ̄

�
κ̄2 + 6

��

κ̄9 ,

a3 =
15ε2Wi4

κ

�
κ̄ + κ̄ tanh2(κ̄) − tanh(κ̄)�

4κ̄7 −
15ε2Wi4

κ tanh(κ̄)
4κ̄7 +

15ε2Wi4
κ cosh(2κ̄)sech2(κ̄)

4κ̄6 −
15ε2Wi4

κ sinh(2κ̄)sech2(κ̄)
2κ̄5

+
15ε2Wi4

κ cosh(2κ̄)sech2(κ̄)
2κ̄4 −

5ε2Wi4
κ sinh(2κ̄)sech2(κ̄)

κ̄3 +
2ε2Wi4

κsech2(κ̄)
κ̄2

+
15ε2Wi4

κ

�
tanh(κ̄) �−2κ̄2 + κ̄ tanh(κ̄) − 1

�
+ κ̄

�

4κ̄7 +
5ε2Wi4

κsech2(κ̄) �2κ̄ �2κ̄2 + 3
�

cosh(2κ̄) − 3
�
2κ̄2 + 1

�
sinh(2κ̄)�

8κ̄7 −
2εWi2

κ

5κ̄2 ,

a2 = −
10ε2Wi4

κ sinh(3κ̄)sech3(κ̄)
81κ̄5 +

30ε2Wi4
κ tanh(κ̄)sech2(κ̄)

κ̄5 −
30ε2Wi4

κ(κ̄ − tanh(κ̄))sech2(κ̄)
κ̄5

−
10ε2Wi4

κsech3(κ̄)(sinh(3κ̄) − 3κ cosh(3κ̄))
81κ̄5 −

30ε2Wi4
κsech2(κ̄)
κ̄4 +

10ε2Wi4
κ cosh(3κ̄)sech3(κ̄)

27κ̄4

−
10ε2Wi4

κ sinh(3κ̄)sech3(κ̄)
9κ̄3 +

30ε2Wi4
κ tanh(κ̄)sech2(κ̄)

κ̄3 −
15ε2Wi4

κsech2(κ̄)
κ̄2 +

5ε2Wi4
κ cosh(3κ̄)sech3(κ̄)

3κ̄2

+
15ε2Wi4

κ

��
κ̄2 + 2

�
tanh(κ̄) − 2κ̄

�
sech2(κ̄)

κ̄5 −
5ε2Wi4

κsech3(κ̄) ��9κ̄2 + 2
�

sinh(3κ̄) − 6κ cosh(3κ̄)�
81κ̄5 +

12εWi2
κ(κ̄ − tanh(κ̄))
κ̄5

−
12εWi2

κ tanh(κ̄)
κ̄5 +

12εWi2
κ

κ̄4 −
12εWi2

κ tanh(κ̄)
κ̄3 +

6εWi2
κ

κ̄2 −
6εWi2

κ

��
κ̄2 + 2

�
tanh(κ̄) − 2κ̄

�

κ̄5 ,

a1 = −
5ε2Wi4

κ sinh(4κ̄)sech4(κ̄)
256κ̄3 +

5ε2Wi4
κ tanh(κ̄)sech2(κ̄)

4κ̄3 +
5ε2Wi4

κsech4(κ̄)(sinh(2κ̄) − 2κ̄ cosh(2κ̄))
8κ̄3

−
5ε2Wi4

κsech4(κ̄)(sinh(4κ̄) − 4κ̄ cosh(4κ̄))
256κ̄3 +

5ε2Wi4
κ cosh(4κ̄)sech4(κ̄)

64κ̄2 −
5ε2Wi4

κ cosh(2κ̄)sech4(κ̄)
4κ̄2

− 5
4
ε2Wi4

κsech4(κ̄) + 5ε2Wi4
κ sinh(2κ̄)sech4(κ̄)

2κ̄
−

5ε2Wi4
κ sinh(4κ̄)sech4(κ̄)

16κ̄
+

3εWi2
κ

�
κ̄ + κ̄ tanh2(κ̄) − tanh(κ̄)�

4κ̄3

−
3εWi2

κ tanh(κ̄)
4κ̄3 +

3εWi2
κ cosh(2κ̄)sech2(κ̄)

4κ̄2 + εWi2
κsech2(κ̄) − 3εWi2

κ sinh(2κ̄)sech2(κ̄)
2κ̄

− 1
3
,

a0 = 1 − 3
2
εWi2

κsech2(κ̄) + 1
6
εWi2

κ cosh(3κ̄)sech3(κ̄) + 5
4
ε2Wi4

κsech4(κ̄) − 5
24

ε2Wi4
κ cosh(3κ̄)sech5(κ̄)

+
1

40
ε2Wi4

κ cosh(5κ̄)sech5(κ̄) − εWi2
κ sinh(3κ̄)sech3(κ̄)

18κ̄
+

5ε2Wi4
κ sinh(3κ̄)sech5(κ̄)

72κ̄
−

ε2Wi4
κ sinh(5κ̄)sech5(κ̄)

200κ̄

− tanh(κ̄)
κ̄

+
3εWi2

κ tanh(κ̄)sech2(κ̄)
2κ̄

−
5ε2Wi4

κ tanh(κ̄)sech4(κ̄)
4κ̄

− Q̄. (23)

Although we do not give a closed form explicit solution for Γ, the correct solution can be ob-
tained based on the physical assumptions of the problem considered. For the special case of pure
pressure-driven flow, the velocity profile is given by

u
U
= p̄5

,x

(
1
3
ε2Wi4 ȳ6 − ε

2Wi4

3

)
+ p̄3

,x

(
1
2
εWi2 ȳ4 − εWi2

2

)
+ p̄,x

(
ȳ2

2
− 1

2

)
(24)

with the pressure gradient obtained as a solution of the following equation:

−
p̄,x
3
−

2εWi2p̄3
,x

5
−

2
�
εWi2�2p̄5

,x

7
− 1 = 0, (25)

where p̄,x = p,xH2/ (ηU) and Wi = λU/H with U representing the imposed mean velocity. With the
help of the Bolzano and intermediate value theorems, the existence of a unique solution, p̄,x, for all
εWi2 can be proved.

2. Exponential sPTT model

For the exponential sPTT model, Eq. (19) is still valid, but the analytical solution for the
velocity profile could only be obtained for pure electro-osmotic flow (Γ = 0) and assuming the
approximation sinh (κ̄ ȳ) ≈ 1

2 exp (κ̄ ȳ). This approximation is usually accurate because in most
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micro-device applications, the thickness of the electric double layer is very small, about 1–3 or-
ders of magnitude smaller than the width of the microfluidic channel, hence κ̄ is a large value
(also, the Debye–Hückel linearization requires κ̄ > 10); however, close to the centerline ( ȳ ∼ 0) the
approximation sinh (κ̄ ȳ) ≈ 1

2 exp (κ̄ ȳ) becomes less adequate.
Three approximate solutions were obtained, depending on the type and degree of approxima-

tion used. If we assume sinh (κ̄ ȳ) ≈ 1
2 exp (κ̄ ȳ) everywhere in Eq. (18), then the velocity profile is

given by

ū ( ȳ) =


π
2

(
erfi


B
√
A exp(κ̄)√

2


− erfi


B
√
A exp(κ̄ | ȳ |)√

2

)
2κ̄
√

A
, (26)

where erfi (z) = −ierf (iz) with erf (·) denoting the error function, A = εWi2κ
κ̄2 , and B = κ̄

cosh(κ̄) . It is
important to note that with this approximation the solution is no longer symmetric ( dū

d ȳ | ȳ=0
, 0

although dū
d ȳ | ȳ=0

≈ 0 for κ̄ > 10). However, if the approximation sinh (κ̄ ȳ) ≈ 1
2 exp (κ̄ ȳ) is used only

in the argument of the exponential function of Eq. (18), the symmetry is preserved, and the resulting
solution is given by

ū ( ȳ) = − (exp [−κ̄ (1 + | ȳ |)])
(
2B
√
A

(
exp


1
2
B2A exp [2κ̄ | ȳ |] + κ̄


− exp


1
2
B2A exp [2κ̄] + κ̄ | ȳ |

))  (
4κ̄
√
A
)
−

√
2π

(
−1 + B2A

) *
,
erfi



B
√
A exp [κ̄]
√

2


− erfi



B
√
A exp [κ̄ | ȳ |]
√

2


+
-

 (
4κ̄
√
A
) (27)

which is more accurate than the approximate solution of Eq. (26). For comparison purposes,
Eq. (18) was also solved by numerical integration with second order accuracy, using a sufficiently
small integration step to achieve high accuracy, and the corresponding numerical solution will be
considered as the “exact” solution below,

ū ( ȳ) = −
1
ȳ


exp *

,
2
εWi2

κ

κ̄2

(
Γ ȳ − κ̄ sinh (κ̄ ȳ)

cosh (κ̄)
)2
+
-



(
Γ ȳ − κ̄ sinh (κ̄ ȳ)

cosh (κ̄)
)

d ȳ . (28)

Fig. 2 compares the velocity profiles obtained by the two approximate analytical solutions with the
“exact” numerical solutions, for εWi2

κ = 0.5, and κ̄ = 100, 10, and 1. As expected, for the extreme
case of κ̄ = 1, corresponding to overlapped EDLs, both analytical solutions diverge from the correct
solution, but the solution that preserves the symmetry is more accurate (see Fig. 2(c)). Note that the
Debye–Hückel approximation is only valid for non-overlapped EDLs (κ̄ > 10); therefore, as shown
in Figs. 2(a) and 2(b), for such values of κ̄, the solution that does not preserve symmetry (Eq. (26))
is still reasonably well accurate.

An analytic formula for the velocity profile (with Γ , 0) based on the Taylor series expansion

of the terms
(
Γ ȳ − κ̄ sinh(κ̄ ȳ)

cosh(κ̄)
)

and
(
Γ ȳ − κ̄ sinh(κ̄ ȳ)

cosh(κ̄)
)2

of Eq. (18) is still possible, but because of the
inability of these polynomial functions to represent the exponential growth of sinh (κ̄ ȳ) for large
values of κ̄, the numerical integration is performed instead (as explained above).

Fig. 2(d) shows the velocity profiles obtained by numerical integration for the combined
electro-osmotic/pressure-driven flow for Γ = −1 and 1, where the effect of adverse (Γ > 0) and
favorable (Γ < 0) pressure gradients is clear.

A comparison between solutions for the linear, quadratic, and the exponential sPTT models is
shown in Fig. 3 for εWi2

κ = 0.5 and 1.125. When εWi2
κ increases, the dimensionless flow rate also

increases for the three models. For εWi2
κ = 0.5, the exponential and the quadratic sPTT models

show similar velocity profiles, but as we increase εWi2
κ, the exponential model shows higher

velocities. This happens because all sPTT models show increasing shear-thinning behavior with
increasing εWi2

κ, due to the non-linearity of the term containing the scalar function, with the linear
and quadratic functions approaching less well the exponential function as εWi2

κ increases. Since
the most nonlinear scalar function is the exponential function, the shear thinning effects are more
intense for this model.
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FIG. 2. Dimensionless velocity profiles of pure EO flows (Γ= 0) for the exponential sPTT model (Eqs. (26)–(28)) for
εWi2

κ = 0.5 and different values of κ̄, (a) κ̄ = 100, (b) κ̄ = 10, and (c) κ̄ = 1; and (d) dimensionless velocity profiles computed
numerically for the combined electro-osmotic/pressure-driven flow with Γ=−1 and 1.

The influence of the mixed electro-osmotic/pressure gradient forcings on the stress behavior is
presented in Fig. 4(a), where we show the dimensionless shear stress τ̄xy = τxy/ (ηush/H) profiles
across the channel, at Γ = 0, 1, and −1, for κ̄ = 20 (for the same forcing, the shear stress is the same
for all the selected viscoelastic models). As expected, the shear stress is null at the center of the
channel and has a positive or negative slope depending on whether the pressure gradient is adverse
(Γ > 0) or favorable (Γ < 0), respectively. In the channel core, the variation is linear as is typical of
pressure gradient driven flow, and as the wall is approached the shear stress starts to deviate from

FIG. 3. Dimensionless velocity profiles for the linear, exponential, and quadratic sPTT models for εWi2
κ = 0.5 and

εWi2
κ = 1.125, with Γ= 0 and κ̄ = 100.
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FIG. 4. Dimensionless shear and normal stress profiles across the channel for three different values of Γ and κ̄ = 20: (a) shear
stress τ̄x y and (b) normal stress τ̄xx at Wiκ = 20.

its linear variation due to the sharp velocity gradients associated with the EO forcing. Regarding
the dimensionless normal stress, τ̄xx = τxxH

(ηush) (see Figure 4(b), for the sPTT) we can see that, the
intense effects of the electric field near the wall promote a large increase of the normal stress, as it
varies with the square of the shear stress. Therefore, at the core of the channel, it tends to be small (it
becomes null for Γ = 0), and near the wall it drastically increases.

As found for the shear stress, the behavior at the core of the channel is essentially determined
by the pressure gradient forcing, with the electro-osmotic forcing affecting the normal stress profiles
near the wall. This is well shown in the comparison between the two profiles for |Γ| = 1, consisting
of an adverse (Γ = 1) and favorable (Γ = −1) forcings.

Near the walls, the normal stress behavior is dramatically different because in one case the EO
forcing acts in the same direction as the pressure forcing and the normal stress continues to rise
as the wall is approached; whereas in the other case, the EO forcing acts in the opposite direction
leading to a non-monotonic behavior of the stress.

B. Johnson-Segalman model

For the fully developed flow of a viscoelastic fluid described by the Johnson-Segalman model,
the stress components are given by27,32

τxx = λ
du
dy

τxy (a + 1) , (29)

τy y = λ
du
dy

τxy (a − 1) , (30)
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τxy = η
du
dy
+
λ

2
du
dy

τxx (a − 1) + λ
2

du
dy

τy y (a + 1) . (31)

A combination of Eqs. (29)–(31) and (12) gives the following differential equation for the velocity
gradient:

λ2
(
ϵζExκ

sinh (κ y)
cosh (κH) + p,x y

) �
a2 − 1

� ( du
dy

)2

+ η
du
dy
= ϵζExκ

sinh (κ y)
cosh (κH) + p,x y. (32)

This is a non-linear, first-order, and non-homogeneous differential equation and it can be written in
dimensionless form as

Wi2
κ

κ̄2

(
Γ ȳ − κ̄ sinh (κ̄ ȳ)

cosh (κ̄)
) �

a2 − 1
� ( dū

d ȳ

)2

+
dū
d ȳ
= Γ ȳ − κ̄ sinh (κ̄ ȳ)

cosh (κ̄) . (33)

For pure electro-osmotic flow (Γ = 0), an exact solution for this differential equation can be ob-
tained using the no-slip wall boundary condition, u (1) = 0, which is given by

ū ( ȳ) = cosh (κ̄)
2Wi2

κ (1 − a2)



1
2

ln
 [1 + A1(1)] [1 − A1( ȳ)]
[1 − A1(1)] [1 + A1( ȳ)]


− ln



tanh
(| κ̄ ȳ2 |)

tanh
�
κ̄
2

�





− cosh (κ̄)
2Wi2

κ (1 − a2)


2
(1 − a2)Wi2

κ

cosh (κ̄) {arcsin [A2 ( ȳ)] − arcsin [A2 (1)]}

,

(34)

where

A1 ( ȳ) = cosh (κ̄ ȳ)
1 − 4Wi2

κ (1 − a2) sinh2(κ̄ ȳ)
cosh2(κ̄)

,

A2 ( ȳ) = 2
(1 − a2)Wi2

κ cosh (κ̄ ȳ)
cosh2 (κ̄) + 4Wi2

κ (1 − a2)
.

(35)

For the non-affine PTT model, a more general solution was presented by Dhinakaran et al.22 using
the linear form of the scalar function, and their solution reduces to Eq. (34) by taking the limit
ε → 0 and assuming ξ = 1 − a (Eq. (24) of their work).

For the combined electro-osmotic/pressure driven forcing problem, the direct solution is semi-
analytical; the shear stress is given by Eq. (12) and then Eq. (33) is numerically solved to compute
the velocity profile. For pure pressure-driven flow, the equations have to be renormalized (we use
instead p̄,x = p,xH2/ (ηU), Wi = λU/H) using the mean velocity (U) rather than the Helmholtz-
Smoluchowski velocity and the corresponding solution is given as a particular case of the analyt-
ical solution for the linear PTT model of Alves et al.31 by taking the limit ε → 0 and assuming
ξ = 1 − a. For completeness, we presented the solution for this model, but we do not plot or discuss
its results since this would not add anything qualitatively different.

C. Giesekus model

For the fully developed flow of a Giesekus fluid, the velocity gradient and normal stress
equations are

du
dy
=

2ατxy
η


1 + (2α − 1)


1 −

(
2αλ
η
τxy

)2



(2α − 1) +


1 −

(
2αλ
η
τxy

)2
2 , (36)

τy y =
−1 +


1 −

(
2αλ
η
τxy

)2

2αλ
η

, (37)
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τxx =

(1 − α)

1 −


1 −

(
2αλ
η
τxy

)2

+ 2α2

(
λ
η
τxy

)2

αλ
η


(2α − 1) +


1 −

(
2αλ
η
τxy

)2
 , (38)

with τxy given by Eq. (12) and with Eq. (36) already written explicitly in order to du
dy

. For more
details on the derivation of these equations, refer to the works of Yoo and Choi33 and Ferrás
et al.,34 which present the solutions for the pure pressure-driven flow. Note that two branches of
solutions are possible for the fully developed Giesekus fluid flow, but here only the upper branch
is assumed as discussed by Yoo and Choi.33 Note also that from thermodynamic considerations
together with the assumption of a physical solution, we obtain the restrictions, τxx − τy y ≥ 0 and

1 −
(

2αλ
η
τxy

)2
≥ 0, as discussed by Yoo and Choi.33

Assuming the previous normalizations and a pure electro-osmotic flow, the equation for the
normalized shear rate is given by

dū
d ȳ
= −2ακ̄

sinh (κ̄ ȳ)
cosh (κ̄)


1 + (2α − 1)


1 −

(
2αWiκ

sinh(κ̄ ȳ)
cosh(κ̄)

)2



(2α − 1) +


1 −

(
2αWiκ

sinh(κ̄ ȳ)
cosh(κ̄)

)2
2 (39)

with the following restrictions:

Wiκ ≤
1

2α
coth (κ̄) if

1
2
< α ≤ 1, (40)

Wiκ <


1
α
− 1 coth (κ̄) if 0 < α ≤ 1

2
. (41)

Integration of Eq. (39) assuming no-slip at any of the solid walls, u (±1) = 0, results in the following
velocity profile, ū ( ȳ):

ū ( ȳ) = F ( ȳ) − F (1) (42)

with

F ( ȳ) = aGcG
d2
G

*......
,

−
2
�(2α − 1)bG �

4α2 − 4α − 2d2
G + 1

�
+ d3

G

�
arctanh *

,
(2α−1) tan( t2 )+dG
−(4α2−4α−d2

G
+1)

+
-�

−
�
4α2 − 4α − d2

G
+ 1

��3/2

− (2α − 1)dG cos(t)(−2αbG + bG + dG)
(2α − dG − 1)(2α + dG − 1)(2α + dG sin(t) − 1) + bGt

+//////
-

,

where

t = arcsin
*..
,


1 −

(
2αWiκ sinh(κ̄ ȳ)

cosh(κ̄)
)2

sech2(κ̄) �4α2Wi2
κ + cosh2(κ̄)�

+//
-
,

aG= cosh(κ̄)

α2Wi2

κsech2(κ̄)
(

cosh2(κ̄)
4α2Wi2

κ

+ 1
)
,

bG=2(2α − 1)

α2Wi2

κsech2(κ̄)
(

cosh2(κ̄)
4α2Wi2

κ

+ 1
)
,
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FIG. 5. Dimensionless velocity profiles for pure EOF of a Giesekus fluid (Eq. (43)) for different values of the mobility
parameter, α, for Wiκ = 1, Γ= 0, and κ̄ = 100.

FIG. 6. Variation of the dimensionless normal stresses τ̄xx and τ̄y y of the Giesekus model, along the channel width, for
Γ= 0,1, and −1, α = 0.1, κ̄ = 20, and Wiκ = 0.2.

cG=
2

α2Wi2

κsech2(κ̄)
(

cosh2(κ̄)
4α2Wi2κ

+ 1
)

αWi2
κ


cosh2(k̄)
4α2Wi2κ

+ 1
,

dG=2


α2Wi2

κsech2(κ̄)
(

cosh2(κ̄)
4α2Wi2

κ

+ 1
)
. (43)
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To perform the integration of Eq. (39), two consecutive variable substitutions were used. The first

was s =


1 −
(
2αWiκ

sinh(κ̄ ȳ)
cosh(κ̄)

)2
followed by t = arcsin

(
s cosh(κ̄)√

4α2Wi2κ+cosh2(κ̄)

)
.

The velocity profiles for the Giesekus model are plotted in Fig. 5 illustrating an increase of the
dimensionless velocity with the increase of the mobility parameter, α.

For the normal stresses, a similar behavior to that discussed for the sPTT was obtained. For the
normal stress τ̄y y, similar results are obtained, except that τ̄y y is negative (see Fig. 6), i.e., there is
compression in the y direction. Near the wall this compression increases, leading to an increase of
the fluid stretch (positive τ̄xx) in the x direction, as shown before.

IV. CONCLUSIONS

A series of new analytical and semi-analytical solutions were obtained in this work for channel
flows of viscoelastic fluids in microchannels under the influence of electrokinetic and pressure forc-
ings using the Debye–Hückel approximation. The viscoelastic models used are the quadratic and the
exponential sPTT, the Johnson-Segalman model, and the Giesekus model. For the quadratic sPTT
model, an equation for the inverse problem is also provided (being solved numerically). The effects
of the Weissenberg number and mobility (Giesekus) parameters on the fluid flow are discussed, and
the influence of the applied external electric field on the velocity and stress fields is studied.

For the sPTT models (linear, quadratic, and exponential), the dimensionless flow rate increases
with εWi2

κ on account of the stronger shear thinning, with the exponential model showing higher
velocities along the channel. The shear stress is null at the center of the channel and has a positive or
negative slope depending on whether the pressure gradient is adverse (Γ > 0) or favorable (Γ < 0),
respectively. In the channel core, the shear stress variation is linear as is typical of pressure gradient
driven flow, but as the wall is approached the shear stress deviates from its linear variation due to
the strong nonlinear variation of the electric potential in that region. Regarding the dimensionless
elastic normal stress, τ̄xx, the sharp near wall velocity gradient leads to a very large increase of
the normal stress. The normal stress behavior near the walls is dramatically different from the bulk
of the flow because in one case the EO forcing acts in the same direction as the pressure gradient
forcing, hence the normal stress rises monotonically towards the wall whereas when the EO forcing
acts in the opposite direction to the pressure forcing the normal stress exhibits a non-monotonic
behavior.

For the Giesekus model, the dimensionless velocity increases with the mobility parameter, α,
and the normal stress ,τ̄xx, behaves qualitatively as for the sPTT model.

The normal stress τ̄y y is negative, meaning that there is compression in the y direction. Near
the wall this compression increases, leading to an increase of the fluid stretch in the x direction
(positive τ̄xx), as shown before. Globally, we can conclude that when the electro-osmosis increases,
the magnitude of both normal stresses, τ̄xx and τ̄y y, tends to decrease at the center of the channel
and increase near the walls, due to the sharp gradients at the EDL.
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