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Abstract 

In this work we describe an integrated algorithm for optimal shape design of viscoelastic fluid flow. For this 
purpose we couple a finite-volume viscoelastic code [1] with the CONDOR optimizer [2] and a fully automated 
mesh generation and adaptation procedure. The main goal is to find the shape of a given flow geometry, in order 
to achieve optimal performance. We design an optimized microfluidic extensional rheometer-on-a-chip 
appropriate for measuring the extensional viscosity of dilute polymeric solutions. The microfluidic device 
proposed consists of a cross-slot flow geometry with optimal shape, which generates a homogeneous 
elongational flow with regions of constant strain-rate, thus producing a purely extensional flow along the 
centerline, a requirement to produce meaningful rheological measurements. 
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1 Introduction 
Optimal shape design (OSD) tools can be used in a wide variety of applications, ranging from fluid mechanics to 
electromagnetism or structure mechanics, or even to a combination of the three [3]. As typical examples of 
engineering applications, OSD techniques have been used in airplane optimization [4], harbor design [5], or 
optimal design of rotary blood pumps for artificial hearts [6]. 
In order to develop optimization methods for computational fluid dynamics (CFD) studies three main 
components are usually necessary [7]: (i) a method to solve the nonlinear optimization problem, defined by an 
objective function and the functional constraints; (ii) a method for modeling the flow geometry based on the 
design variables, and automatically generate the mesh; (iii) an efficient CFD flow solver that allows the 
calculation of the objective function and functional constraints. 
Application of CFD-based optimization tools in engineering applications is valuable, but also numerically 
challenging and demanding in terms of necessary computational resources. Numerical algorithms for OSD have 
evolved significantly in the recent past but there is still no clear indication of the best methodology to use in 
CFD-based applications. Descent algorithms based on gradient information are frequently used to solve the 
resulting nonlinear optimization problems. On the other hand, gradient-free optimization methodologies, such as 
genetic algorithms (GA), are also an interesting alternative. Genetic algorithms possess the ability to locate the 
global optimum and their implementation is straightforward. However, the computational payload is high due to 
the large number of objective function calculations needed, each one requiring a complete CFD simulation, thus 
leading to high computational times, and frequently requiring the use of parallel solvers. As a result, the 
computational cost is frequently prohibitive for routine industrial applications [8]. Genetic algorithm 
optimization strategies are currently better suited when a small number of parameters are to be optimized [9]. 
According to Mohammadi and Pironneau [3] the future of OSD lies most probably in the coupling of different 
classes of optimization methods. 
In this work we will focus on the development of OSD strategies for laminar viscoelastic fluid flows. A 
finite-volume viscoelastic code [1] will be used, coupled with the CONDOR derivative-free optimizer [2]. A 
fully automated mesh generation and adaptation procedure will be developed for application in the design of an 
optimized cross-slot flow micro device. The selection of the CONDOR optimizer was motivated by its easy 
implementation and for being freely available. This derivative-free optimizer has other specific advantages for 
CFD-based optimization studies, such as the ability to deal with constrained and noisy objective functions. 
Furthermore, it was devised to minimize the number of objective functions evaluations, a desired property for 
CFD-based optimization studies. The algorithms used in the CONDOR optimizer are part of the Gradient-Based 
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optimization family [10,11]. CONDOR is essentially a generalization of Powell’s UOBYQA methodology [12] 
capable of handling constrained optimization studies. 
Automatic optimal shape design of microfluidic devices for Newtonian and viscoelastic fluids is an emerging 
and challenging area of research. Microfluidics refers to devices used for manipulating flows with characteristic 
length scales of the order of tens of micrometers [13]. These flows occur naturally under laminar, low Reynolds 
number flow conditions, and the ratio of surface to volume forces is usually very large [14]. The study of micro 
flows of complex fluids has been restricted mainly to experimental investigations [15-18], and consequently the 
development of microfluidic devices has been usually based on intuition and trial-and-error. The small sizes 
characteristic of microfluidics enhance the role of elasticity to levels far beyond those typical at the 
“macroscopic” scale and elastic instabilities are prone to develop even for creeping flow conditions, as illustrated 
in the recent experiments of Arratia et al. [19] in a microfluidic cross-slot device.  
As a practical application of the OSD methodology, we will design an optimized microfluidic rheometer-on-a-
chip suitable for measuring the extensional viscosity of dilute polymeric solutions. This material property is 
extremely difficult to measure and currently there are no commercial instruments available for dilute polymer 
solutions. We will focus our analysis on cross-slot devices, and will search for the best design in order to achieve 
optimal performance, which corresponds to an ideal planar extensional flow. The classical cross-slot geometry, 
illustrated in Figure 1(a), does not allow achieving a truly extensional flow due to the influence of the walls on 
the flow field [20]. Therefore, in order to achieve a truly extensional flow, we will search for the optimal shape 
of the cross-slot for viscoelastic fluid flow under low Reynolds number flow conditions, as sketched in Figure 
1(b). We will consider the limiting case of inertialess flow conditions, which are typical of microfluidic 
applications. Therefore, with this work we envisage the design of an optimized cross-slot microfluidic chip, with 
application in the measurement of extensional viscosity of dilute polymeric solutions. 

 
Fig.1. Illustration of (a) the initial flow configuration (a classical cross-slot flow geometry with rounded corners) 

and (b) the optimized flow geometry to be obtained through optimal shape design. The target velocity profiles 
are displayed in part (c), and correspond to an ideal planar extensional flow. 

2 Numerical Method 

2.1 Optimization cycle 

The optimal shape design methodology developed in this work is composed of an automatic mesh generator 
program, a viscoelastic flow solver [1] and the CONDOR [2] optimizer. Based on an initial estimate of the 
design variables, the initial mesh is automatically generated. The flow geometry is assumed to be symmetric 
relative to the x- and y-axis, as depicted in Figure 1 (a,b), therefore only one quarter (the first quadrant) of the 
geometry is optimized, and the remaining walls are obtained assuming geometrical symmetry.  
A diagram illustrating the important steps of the optimization cycle is presented in Figure 2. The initial estimate 
of the flow geometry is depicted in Figure 1 (a) and was assumed to be a cross-slot with rounded walls (with a 
radius of curvature, H20=ℜ , where H represents the half-width of the channels). From this initial estimate the 
mesh is automatically generated and the CFD simulation is undertaken. From the numerical solution the 
objective function is calculated, and this information is transferred to the CONDOR optimizer. If the minimum 
of the defined objective function is achieved, then the optimal shape was found, otherwise the CONDOR 
optimizer provides a new estimate of the design variable array, and the full cycle is repeated until the minimum 
value of the objective function is reached. 
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In the mesh generation step the shape of the flow geometry is defined in terms of the design variables, X (which 
represents an array of N variables to be searched by the optimization procedure). During the optimization cycle, 
as the solution X evolves towards the optimum, the boundary of the cross-slot is altered accordingly and the 
mesh is adjusted in order to follow the shape evolution of the boundary walls.  

 
Fig.2. Schematic representation of the optimization cycle. 

 
The objective function selected for this work was 
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and represents the sum of the relative differences between the calculated and target streamwise velocity profiles 
along the horizontal and vertical center lines, y = 0 and x = 0 respectively. The minimum of this objective 
function is sought by the optimization algorithm. 
The target velocity profiles are sketched in Figure 1 (c), and correspond to a constant strain-rate velocity field in 
the regions 15/15 ≤≤− Hx  and 15/15 ≤≤− Hy . Assuming an average velocity U on the inlet arms (note 
that on the center line the streamwise velocity is 1.5 U under fully-developed flow conditions), the target velocity 
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which correspond to a constant strain-rate (ideal) planar extensional flow.  

2.2 Flow Solver 

The flow solver used in this work is a finite-volume code developed for simulation of laminar flows of 
viscoelastic fluids described by differential-type constitutive equations [1]. The equations we need to solve are 
those expressing conservation of mass 

   0=⋅∇ u  (4) 

and linear momentum 
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   0τ =⋅∇+∇− p  (5) 

Under creeping flow conditions, which should be coupled with an appropriate constitutive equation for the extra 
stress, τ . In this work, we will use the upper-convected Maxwell (UCM) model to specify τ ,   
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where λ  and η  are the relaxation time and the shear viscosity of the fluid, respectively. The constitutive 
equation for a Newtonian fluid is recovered by setting 0=λ .  
The details of the numerical technique have been described elsewhere [1] and therefore are not repeated here. 
The flow solver operates like a black-box in the optimization cycle. 

3 Results and Discussion 
In this section we will analyze the effect of the Deborah number (De = λU/H) on the optimal shape of the 
optimized cross-slot geometry.  In order to develop efficient microfluidic cross-slot devices for extensional 
viscosity measurements, the optimized shape of geometry should be insensitive to the Deborah number as much 
as possible.  
Two meshes were used in the numerical simulations. The coarse mesh (M1) is composed of 1521 cells while the 
refined mesh (M2) has a total of 5825 cells. A zoomed view near the center of the rounded cross-slot, used as 
initial estimate, is shown in Figure 3 for both meshes.   

 
Fig.3. Zoomed view of the computational meshes. (a) Mesh M1; (b) Mesh M2. The configuration represented 
corresponds to the initial estimate which represents a rounded cross-slot with a radius of curvature H20=ℜ . 

The shape of the cross-slot flow geometry is described by N parameters, which are stored in a solution array, X. 
The dimension of the search space, N, should not be large. The CONDOR optimizer used in this work is 
particularly adequate when the dimension of the search space is low (N < 100) [2]. In this work we will use 
B-splines to describe the cross-slot shape, and a total of N = 9 parameters will be used in most of the 
optimization test-cases. Figure 4 illustrates how the shape of the cross-slot is reconstructed from the knots that 
define the B-spline function. The points represented in blue (●) are fixed, while the points (N = 9) represented in 
green ( ) can move along the rays represented as dashed green lines in Figure 4. The distance between these 
knots and point A, represented in Figure 4, is the solution X of our problem, and these distances (Xi: i = 1, N) 
should be searched by the optimization algorithm in order to minimize the objective function described by 
Eq. (1). The B-spline function that defines the shape of the cross-slot geometry uses four fixed and N variable 
points. We note that in general the B-splines only interpolate the extreme points. The slope of the B-spline on 
these boundaries equals the slope of the straight line that connects the two extreme points, hence the use of the 
four fixed points illustrated in Figure 4 (●). These fixed points provide a smooth and continuous transition 
between the curved and straight walls of the cross-slot. 
 

(a) (b)



II Conferência Nacional de Métodos Numéricos em Mecânica de Fluidos e Termodinâmica 
Universidade de Aveiro, 8-9 de Maio de 2008 

 5

 
Fig.4. Reconstruction of the boundary of the cross-slot from the location of the points that define the B-spline 
function. The points represented in blue (●) are fixed, while the points represented in green ( ) are adjustable. 

 

 
Fig.5. Optimized cross-slot flow geometries for (a) Newtonian flow and UCM fluid flow at (b) De = 2 
(Wi = 0.2) and (c) De = 4 (Wi = 0.4). The shape of the optimized geometries is compared in part (d ).  

In Figure 5 we present the optimized cross-slot geometries for creeping flow of a Newtonian fluid and for an 
UCM fluid at two distinct De values. As shown in Figure 5 (d ) the optimal shape is nearly insensitive to De, 
making it possible to obtain a universal cross-slot capable of generating an ideal planar extensional flow of 
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Newtonian and viscoelastic fluids at low Reynolds number. To quantify the elastic behavior, it is useful to define 
a Weissenberg number evaluated in the stagnation point region, ελ=Wi . From the target strain-rate profiles 
expressed through Eq. (3), it is easy to relate Wi and De as: Wi = De/10. As a result, for the UCM model the 
range of applicability of this extensional flow is restricted to De < 5, since the extensional viscosity becomes 
unbounded when Wi ≥  0.5 [21].  

 
Fig.6. Comparison of the optimized cross-slot flow geometries calculated for Newtonian fluid flow  

using (a) mesh M1 and (b) mesh M2.  

 
Fig.7. Comparison of the optimized cross-slot flow geometries for Newtonian and viscoelastic flow using  

mesh M1 and different dimensions of the search space: (a) De = 0, N = 9; (b) De = 0, N = 19;  
(c) De = 4, N = 9; (d) De = 4, N = 19.  

In order to investigate the influence of mesh refinement in the computed solution, we have also performed the 
optimization cycle for the refined mesh (M2). In Figure 6 we compare the optimized geometry obtained with 
both meshes for the Newtonian fluid flow, thus demonstrating the accuracy of the results obtained with the 
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coarse mesh M1, which was the selected mesh for most of the optimization studies reported in this work. We 
note that most of the simulation time is spent on the evaluation of the objective function, which requires a full 
CFD simulation, therefore the computational time required to achieve the optimal geometry is directly 
proportional to the time spent in the flow simulation. As a result, the number of cells of the computational mesh 
should be reduced to a minimum, but without neglecting the accuracy of the CFD simulation. 
The dimension of the search space, N, also influences the computed optimal solution. Increasing the number of 
variables will lead to a smoother and better solution, however the number of objective function evaluations 
required to achieve its minimum will increase significantly with N, thus this value should also be kept as low as 
possible. In Figure 7 we compare the solution obtained with the base case, N = 9, with the solution obtained with 
N = 19. Again, we observe that the base solution (N = 9) is very good, both for the Newtonian fluid and the 
UCM fluid at De = 4 (Wi = 0.4), therefore justifying the choice of this dimension of the search space in the 
remaining optimization studies. 
In Figure 8 we present the streamwise velocity profile on the centerline along the y-direction for both the 
Newtonian and the De =4 cases. The target profile is reasonably well predicted, thus demonstrating that the 
optimization algorithm developed in this study performs well. In future works we will study different target 
profiles, defined in order to generate continuous strain-rate profiles. In those cases we expect better agreement 
between the optimized and the target profiles.  

 
Fig.8. Velocity profiles along the y-axis for the optimized cross-slot flow geometries (N = 9). (a) Newtonian 
fluid; (b) UCM fluid at De = 4. Comparison between the results predicted with meshes M1 and M2 and the 

target profile. 
 

 
Fig.9. Predicted streamlines and contour plots of τyy  /(ηU /H ) for the optimized cross-slot flow geometries. 

(a) Newtonian fluid; (b) UCM fluid at De = 4.  
 

To conclude, in Figure 9 we present the predicted streamlines obtained in the optimized geometries for the 
Newtonian and De =4 cases. In both cases the streamline plots are similar; however, the stress fields are 
significantly different as illustrated in the contour plots of τyy  /(ηU /H ) also illustrated in Figure 9. For the 
viscoelastic case the typical birefringence strand is observed along the y-direction, where the polymer molecules 
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are highly stretched generating very large normal stresses. We envisage the construction of a microfluidic 
apparatus with this type of configuration capable of measuring the extensional viscosity of dilute polymeric 
solutions from birefringence measurements.  

4 Conclusions 
An automatic algorithm for optimal shape design studies of viscoelastic fluid flow was developed. The 
methodology couples a finite-volume viscoelastic code [1] with the CONDOR optimizer [2] and a fully 
automated mesh generation and adaptation procedure. The optimization strategy was tested in the design of a 
cross-slot flow geometry in order to attain an ideal planar extensional flow. Despite the high payload in 
computing the objective function, which corresponds to a full CFD simulation, the numerical results show the 
reliability of the implemented optimization algorithm to perform these types of studies using Newtonian or 
viscoelastic fluids under low Reynolds number flows. 
The microfluidic device designed was shown to achieve a quasi-homogeneous elongational flow, a crucial 
requirement to produce meaningful rheological measurements. 
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