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ABSTRACT
In this work, we present a systematic numerical investigation of the 1:4 planar expansion creeping flow under the influence of slip boundary
conditions for Newtonian and viscoelastic fluids, the latter modeled by the simplified Phan–Thien–Tanner constitutive model. The linear and
nonlinear Navier slip laws were considered with the dimensionless slip coefficient k∗l varying in the range [0, 4500] and the slip exponents
m = 0.5, 1, and 2. The simulations were carried out for a low Reynolds number, Re = 0.001, and for Deborah numbers (De) between 0 and
100. Convergence could not be achieved for higher values of the Deborah number and large values of the slip coefficient due to the large
stress gradients near the singularity point (reentrant corner). The results obtained allow us to conclude that for all De, the increase in slip
velocity leads to vortex suppression. The flow characteristics are described in detail for low values of the Deborah number, De ≤ 5, while for
higher De the main features are only shown for specific values of the slip coefficient. These results find application in polymer processing,
where the use of lubricants that migrate to the wall is common, which promotes slip.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5145092., s

I. INTRODUCTION

The incompressible laminar flow in a symmetric plane sud-
den expansion is an interesting benchmark problem. Although the
geometry is rather simple, the resulting flows are dynamically com-
plex, depending on several factors such as the inlet boundary condi-
tions, the Reynolds (Re) and Deborah (De) numbers, and the expan-
sion ratio. This geometry is found in several industrial processes,
such as in injection molding of polymer melts. Aiming to better
understand this problem, several studies have been done, leading to
new results and improved knowledge of the expansion flow dynam-
ics for both Newtonian and non-Newtonian fluids, as described in
the following.

Halmos and co-workers1–3 presented experimental and numer-
ical studies of flows of polymer solutions and polymer melts through
an abrupt expansion, considering non-Newtonian inelastic and elas-
tic constitutive models. They found good agreement between the
experimental data obtained for polymers melts and the numeri-
cal simulations performed with a power-law model, but they used
coarse meshes and low order discretization schemes. Townsend
and Walters4 and Baloch et al.5 both used the Phan–Thien–Tanner
(PTT) model6 to compare their numerical results with the experi-
mental results provided by Walters.4 In all these studies, the con-
clusions were unanimous: viscoelasticity suppresses the secondary
flows that appear at the salient corner, and this is justified with
some kind of swell phenomenon that occurs to the main flow upon
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transition to the larger channel (the fluid releases some of the stored
energy resulting in the expansion of the main flow and the com-
pression of the recirculation region). More recently, Poole et al.7

investigated numerically the two-dimensional 1:3 expansion flow
for fluids obeying the upper-convected Maxwell (UCM), Oldroyd-B,
and PTT constitutive models. They found that the previous results
published in the literature by Darwish et al.8 and Missirlis et al.9 were
only qualitatively correct because of the poor mesh refinement used.
In the work of Poole et al.,7 the degree of recirculation suppression
was shown to be much weaker than that suggested previously, and
at high Deborah number flows, a significant recirculation region still
exists.

The study of flow bifurcations in fluid mechanics has also
received considerable attention as it enables better understanding of
the problems of stability and transition to turbulent flow. For this
specific topic, experimental results are given in the works of Durst
et al.,10 Cherdron et al.,11 and Ouwa et al.,12 whereas numerical
predictions, as well as a good review of the literature regarding the
bifurcation phenomena for Newtonian and non-Newtonian fluids,
can be found in the work of Wahba.13

For the bifurcation phenomenon in viscoelastic fluids, we high-
light the work of Rocha et al.,14 where a numerical investigation of
viscoelastic flows (FENE–CR constitutive model) through a planar
1:4 sudden expansion is presented. They found that viscoelasticity
stabilizes the laminar flow under conditions of non-negligible iner-
tia and results in symmetric flow patterns up to a Reynolds number
of about 46. Poole et al.15 arrived at similar conclusions based on
laminar flow experiments with a viscoelastic liquid through a sym-
metrical plane sudden expansion preceded by a gradual contraction
from a square duct. Therefore, since creeping flow conditions are
employed in this work, and based on the symmetric expansion flows
obtained by Poole et al.,7 we assume the existence of flow symmetry
relative to the flow centerline.

For turbulent flows, more information can be found in the
experimental work of Abbott and Kline,16 about the subsonic tur-
bulent flow over single and double backward facing steps, and
the experimental works of Escudier et al.,17 Poole et al.,18,19 and
Dales et al.20

The interested readers can also consult the papers on slip
velocity and expansion flows.21–30

All the previous works concerned either Newtonian or non-
Newtonian inelastic and viscoelastic fluids. The viscoelastic fluids
usually present a more complex rheological and dynamic behavior,
when compared to Newtonian fluids, and one of these complex fea-
tures is the ability of the fluid to show some degree of slip31–40 along
the wall, found in some polymer melt flows. However, in the litera-
ture, we could not find the influence of slip boundary conditions on
the fluid flow behavior through an abrupt expansion, and this fea-
ture is very important in polymer processing, where contraction and
expansion flows are often encountered.

For this reason, this work presents a numerical study looking
at the influence of slip velocity (considering both linear and nonlin-
ear Navier slip boundary conditions) on the flow through an abrupt
1:4 expansion (see Fig. 1), for Re = ρU1H1/η0 = 0.001 and a wide
range of dimensionless linear slip coefficients k∗l =

kη0
H1
∈ [0, 4500]

and Deborah numbers, De = λU1/H1 ∈ {0, 1, 2, 3, 4, 5, 10, 50, 100}.
These dimensionless numbers are defined based on the inlet velocity,

FIG. 1. Schematic of the 1:4 expansion geometry. U1 and U2 represent the aver-
age inlet and outlet velocities, respectively, and H1 and H2 represent the inlet and
outlet half width.

U1, and entrance half width, H1, with ρ and λ being the density and
relaxation time of the viscoelastic fluid and η0 being the sum of poly-
mer and solvent zero-shear viscosities. k represents a slip length (the
subscript l in k∗l stands for the linear slip model, to be defined later).
We study both Newtonian and non-Newtonian fluids modeled by
the simplified PTT (sPTT) model, and we present a detailed study
on the flow characteristics such as the influence of the slip velocity
on the vortex size, vortex intensity, and Couette correction.

It should be remarked that this work finds application in poly-
mer processing, where the use of lubricants that migrate to the wall is
common, which promotes slip. Recirculation are usually undesired
in polymer processing unless some kind of mixing is needed. The
presence of recirculating flows leads to the accumulation of polymer
melt in particular regions (contractions and expansions), resulting
in the degradation of the material due to its long exposure to high
temperatures. This can compromise the quality of the final product
and also increase the production time (resulting in extra costs) since
there is the need to clean the machinery (the molten material gets
clogged in the expansions and contractions) when a different mate-
rial is going to be processed. Therefore, this work intends to be used
as a qualitative guideline for technicians and engineers when using
slip promoters.

Regarding the numerical work, in our Newtonian fluid flow
calculations, there is no need for any direct relaxation of the slip
velocity. Instead, we use an efficient procedure, proposed in the work
of Ferrás et al.,41–43 that calculates the slip velocity along an itera-
tive process, adjusting the calculations depending on the proximity
to the final solution. When convergence is eminent, the calculated
slip velocity converges to the correct slip velocity, while far from
the solution, the new procedure guarantees that the slip velocity is
always smaller than the velocity at the center of the adjacent control
volume, an important requirement for convergence.

In contrast to contraction flows,42,44,45 it was possible to obtain
convergence in these expansion flow calculations for high values of
the Deborah number, where we found the complete suppression of
recirculation for high slip coefficients, and that wall slip reduces both
the fluid expansion in the outer channel and the critical Deborah
number.46

The remainder of this paper is organized as follows: Sec. II
presents the governing equations together with the linear and non-
linear Navier slip boundary conditions used. In Sec. III, we briefly
describe the solver used to couple velocity, pressure, and the slip
boundary condition, and we also present the geometry and the
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characteristics of the flow. In Sec. IV A, the results for the Newtonian
fluid case (De = 0) are presented and discussed, while the viscoelas-
tic flows are presented in Sec. IV B. The main conclusions of this
paper are presented in Sec. V.

II. GOVERNING EQUATIONS
The governing equations for the laminar and incompressible

fluid flows are the mass conservation,

∇ ⋅ u = 0, (1)

and momentum balance,

ρ
∂u
∂t

+ ρ∇ ⋅ (uu) = −∇p +∇ ⋅ τ. (2)

Additionally, an appropriate constitutive relation for the extra-stress
tensor τ is used. The stress tensor (τ = τs + τp) is split into a
Newtonian solvent contribution, τs,

τs = ηs(∇u + (∇u)T), (3)

and a polymer contribution, τp (for a Newtonian fluid, τ = τs), here
described by a widely used constitutive model, the simplified Phan–
Thien–Tanner (sPTT),6

f (tr τp)τp + λ(∂τp
∂t

+ u ⋅ ∇τp − [(∇u)T ⋅ τp + τp ⋅ ∇u])

= ηp(∇u + (∇u)T). (4)

For the function f (tr τp), we use its linear form,

f (tr τp) = 1 +
ελ
ηp

tr(τp). (5)

These equations can be written in dimensionless form by consid-
ering the new variables u′ = u/U1, t′ = t/(H1/U1), x′ = x/H1, p′

= p/(ρU2), and τ′ = τH1/(η0U1),

∇′ ⋅ u′ = 0, (6)

∂u′

∂t′
+∇′ ⋅ (u′u′) = −∇′p′ +

1
Re
∇′ ⋅ τ′, (7)

f (trτ′p)τ′p + De(
∂τ′p
∂t′

+ u′ ⋅ ∇′τ′p − [(∇′u′)
T ⋅ τ′p + τ′p ⋅ ∇′u′])

= (1 − β)(∇′u′ + (∇′u′)T), (8)

f (trτ′p) = 1 +
εDe

1 − β tr(τ′p). (9)

In Eqs. (1)–(9), u is the velocity vector, p is the pressure, τ is the
extra-stress tensor, ηs and ηp are the solvent and zero shear poly-
mer viscosity contributions, respectively, λ is the relaxation time, ε
is the extensibility parameter of the PTT fluid, β = ηs

η0
= ηs

ηs+ηp
is the

viscosity ratio, and x is the space vector.
In order to consider the possibility of slip at the boundary wall,

we use the linear (m = 1)47 and nonlinear Navier slip boundary

conditions (m ≠ 1),48

∥uws∥ = k∥τw∥m, (10)

where the parameter k ≥ 0 is the slip coefficient (it will depend on the
material employed and on the flow conditions and is normally calcu-
lated based on a fit to experimental data) that allows us to control the
amount of slip. In Eq. (10), the slip velocity vector uws (the subscript
“ws” stands for “wall slip”) and the tangent stress τw (the subscript
“w” stands for “wall”) are tangent to the walls, and the double bars
indicate vector magnitude.

III. NUMERICAL PROCEDURE AND CASE STUDIES
The system of equations, Eqs. (1)–(10), is solved with a finite

volume method code (see Ref. 50), using the SIMPLEC method
of Van Doormaal and Raithby49 to compute velocity and pressure
fields. For the implementation of the slip boundary conditions, we
use two slightly different methods, one for the linear Navier slip law
and the other for the nonlinear Navier slip law.41–43 For Newtonian
or generalized Newtonian fluids, the flow near the wall is viscomet-
ric so that the magnitude of the tangent stress at the wall can be
approximated by51

∥τw∥ = ηw∣
dut
dn
∣
w

, (11)

where dut
dn is the velocity gradient in the wall normal direction, ut

is the velocity component parallel to the wall, and ηw is the shear
viscosity evaluated at the local wall shear rate.

Assuming Cartesian coordinates, orthogonal meshes, and a
one-sided first order approximation for the velocity derivative, the
relationship between the slip velocity and the tangent stress vector
can be written as

uws = k(ηw
∣uP,t − uws∣

δn
)
m−1 ηw(uP,t − uws)

δn
, (12)

where uws is the slip velocity, parallel to the wall, uP,t is the compo-
nent of the velocity vector, at the center of the adjacent computa-
tional cell and parallel to the wall, and δn is the distance between the
center (P) of the adjacent cell and the wall boundary (see Fig. 2).

Regarding the implementation of the slip boundary condition,
two different linearizations were used, depending on the numerical
value of the exponent m. For m = 1, we assume that only the slip

FIG. 2. Schematic of a computational cell.
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velocity variable comes from the present iteration/time step, i, thus
leading to the following relationship between uiws and ui−1

P,t :

uiws = k(−ηi−1
w
(uiws−u

i−1
P,t)

δn ) ⇒ uiws =
a

a + 1
ui−1

P,t with a=k
ηi−1
w

δn . (13)

For m ≠ 1, the discretized form of the nonlinear Navier slip law can
be linearized assuming that only the slip velocity of the linear part
comes from the present iteration (i) as

uiws = k(
ηi−1
w

δn
)
m

(ui−1
P,t − uiws)∣ui−1

P,t − ui−1
ws ∣m−1, (14)

leading to

uiws =
l

1 + l
ui−1

P,t with l = k(η
i−1
w

δn
)
m

∣ui−1
P,t − ui−1

ws ∣m−1. (15)

The main feature of this method is the guarantee that the slip veloc-
ity is always smaller in magnitude than the velocity at the center
of the adjacent computational cell, a necessary condition for con-
vergence. To solve the system of equations, we use the following
iterative procedure:41,42

(1) Set the boundary conditions, the initial velocity, and pressure
fields.

(2) Solve the constitutive equations for the non-Newtonian
model.

(3) Compute the slip velocity with the discretized slip model,
Eq. (13) or (15).

(4) Solve the momentum balance equation.
(5) Solve the pressure correction equation.
(6) Correct velocity and pressure fields.
(7) Check for convergence, based on the system of equation

residuals.
(8) If convergence is not achieved, proceed to step 2.

The numerical method used to calculate the slip velocity for
De > 0 is described in detail in Ferrás et al.42 Here, the major differ-
ence to the earlier method is the use of linear extrapolation to obtain
the stress at the wall.

In this work, we are interested only in the stationary solution,
so the time evolution is used only for numerical relaxation purposes.
Each time step represents one iteration i. With this method, there is
no need for the explicit use of relaxation of the slip velocity and the
computations are stable.

It should be remarked that all the numerical implementations
were validated against the results obtained in Ferrás et al.41–43 The
numerical code is practically the same, and we have compared the
fully developed solutions in both narrow and large channels against
the analytical solutions for fully developed slip flows.

A schematic of the 1:4 expansion geometry is given in Fig. 1.
We assume that the flow is two-dimensional and impose symmetry
at the centerline y = 0. At the inlet, a uniform velocity profile U1
is imposed together with null extra-stress components. To perform
the numerical simulations for the expansion flow, we built three
different meshes ME1, ME2, and ME3 (cf. Fig. 3), with consistent
consecutive refinement, in the sense that the number of cells was
doubled in each direction, with mesh spacing being approximately

FIG. 3. Characteristics of meshes ME1, ME2, and ME3, and illustration of the
blocks used.

halved from mesh ME1 to ME2 and from ME2 to ME3. In this way,
we can easily estimate the accuracy of the numerical predictions by
using Richardson’s extrapolation technique.52,53

To generate the meshes, the computational domain was divided
into eight blocks and the notations nx and ny are used to represent
the number of cells in the x and y directions, respectively. The mesh
data are provided in Fig. 3.

We performed a large number of simulations, mostly because
of the wide range of slip coefficients used (for each De, we typically
used 15 different slip coefficients), to capture the influence of slip
velocity on the flow behavior. Most results shown here were obtained
with mesh ME2. Mesh ME3 was also used to test the accuracy of the
method but only for a limited number of simulations because of the
large computation times required.

The simulations were performed for the sPTT model at a
constant Re = ρU1H1/η0 = 0.001, and a varying De = λU1/H1
(De = 0, 1, 2, 3, 4, 5, 10, 50, and 100) with ε = 0.25 and viscosity ratio
β = ηs

η0
= ηs

ηs+ηp
= 1

9 . Several values of the normalized slip coefficient,

k∗l =
kη0
H1

(assuming that m = 1), were used.
The numerical results were analyzed in terms of the vortex sizes

XR = xR/H1 and YR = yR/H1 (cf. Fig. 1) and vortex intensity, the
latter defined here as the recirculating flow rate inside the vortex
normalized by the flow rate in the entrance channel,

ΨR =
ψR −U1H1

U1H1
× 103, (16)

where ψR is the streamfunction value at the vortex center (we assume
that ψR = 0 at the centerline, y = 0). In addition, we also provide the
Couette correction given by

C = Δp − Δp1FD − Δp2FD

2τw
, (17)

where Δp represents the pressure drop between two points located
far away from the expansion plane, one upstream and another
downstream, Δp1FD and Δp2FD are the pressure drops for the fully
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FIG. 4. Variation of the dimensionless vortex size, XR, and vortex intensity, ΨR,
with k∗l for a Newtonian fluid (De = 0). The lines are a guide to the eye.

developed flows in the entry and exit channels (considering the
same points used for Δp), with half widths H1 and H2, respectively,
and τw is the wall shear stress encompassing both the solvent and
polymer contributions for the fully developed flow at the entrance
channel.

Additional plots are also presented, such as the variations of
velocity and stresses along the centerline, and streamline maps,
together with the characterization of the flow on the basis of the flow
type parameter, ξ, defined as54

ξ = ∣D∣ − ∣Ω∣∣D∣ + ∣Ω∣ , (18)

where ∣D∣ and ∣Ω∣ represent the magnitudes of the rate of deforma-
tion and vorticity tensors, respectively,

D = 1
2
[∇u + (∇u)T], Ω = 1

2
[∇u − (∇u)T], (19)

FIG. 5. Streamlines and flow type ξ for a Newtonian fluid (De = 0) and different values of the slip coefficient k∗l , considering the linear Navier slip
law.
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FIG. 6. Dimensionless axial velocity pro-
files along the channel for a Newtonian
fluid (De = 0). (a) y/H1 = 0.99 and (b)
y/H1 = 0.

FIG. 7. Variation of (a) vortex dimension, XR, and (b) vortex intensity, ΨR, with De, for different values of k∗l (the lines are just a guide to the eye).

TABLE I. Variation of vortex dimension XR with the slip coefficient k∗l for De = 1.

k∗l ME1 ME2 ME3 Ext. XR Error (%)

0 1.3635 1.3665 1.3676 1.3681 0.04
0.0045 1.3586
0.009 1.3475 1.3497 1.3509 1.3522 0.09
0.018 1.3319
0.027 1.3136
0.036 1.2879 1.2910 1.2931 1.2968 0.28
0.045 1.2704
0.09 1.1627
0.18 0.8731 0.8991
0.27 0.6247
0.36 0.2756
0.45 0 0
45 0 0
4500 0 0

TABLE II. Variation of the vortex intensity ΨR with the slip coefficient k∗l for De = 1.

k∗l ME1 ME2 ME3 Ext. ΨR Error (%)

0 0.7785 0.7813 0.7817 0.7817 0.008
0.0045 0.7880
0.009 0.7881 0.7909 0.7920 0.7926 0.079
0.018 0.7932
0.027 0.7856
0.036 0.7697 0.7777 0.7795 0.7800 0.064
0.045 0.7572
0.09 0.6269
0.18 0.2750 0.2946
0.27 0.0830
0.36 0.0045
0.45 0 0
45 0 0
4500 0 0
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which are given by

∣D∣ =
√

1
2
(D : DT) =

¿
ÁÁÀ1

2∑i
∑
j
D2

ij,

∣Ω∣ =
√

1
2
(Ω : ΩT) =

¿
ÁÁÀ1

2∑i
∑
j

Ω2
ij.

(20)

The flow type parameter varies from −1, which corresponds to solid-
like rotation, up to 1, for pure extensional flow. Pure shear flow is
characterized by ξ = 0.

IV. RESULTS AND DISCUSSION
A. Newtonian fluids

For Newtonian fluids (De = 0), we observe in Fig. 4 that the
axial vortex dimension, XR, decreases with the slip coefficient, k∗l ,

while the vortex intensity, ΨR, is non-monotonic with k∗l . As slip
increases above k∗l = 0.45, the vortex intensity is now strongly
reduced but the vortex itself does not vanish; it just becomes less
elongated and more parallel to the expansion plane wall (cf. Fig. 5).
This is seen as a strong reduction in XR and ΨR.

This behavior is somehow different from that observed for vis-
coelastic fluids (see Sec. IV B), where the vortex vanishes for high
slip velocity. We can also observe, in Fig. 5, that the region of shear
flow near the channel walls for no-slip velocity (k∗l = 0) and low slip
coefficients (k∗l = 0.0045 and k∗l = 0.045) evolves for k∗l ≥ 0.45 into
regions of extensional flow.

We also plotted the variation of the dimensionless streamwise
velocity component along the channel at y/H1 = 0.99 [Fig. 6(a)]
and y/H1 = 0 [Fig. 6(b)]. As the slip coefficient increases, espe-
cially for high slip coefficients, there is an abrupt change in the
velocity profile near the extension plane, especially near the wall
(y/H1 = 0.99), because increasing slip turns the velocity profile

FIG. 8. Streamlines and flow type, ξ, for different values of the slip coefficient k∗l . (a) De = 1 and (b) De = 5.
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FIG. 9. Couette corrections as function of De. (a) C and (b) C∗.

progressively into a plug in the entry channel and then drasti-
cally reduces due to the expansion. It then increases downstream of
the expansion zone, creating sharp peaks in the velocity gradient.
As shown in Fig. 6(b), on approaching the expansion plane along
the centerline (y/H1 = 0), the fluid moves away from the wall and
toward the center of the channel. Then again it goes away from the
center as it fills the wider channel. We can observe in Fig. 5 that
there is an actual contraction of the flow on approaching the expan-
sion plane, and that is why, along the centerline we observe a local
maximum in u.

B. Viscoelastic fluids
1. Effect of elasticity and slip

In addition to the Newtonian fluid limit (De = 0), the 1:4 expan-
sion flow was also analyzed for De = 1, 2, 3, 4, and 5 over a wide
range of slip coefficients and for De = 10, 50, and 100 at two differ-
ent slip coefficients due to the significant computational time needed
to attain converged solutions.

Figure 7 shows the variation of XR and ΨR with De for sev-
eral slip coefficients, k∗l . We observe that vortex size and intensity
decrease with De and k∗l , with the vortex vanishing for the highest
values of the slip coefficient as elasticity increases. Some of these
results can also be seen in Tables I and II (for De = 1), where the
accuracy of the results was assessed with Richardson’s extrapolation
technique for three different values of the slip coefficient. The vari-
ations of XR and ΨR for higher values of De are also shown for a
constant slip coefficient k∗l = 0.09. We observe that ΨR decreases
with De while XR decreases with both k∗ and De, except at very high
De, where an increase is observed. These findings are in agreement
with the conclusions of Poole et al.7 The non-monotonic behavior
at large De is a consequence of the large time it takes for the elastic
stresses to relax or build up as compared to the flow transit time, so
the flow tends to a viscous behavior when it negotiates the expansion
region.

In Fig. 8, we show the streamlines superimposed on con-
tour plots of ξ for different values of the slip coefficient and two
different values of the Deborah number, De = 1 and 5. Contrar-
ily to the Newtonian case, the vortex totally disappears with the

TABLE III. Variation of the Couette correction, C, with k∗l for De = 1.

k∗l ME1 ME2 ME3 Ext. C Error (%)

0 0.7851 0.7833 0.7826 0.7822 0.046
0.0045 0.7859
0.009 0.7907 0.7883 0.7874 0.7867 0.084
0.018 0.7927
0.027 0.7967
0.036 0.8104 0.8006 0.7991 0.7989 0.034
0.045 0.8056
0.09 0.8230
0.18 0.8669 0.8627
0.27 0.9075
0.36 0.9574
0.45 1.0152 1.0123
45 47.246 47.456
4500 4718.2 4736.2

TABLE IV. Variation of the Couette correction, C∗, with k∗l for De = 1.

k∗l ME1 ME2 ME3 Ext. C∗ Error (%)

0 0.7851 0.7833 0.7826 0.7822 0.046
0.0045 0.7820
0.009 0.7827 0.7804 0.7796 0.7867 0.084
0.018 0.7768
0.027 0.7729
0.036 0.7782 0.7688 0.7676 0.7674 0.026
0.045 0.7656
0.09 0.7442
0.18 0.7107 0.7072
0.27 0.6767
0.36 0.6518
0.45 0.6334 0.6317
45 0.5765 0.5747
4500 0.5795 0.5778
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FIG. 10. Dimensionless axial velocity profiles along the channel for De = 1 and 5 and three different slip coefficients. (a) y/H1 = 0 and (b) y/H1 = 0.99.

increase in the slip velocity, and considerable changes in the vor-
tex dimensions and shape appear first (for lower slip coefficients)
for the viscoelastic case, especially for high Deborah numbers (De
= 5). Note also that for De = 5, we obtain a wider region of exten-
sional flow near the centerplane than at lower De, which can be
justified by the higher relaxation time of the fluid that delays its
deceleration in the expansion region, thus increasing the area where
the flow is extensionally dominant. In contrast, the vortex suppres-
sion due to flow elasticity may be the consequence of the develop-
ment of normal stresses in the transverse direction in the upstream
channel. Once the upstream wall disappears, a strong normal stress
gradient enhances flow in the transverse direction as a kind of swell
effect. The overall conclusion, based on these figures, is that the

vortex dimensions decrease with the increase in elasticity and slip
intensity.

Regarding the Couette correction, C, Figs. 9(a) and 9(b) show
the variation of C and C∗ with De for different values of the slip coef-
ficient. C∗ represents the Couette correction normalized with the
wall tangent stress, τw , obtained for the case of no-slip velocity at
the walls. This normalization is used because when k∗l is very large,
the actual value of τw vanishes, leading to very large values of C (C
is normalized with the corresponding real wall stress). For a Newto-
nian fluid, our results match those of Poole et al.55 In Tables III and
IV, we can also observe the Couette corrections C and C∗ obtained
for different slip coefficients at De = 1. For the viscoelastic flu-
ids, we can observe that both C and C∗ increase with De, as also

FIG. 11. Streamlines and flow type, ξ, for different values of the slip coefficient k∗l for a constant De = 1 and two different slip exponents: (a) m = 0.5 and (b) m = 1.5.
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observed in the data for the 1:3 expansion flow.7 The Couette cor-
rection increases with k∗l (a side effect of the chosen normalization),
while the alternative Couette correction, C∗, decreases. This means
that, contrarily to the behavior observed in data obtained by Ferrás
et al.42 for the 4:1 contraction flow, slip reduces C∗.

The dimensionless axial velocity profiles along the channel at
two different positions, y/H1 = 0 and y/H1 = 0.99, are plotted for
two different Deborah numbers, De = 1 and 5, in Fig. 10. For both
De, the velocity near the wall increases with the slip coefficient, k∗l ,
and higher velocities are attained for the smaller Deborah num-
ber, De = 1. This is more notorious for intermediate values of k∗l
and at the upstream channel. When the fluid is at the wider chan-
nel, the influence of the slip boundary condition is weakened by
the larger distance between the centerplane and the wall and the
changes between the velocity profiles for different De and k∗l are
less pronounced. This is a consequence of the unperturbed shape
of the velocity profiles, which for the viscoelastic fluids are closer
to uniform (plug-like) than the Newtonian profiles on account of
the shear-thinning nature of the viscoelastic model selected. Hence,
the higher the value of De, the weaker the variations in the velocity
profile associated with imposing wall slip.

In order to evaluate the influence of the slip exponent, m, on
the flow characteristics, we performed additional simulations for two
different slip exponents with three different slip coefficients at a con-
stant De = 1 (see Fig. 11). We can observe that for m = 0.5, the
influence of k∗ = kηmUm−1/Hm

1 on the flow is reduced, while for
m = 1.5, the influence of k∗ is enhanced. Note that for the case k∗ =
0.36 and m = 1.5, we have an extensional flow region near the vortex
corner that smears the vortex, while for the case m = 0.5, a rota-
tional flow is still present indicating the existence of recirculation.
This result is expected since the increase in the slip law exponent
enhances slip.

V. CONCLUSIONS
Simulations were performed to evaluate the influence of the slip

boundary condition on the 1:4 expansion flow of Newtonian and
viscoelastic fluid flows. The presence of wall slip leads to a reduction
in the vortex size and intensity, together with the reduction in the
Couette correction C∗. The influence of the slip law exponent on
the flow field was also investigated, and we found that a small slip
exponent weakens the slip effect on the flow properties.
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