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Summary 

In this work we present a finite volume method (FVM) used to solve the relevant coupled equations for electro-
osmotic flows (EOF) of viscoelastic fluids, using the Upper-Convected Maxwell (UCM) and the simplified Phan-
Thien—Tanner (sPTT) models. Studies were undertaken in the cross-slot geometry, to investigate the possible 
appearance of purely-elastic instabilities, by considering the effect of the electric field. We found that even for 
pure electro-osmotic flow, i.e., in absence of an imposed pressure gradient, we were able to capture the onset of 
an asymmetric flow above a critical Deborah number, which is lower than the corresponding value for pressure 
gradient forcing. 
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1 Introduction 
Accurate flow control in microfluidic devices requires techniques that can easily be miniaturized and an obvious 
candidate is electrokinetic forcing through such mechanisms as electro-osmosis or electrophoresis. An overview 
of these and other electrokinetic techniques can be found in Bruus [1].  
Electro-osmosis is an electrokinetic phenomenon, first demonstrated by Reuss [2] early in the 19th century, 
where the channel flow of a polar fluid is forced by an external electric field applied between the inlet and outlet 
and acting on ions existing near the channel walls. Helmholtz [3] proposed the electric double layer (EDL) 
theory that relates the electrical and flow parameters for electrokinetic transport in 1879. Subsequently, 
Smoluchowski [4] generalized Helmholtz’s double layer theory by taking into account the actual charge/ 
potential distributions in a capillary channel. A more realistic concept of these distributions in the fluid adjacent 
to the capillary wall was introduced by Gouy [5] in 1910. Debye and Hückel [6] determined the ionic number 
concentration in a solution of low ionic energy, by means of a linearization of the exponential Boltzmann ion 
energy distribution. For Newtonian fluids, rigorous modeling of the electro-osmotic flow in microchannels has 
been the subject of several studies  [7-10], and a thorough review on various other aspects of electro-osmosis can 
be found in Karniadakis et al [11]. The theoretical study of electro-osmotic flows of non-Newtonian fluids is 
recent and most works have been limited to simple inelastic fluid models, such as the power-law, due to the 
inherent analytical difficulties introduced by more complex constitutive equations [12-15]. Recently these 
studies were extended to viscoelastic fluids by Afonso et al [16], who presented analytical solutions for channel 
and pipe flows of viscoelastic fluids under the mixed influence of electrokinetic and pressure forces, using two 
constitutive models: the simplified Phan-Thien—Tanner model (sPTT) [17], with linear kernel for the stress 
coefficient function and zero second normal stress difference [18], and the FENE-P model, based on the kinetic 
theory for Finitely Extensible Non-linear Elastic dumbbells with a Peterlin approximation for the average spring 
force (cf. Bird et al [19]). Their analysis [16] was restricted to cases with small electric double-layers, where the 
distance between the walls of a microfluidic device is at least one order of magnitude larger than the EDL, and 
the fluid had a uniform distribution across the channel. When the viscoelastic flow is induced by a combination 
of both electric and pressure potentials, in addition to the single contributions from these two mechanisms, there 
is an extra term in the velocity profile that simultaneously combines both forcings, which is absent for the 
Newtonian fluids where the superposition principle applies. This extra term contributes significantly to the total 
flow rate, depending on the value of the relative microchannel ratio, and appears only when the rheological 
constitutive equation is non-linear. Afonso et al [20] extended this study to the flow of viscoelastic fluids under 
asymmetric zeta potential forcing. 
In the recent years the efforts for numerical modeling and simulation of EOF has also increased, especially when 
applied to Newtonian fluids. Yang and Li [21] developed a numerical algorithm for elecrokinetically driven 
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Newtonian liquid flows, using the Debye-Hückel approximation [6]. The same approximation was used by 
Patankar and Hu [22] in the numerical simulation of microfluidic injection of Newtonian fluids, with electro-
osmotic forces through the intersection of two channels. Ermakov et al [23] developed a finite difference method 
(FDM) for electro-osmotic and electrophoretic transport and species diffusion for two-dimensional complex 
geometry flows of Newtonian fluids. Using the Gouy-Chapman approximation [5], Bianchi et al [24] developed 
a finite-element method (FEM) to study electro-osmotically driven microflows of Newtonian fluids in T-
junctions. Dutta et al [25] used a spectral element method (SEM) for solution of the Poisson–Boltzmann and 
incompressible Navier–Stokes equations, to analyze mixed electro-osmotic/pressure driven flows of Newtonian 
fluids in two-dimensional geometries, such as straight channels and T-junction geometry. The previous work 
was later extended to complex microgeometries (cross-flow and Y-split junctions) by Dutta et al [26]. Lin et al 
[27] solved the Nernst–Planck and the full Navier–Stokes equations using FDM to model the EOF of Newtonian 
fluids in microfluidic focusing chips.  
For non-Newtonian fluids the efforts for numerical modeling of EOF are now gathering momentum, with limited 
advance having been made, still for very simple geometries such as straight microchannels. Recently, Park and 
Lee [28] calculated numerically the electro-osmotic velocity of viscoelastic fluids in a square microchannel with 
and without externally imposed pressure gradient, using a generalized constitutive equation, which encompasses 
the upper-convected Maxwell (UCM) model, the Oldroyd-B model and the PTT model. Very recently, Tang et al 
[29], presented a numerical study of EOF in microchannels of non-Newtonian purely viscous fluids described by 
the power law model, using the lattice Boltzmann method. Zimmerman et al [30] presented two-dimensional 
FEM simulations of EOF in a microchannel T-junction of a purely viscous fluid described by a Carreau-type 
nonlinear viscosity. The motion within the electrical double layer at the channel walls was approximated by 
velocity wall slip boundary conditions. 
In this work, and for the first time to our best knowledge, we perform numerical EOF simulations of viscoelastic 
fluids in more complex geometries. We use an FVM to solve the relevant coupled equations for electro-osmotic 
flows of viscoelastic fluids, namely the nonlinear Poisson– Nernst–Planck equation that governs the electrical 
double-layer field, the Cauchy equation with a body force due to the applied electrical potential field and a 
variety of constitutive equations for the viscoelastic fluids, in particular the UCM and sPTT models. In addition 
to the simulations in a complex geometry (Cross-Slot geometry), and in order to test the implementation of the 
numerical method, some predictions are compared with existing analytical solutions for the flow in a two-
dimensional microchannel under symmetric and asymmetric boundary conditions for the zeta potential at the 
walls [16,20].  
The remaining of the paper is organized as follows: in sections 2 and 3 we briefly present the governing 
equations and outline the numerical method used to simulate the EOF of the viscoelastic fluids, respectively. In 
section 4, the main results of the numerical implementation tests and of the EOF in a cross-slot geometry are 
presented, respectively. A summary of the main findings closes the paper in section 5. 

2 Governing equations 
The flow is assumed to be steady, laminar and the fluid is incompressible. The governing equations describing 
the flow are the continuity equation,  

 
 0 u  (1) 
 
and the Cauchy equation: 

 2 0
0 1

  


           
p

t

u
uu u A F          (2) 

where u is the velocity vector, p the pressure, t the time,  the fluid density, ηs the Newtonian solvent viscosity 
and A is the conformation tensor. The polymer solution either obeys the UCM or the sPTT models, hence the 
total fluid extra stress is the sum of the solvent and polymer stress contributions. The equations are written in 
general form. The polymer has a relaxation time  and a viscosity coefficient ηp, defining a zero-shear rate total 
viscosity η0 = ηp + ηs. The coefficient  in equation (2) is the ratio between the solvent viscosity and η0 
(  ηsη0) and is a measure of the concentration of polymer additive ( = 0implies no solvent and  = 1 means 
that the fluid is Newtonian and there is no polymer additive). 
The polymer extra-stress  can be related to the conformation tensor A using 

 


 τ A I          (3) 

which requires the solution of an evolution equation of the form, 

     tr tr           
TY Y

t

A
uA A A A I A u u A      (4) 
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where I is the unitary tensor. When Y(tr A)=1 we recover the Oldroyd-B model which further simplifies to the 
UCM equation if  = 0. Otherwise, we are in the presence of the sPTT model with a Newtonian solvent and 
Y(tr A) imparts to the fluid shear-thinning behavior and bounds the extensional viscosity as explained in the 
original papers of Phan-Thien and Tanner [17] and Phan-Thien [18]. 
In its general form function Y(trA) is exponential, but in this work we use its linear form 

   1 3Y tr tr  A A         (5) 

The F term in the Cauchy equation (2) represents a body force per unit volume, given as  
 

eF E  (6) 

where E is the applied external electric field and e is the net electric charge density. The electric field intensity 
is related to the electric potential, , by 
  E  (7) 

while the electric potential is governed by,  

 2 e   


 (8) 

where   is the electrical permittivity of the solution. Two types of electric fields can be identified in EOF flows, 
depending on their origin. One is the applied electric field generated by the electrodes at the inlet and the outlet 
of the flow geometry, . The other electric field is due to the net charge distribution in the EDL, due to the 
charge acquired at the wall The total electric field is simply a linear superposition of these two contributions, 
and this can be written as 
      (9) 

Consequently, equation (8) can be rewritten as two separate equations,  
 2 0   (10) 

and 

 2 e  


 (11) 

Finally, we need to quantify the electric charge density in order to have a closed-form equation. For a symmetric 
electrolyte the ions and the counter-ions have the same charge valence, z+=-z-= z, and the net electric charge 
density is given by:  

 e ez n n          (12) 

where n+ and n- are the concentrations of the positive and negative ions, respectively, and e is the elementary 
electric charge. In order to find the net charge density e, the distributions of ionic concentrations n+ and n- must 
be determined. This is achieved by solving the following transport equation, known as the Nernst-Planck 
equations:  

    


     
          B

n ze
n D n D n

t k T
u     (13) 

where D+ and D- are the diffusion coefficients of the positive and negative ions, respectively. The set of 
equations (10) to (13) is usually called the Poisson-Nernst-Planck equations (PNP). 

Another way to quantify the electric charge density is using the widely adopted Poisson–Boltzmann equation  
derived from the Nernst–Planck equations. From the ionic transport equations (13), when the ionic distribution is 
stationary, the electric double layer does not overlap at the center of the channel and significant variations of n± 
and ψ occur only in the normal direction to the channel walls, the stable Boltzmann distribution of ions in the 
electric double layer can be assumed, that according to Bruus [1] is given by 

 2 sinhe o
B

ez
n ez

k T
 

 
   

 
 (14) 

where no=CNA is the bulk number concentration of ions in the electrolyte solution, C is the molar concentration 
of ions, NA is Avogadro’s number, T is the temperature and kB is the Boltzmann constant. The set of equations 
(10), (11) and (14) is usually called the Poisson- Boltzmann equations (PB). 

For small values of ezo/kBT, synonymous of a small ratio of electrical to thermal energies, equation (14) can 
also be linearized, sinh(x) ≈ x, using the so-called Debye-Hückel approximation. Then, the electric charge 
density equation, becomes 
 2

e     (15) 
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where 2 = 2noe
2z2/( kBT) is the Debye-Hückel parameter, related to the thickness of the Debye layer, D 1/ 

(also referred to as the EDL thickness). The set of equations (10), (11) and (15) is usually called the Poisson- 
Boltzmann-Debye-Hückel equations (PBDH). 
Finally, we can rewrite the Cauchy equation (2) as,  

    2 0
0 1

     


              
ep

t

u
uu u A    (16) 

keeping in mind that the electric charge density equation can be obtained by equations (12), (14) or (15), 
depending on the desired level of approximation.  

3 Numerical method 
In the past, our group adapted a Newtonian FVM to calculate pressure driven flows of viscoelastic fluids. The 
method is based on a time marching pressure-correction algorithm formulated with the collocated variable 
arrangement and is explained in detail in Oliveira et al [31] and Alves et al [32]. For improved convergence, the 
FVM was modified with the matrix logarithmic of the conformation tensor [33], and details of that 
implementation have been previously given by Afonso et al [34].  

Here, the existing method was extended to mixed electro-osmotic/pressure driven flows, and the modifications 
are explained below. As observed in the previous section, the new set of equations depends on the 
approximations applied to the closed-form equation for the electric charge density, i.e., the PNP, PB or PBDH 
equations. This fact also reflects on the numeric implementation, and we chose to implement all the three 
approximations. Briefly, the PNP, PB or PBDH equations are transformed first to a non-orthogonal system (l), 
but keeping the Cartesian velocity and stress components. This is advantageous from a numerical point of view, 
because the equations are written in a strong conservation form which helps to ensure that the final algebraic 
equations retain conservativeness. Then, the equations are integrated in space over the control volumes (cells 
with volume Vp) forming the computational mesh, and in time over a time step (t), so that sets of linearised 
algebraic equations are obtained, having the general form:  

      
6

1
P P F F

F

a a S  



         (17) 

to be solved for all variables (u, v, w,n+ or n-). The equations for the pressure and extra stress 
components (or the Log-conformation tensor) are similar to equation (17) and are the same used in the pressure 
driven flow version of the code (see [31-32]), and so they are not included in this description. In these equations 
aF are coefficients accounting for convection and diffusion, S are source terms encompassing all contributions 
not included in the coefficients, the subscript P denotes the cell under consideration and subscript F its 
corresponding neighbouring cells. The coefficients of the PNP equations are given by:    
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where Df and Cf are the diffusive and convective conductance, respectively. The term uvw
ES  is the electric body 

force term in the momentum equations (16), and is added to the other source terms in the momentum equation 
(see [31-32]).  The coefficients of the PB equations are given by:  
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In the coefficients for the potential , especial attention was given to the hyperbolic function sinh(ez/kBT), 
especially at high values of ez/kBT, due to the exponential behavior of the function. So, a linearization of the 
source term, S was introduced in equation (19). Finally, the coefficients of the PBDH equations are given by: 
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     (20) 

The CUBISTA high-resolution scheme [32] was used in the discretization of the convective terms of the 

momentum, of the Log-conformation tensor and of the ionic transport equations (13) (see term n
HRSS


 in equations 

(18)). This scheme is formally of third-order accuracy and was especially designed for differential constitutive 
relations (see [32]). Due to the lack of space and because we will use small EDL thickness (and so the electric 
double layer does not overlap at the center of the channels), and we also assume that significant variations of n± 
and ψ occur only in the normal direction to the channel walls, then only the PB version of the code is used in the 
present work.  

 

 

  

 

 

 

 

 

 

 

(a)      (b) 

Fig.1. (a) Channel geometry and (b) mesh M3. 

4 Results and discussion 
4.1 Accuracy tests 

To test the implementation of the numerical method some predictions are compared with existing analytical 
solutions for the flow in a two-dimensional microchannel under symmetric and asymmetric boundary conditions 
for the zeta potential at the walls [16,20]. In those works the so-called standard electrokinetic model assumptions 
were used, along with the sPTT model for the viscoelastic fluid. When the flow is fully-developed the velocity 
and stress fields only depend on the transverse coordinate y, and on some dimensionless parameters, such as  the 
ratio of microchannel to Debye layer thicknesses   H , the Helmholtz-Smoluchowski electro-osmotic 
velocity sh i xu E   , the rheological properties of the fluid via a Deborah number based on the EDL 

thickness and ush , k sh D shDe u u     (or based in the channel length, H shDe u H  as in [16]) and the 

fluid extensibility parameter . To account for the combined forcing of pressure gradient and electro-osmosis, the 

non-dimensional ratio between these two forcings is given by   2
,i x xH p E    .  

Table 1. Mesh details. 
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y/H0.5 0.75 10

0.5

1

1.5

Analytical
M1
M2
M3

ε=0.25
Deκ=1
κ=200

u/ush

y/H-1 -0.5 0 0.5 1

-1

0

1

2

Analytical
M1
M2
M3

ε=0.25
Deκ=1
κ=50
Rζ=-1

u/ush

 NC xmin ymin 
M1 1800 0.2 8.0x10-4 
M2 3600 0.2 4.0x10-4 
M3 7200 0.2 2.0x10-4 

MCS 12801 4.0x10-4 4.0x10-4 

 

The channel geometry is represented in Figure 1(a). At the walls the no-slip condition applies ( u  0  at 
y H  ), along with ∂/∂y|wall =0 and =i. Depending on the value of i on the walls, we can determine if the 

flow is symmetric (R = 1/2 = 1, i.e. 1 = 2) or asymmetric (R = 1/2 ≠ 1, i.e. 1 ≠ 2). At the inlets fully-
developed velocity and stress profiles are imposed and at the outlet planes Neumann boundary conditions are 
applied, i.e. ∂ /∂x = 0).  

The main characteristics of the three meshes used in this work for the accuracy test are given in Table I, 
including the total number of cells (NC) and the minimum cell spacing (xmin and ymin). Note that the 
refinement in the transverse direction is very high, in order to obtain accurate results in the sharp zone of the 
EDL. This high refinement is shown in Figure 1(b), here for mesh M3. 

The results for the accuracy tests are presented in Figure 2. When R = 1, i.e., for symmetric conditions, Figure 
2(a), presents the fully-developed dimensionless velocity profiles obtained with  = 0.25, kDe  1,   200 and  

  0 (pure EOF). As observed, both the analytical and numerical results collapse, showing excellent accuracy, 
even at a very sharp EDL (  200). For complete asymmetric flow (R = -1), with  = 0.25, kDe  1,   50 and  

in the presence of a favourable pressure gradient (with   -2), the comparison between the analytical and 
numeric  results is also excellent, as observed in Figure 2(b). These results show that the refinement near the 
wall for mesh M2 is sufficient to obtain accurate results, even for very small EDL thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)      (b) 

Fig.2. Dimensionless velocity profiles for (a) symmetric zeta potential for pure EOF (  0) and (b) asymmetric 
zeta potential for favourable pressure gradient (  -2) 

 

4.2 Cross-Slot flow results 
Further studies were undertaken in a more complex geometry, usually described as cross-slot geometry (see 
Figure 3). We are particularly interested in investigating the possible appearance of purely-elastic instabilities, 
as observed recently in a three-dimensional cross-slot microchannel flow by Arratia et al [35], under pure 
Poiseuille flow. Poole et al [36] simulated the two-dimensional cross-slot flow of an UCM fluid under creeping-
flow conditions, and were able to capture qualitatively the onset of a bistable steady asymmetric flow above a 
first critical Deborah number followed by a later transition to a time dependent flow, in agreement with the 
experimental findings of Arratia et al [35]. Poole at al [37] extended the earlier study of Ref. [36] by considering 
the three-dimensional nature of a real microfluidic cross slot flow and investigated in detail the effect of the 
aspect ratio of the geometry, by varying the depth of the cross slot from low values (quasi-Hele Shaw flow) up to 
very large values (quasi-two dimensional flow). Later, Poole et al [38] incorporated the effect of solvent 
viscosity (≠0 in the Oldroyd-B) and finite extensibility ( ≠ 0 in the sPTT model), presenting some  - Re - De 
and  - Re - De maps of flow pattern types, showing the existence of a narrow region where steady asymmetric 
flow can emerge, and identified the limiting De for onset of time-dependent flow. The effect of finite 
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extensibility was also studied by Rocha et al [39], using FENE models. Afonso et al [40] presented a numerical 
study of the creeping flow of an UCM fluid in a three-dimensional cross-slot geometry with six arms and studied 
the influence of the different types of extensional flow near the stagnation point. They found that the uniaxial 
extension flow configuration is prone to the onset of steady flow asymmetries, while in the biaxial extension 
flow configuration the flow was perfectly symmetric.  

In this work we further extend the previous investigations by considering the effect of the electric field in the 
appearance of the flow instabilities. The cross-slot geometry is shown schematically in Figure 3 together with 
the mesh used in this work. All branches have the same width (H) and the inlet and outlet branches have lengths 
of twenty channel widths (20 H). At the inlets fully-developed velocity and stress profiles are imposed and the 
inlet length is more than sufficient for the flow at the junction to be independent of the inlet condition.  
Similarly, the outlets are sufficiently long to avoid any effect of the outflow boundary condition upon the flow in 
the central region. At the outlet planes vanishing axial gradients are applied to all variables (Neumann boundary 
conditions, i.e. ∂φ/∂y = 0), and no-slip conditions are imposed at all channel walls. For the potential at the walls, 
we assume ∂ / ∂n|wall =0 and  = i. The mesh used in these calculations has the same refinement near the walls 
as mesh M2 of the accuracy tests, and the main characteristics of that mesh are also given in Table I. Near the 
central square, and as observed in Figure 3(b), the mesh in the axial direction is also very refined, with both 
minimum cell spacings equal  xmin = ymin = 4.0x10-4. All the calculations were carried out at a vanishing 
Reynolds number, Re =UH/= 0 (creeping flow conditions – imposed by dropping out the convective term in 
the momentum equation). 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)      (b) 

Fig.3. (a) Cross-slot geometry and (b) mesh MCS. 

As already described, we are particularly interested in the effect of the electric field in the possible appearance of 
asymmetries in the cross-slot flow. We start presenting the effect of the combined forcing by pressure gradient 
and electro-osmosis in the flow characteristics. Theoretically, for Newtonian fluid flow in a straight channel, 
when the non-dimensional ratio between these two forcings is   2, the dimensionless velocity at the center line 
is zero (due to the adverse effect of both forcing terms, i.e., pressure is driving the flow in one direction while 
electric potential drives it in the opposite direction). Figure 4(a), shows the streamlines superimposed with the 
u-velocity contours for this situation. We can observe that near the walls the EOF is driving the flow towards the 
central square while in the center line of the channel the backpressure drives the flow out in the channel. This is 
also evident if the adverse pressure gradient is increased, as observed in Figure 4(b), here for   2.5.   
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(a)      (b) 

Fig.4 Streamlines superimposed over axial velocity field for Newtonian flow for adverse pressure gradients: (a) 
  2 and (b)   2.5. 

For viscoelastic fluids we performed additional simulations with   0, i.e., for pure EOF, and   20 using the 
UCM model. Figure 5 presents the streamlines superimposed over u-velocity contour maps for UCM flow for 
several Deborah numbers, showing that above a critical Deborah number (DeH ≥0.275) the flow becomes 
asymmetric. The differences between the results for the cross slot with pure EOF and pure pressure gradient 
flows may be understood from the role of the amount of stabilizing shear flow in the stagnation point region 
which is less in the case of EOF. This difference may also be important for understanding the appearance of the 
purely-elastic instabilities in the cross slot geometry. At higher Deborah numbers the flow becomes unsteady, 
with the formation of vortical structures in the central square, but these flow conditions require further studies, to 
be undertaken in the future.  
 
 
 
 

 

 

 

 

 

 

 

(a)             (b)               (c) 

 

 

 

 

 

 

 

 

 

 

 

(d)             (e)               (f) 

Fig.5 Streamlines superimposed over u-velocity field for pure EO flow of UCM fluid: (a) steady symmetric flow 
at DeH =0; (b)  DeH =0.1, (c) DeH =0.2; (d) DeH =0.25 and steady asymmetric flow at (e) DeH =0.275 and (f) DeH 

=0.3. 

5 Conclusions 

In this work we present a finite volume method that can be used to solve the relevant coupled equations for 
electro-osmotic flows of viscoelastic fluids, namely the nonlinear Poisson–Boltzmann equation that governs the 
electrical double-layer field, the Cauchy equation with a body force due to the applied electrical potential field 
and the constitutive equations for the viscoelastic fluids.  

To describe the rheological behavior of viscoelastic fluids we use the Upper-Convected Maxwell (UCM) model 
and the simplified Phan-Thien—Tanner model (sPTT) [17]. We tested the implementation of the numerical 
method against existing analytical solutions for the flow in a two-dimensional microchannel under symmetric 
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and asymmetric boundary conditions for the zeta potential at the walls [16,20], and the comparison between the 
analytical and numeric  results collapsed within numerical uncertainty, even for very small EDL thickness. 

In this work we further extend the previous investigations in the cross-slot geometry by considering the effect of 
the electric field in the appearance of the flow instabilities, and found that even for pure electro-osmotic flow (in 
absence of any imposed pressure gradient) we were able to capture the onset of an asymmetric steady flow above 
a critical Deborah number, DeH =0.275, which was lower than for pure pressure gradient forcing. 
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