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Summary 

In this investigation the evaluation of a viscoelastic flow code under unsteady pulsating flow conditions is under 
taken. The time-dependent problem considered is simple and its analytical solutions is known; The flow 
generated by a periodic pressure gradient superimposed on a constant Poiseuille flow between two parallel 
plates. Results were obtained for Newtonian, Oldroyd-B and UCM models and allowed comparison of the effect 
of elasticity number (E) and viscosity ratio (β) variation on the non-Newtonian pulsating flow characteristics. 
Results were plotted against time and space and conclusions were taken. We observed that the variation of 
elasticity number affects velocity along time and across the channel, depending also on viscosity ratio. Good 
agreement between numerical and analytical results were obtained however depending on the conditions of the 
flow fine meshes were needed. 
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1 Introduction 
The solution of unsteady viscoelastic flow problems are of great importance not only because many flows of 
interest occur in variable regimes in particular in bio-engineering applications [1-4] but also due to the tendency 
of non-Newtonian systems to develop instabilities with time. Due to those facts, a large number of investigations 
are appearing involving calculations of time-dependent flows of viscoelastic liquids that follow differential and 
integral constitutive equations, using different methods [5-10]. However, there is a lack of simple test cases 
capable of evaluating the numerical behaviour of existing codes. Therefore, in continuation of the work 
preformed by Duarte et al [11], where pulsating flow was studied only at elasticity number equal to 1, this paper 
presents numerical and analytical results of unsteady viscoelastic pulsating flows for different fluid models at 
different values of elasticity number. 
The numerical simulation code was applied to the pulsating flow that results from the application of a pressure 
gradient (which varies sinusoidally in time) onto a constant Poiseuille flow between two parallel infinite plates. 
Numerical results and analytical solutions were obtained for three models (Newtonian, Oldroyd-B and Upper-
Convected Maxwell) and were compared for five values of elasticity number, E = 0.01, 0.1, 1, 10 and 100. 
Good agreement was obtained between numerical results on fair grids and analytical solutions, especially as the 
solvent viscosity ratio, β tended to 1. However, for those cases where agreement was not initially found, accurate 
results could still be obtained when very refined meshes were used. In order to study the effect of elasticity 
number, E, on non-Newtonian pulsating flows, time steps were reduced as the elasticity number was increased 
because of the high frequency response expected and observed in other studies. Velocity data were plotted 
against time (centre line velocity) and space (velocity profile) at different elasticity values, and the 
corresponding discretization errors were evaluated. 

2 Governing equations 
Numerical simulations in CFD require the simultaneous solution of three equations: the continuity equation, the 
momentum equation and a constitutive equation (which represents the rheological behaviour of the fluid). In this 
section, the governing equations are presented. The equation of conservation of mass and the equation of linear 
momentum, in the absence of body forces are expressed by the general expressions: 
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where u is the local velocity vector with components u and v corresponding to the Cartesian coordinates x and y, 

respectively, for a two-dimensional problem, p  is the pressure gradient, 
s

 the solvent viscosity, and τ  the 

extra elastic stress tensor. The general form of the constitutive equation, for the different models considered can 
be written as: 

 2 pf f 


  D   (2) 

where f and f’ are functions of invariants of τ that enable to distinguish the different models from each other and 

take the value 1f f    for UCM and Oldroyd-B models, D  the deformation rate tensor and 


  is the upper-

convected time derivative of the stress tensor. This equation describes the non-Newtonian nature of the fluid, 
p

  

is the viscosity of the polymeric solute and λ is the relaxation time. Solvent and polymeric viscosities are related 
as follows: 

 
0 s p     and 

0

s r 
 

     (3) 

where 
0

  is the total zero-shear rate viscosity, λr the retardation time of the fluid and β is a parameter that 

defines the contribution of solvent viscosity, characterizing the elastic nature of fluids. The relaxation time, λ, 
indicates the magnitude of the elastic nature of the fluid, and as the relaxation time increases so does the fluid 

elasticity. In Eq.(3), when λ = 0 the Newtonian constitutive equation is recovered with viscosity 
0

 . For the 

UCM fluid the solvent viscosity is zero ( 0 0
s

    ), meaning that this fluid model has polymeric 

viscosity contribution only and is therefore devoid of any explicit diffusion term in the momentum equation. On 
the other hand, the Oldroyd-B model, which has the contribution of both solvent and polymeric viscosities at 
different ratios ( 0 1  ) becomes equivalent to a linear combination of UCM and Newtonian models. 

For the problem at hand, involving a planar channel flow under fully developed conditions, subjected to a 
sinusoidal pressure gradient, 

  1
coss o

dp
K K t
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    (4) 

the continuity equation is automatically satisfied, the momentum equation reduces to: 
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and the constitutive equation for the shear stress becomes: 
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In Eq. (4) 
o

K  is the amplitude of the oscillating pressure gradient, ω the angular frequency of oscillation 

corresponding to a period 2 /T   , and the magnitude of the stationary pressure gradient is 
s

K . No slip 

boundary conditions are applied at the solid walls placed at y h   where h  is half the channel width, 

  , 0u y h t   , for 0t   (7) 

and the flow is started from quincenst conditions, corresponding to the following initial conditions: 
  , 0 0u y t    for h y h     (8) 

Of course we are mainly interested in the cyclic flow once fully-established in time conditions are attained. 

In the following, non-dimensional variables will be employed after scaling time with the period of oscillation 
( /t t T ), lengths with the channel half-width ( /y y h ), velocities with the average velocity under steady-

state conditions ( / su u u , with 2

0
/ 3

s s
u K h  ), and pressure and stresses as 

0
/ /

xy xy s
u h   . With this 

scaling, the relevant independent dimensionless groups are the elasticity and the Womersley numbers and the 
pressure-gradient ratio, given respectively by:  
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The analytical solution for the velocity is given in Duarte et al [11] and will be used to compare with the present 
numerical results: 
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The discretization error is based on the Euclidian norm applied to the axial velocity, evaluated either by 
integration over the channel cross-section or as a mean value over one period: 

       21
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e e t
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   (11) 

where yu  is the numerical solution on a mesh with NY control volumes and mesh spacing 1/y NY   and tN  

is the total number of time steps in a period. 

3 Numerical method 
A fully implicit finite-volume method was used for the calculation of present one-dimensional time-depend flow 
whose fluids that follows differential viscoelastic constitutive models. The governing equation presented above 
are integrated in space over the control volume, forming the computational mesh, and in time over small steps, 
Δt, in order to obtain sets of linearized algebraic equations. The spatial integration is based on Central Difference 
Scheme and the temporal integration on the Three-Time Level method. Both schemes are second-order accurate 
and are applied on a non-staggered grid arrangement (mesh type B), with uniform spacing in y direction, Δy, and 
in which all dependent variables are located at the centre of the control volumes. The linearized algebraic 
equations and for the stress of motion to be solved for ϕ = u or τxy. Here will be in its simplified form expressed 
as: 
 1 1 1n n n

P P N N S Sa a a b        (14) 

aP is the coefficient of the control volume centre of the cell in question, aN and aS are the coefficients of control 
volume at the north and south boundary, respectively, b is the source term that incorporate all terms not included 
in the coefficients, and the index n denotes time levels. These tri-diagonal sets of equations were solved with the 
well-known TDMA algorithm. 

4 Numerical results and discussion 
The results obtained by the application of the numerical method outlined above are now presented and discussed. 
Three rheological models were considered, Newtonian, Oldroyd-B and UCM (although special attention was 
given to non-Newtonian models), and the effect of elasticity on the pulsating flow was studied for E = 0.01, 0.1, 
1, 10 and 100. Analytical and numerical profiles of velocity were plotted versus time and space and compared, 
with due attention to mesh refinement, discretization errors and convergence rates. As in Duarte et al [11] the 
values of the non-dimensional frequency (α = 4.864) and the pressure-gradient ratio (KO/KS = 2.587) were fixed. 
Because of the higher frequency response expected at high E, different time steps were used for each value of E. 
Thus, for E = 0.01 and 0.1 we used Δt = 2 × 10-3; for E = 1 the base time-step was Δt = 2 × 10-2; for E = 10 it was 
Δt = 2 × 10-4 and for E = 100 the time step used was Δt = 2 × 10-5. A good match between numerical results and 
analytical solutions was not found in some situations and to improve that six different computational meshes 
were employed 100, 200, 400, 800, 1000 and 2000 uniform control volume, i.e., with mesh spacings Δy = 0.02, 
0.01, 0.005, 0.0025, 0.002 and 0.001 (for a domain spacings from y = -1 to y = +1). The discretization errors 
were calculated after carrying out simulations for a number of periods using different time steps and meshes until 
a fully established oscillatory regime was reached, i.e., with repetition at every cycle. 

4.1 Start-up of the pulsating motion 

The evolution of the centreline velocity of planar Poiseuille flow subjected to an oscillatory pressure gradient of 
a Newtonian fluid is showen in Fig.1. Starting from the situation of fluid at rest a fully-established regime is 
attained at approximately t = 10 a somewhat higher value than that acquired for start-up [11]. 
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Fig.1. Evolution with time of centreline velocity during pulsating flow of Newtonian fluid at starting time. 

 
On the other hand, the time acquired for flow development of Oldroyd-B and UCM fluids is greatly influenced 
by elasticity number, and a fully-established state is reached at only at very high non-dimensional time. This 
behaviour is illustrated in Fig.2 where the evolution of the centreline velocity for Oldroyd-B with β = 0.01 and 
UCM is plotted against time. Looking at these results it can be seen that the amplitude and frequency of startup- 
related oscillations significantly increase with elasticity (Fig.2 a) and b)). Comparing fluid models with β = 0.01 
and 0, Fig.2 b) shows that decreasing β induces velocity oscillations having larger amplitudes. These lower 
frequency oscillations are originated by a shear wave front that oscillates from wall to wall across the channel 
during inception of flow which are those with origin from the sinusoidal pressure gradient. 
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Fig.2. Evolution with time of centreline velocity during pulsating flow: a) for Oldroyd-B (β = 0.01) at different 

elasticity numbers (E = 0.01, 0.1 and 1); b) for Oldroyd-B (β = 0.01) and UCM (β = 0) at E = 10. 

 

4.2 The Centerline velocity variation 

From now on the numerical results are for fully-established flow conditions obtained after running the 
simulations for many cycles and making sure that repetition between cycles has been achieved. The evolution of 
the centreline velocity during one cycle using the different fluid models at E = 0.01, 0.1, 1, 10 and 100 is 
presented in Fig.3, from where a comparison between fluid models and analytical and numerical results can be 
made. From each group of figures it can be observed that, depending on the elasticity number, the behaviour of 
the fluids is different. Thus, at E = 0.01 (Fig.3 a)) all fluids present practically the same behaviour and good 
agreement between numerical results and analytical solutions was obtained even using coarse mesh Δy = 1 × 10-

2. But when the elasticity is increased from 0.01 to 0.1 (Fig.3 b)), differences between fluids start to be evident. 
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Here, differences in phase and in the maximum velocity oscillation, can be distinguished for the UCM and 
Oldroyd-B fluids, with all the Oldroyd-B fluids presenting similar evolution. Like showen by Duarte et al [11], 
at E = 1 (Fig.3 c)) Oldroyd-B (β > 0.005) fluids present similar behaviour which differs significantly in 
amplitude and phase from that of UCM and Oldroyd-B (β < 0.005) and only in phase from Oldroyd-B (β = 
0.005) fluid. Here, good agreement between numerical and analytical results was obtained for β ≥ 0.005 using 
mesh with spacings Δy = 1 × 10-2, but for β < 0.005 was only obtained when fine meshes were used Δy = 1 × 10-

3. However, at E = 10 (Fig.3 d)) all fluids with β ≥ 0.001 present similar behaviour. In contrast, the velocity 
evolution of UCM fluid is now significantly different in amplitude, with a considerable decrease, and phase from 
that shown by the other fluids. Looking now at the graphic for E = 100 (Fig.3 e)) the evolution of the centreline 
velocity of UCM fluid increase in amplitude, being higher than for the other fluids. At E = 10 and 100 good 
match was obtained between analytical and numerical results for fluids with β > 0 using coarse mesh (Δy = 1 × 
10-2), but in order to achieve agreement for β = 0 smaller spacing was employed. 
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Fig.3. Analytical (lines) and numerical (symbols) results of the evolution of centreline velocity with time for the 
pulsating flow of various fluids: Oldroyd-B (β = 0.1, 0.01, 0.005, 0.001) and UCM (β = 0). Influence of β for 

various elasticity numbers: E =  0.01 a); 0.1 b); 1 c); 10 d) and 100 e). Numerical predictions with Δy = 1 × 10-2 
(coloured symbol) and Δy = 1 × 10-3 (black cross). 

 
Fig 4 shows again the evolution of centreline velocity but with the purpose of assessing the effect of elasticity for 
each type of fluid during one period oscillation. For viscoelastic fluids, as the solvent viscosity ratio is reduced 
the effect of elasticity starts to be visible. Thus, as a consequence of increasing elasticity there was first a small 
difference in phase at E = 0.1 when β = 0.1 (Fig.4 a)) and this difference increase for the fluid with β = 0.01 
(Fig.4 b)). The Oldroyd-B (β = 0.005), illustrated in Fig.4 c), shows three different evolutions at E=0.01, 10 and 
100 which present the same behaviour, 0.1 and 1. These evolutions differ from each other only in phase. 
However, for β = 0.001 (Fig.4 d)) the main difference is the augment in amplitude of oscillation at E = 1. Finally, 
looking to UCM fluid (Fig.4 e)), although, the centreline velocity at E = 0.01, 0.1 and 1 are practically the same 
at E = 10 and 100 shows a significant reduction and augment respectively in oscillations amplitude. 
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4.3 Spatial profiles and comparison with theory 

Illustrative velocity profiles are presented in Fig. 5 showing how that the velocity across the channel is affected 
by elasticity. Those profiles were obtained at four different time instants during an oscillatory period, with phase 
angles ωt = 0º, 90º, 180º and 270º, for an Oldroyd-B fluid with β = 0.001. This fluid reveal, an initial increase 
and then a reduction of the oscillations as the elasticity number is increased from 0.01 to 100, presenting higher 
oscillations at E = 1. In Fig.5 a) the velocity profiles at E = 0.01 shows no oscillations much like the Newtonian 
case [11]. When elasticity number is increased to 0.1 (Fig.5 b)) smooth oscillations appear and at E = 1 (Fig.5 c)) 
the propagation of oscillating motions are clearly spread out across the channel with higher amplitude and 
frequency. At E = 10 (Fig.5 d)) these oscillations are no longer formed across the channel width but are restricted 
to a zone near the wall. This general behaviour was also observed for models with solvent viscosity ratio, β, 
higher than 0.001. In addition the figure clearly demonstrates that much finer meshes are required at moderate 
and high elasticity numbers (E = 1 and 10) in order to faithfully represent the theoretical profiles: while 50 cells 
across the channel are sufficient at E = 0.01 and 0.1, as many as 1000 cells are needed at E = 1. 

We look now into the effect of E at constant β: Fig.6 shows velocity profiles at t = 0 for the various fluids with β 
varying from 1 (Newtonian) to 0 (UCM). Generally, as viscoelasticity is enhanced through added polymer 
concentration, i.e., when β ≠ 1, the influence the influence of elasticity number becomes more pronounced. The 
absence of oscillations at E = 0.01 and the presence of very smooth oscillations at E = 0.1 is a general behaviour 
among these viscoelastic fluid models. The velocity profiles of Oldroyd-B (β = 0.1), (Fig.6 a)) at E = 1, 10 and 
100 are practically equal and present smooth oscillations. Looking at the Oldroyd-B (β = 0.01) plot (Fig.6 b)) at 
E = 1, the velocity profile shows higher oscillations, in terms of both amplitude and frequency, than for other 
values of E, and at E = 10 and 100 small oscillations appear near the wall. As β is further reduced in Oldroyd-B 
fluid models, to β = 0.005 and 0.001, Fig.6 c) and d) respectively, oscillations at E = 1 increase in amplitude and 
at E = 10 and 100 the oscillations near the wall are now spread out to a higher distance from the channel wall. 
Finally, considering UCM fluid (Fig.6 e)) the velocity profile at E = 0.01 and 0.1 is very similar to that predicted 
for the other viscoelastic fluids, at E = 1 oscillations increase in amplitude and at E = 10 and 100 oscillations, 
previously near the wall, are completely spread out across the channel increasing significantly their frequency, 
although with much smaller amplitudes. 
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Fig.4. Evolution of centreline velocity with time during the pulsating flow of: a) - d) Oldroyd-B (β = 0.1, 0.01, 

0.005 and 0.001); and f) UCM (β = 0) fluids on mesh Δy = 2 × 10-2, at E = 0.01 (Δt = 2 × 10-3), E = 0.1 (Δt = 2 × 
10-3), E = 1 (Δt = 2 × 10-2), E = 10 (Δt = 2 × 10-4) and E = 100 (Δt = 2 × 10-5). 
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Fig.5. Numerical (symbols) and analytical (lines) results for the velocity profiles of Oldroyd-B fluid (β = 0.001) 
in the oscillatory regime during one cycle on meshes Δy = 2 × 10-2 and 1 × 10-2 at: a) E = 0.01 (Δt = 2 × 10-3); b) 
E = 0.1 (Δt = 2 × 10-3); c) E = 1 (Δt = 2 × 10-2); d) E = 10 (Δt = 2 × 10-4); e) E = 100 (Δt = 2 × 10-5). Numerical 

results were predicted using mesh spacings of Δy = 2 × 10-2 (orange) and Δy = 1 × 10-3 (blue). 

 

4.4 Discretization error and convergence 

Fig.7 illustrates the distribution of the discretization error along one cycle, calculated on five different uniform 
meshes and with corresponding smaller time steps. Here we only present the Oldroyd-B (β = 0.001) case at 
different values of elasticity. At the lowest value of elasticity (Fig.7a)) the error is almost a straight line with 
smooth oscillations and the successive refinements revealing a regular parallelism, with a constant separation as 
mesh spacings are decreased as Δy1 = Δy2/2, which is usual in accurate second order methods. But, when 
elasticity number is increased to 0.1 and 1 (Fig.7 b) and c)) it seems to follow instead a sinusoidal-like variation. 
Although, at E =0.1 there is a good parallelism between mesh refinements, at E = 1 a phase lag is present 
especially for the coarser meshes. However, if elasticity number is increased to 10 (Fig.7 d)) the error will 
present once again a straight-like variation. It is also important to note that the magnitude of the error increase 
with elasticity number. In addition, while at E = 0.01 the error is smaller than 10-3 at E = 10 the error is only 
smaller than 10-3 when mesh spacing Δy = 1 × 10-3. 

An overall error measure was then calculated as the average error over one cycle, following Eq (12b). The 
corresponding convergence rates obtained for the different models at different values of elasticity over a period 
are illustrated in Fig.8 as symbols and the lines graphic fittings using a power-law equation e = C10pΔy. In 
general, the size of the error increases as the elasticity number is increased until E =1, and then decrease in 
magnitude when E is further raised 10, but only for fluids with β > 0. Looking to each value of elasticity in 
particular, at E = 0.01 (Fig.8 a)) the convergence rates obtained were almost the same for all fluid cases giving a 
convergence rate of p = 2.01. When E is raised, the error decay lines for each value of β become separated, with 
consistent larger errors for smaller β. However the decay rate remains close to 2 for all cases in agreement with 
the 2nd order of the method. 
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Fig.6. Velocity profiles at ωt = 0º in the oscillatory regime of: a)-d) Oldroyd-B (β = 0.1, 0.01, 0.005 and 0.001) 
and e) UCM (β = 0) fluids on mesh Δy = 1 × 10-3, at different values of elasticity number: E = 0.01 (Δt = 2 × 10-

3), E = 0.1 (Δt = 2 × 10-3), E = 1 (Δt = 2 × 10-2), E = 10 (Δt = 2 × 10-4) and E = 100 (Δt = 2 × 10-5). 
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Fig.7. Evolution of the discretization error during one cycle for pulsating flow of the Oldroyd-B fluid with β = 
0.001 calculated with various discretizations and elasticity numbers. 
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Fig.8. Convergence plots for pulsating flow of Oldroyd-B and UCM models at different values of elasticity 

number. 

5 Conclusions 
The pulsating flow problem of Duarte et al [11] is extended here to various values of the elasticity number. 

The viscoelastic fluid flow analysis began with the evaluation of the flow during the transient regime until steady 
state was reached. Here it was clear that as the elasticity number was increased more time was needed to reach a 
fully-established pulsating regime and oscillations with longer wavelength than that imposed by the oscillating 
pressure gradient started to appear and significantly increase in amplitude and frequency. It was also shown that 
as β tends to zero the oscillations of the long wave propagation also increase in frequency and amplitude. Then, 
the influence of β and E was analysed during one period by looking into the centreline velocity evolution. At E = 
1 the behaviour of all Oldroyd-B fluids having different β could be well distinguished, but at E <1 all fluids 
presented almost the same evolution and at E > 1 only the UCM fluid showed a different evolution. Also, fluids 
with β < 0.01 are not significantly affected by E, however as β tends to zero the value of E starts being 
important. Velocity profiles were also presented in a half the channel with at four different moments in time and 
at various values of elasticity. It was observed that as the elasticity number increases form 0.01 to 1 transverse 
oscillations start to develop steeper in terms of oscillation amplitude at E = 1. But as E was further increased to E 
= 10, oscillations were present only near the wall. In agreement with [11] it was found that as elasticity number 
is increased and β decreased the accuracy of numerical results deteriorate, so more refined meshes were needed 
to increase the accuracy. 
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