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This work describes a theoretical and numerical investigation of viscoelastic fluid flows, considering
slip boundary conditions. The viscoelastic fluid is described by the simplified Phan-Thien-Tanner
model, and the governing equations with slip boundary conditions are solved by a finite volume
method using (1) a recently proposed methodology to control the growth of the slip velocity along
the iterative process (named the SIMPLE-slip method) where some simplifications are assumed at
the wall, and also (2) a slip formulation where the complete stress tensor at the wall is taken into
account. Analytical and semi-analytical solutions are also provided for the fully developed flow
between parallel plates of viscoelastic fluids, assuming Thomson and Troian and Lau and Schowalter
non-linear wall slip models. For verification purposes, the numerical results were compared with
the analytical solution for fully developed slip-flow in a planar channel using two non-linear slip
models. Simulations were carried out in a classical benchmark problem in computational rheology,
the viscoelastic fluid flow in a slip-stick geometry, aiming to identify the influence of slip intensity on
the flow patterns, velocity, and stress growth at the singularity region. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4983062]

NOMENCLATURE

Symbols
ci, i = 1, 2, 3 parameters of the Lau and Schowalter (LS)

slip model
E activation energy
Ei(z) exponential integral
f (trτ) scalar function of the trace of the polymer

extra stress tensor
H half channel width/thickness
knl parameter of the nonlinear Navier slip

(NNS) and LS models
m slip exponent
n normal vector
px streamwise pressure gradient
p pressure
R universal gas constant
Re Reynolds number
t time
T absolute temperature
u velocity vector
ut tangent velocity vector
un normal velocity vector
u streamwise velocity component
v transverse velocity component
uws wall slip velocity vector
U mean velocity
Wi Weissenberg number
x streamwise coordinate

a)Electronic mail: luis.ferras@dep.uminho.pt.
b)Electronic mail: aafonso@fe.up.pt
c)Electronic mail: mnobrega@dep.uminho.pt
d)Electronic mail: fpinho@fe.up.pt

y transverse coordinate

Greek Symbols
α parameter of the Thompson and Troian (TT)

slip model
β viscosity ratio ηs/(ηs + ηp)
δn distance from the wall to the nearest cell centre
γ̇ shear rate
ε parameter of the PTT model
ηp polymer viscosity coefficient
ηs solvent viscosity
λ relaxation time of the fluid
µ(γ̇) viscosity as a function of shear rate
ρ fluid density
τ polymeric extra-stress tensor
τt tangent polymeric extra-stress tensor
τxy shear stress
τxx normal stress
τyy normal stress

I. INTRODUCTION

Wall slip is a relevant phenomenon in many engineering
processes, especially those involving high molecular weight
macromolecules, as occurs, for example, in polymer pro-
cessing as described in a variety of experiments reported in
the literature.1,2 Among others, fluids that exhibit wall slip
are the polyvinyl chloride (PVC), high-density polyethylene,
elastomers, suspensions, and some food products.3

Given the complexity of the constitutive equations
required to represent the rheological behavior of viscoelas-
tic fluids, and also the effects of wall slip, computational
simulations of this type of fluid flows require the use of robust
numerical methods. To handle these problems, a new method
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was recently developed to solve the pressure equation and to
control the growth of the slip velocity throughout the iterative
process, named the SIMPLE-slip method,4 which was imple-
mented in an in-house computational rheology code5 and used
here to predict numerically the slip-stick flow of a simplified
Phan-Thien-Tanner (sPTT) fluid6,7 together with the linear and
nonlinear Navier slip boundary conditions.8 The SIMPLE-slip
method was used with nonlinear slip boundary conditions such
as the nonlinear Navier,8 the Hatzikiriakos,9 and asymptotic
slip models,10 and presented better numerical convergence for
higher values of the Weissenberg number and of the slip coef-
ficient, than the classic explicit implementation of wall slip,4

but it also invoked some simplifying assumptions, which we
show in this work to provide accurate results by comparing it
with a method relying on the full stress tensor at the wall.

As referred above, the two methods (SIMPLE-slip and full
stress tensor at the wall) are compared. The results obtained
show that the full stress tensor at the wall gives rise to conver-
gence difficulties, mainly due to the decoupling between the
stress and velocity variables in the vicinity of the wall, but, no
simplifications are assumed for the stress at the wall, as was
the case of the SIMPLE-slip method.

In this work, we also further extend the use of the
SIMPLE-slip method by implementing it together with the slip
models given by Thomson and Troian (TT)11 (a model that is
controlled by the extent to which the liquid feels corrugations
and relates the degree of slip to the underlying static proper-
ties and dynamic interactions between wall and fluid) and by
Lau and Schowalter (LS)12 (a slip model that was derived by
applying the concept of junctions between the wall and fluid
interfaces and that depends on the shear stress and the temper-
ature), and we also present a detailed study of the slip-stick
flow under partial wall slip boundary conditions.

Additionally, in the analytical study, we present closed
form solutions for the LS12 model after invoking some sim-
plifications. For the cases where an analytical solution was
not obtained with the TT11 and LS12 models, we prove the
existence of unique solutions and provide the range where
they lie, thus facilitating the task of finding solutions using a
semi-analytical methodology.

The Introduction is followed by Section II, where the
relevant governing equations are presented. In Section III,
we present the analytical solution for the fully devel-
oped slip-flow of polymer solutions described by the sPTT
or finitely-extensive-nonlinear-elastic with Peterlin’s closure
(FENE-P)13 models in a planar channel for the TT and LS non-
linear slip models, which is used for verification purposes. In
Section IV, we briefly describe the numerical method used to
solve and couple the Navier-Stokes equations together with the
nonlinear Navier slip boundary condition and present a suit-
able linearization for the TT and LS wall slip velocity models.
In Section V, the results obtained from the simulations of an
sPTT fluid on a slip-stick geometry are discussed and the paper
ends with the conclusions in Section VI.

II. GOVERNING EQUATIONS

The governing equations for isothermal incompressible
fluid flow are the mass conservation equation

∇ · u = 0 (1)

and the linear momentum conservation equation

ρ

(
∂u
∂t

+ ∇ · uu
)
= −∇ p + ∇ · τ + ηs∇

2u, (2)

where u is the velocity vector, p is the pressure, ρ is the fluid
density, ηs is the solvent viscosity, and τ is the extra stress ten-
sor for the polymer, which is given by the following differential
constitutive equation, called the simplified Phan-Thien-Tanner
model (sPTT):6,7

f (trτ) τ + λ

(
∂τ

∂t
+ u · ∇ τ − (∇u)T · τ − τ · ∇u

)
= ηp

(
∇u + (∇u)T

)
. (3)

In Eq. (3), f (trτ) is a function of the trace of the extra
stress tensor, λ is the relaxation time, and ηp is the zero-shear
polymer viscosity. There are two possible functions for f (trτ)
in the sPTT model, but only the original linear function6 is
considered here

f (trτ) = 1 +
ελ

ηp
tr (τ) (4)

with ε representing the extensibility parameter that primarily
influences the elongational behavior of the fluid.

When considering slip boundary conditions at the wall, the
usual Dirichlet velocity boundary condition u = 0 is substituted
by the nonlinear Navier slip (NNS) model8

‖uws‖ = knl ‖τw ‖
m, m > 0, (5)

where uws is the slip velocity vector (ws stands for wall slip),
τw is the tangent stress vector, knl is the slip coefficient that
allows controlling the amount of slip, m is the slip exponent
that gives the model its nonlinearity (knl and m are both model
parameters), and ‖.‖ is the usual l2-norm operator.

The wall slip TT model11 is given by

‖uws‖ = α

(
1 −

‖τw ‖

‖τw ‖c

)−1/2

‖τw ‖ , (6)

where ‖τw ‖c is some critical (maximum) tangent stress (its
value is such that 1 − ‖τw ‖ /‖τw ‖c ≥ 0 is always observed)
and α is a model parameter. Following the notation of Ref. 14,
Eq. (6) can be rewritten as

‖uws‖ = α(1 − β ‖τw ‖)
−1/2 ‖τw ‖ (7)

with β ≡ ‖τw ‖
−1
c and α, β > 0.

The LS slip velocity model12 is given by

‖uws‖ = c1‖τw ‖
m

[
1 − c2 tanh

(
E − c3 ‖τw ‖

RT

)]
, (8)

where c1, c2, and c3 are the empirical coefficients, E is the
activation energy, R is the universal gas constant, and T is the
absolute temperature.

III. ANALYTICAL SOLUTIONS

Assuming a fully developed Poiseuille flow and some sim-
plifications in the slip models, it is possible to obtain a closed
form analytical solution for the inverse problem with the LS
slip model.
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After an adequate normalization of the governing equa-
tions and the slip velocity law (for details, see Appendix A) and

considering that m = 1 and
E+c

′

3

(
p
′

x

)
RT � 1 then tanh

(
E+c

′

3

(
p
′

x

)
RT

)
≈

E+c
′

3

(
p
′

x

)
RT . Under these assumptions, and imposing a specific

flow rate, the solution is given by (see details in Appendix A)

u
′
(
y
′
)
= 0.5p

′

x

(
y
′2 − 1

)
+ 0.5εWi2p

′3
x

(
y
′4 − 1

)
+ c

′

1

(
−p

′

x

) 
1 − c2

*.
,

E + c
′

3

(
p
′

x

)
RT

+/
-


(9)

with

p
′

x =
3

√
−

P
2

+

√
P2

4
+

S3

27
+

3

√
−

P
2
−

√
P2

4
+

S3

27
−

a1

3
(10)

and

a1 = −
5c
′

1c2c
′

3

2RT
,

a2 =
− 1

3 − c
′

1 +
c
′

1c2E
RT

− 2
5εWi2

,

a3 =

(
2
5
εWi2

)−1

,

P = a3 −
a1a2

3
+

2a3
1

27
,

S = a2 −
a2

1

3
,

(11)

where length, velocity, and stresses were scaled with H, U, and
ηU/H, respectively, U is the mean streamwise velocity, H is
the half channel width, and Wi = λU/H is the Weissenberg
number.

For an higher order truncated Taylor series expansion,

tanh

(
E+c

′

3

(
p
′

x

)
RT

)
≈

E+c
′

3

(
p
′

x

)
RT − 1

3

(
E+c

′

3

(
p
′

x

)
RT

)3

, a closed form solu-

tion is still possible because the equation to solve for p
′

x is
quartic

*
,
−

c
′

1c2c
′3
3

3(RT )3
+
-

p
′4
x + *

,

c
′

1c2c
′2
3 E

3(RT )3
−

2
5
εWi2+

-
p
′3
x

+ *
,

c
′

1c2c
′

3

RT
+

c
′

1c2c
′

3E2

3(RT )3
+
-

p
′2
x

+ *
,
−

1
3
− c

′

1 +
c
′

1c2E

RT
−

c
′

1c2E3

3(RT )3
+
-

p
′

x − 1 = 0 (12)

and the procedure to solve this equation for p
′

x can be found in
many algebra books (e.g., Ref. 15).

As shown in Appendix A, for the other slip models, it is
still possible to obtain semi-analytic solutions.

IV. NUMERICAL METHOD
A. SIMPLE-slip

The in-house code used is a three-dimensional time
dependent finite-volume method (FVM),5 with subsequent

improvements described in Refs. 16–19. The FVM code uses
collocated non-orthogonal structured meshes, central differ-
ences for the discretization of diffusive terms, the CUBISTA
scheme19 for the advective terms, with third-order accuracy in
uniform meshes, and a second-order backward implicit time
discretization through the SIMPLEC algorithm20 to ensure
simultaneously the momentum balance and mass conserva-
tion. The Rhie and Chow interpolation method21 is used to
couple the pressure and velocity fields in a collocated mesh
arrangement as described in detail in Ref. 22.

The main modifications required to implement the slip
boundary conditions are briefly explained. To illustrate the
implementation of slip, we assume that the equations are
solved in a simple 2D Poiseuille flow with Cartesian coordi-
nates and orthogonal meshes (cf. Fig 1). Since the slip velocity
vector is tangent to the wall (Fig. 2), the x�component of the
tangent stress vector τt is determined by the projection of τt

in the x�direction.
For the SIMPLE-slip method,4 we assume a Couette flow

in the vicinity of the wall, and the shear stress at the upper wall
is given by

τt = µ (γ̇)
du
dy

�����wall
(13)

with the viscosity function µ (γ̇) depending on the con-
stitutive model used. For the sPTT fluid model, µ(γ̇)wall

≡ ηs +
ηp

1+(α−1)2/3α
, with α ≡

(
θ +
√
θ2 − 1

)1/3
and θ ≡ 1

+ 27ε(λγ̇)2
wall.

23 Under these flow conditions, the nonlinear
Navier slip model takes the form

uws = fwall

(
du
dy

)
knl

�����
µ(γ̇)

du
dy

�����

m

wall
, (14)

where the function fwall is given by

fwall =

{
−1 top wall
+1 bottom wall

. (15)

FIG. 1. Schematic representation of the channel flow geometry.

FIG. 2. Projection of the velocity vector at the center of the computational
cell into its tangent and normal components (left—orthogonal mesh; right—
non-orthogonal mesh).
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The continuity and momentum equations can be written
in Cartesian coordinates as Eqs. (16) and (17), respectively,

∂u
∂x

+
∂v

∂y
= 0, (16)

ρ

[
∂φ

∂t
+
∂ (uφ)
∂x

+
∂ (vφ)
∂y

]
= −

∂p
∂Ψ

+
∂

∂x

(
ηs
∂φ

∂x
+ τΨx

)
+
∂

∂y

(
ηs
∂φ

∂y
+ τΨy

)
, (17)

where φ = u, Ψ = x in the x-momentum equation, and φ = v ,
Ψ = y in the y-momentum equation. The discretization of the
continuity equation in a computational cell P (Fig. 2) results in
the balance of mass fluxes for this cell. These fluxes are normal
to the cell faces and therefore, the slip boundary condition has
no direct influence on this discretized equation (since the walls
are impermeable). On the other hand, the discretized form of
the integrated momentum equation is directly affected by the
slip boundary condition, and for that reason, its discretization
is briefly explained below. The interested reader should consult
Refs. 16 and 17 for further details.

In the vicinity of the wall, only the diffusive term is
affected by the slip velocity. For the sPTT fluid, the discretiza-
tion of this term together with the assumption of Eq. (13) leads
to the following expression:

[(
µ(γ̇)

∂φ

∂y

)
n≡wall

−

(
ηs
∂φ

∂y
+ τΨy

)
s

]
∆x∆t

+

[(
ηs
∂φ

∂x
+ τΨx

)
e
−

(
ηs
∂φ

∂y
+ τΨx

)
w

]
∆y∆t, (18)

where the subscripts n, s, e, and w stand for north, south, east,
and west faces, respectively, and ∆x, ∆y, and ∆t are the mesh
sizes and time step, respectively.

Note that the single term for the north cell face (. . .)n in
Eq. (18) arises from Eq. (13) (the north cell face is a wall
boundary face) and incorporates both the solvent and polymer
contributions via a total viscosity function µ(γ̇)wall. The slip
velocity is then introduced via the term

(
∂φ
∂y

)
n≡wall

. For ease
of understanding, assume the one-sided approximation to the
derivatives, such as the first order scheme of Eq. (19),(

∂φ

∂y

)
wall
=
φwall − φP

∆yf
+ O(4y) (19)

(∆yf stands for half cell width) together with uniform orthog-
onal meshes and central differences to discretize all diffusion-
related derivatives (except at the boundaries). Then, the first
term in Eq. (18) becomes
[
µ(γ̇)wall

∆yf
φn +

ηs

∆y
φS −

(
µ(γ̇)wall

∆yf
+
ηs

∆y

)
φP −

(
τΨy

)
s

]
∆x∆t.

(20)
After grouping this term with all the other terms, the final

form of the discretized momentum equation is rewritten in the
standard compact form (in which, we have substituted the gen-
eral variable φ by the specific variable u since we are analyzing
the x-momentum equation)

aPuP = aEuE+aWuW+aSuS+aNuN +
∆VP (ρu)0

P

∆t
+
δp
δx

+ Sstress︸                                    ︷︷                                    ︸
source terms

,

(21)
where δp

δx represents a general discretization of the pressure
gradient, Sstress represents the stress contribution, ∆VP is the
volume of cell P, the superscript “0” stands for values that
come from the previous iteration, and aE, aS, aW are given by
Eqs. (22)–(24), respectively,

aE = ac
E + ad

E = ac
E +

ηs∆y
∆x

, (22)

aS = ac
S + ad

S = ac
S +

ηs∆x
∆y

, (23)

aW = ac
W + ad

W = ac
W +

ηs∆y
∆x

(24)

with the superscripts c and d referring to the convective
and diffusive contributions, respectively. To account for the
slip boundary condition, which affects aNuN = aNuwall, the
coefficient aN is given by

aN =
µ(γ̇)wall∆x

∆yf
. (25)

Note that N stands for the north cell, which in this case
refers to the boundary wall. This is why aNuN is in the source
term of Eq. (21).

Regarding the convective terms, since they are not affected
by the slip velocity, they are handled as described in Ref. 5.
Finally the central coefficient aP is given as in the standard
procedure17 by

aP = aE + aW + aS + aN +
ρ∆VP

∆t
. (26)

Assuming the approximation of Eq. (19), let i represent the
number of the outer iteration (iteration between the linearized
momentum equation and the pressure correction equation),
then, the discretized slip boundary condition at iteration i is
given by (see Fig. 2)

ui
ws = knl

(
µ(γ̇)w
δn

)m

(ui−1
P − ui−1

ws )���(u
i−1
ws − ui−1

P )���
m−1

. (27)

Here, at each iteration i, the boundary condition is updated
with the velocity from the previous iteration, i � 1. In order to
achieve convergence, the variation of this slip velocity bound-
ary condition along the iterative process must be bounded.
Sudden changes in the boundary condition along the iterative
process will be detrimental for the overall convergence. Due
to this inconsistency, non-physical values may appear, and the
iterative process can diverge. The relationship |uws | < |uP |
seems to be the key to the convergence of the iterative process.4

Therefore, we linearized the previous equation assuming that
uws (at the right-hand-side) is evaluated at the present iteration
as happens with the left-hand-side value, i.e.,

ui
ws = knl

(
µ(γ̇)i−1

w

δn

)m (
ui−1

P − ui
ws

) ���u
i−1
P − ui−1

ws
���
m−1

. (28)

The method is semi-implicit in the linearized velocity
difference, and Eq. (28) can be rewritten as

ui
ws =

a
a + 1

ui−1
P (29)
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with a =
(
knlµ(γ̇)wall/δn

)m���u
i−1
P − ui−1

ws
���
m−1

. In this way, the

absolute slip velocity |uws | is always bounded by ���up
��� because

0 ≤ a/ (a + 1) < 1.
The other two slip models can also be linearized in a

similar way. For the TT slip model, this would be

ui
ws = αµ

(
δn2 − δnβµ ���u

i−1
P − ui−1

ws
���
)−1/2 (

ui−1
P − ui

ws

)
, (30)

which can be rewritten as

ui
ws =

b
b + 1

ui−1
P (31)

with βµ|ui−1
P − ui−1

ws | < δn and b = α(δn2 − δnβµ|ui−1
P

−ui−1
ws |)

−1/2
.

During the iterative procedure, and especially at the begin-
ning, the difference |ui−1

P − ui−1
ws | can be substantial and even-

tually lead to βµ|ui−1
P − ui−1

ws | ≥ δn, and this may result in the
divergence of the computation or in float errors. To avoid this
potential problem, we used classical relaxation when updating
this term at each iteration.

For the LS slip model, the linearization is given by

ui
ws =

c1µ
m

δnm

(
ui−1

P − ui
ws

) ���u
i−1
P − ui−1

ws
���
m−1

×


1 − c2 tanh *.

,

E − c3µ
δn

���u
i−1
P − ui−1

ws
���

RT
+/
-


, (32)

which is equivalent to

ui
ws =

c
c + 1

ui−1
P (33)

with c = c1µ
m

δnm
���u

i−1
P − ui−1

ws
���
m−1

[
1 − c2 tanh

(
E−

c3µ
δn |u

i−1
P −ui−1

ws |
RT

)]
.

The main feature of this method is that the slip velocity is
always smaller (in modulus) than the velocity at the center of
the adjacent computational cell, a requirement for convergence
which is also supported by physical arguments.

To solve the system of equations, we use the following
iterative procedure:

1. Set the boundary conditions, the initial velocity, and
pressure fields;

2. Solve the extra stress equations for the non-Newtonian
model;

3. Compute the slip velocity with the semi-implicit dis-
cretized slip model, Eqs. (29) and (31) or (33);

4. Solve the linearized momentum equation;
5. Solve the pressure correction equation;
6. Correct the velocity and pressure fields;
7. Check for convergence in the residuals of the system of

equations;
8. If convergence is not achieved proceed to step 2, other-

wise the solution was obtained.

Providing that the mesh is orthogonal, a semi-implicit
method to calculate the slip boundary condition could also
be used, as described in Appendix B. The implementation of
the slip boundary conditions can also be generalized for any
slip velocity function, as shown in Appendix C.

1. Theoretical assessment of the validity of the wall
slip Couette flow assumption

This previous method relies on the assumption that the
flow in the vicinity of the wall is essentially viscometric in
the presence of wall slip. Theoretically, unless the flow is
fully developed, this approximation is wrong, as we will now
show.

Consider the constitutive equations in two dimensions
(written in Cartesian coordinates) for the steady 2D Poiseuille
flow (Fig. 1). For the particular case of ε = 0 (Oldroyd-B
model), we have the following system of equations:




τxx + λ
(
u ∂τxx
∂x + v ∂τxx

∂y

)
= 2ηp

∂u
∂x + 2λ

(
τxx

∂u
∂x + τxy

∂u
∂y

)
,

τxy + λ
(
u
∂τxy

∂x + v
∂τxy

∂y

)
= ηp

(
∂u
∂y + ∂v

∂x

)
+ λ

(
τxx

∂v
∂x + τyy

∂u
∂y

)
,

τyy + λ
(
u
∂τyy

∂x + v
∂τyy

∂y

)
= 2ηp

(
∂v
∂y

)
+ 2λ

(
τxy

∂v
∂x + τyy

∂v
∂y

)
.

(34)
For a small layer of fluid in the vicinity of the top wall

(Fig. 2), some simplifications can be performed because v = 0
and ∂v

∂x = 0,




τxx + λu ∂τxx
∂x = 2ηp

∂u
∂x + 2λ

(
τxx

∂u
∂x + τxy

∂u
∂y

)
,

τxy + λu
∂τxy

∂x = ηp
∂u
∂y + λτyy

∂u
∂y ,

τyy + λu
∂τyy

∂x = 2ηp
∂v
∂y + 2λτyy

∂v
∂y .

(35)

a. Fully developed flow. For the case of a fully developed
flow, we have ∂

∂x = 0 (except for the pressure), ∂u
∂y = const,

∂u
∂x = 0 ⇒ u = const (const = constant), and, by continuity,
∂v
∂y = 0.

The previous system of equations is then given by




τxx = 2ληp

(
∂u
∂y

)2
,

τxy = ηp
∂u
∂y ,

τyy = 0.

(36)

This solution is valid for both no-slip and constant slip
boundary conditions and it reveals that in regions where
the flow is fully developed, our approximation (Couette
flow assumption in the vicinity of the wall) is correct since
τxy = ηp

∂u
∂y .

b. Regions where the fluid is not fully developed. Before
showing the influence of the Couette flow approximation in the
vicinity of the wall by performing numerical simulation, we
will first exemplify the effects of this approximation making
use of a simple and particular case.

Since the fluid is allowed to slip with a varying slip veloc-
ity along the wall, then u , 0 and ∂

∂x , 0, leading to the system
of Eq. (35).

In order to attempt a solution for this set of equations, we
need to provide the velocity profile u (x) and ∂u

∂y (x).
Therefore, we now study the solution of this system of

equations for a particular case of Wi = λU/H = 0.5. From
numerical simulations of Poiseuille flow between parallel
plates at Wi = 0.5 (considering the full stress tensor at the wall
and the Navier slip boundary condition), we observed that the
slip velocity is higher at the entrance of the channel and then
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decreases (following a somewhat exponential decay) along the
channel until a fully developed flow is obtained. Therefore, let
us assume an exponential decay function for the following
theoretical analysis:

u (x) = c exp(−x), (37)

where c is a constant that allows a more general velocity
profile. Note that far from the entrance, the slip velocity is
very small (when compared to the high gradients in channel
entrance singularity), but, the region of interest in this analysis
is near the entrance of the channel where the flow is not fully
developed.

From the same numerical simulations, we could also find
an increase of ∂u

∂y (at the wall) along the channel (decrease in

magnitude) with a magnitude ≈ 103 higher than the slip veloc-
ity; therefore, we have considered the following expression for

the velocity normal derivative at the wall:

∂u
∂y

(x) = −103 [
c exp(−x) + 1

]
. (38)

These are the functions that will be used in order to find
an analytical solution for the stresses at Eq. (35).

The equation for the τyy stress component does not depend
directly on the other stress components, and, it can be rewritten
as

τyy + a
∂τyy

∂x
= b (39)

with a = λu(
1−2λ ∂v∂y

) and b =
2ηp

∂v
∂y(

1−2λ ∂v∂y

) ( ∂v∂y can be easily obtained

from continuity and Eq. (37)).
Assuming c = 1 and that the boundary τyy | x=0 = 0 holds

at the inlet boundary, the solution of Eq. (39) is given by

τyy (x) =
exp(− exp(x)

λ )ηpλ
(
− exp( exp(x)

λ + x) − λ exp( exp(x)
λ ) + exp( 1

λ + 2x) (1 + λ)
)

λ3

+
exp(− exp(x)

λ + 2x)ηp

(
Ei

(
exp(x)
λ

)
− Ei

(
1
λ

))
λ3

, (40)

where Ei (z) stands for the exponential integral

Ei (z) =
1
2

(
ln (z) − ln

(
1
z

))
+
∞∑

m=1

zm

mm!
+ γ, (41)

which is a particular case of the more general hypergeometric functions, and, γ is the Euler-Mascheroni constant.
This equation can be used to find the τxy stress component (second differential equation from Eq. (35)), which is given by

(assuming τxy | x=0 = 0)

τxy (x) = −
500 exp(− exp(x)

λ )ηpλ exp( exp(x)
λ )

(
−3 exp(x) − 2 exp(2x) − 3λ − 2λ exp(x) + 2λ2

)
3λ3

−
500 exp(− exp(x)

λ )ηpλ exp( 1
λ )

(
3 exp(2x) + 2 exp(3x) + 3λ exp(2x) + 2λ exp(3x) − 2λ2

)
3λ3

−
500 exp(− exp(x)

λ + 2x) (3 + 2 exp(x)) ηp

(
Ei

(
exp(x)
λ

)
− Ei

(
1
λ

))
3λ3

. (42)

By letting x → +∞, we can easily show that as we move
away from the channel entrance we are no longer under the
strong influence of the initial boundary conditions, and,

τyy (x)→ 0, (43)

τxy (x)→ ηp
∂u
∂y

. (44)

In this way, the fully developed solution (Eq. (36)) is
recovered.

The analytical solution for τxx is also possible, after the
substitution of Eqs. (40) and (42) into Eq. (35). Note that for
this specific problem, only τxy and τyy are required for the
momentum equation and τxy for the slip velocity model.

In Fig. 3, we can see the variation of τyy (Eq. (40)) and τxy

(Eq. (42)) along the channel wall. A drastic increase (in magni-
tude) at the entrance of the channel occurs for both quantities,
followed by an exponential decrease (in magnitude).

When we assume a Couette flow in the vicinity of the
wall, τxy should be constant along the channel wall, and, from
this theoretical analysis, the correct boundary condition at the
entrance of the channel would be τxy | x=0 = ηp

∂u
∂y . When solv-

ing the system of governing equations for the complete channel
geometry, we have an evolution equation for the stresses; there-
fore, we can impose a null shear stress at the entrance that will
result in the increase of the shear stress along the channel, until
it fully develops. Therefore, we expect a similar behavior to
the one obtained for the slip velocity case, shown in Fig. 3.

Although our Couette-slip approximation does not match
exactly the analytical solution in regions where the flow is
not fully developed, under certain assumptions, it is a good
approximation (as shown later). Due to the complexity of the
system of differential equations involved (especially if ε , 0),
a full theoretical analysis is difficult.

This theoretical analysis is restricted to a near wall
region, thus neglecting the influence of the rest of the flow
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FIG. 3. Variation of the stresses (a) τxy, Eq. (42), and (b) τyy, Eq. (40), along
the channel wall (left: zoomed view of the stress development near the entrance
of the channel).

domain. Next the Couette flow assumption at the wall will be
numerically compared with a full wall stress approximation by
performing numerical simulations for the slip-stick benchmark
problem.

B. Slip formulation with the complete stress
vector at the wall

The slip method previously described relies on the
assumption that the flow in the vicinity of the wall is essen-
tially viscometric; now we use the complete stress tensor
formulation, where the stress tensor at the wall is obtained
by extrapolation from the inner cells.

1. Proposed method

Only the diffusive term of the momentum equation needs
to be modified, in order to implement the slip boundary con-
ditions. If the total stress tensor at the wall is to be considered,
the discretization of Equation (17) results in the following
equation:

[(
ηs
∂φ

∂y
+ τΨy

)
n≡wall

−

(
ηs
∂φ

∂y
+ τΨy

)
s

]
∆x∆t

+

[(
ηs
∂φ

∂x
+ τΨx

)
e
−

(
ηs
∂φ

∂y
+ τΨx

)
w

]
∆y∆t. (45)

The terms of interest are the ones evaluated at the wall,
ηs

∂φ
∂y n≡wall

and τΨyn≡wall.

For the evaluation of ηs
∂φ
∂y n≡wall

, a procedure simi-
lar to that presented in the SIMPLE-slip method (see Eqs.

(19)–(26)) can be used, with the constant viscosity ηs instead of
µ(γ̇).

In order to capture the complete stress at the wall(
τΨyn≡wall

)
, we used linear extrapolation of the stresses to the

wall from stresses at the adjacent inner cells, where these have
been obtained from the numerical solution of the constitutive
equation.

For the evaluation of the slip velocity models via any of
the chosen slip models (Eqs. (5), (6), and (8)), we calculate the
tangent stress vector at the wall by performing the projection
of the stress vector into the wall tangent direction using the
following formula:

τw = τ · n − ((τ · n) · n) n, (46)

where n is the unit normal vector at the boundary.
The method proved to be unstable (numerical wiggles

appear at the entrance of the channel), especially in the pres-
ence of slip, therefore, the slip velocity evolution had to be
highly relaxed.

To control the slip velocity growth, a method similar
to that of Ref. 4 could also be used (see Appendix C) but
with caution since this kind of relaxation is very sensitive
to numerical errors when the full tangent stress at the wall
is considered. Instead, the classical use of under-relaxation,
ui
ws = Rui−1

ws + (1 − R) ui
ws, with 0 < R < 1, is to be preferred

when updating the slip velocity in the iterative procedure. The
relaxation factor R can also be a function of the difference
between the slip velocity and the velocity at the center of the
nearest computational cell, ���u

i−1
P − ui

ws
���, to account for the need

of stronger relaxation at the beginning of the iterative process.
The iterative procedure (algorithm) is the same as the

one presented before except that at step 3 the slip velocity
is obtained making use of Eqs. (5) and (6) or (8) together with
Eq. (46).

a. Remark. In regard to the methods proposed above, it
is important to emphasise that the simplified method is correct
for Newtonian and non-Newtonian fluids in regions of fully
developed flow and approximate elsewhere. In addition, it is a
very stable method offering no convergence problems. By con-
trast, the method relying on the full stress equations is valid
everywhere but its drawback is that it is unstable, in particu-
lar in geometries with singularities. Furthermore, it requires a
more refined mesh near the wall than the simplified method,
in order to obtain a smooth solution (note that in the Couette
flow approximation in the vicinity of the wall, there is a direct
relationship between velocity and stress at the wall, while, in
this case (full stress tensor at the wall), we need to perform an
extrapolation of the stress). Since the simplified method was
only analyzed theoretically on the basis of an assumed velocity
variation, we next compare its predictions with those by the
exact method in order to better assess its validity in regions
where the flow is not fully developed.

V. RESULTS AND DISCUSSION
A. Code verification

To validate the implementation of the non-linear slip
models, we compare their numerical predictions with the
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FIG. 4. Comparison between semi-analytical solutions and the simulated
results obtained for a fully developed Poiseuille flow, under the influence of
three different slip boundary conditions: LS, TT, NLN, for Wi = 1, ε = 0.25,
k
′

nl = 2.53, and m = 1.5 for the NLN slip model, α
′
= 0.4 and β

′
= 4.0× 10−4

for the LS slip model, and, c
′

1 = 0.24, c2 = 0.59 × 10�6, c
′

3 = 0.024, RT

= 3.43 × 103 Jmol�1, and E = 5.0 × 103 Jmol�1K�1 for the TT slip model.

FIG. 5. Schematic representation of the slip-stick geometry.

analytical and semi-analytical solutions for fully developed
Poiseuille flow between parallel plates (see Appendix A), with
the corresponding simulation results (cf. Fig. 4).

The simulations were performed for the sPTT model
with Wi = 1 and ε = 0.25, and the slip coefficients used
were k

′

nl = 2.53 and m = 1.5 for the non-linear Navier slip
model, α

′

= 0.4 and β
′

= 4.0× 10−4 for the LS slip model,
and, c

′

1 = 0.24, c2 = 0.59 × 10�6, c
′

3 = 0.024, RT = 3.43 × 103

Jmol�1, and E = 5.0 × 103 Jmol�1K�1 for the TT slip model. A
good agreement between the analytical and numerical results
for the three non-linear slip models is seen in the profiles pre-
sented in Fig. 4, showing that the implementation of these mod-
els is in agreement with the theoretical results (the numerical
results were obtained with both SIMPLE-slip and extrapolated
full stress tensor, but there were no differences). Neverthe-
less, note that these numerical results were obtained for a fully
developed flow region.

FIG. 6. Detailed view of mesh M3 near the singularity point.

B. Comparison between the numerical methods

In order to compare the two numerical methods (Cou-
ette flow assumption and stress tensor extrapolation), we per-
formed simulations for the 2D slip-stick flow shown in Fig. 5,
considering the sPTT model.

The computational domain consists of two regions: the
inlet region I bounded by two symmetry planes and the outlet
region II bounded by a solid wall and a symmetry plane at the
top and bottom boundaries, respectively. Variable U stands for
the imposed mean velocity and three meshes were used with
the geometrical properties described in Table I.

The finest mesh (M4) employed doubles the number of
cells of the mesh used in Ref. 5 (M3), for which the results
were shown to be mesh independent for the no-slip case at the
exit channel. In Table I, fx and fy stand for the ratio between
the cell sizes of two consecutive cells while nx and ny stand
for the number of cells in the x and y directions, respectively.
A zoomed view of mesh M3 can be seen in Fig. 6.

We used the linear Navier slip law, a solvent viscosity
ratio of β = ηs

ηs+ηp
=

ηs
η =

1
5 , ε = 0.25, a constant Reynolds

number Re = ρUH/η = 20, and a Weissenberg number, Wi
= λU/H = 2, since a smaller Wi number would possibly hide
differences between the two methods. Four different values
of the slip coefficient were used, k

′

nl = 0 (the no slip case),
k
′

nl = 0.0025, 2.5, and 2500. These results are shown in terms
of contour lines for the variables u, v , τxx, τxy, and τyy, for
small (Figs. 7(a) and 7(b)) and high (Figs. 8(a) and 8(b)) slip
coefficients.

For all the slip coefficients shown in Figs. 7 and 8, we can
see that the contour lines obtained by the different methods
are almost superimposed, especially for the streamwise (the
strongest) velocity component, u. For the transverse velocity
component v , there are small differences near the singular-
ity (these differences also occur for the no-slip in a smaller
scale and are restricted to the region formed by the two cells
used in the linear extrapolation). Note that we are showing
the absolute difference between the two methods; therefore,
it is expected for the differences to be greater in the trans-
verse velocity component because it shows very small velocity

TABLE I. Mesh characteristics for the slip-stick geometry.

M1 M2 M3 M4

Region f x f y nx ny Fx f y nx ny f x f y nx ny f x f y nx ny

I 0.7901 0.8697 18 15 0.8889 0.9326 36 30 0.9428 0.9657 72 60 0.9710 0.9827 144 120
II 1.1994 0.8697 25 15 1.0952 0.9326 50 30 1.0465 0.9657 100 60 1.0230 0.9827 200 120

Number of cells= 645 2580 10320 41280
∆xmin/H = ∆ymin/H= 0.02 0.01 0.004 0.004
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FIG. 7. Contour lines for the velocity and stress com-
ponents using the SIMPLE-slip method (solid line) and
the extrapolation of the stress vector at the wall (dashed
lines) for β = ηs

ηs+ηp
=

ηs
η =

1
5 , ε = 0.25, Re = 20, Wi

= 2, and no-slip or small slip velocity (a) k
′

nl = 0 and (b)

k
′

nl = 0.0025.

values when compared to u. Hence, this absolute differ-
ence corresponds to a smaller relative difference between the
two methods. Far from the wall, there are also some small
differences due to the coarser mesh there.

For the no-slip and small slip velocity (Figs. 7(a) and 7(b))
and for the high slip velocity cases (Fig. 8(b)), there is a good
agreement between the stress contours obtained with the two
different methods, whereas for k

′

nl = 2.5, some small differ-
ences are encountered in the vicinity of the wall for τxx, τxy,
and τyy. Mesh refinement tests showed that these differences
are restricted to a thin near wall layer in the cells used for the
extrapolation of the stress tensor, hence, the differences should
be suppressed with further mesh refinement.

Therefore, we may conclude that the approximation used
in the SIMPLE-slip method is a good approximation for the
tangent stress at the wall, at least for the flow characteris-
tics studied here, with the main differences between the two
methods restricted to a small area in the vicinity of the wall.

C. Elasticity effects

To evaluate the influence of the slip velocity in the dynam-
ics of viscoelastic fluid flow in a geometry that possesses a
singular point, we performed additional simulations. For the
sake of compactness, only the results for the NLN model are
presented. These simulations were carried out using the extrap-
olation of the stress tensor method, but, since no considerable
flow differences were obtained between the two numerical
methods, the SIMPLE-slip technique could have also been
used, especially because it is more stable.

The simulations were performed for the sPTT model with
a solvent viscosity ratio of β = 1

5 and ε = 0.25 at a constant
Reynolds number Re = 20 and a varying Weissenberg number,
Wi = λU/H ∈ {0.25, 0.5, 1.0, 2.0}. For the linear slip model,
implemented via Eq. (14), convergence could be achieved for
all the Weissenberg numbers analyzed. As expected, an easier
convergence was obtained for higher slip velocities (high slip
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FIG. 8. Contour lines for the velocity and stress com-
ponents using the SIMPLE-slip method (solid line) and
the extrapolation of the stress vector at the wall (dashed
lines) for β = 1

5 , ε = 0.25, Re = 20, Wi = 2, and high slip

velocity, (a) k
′

nl = 2.5 and (b) k
′

nl = 2500.

coefficients) because the slip velocity reduces the effect of the
singularity. For the nonlinear model, the results were quali-
tatively similar to those obtained with the linear slip model
except that convergence was more difficult, not because of the
singularity but due to the method employed, as explained in
Ferris et al.4

In order to quantify the effect of slip velocity on the
flow patterns, the streamlines for two different values of the
slip coefficient are shown in Fig. 9. For the case k

′

nl = 0.0025
(small slip velocity), curved streamlines appear in the slip-
friction region because of the fluid viscosity effects and the
restriction promoted by the wall (Fig. 9(a)) that induce flow
deceleration. The streamlines for the higher slip coefficient,
k
′

nl = 2500, are almost horizontal because for this case the
wall restrictive effect is negligible, thus the curvature of the
streamlines tends to disappear (Fig. 9(b)) due to the negligible
deceleration.

The stress field was also analyzed, together with the
characterization of the flow type parameter, ξ, defined as24

ξ =
|D| − |Ω|
|D| + |Ω|

, (47)

where |D| and |Ω| represent the magnitudes of the rate of
deformation and vorticity tensors, respectively, given by

D =
1
2

[
∇u + (∇u)T

]
, Ω =

1
2

[
∇u − (∇u)T

]
, (48)

which can be calculated as

|D| =

√
1
2

(
D : DT

)
=

√
1
2

∑
i

∑
j

D2
ij,

|Ω| =

√
1
2

(
Ω : ΩT

)
=

√
1
2

∑
i

∑
j

Ω2
ij.

(49)

The flow type parameter varies from ξ =−1, which cor-
responds to solid-like rotation, up to ξ = 1, for pure exten-
sional flow. Shear flow is characterized by ξ = 0. In Fig. 10,
we show the contour plots of the τxx component (polymeric
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FIG. 9. Computed streamlines for the sPTT model with a solvent viscosity
ratio of β = 1

5 and ε = 0.25 at a constant Reynolds number Re = 20, Wi = 2,

and (a) k
′

nl = 0.0025 and (b) k
′

nl = 2500.

contribution) and flow type parameter, ξ, for three different
slip coefficients, whereas Figs. 11 and 12 show the corre-
sponding contour plots for τxy and τyy. For lower slip velocity
coefficients, the region of shear-dominant flow is concen-
trated near the channel wall, while the extension flow is
dominant close to the symmetry boundaries. Note also that
the region of extension-dominated flow extends downstream
as one approaches the outlet channel centerline because the
momentum diffusion effect takes longer to act when the shear
rate is low. Increasing the slip velocity coefficient enlarges
the shear-dominated flow region also in the vicinity of the
stagnation point, because the suppression of the wall braking
effect tends to reduce the flow extensional region deformation,
and thus increases the relevance of shear. Hence for higher
slip velocity coefficients, the extension-dominant flow is lim-
ited to a thinner region near the walls, which very slowly and
progressively grows downstream, again a consequence of the
suppression of the wall braking effect. This is actually the

region that at small slip coefficients exists near the center of the
channel, which moves towards the wall, and becomes thinner,
as the slip coefficient increases. The τxx component changes
drastically with the increase of slip. Notice that for the Newto-
nian fluid case, with no-slip, this stress component is negative
(compressive) in the region of fluid near the wall, as explained
in Ref. 5, whereas for viscoelastic fluids, in the presence of
low slip velocity (Fig. 10(a)), this stress component becomes
positive (traction).

However, on increasing the slip velocity, the normal stress
τxx near the wall becomes negative, as verified for Newtonian
fluids (Figure 10(c) and Ref. 5). This happens because of the
low slip coefficients and the restrictive effect of the wall noticed
far upstream, promoting a significant deceleration of the fluid
close to the upper boundary at the inlet region. Then, at the
outlet region, the fluid is accelerated (to achieve a fully devel-
oped velocity profile) promoting the appearance of positive
normal stresses. For high slip coefficients, the restrictive effect
of the wall is much smaller, leading to a smoother evolution
of the velocity that is progressively and slowly reduced near
the wall, with the consequent negative normal stresses. For the
τxy component, on increasing the slip coefficient, the negative
shear stress values decrease in magnitude in the wall region,
as shown in Fig. 11(c). This happens because the velocity pro-
file tends to a plug, which corresponds to a negligible tangent
stress as the slip velocity increases (cf. Figs. 11(b) and 11(c)).

For the contour plots of τyy, shown in Fig. 12, the qual-
itative behavior is essentially the same on increasing the slip
velocity but a reduction in magnitude is visible again asso-
ciated with the progression towards a plug velocity profile.
Interestingly, for the higher slip velocity coefficient, the con-
tour plot of τyy is similar to the contour plot of τxx, but with
opposite sign, as also happens for Newtonian fluids.5

FIG. 10. Representation of contour lines (τxx[Pa])
superimposed with the flow type ξ contours (in color)
for the linear slip model: (a) k

′

nl = 0.0025, (b) k
′

nl = 2.5,

and (c) k
′

nl = 2500. sPTT model with a solvent viscos-

ity ratio of β = 1
5 and ε = 0.25 at a constant Reynolds

number Re = 20 and Wi = 2.
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FIG. 11. Representation of contour lines
(
τxy[Pa]

)
superimposed with the flow type ξ contours (in color)
for the linear slip model: (a) k

′

nl = 0.0025, (b) k
′

nl = 2.5,

and (c) k
′

nl = 2500. sPTT model with a solvent viscos-

ity ratio of β = 1
5 and ε = 0.25 at a constant Reynolds

number Re = 20 and Wi = 2.

FIG. 12. Representation of contour lines
(
τyy[Pa]

)
superimposed with the flow type ξ contours (in color)
for the linear slip model: (a) k

′

nl = 0.0025, (b) k
′

nl = 2.5,

and (c) k
′

nl = 2500. sPTT model with a solvent viscos-

ity ratio of β = 1
5 and ε = 0.25 at a constant Reynolds

number Re = 20 and Wi = 2.

VI. CONCLUSIONS

In this work, the numerical implementation of the slip
boundary condition in a viscoelastic flow solver, based on the
finite volume method, was described for three different slip
velocity models. Two different implementations were used
and compared, the SIMPLE-slip formulation and a formu-
lation where the full stress vector is considered at the wall.
The results obtained with both approaches are in general

similar, with the exception of small differences near the
walls, where the slip boundary conditions are employed.
However, the SIMPLE-slip method proved to be more sta-
ble. The code was then employed to study the effect of the
slip velocity on the slip-stick flow. This study allowed us
to verify that the shear dominant regions, which are located
near the wall, for low slip magnitudes, expand to cover the
majority of the flow channel, when slip increases. Moreover,
all the stress component magnitudes reduce with the slip
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growth, mainly due to the suppression of the wall restrictive
effect.

Semi analytical solutions were obtained for the 2D fully
developed Poiseuille flow of viscoelastic fluid following the
simplified Phan-Thien-Tanner model, under the influence of
Thomson and Troian, Lau and Schowalter, and nonlinear
Navier slip models. For a specific range of model parame-
ters, an analytical solution was devised for the same problem
with the Lau and Schowalter slip model.
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APPENDIX A: ANALYTICAL SOLUTIONS OF FULLY
DEVELOPED CHANNEL FLOW FOR THE sPTT AND
FENE-P VISCOELASTIC MODELS WITH NONLINEAR
WALL SLIP BOUNDARY CONDITIONS

Considering a 2D Cartesian coordinate system (x, y) and
a fully developed Poiseuille flow (see Fig. 1), the governing
equations can be simplified because

∂/∂x = 0 (except for pressure) , v = 0, ∂p/∂y = 0. (A1)

This leads to the following simplification in the momen-
tum equation:

τxy = pxy, (A2)

where px stands for the pressure gradient in the x direction and
τxy is the shear stress.

Under the same assumptions, the system of rheological
constitutive equations for the simplified PTT model can be
simplified to

f
(
τxx + τyy

)
τxx = 2λτxy

(
du
dy

,

)
(A3a)

f
(
τxx + τyy

)
τyy = 0, (A3b)

f
(
τxx + τyy

)
τxy = η

(
du
dy

)
+ λτyy

(
du
dy

)
. (A3c)

From Eq. (A3b), we obtain τyy = 0 since f
(
τxx + τyy

)
, 0.

Dividing Eq. (A3a) by Eq. (A3c), the former becomes

τxx = (2λ/η)
(
τxy

)2
. If Eqs. (A3a)–(A3c) are combined with

the momentum equation, and after normalization, the follow-
ing system is obtained:

τ
′

xy = p
′

xy
′

, (A4a)

τ
′

xx = 2Wi
(
p
′

xy
′
)2

, (A4b)

τ
′

yy = 0, (A4c)(
du
′

dy′

)
= p

′

xy
′

+ 2εWi2
(
p
′

xy
′
)3

(A4d)

with length, velocity, and stresses scaled with H, U, and ηU/H,
respectively, where U is the mean streamwise velocity, H is
the channel half width (see Fig. 1), and Wi = λU/H is the
Weissenberg number.

The boundary conditions at the lower
(
y
′

= −1
)

and upper

walls
(
y
′

= +1
)

are written in a dimensionless form as

u
′

ws = u
′

(±1) = −k
′

nlp
′

x
���p
′

x
���
m−1

, (A5)

u
′

ws = u
′

(±1) =
−α

′

p
′

x√
1 − β′ ���p

′

x
���
, (A6)

u
′

ws = u
′

(±1) = −c
′

1p
′

x
���p
′

x
���
m−1


1 − c2 tanh *.

,

E − c
′

3
���p
′

x
���

RT
+/
-


,

(A7)

for the nonlinear Navier, the TT, and LS slip models, respec-
tively, and k

′

nl = kUm−1(η/H)m, α
′

= α (η/H), β
′

= β (ηU/H),
c
′

1 = c1Um−1, and c
′

3 = c3 (ηU/H).
Integrating Eq. (A4d) gives

u
′
(
y
′
)
= 0.5p

′

xy
′2 + 0.5εWi2p

′3
x y

′4 + d, d ∈ R, (A8)

where we have two unknowns, the dimensionless pressure gra-
dient, p

′

x and the integration constant d. To find d, we can make
use of the slip boundary condition u

′

ws given by Eqs. (A5)–
(A7). Therefore, the solution for the direct problem is given
by

u
′
(
y
′
)
= 0.5p

′

x

(
y
′2 − 1

)
+ 0.5εWi2p

′3
x

(
y
′4 − 1

)
+ u

′

ws.

(A9)

By applying a constant flow rate per unit depth, Q = 2U H,
and integrating Eq. (A9) over half-width of the channel

∫ 1

0
u
′
(
y
′
)

dy
′

= 1, (A10)

the following equation is obtained to determine the other
unknown, the dimensionless pressure gradient p

′

x,

(−2/5) εWi2p
′3
x − (1/3) p

′

x − 1 + u
′

ws = 0. (A11)

The strong nonlinearity of Eq. (A11) in p
′

x, mainly due to
the u

′

ws term, makes it difficult to find closed form solutions
for this equation.

For the nonlinear Navier slip model, these solutions were
already reported in the literature and can be found in Ref. 25.
For the other two slip models, one can only prove the existence
and uniqueness of a solution and provide the range where the
solution lies (for the LS slip model an approximate particular
solution can still be obtained). In this way, it is easy to find the
solution using a numerical method to solve the corresponding
transcendent equations. For this purpose, it is useful to identify
the solution range that is given below for the TT and LS slip
models.
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Without loss of generality we assume that the velocities
are positive.

1. TT slip model

Let f
(
p
′

x

)
= (−2/5) εWi2p

′3
x − (1/3) p

′

x−1− α
′
p
′

x√
1+β′p

′
x

, then

df
(
p
′

x

)
dp
′

x
=
−6
5
εWi2p

′2
x −

1
3
−
α
′

√
1 + β

′p
′

x

1 + β
′p
′

x

+
αβp

′

x

2
(
1 + β

′p
′

x

) √
1 + β

′p
′

x

< 0. (A12)

Since f (−3) > 0 and f (0) = −1< 0 (providing that

β
′

< 1/3) and
df

(
p
′

x

)
dp
′
x

< 0, the intermediate value theorem

together with Rolle theorem guarantees the existence of a
unique solution in the range [−3, 0].

2. LS slip model

Let g
(
p
′

x

)
= (−2/5) εWi2p

′3
x − (1/3) p

′

x − 1 + c
′

1

(
−p

′

x

)m

[
1 − c2 tanh

(
E+c

′

3

(
p
′

x

)
RT

)]
, then

dg
(
p
′

x

)
dp
′

x
=
−6
5
εWi2p

′2
x −

1
3
− mc

′

1

(
−p

′

x

)m−1

×


1 − c2 tanh *.

,

E + c
′

3

(
p
′

x

)
RT

+/
-



−
c
′

1c2c
′

3

(
−p

′

x

)m

RT cosh2
(

E+c
′

3

(
p
′
x

)
RT

) < 0. (A13)

Since g (−3) > 0 and g (0) = −1 < 0 and
df

(
p
′

x

)
dp
′
x

< 0,

again there is a unique solution in the range [−3, 0].

For small values of the tanh argument,
E+c

′

3

(
p
′

x

)
RT � 1,

we can approximate tanh

(
E+c

′

3

(
p
′

x

)
RT

)
as

E+c
′

3

(
p
′

x

)
RT (linear) or

as
E+c

′

3

(
p
′

x

)
RT − 1

3

(
E+c

′

3

(
p
′

x

)
RT

)3

(truncated series expansion). With

these approximations, and assuming m = 1 in Eq. (A11), the
following equation is obtained:

−
2
5
εWi2p

′3
x +

c
′

1c2c
′

3

RT
p
′2
x + *

,
−

1
3
− c

′

1 +
c
′

1c2E

RT
+
-

p
′

x − 1 = 0.

(A14)
This equation can be written in a more compact form as

p
′3
x + a1p

′2
x + a2p

′

x + a3 = 0, (A15)

and the relevant real solution is given by the Cardano-Tartaglia
formula

p
′

x =
3

√
−

P
2

+

√
P2

4
+

S3

27
+

3

√
−

P
2
−

√
P2

4
+

S3

27
−

a1

3

(A16)

with

a1 = −
5c
′

1c2c
′

3

2RT
,

a2 =
− 1

3 − c
′

1 +
c
′

1c2E
RT

− 2
5εWi2

,

a3 =

(
2
5
εWi2

)−1

,

P = a3 −
a1a2

3
+

2a3
1

27
,

S = a2 −
a2

1

3
.

(A17)

The previous equations are also applicable for the FENE-P
constitutive equation provided the appropriate change of
variables is used, as discussed in Ref. 26.

APPENDIX B: NUMERICAL IMPLEMENTATION
OF THE TT AND LS SLIP MODELS USING
A SEMI-IMPLICIT METHOD BASED ON THE
SOLUTION OF A TRANSCENDENT EQUATION

The benefit of using this method was already explained in
Ref. 4 for the nonlinear Navier slip model. Here we only show
how to apply it for the TT and LS slip velocity models.

The slip boundary conditions could be implemented con-
sidering an implicit slip velocity on both sides of the equation
for each of the wall boundary cells at each iteration i

ui
ws = αµ

(
δn2 − δnβµ ���u

i−1
P − ui

ws
���
)−1/2 (

ui−1
P − ui

ws

)
, (B1)

ui
ws =

c1µ
m

δnm

(
ui−1

P − ui
ws

) ���u
i−1
P − ui

ws
���
m−1

×

[
1 − c2 tanh

(
E

RT
−

c3µ

δn RT
���u

i−1
P − ui

ws
���

)]
, (B2)

and then use a numerical method to find the solution of these
transcendent equations (Eq. (B1) for the TT and Eq. (B2) for
the LS slip models).

The iterative procedure is very similar to that in Section
III, except that step 3 is now: “3. Compute the slip velocity by
solving the transcendent equation for the boundary (Eq. (B1)
for the TT model and Eq. (B2) for the LS model).”

The bisection method was the selected algorithm to find
the roots of these equations. In the overall numerical proce-
dure, for each wall boundary cell and at each iteration i, the
solution is chosen after n internal iterations (bisection method
iterations) such that (b − a) /2n is below a given error ([a; b]
are the initial bounds for the solution ui

ws).
For these two slip boundary conditions, it can be proved

analytically that a unique solution, ui
ws, exists and that this

solution verifies the condition ui
ws < ui−1

P .

1. Proof of existence of a unique solution
for the LS model

First, the intermediate value theorem will be used to
demonstrate the existence of the solution, and then, with the
Rolle theorem, we will prove its uniqueness.

We want to prove that
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∃
(
ui
ws

)1
: ui

ws =
c1µ

m

δnm

(
ui−1

P − ui
ws

) ���u
i−1
P − ui

ws
���
m−1

[
1 − c2 tanh

(
E

RT
−

c3µ

δn RT
���u

i−1
P − ui

ws
���

)]

∧0 ≤ ���u
i
ws

��� ≤
���u

i−1
P

��� , ∀c1, c2, c3, RT , m, E, δn, ui−1
P ∈ R+

0 .

(B3)

Without the loss of generality assume that ui
ws and ui−1

P are both positive.
Let us create a function f (ui

ws) given by

f
(
ui
ws

)
= ui

ws −
c1µ

m

δnm

(
ui−1

P − ui
ws

)m
[
1 − c2 tanh

(
E

RT
−

c3µ

δn RT

(
ui−1

p − ui
ws

))]
. (B4)

Since f (ui−1
P )f (0) < 0 and f (·) is a real-valued continuous function on the interval

[
0; ui−1

P

]
, the intermediate value theorem

implies that ∃ui
ws : f (ui

ws) = 0. Then, because f ′
(
ui
ws

)
< 0 for ui

ws ∈
[
0; ui−1

P

]
, using the Rolle theorem we conclude that the

solution is unique.
For m = 1, we can narrow down the range where the solution lies.
Assuming c2 tanh

(
E

RT −
c3µ
δn RT

���u
i−1
P − ui

ws
���
)
< 1, then

ui
ws =

c1µ

δn

(
ui−1

P − ui
ws

) [
1 − c2 tanh

(
E

RT
−

c3µ

δn RT
���u

i−1
P − ui

ws
���

)]
≤

c1µ

δn
���u

i−1
P − ui

ws
��� (B5)

meaning that

ui
ws <

c1µ
δn

1 + c1µ
δn

ui−1
P . (B6)

In general, for ui
ws positive or negative, we have

���u
i
ws

��� <
c1µ
δn

1 + c1µ
δn

���u
i−1
P

��� . (B7)

The initial range for the bisection method is given by

[a, b] ≡



[
0,

c1µ
δn

1+
c1µ
δn

���u
i−1
P

���
]

if m = 1
[
0, ���u

i−1
P

���
]

if m , 1
. (B8)

For the TT model, we can use a similar procedure to
prove the existence of a unique solution ���u

i
ws

��� ∈
[
0; ���u

i−1
P

���
]
.

Furthermore, we have that

ui
ws = α

µ

δn

(
1 −

βµ

δn
���u

i−1
P − ui

ws
���

)−1/2 (
ui−1

P − ui
ws

)
. (B9)

Since
(
1 − βµ

δn
���u

i−1
P − ui

ws
���
)−1/2

< 1, this sets a new initial
range for the bisection method given by

[a, b] ≡


α
µ
δn

1 + α µ
δn

���u
i−1
P

��� , ���u
i−1
P

���


. (B10)

By using these ranges as initial guesses for the bisec-
tion method (used to obtain the solutions of these transient
equations), we gain computational time.

APPENDIX C: GENERALIZED IMPLEMENTATION
OF SLIP MODELS

Provided we can express the slip velocity as a function of
the wall shear stress and assuming a one-dimensional flow, the
slip velocity uws can be written as a function of the difference
���up − uws

���, i.e., uws = ±f
(���up − uws

���
)

, where the ± depends
on the direction of the slip velocity and up is the velocity at
the computational cell adjacent to the wall. This function can
be multiplied by ±

(
ui−1

p − ui
ws

)
/

���u
i−1
p − ui−1

ws
��� and solved in a

semi-implicit manner. In the iterative procedure, only the slip

velocity in the numerator comes from the actual iteration, so
the general slip boundary condition can be written as

ui
ws =



f
(���u

i−1
p − ui−1

ws
���
)

���u
i−1
p − ui−1

ws
��� + f

(���u
i−1
p − ui−1

ws
���
) 

ui−1
P . (C1)

For the three slip boundary conditions studied here, the
function f

(���u
i−1
p − ui−1

ws
���
)

is given by

f
(���u

i−1
p − ui−1

ws
���
)
= k

(
µ(γ̇)w
δn

)m���u
i−1
p − ui−1

ws
���
m

(C2)

for the NNS model, by

f
(���u

i−1
p − ui−1

ws
���
)
= α

(
1 −

βµ

δn
���u

i−1
p − ui−1

ws
���

)−1/2
µ

δn
���u

i−1
p − ui−1

ws
���

(C3)
for the TT slip model, and by

f
(���u

i−1
p − ui−1

ws
���
)
=

c1µ
m

δnm
���u

i−1
p − ui−1

ws
���
m

×

[
1 − c2 tanh

(
E

RT
−

c3µ

δn RT
���u

i−1
p − ui−1

ws
���

)]
(C4)

for the LS slip velocity model.
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