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Abstract 

An analytical solution is derived for the micro-channel flow of viscoelastic fluids by combined electro-osmosis 
and pressure gradient forcing. The viscoelastic fluid is described by the Phan- Thien— Tanner model with due 
account for the near wall layer depleted of macromolecules. This skimming layer is wider than the electric 
double layer and leads to an enhanced flow rate relative to that of the corresponding uniform concentration flow 
case. The derived solution allows a detailed investigation of the flow characteristics due to the combined effects 
of fluid rheology, forcing strengths ratio, skimming layer thickness and relative rheology of the two fluids. 

 

Keywords: electro-kinetic effects; Phan-Thien—Tanner fluid; Newtonian skimming layer; fully-developed 
channel flow; combined electro-osmosis Poiseuille flow. 

1 Introduction 
The advent of cheap micro-fabrication techniques is promoting the widespread adoption of microfluidic flow 
devices by a large number of industrial applications, especially those dealing with bio-fluids, but also including 
new energy systems, such as fuel cell systems where there is flow through porous media and membranes. 
Accurate flow control in these devices requires techniques that can easily be miniaturized and an obvious 
candidate is electricity-related forcing taking advantage of electrokinetic phenomena. An overview of 
electrokinetic techniques can be found in Bruus [1]. 
In electroosmosis, flow of a polar fluid in a channel is forced by an external electric field applied between the 
inlet and outlet and acting on ions existing near the channel walls. These ions, often called counter-ions, appear 
spontaneously when the fluid is brought in contact with the solid wall as a consequence of the molecular 
attractive forces developing between the fluid molecules and the solid material. The ions nearest to the wall are 
immobile forming the Stern layer, the next neighbouring ions are mobile and form the diffuse layer. In this 
electric double layer (EDL) ions flow as a result of the streamwise electric potential, dragging the remaining 
fluid by viscous forces. In addition it is possible to induce flow by pressure gradient, but electrokinetic effects in 
micro-channels also creates spontaneous electro-osmosis in Poiseuille flows, i.e. in the absence of an imposed 
electric field the Poiseuille flow induces an electric potential, the so-called streaming potential [2], leading to 
electro-osmotic flow. 
The principle of electro-osmosis was demonstrated by Reuss [3] early in the 19th century and has been 
subsequently developed, especially over the last 30 years. Today, there are rigorous models of electro-osmotic 
flows in microchannels for Newtonian fluids, such as those of Burgreen and Nakache [4] and Dutta and Beskok 
[5] for weak and strong surface potentials, respectively. Synthetic and bio-fluids are often made from complex 
molecules that impart non-linear rheological behaviour, called non-Newtonian to distinguish from the common 
linear stress rate-of-strain behavior of fluids made from small molecules. The first treatments of non-Newtonian 
effects, by Das and Chakraborty [6] and Chakraborty [7] amongst others, were limited to inelastic power law 
fluids, but very recently these solutions were extended to viscoelastic fluids by Afonso et al [8] and this work is a 
follow-up dealing with the viscoelastic flow in the presence of a depleted region of macromolecules near the 
walls.  
In solutions of macromolecules there are additional effects that need to be accounted for in electro-osmosis due 
to the more complex interactive forces between the wall and the macromolecules and the obvious blockage that 
the wall imposes on molecular motion. As a consequence there can be wall adsorption or depletion as explained 
by Olivares et al [9], the latter being more common. The electro-osmotic flow of non-Newtonian power law 
fluids with a Newtonian skimming layer has been previously studied by Berli and Olivares [10], and here we 
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generalize our previous work [8] for homogeneous viscoelastic fluids to deal with the presence of a near-wall 
region depleted of macromolecules. The rheology of this near-wall fluid can be either Newtonian or still 
viscoelastic, but only the former is dealt with here. 
In this paper an analytical solution is derived for the micro-channel flow of viscoelastic fluids by combined 
electro-osmosis and pressure gradient forcing under fully-developed conditions. The viscoelastic fluid is 
described by the Phan- Thien— Tanner model [11] with due account for the near wall layer depleted of 
macromolecules and behaving as a Newtonian fluid. This skimming layer is wider than the electric double layer 
and leads to an enhanced flow rate relative to that of the corresponding uniform concentration flow case. The 
derived solution allows a detailed investigation of the flow characteristics due to the combined effects of fluid 
rheology, forcing strengths ratio and the ratio between the ticknesses of the skimming layer and of the EDL. 

2 Governing equations 
Fig. 1 shows schematically the flow geometry and illustrates also the electro-osmosis phenomenon showing in 
addition the depletion layer, also called skimming layer, since it is here assumed that there are repulsive forces 
between the macromolecules and the wall. The nomenclature used is that of our previous work [8]. Close to the 
wall there is a Newtonian fluid and in the core there is the viscoelastic fluid. Both layers are subject to the 
electrokinetic field and the pressure gradient forcings, but as we shall see the direct impact of electro-osmosis on 
the PTT velocity profile is fairly weak. The layer depleted of macromolecules has a thickness (δL) and it is 
usually larger than the thickness (ξ) of the electric double layer (EDL). This is so because the thickness of the 
skimming layer is of the order of the radius of gyration of the macromolecules, whereas the EDL is often of the 
order of 10 to about 100 nm, i.e., ξ < δL [9]. Given this flow structure electro-osmosis is usually present 
essentialy inside the skimming layer and the electrokinetic effects are carried into the outer viscoelastic fluid 
region by viscous dragging at the interface. However, for generality the analytical solution derived here takes 
into account electrokinetic effects also within the viscoelastic fluid. If macromolecular depletion in the skimming 
layer is complete, the fluid there is the Newtonian solvent. 
Regardless of whether there is a skimming layer the EDL is composed of a very thin layer of stagnant fluid 
densely populated with counterions, called the Stern layer, followed by a mobile layer of counterions at a smaller 
concentration, denoted diffuse layer [12]. The total charge in the system is neutral, i.e., there are as many ions at 
the wall as counterions at the EDL.  
 

  
 Fig. 1.  Schematic representation of the electro-osmotic flow in a microchannel with a skimming layer. 
 
As a consequence of the described fluid model, the flow governing equations to be solved for fully-developed 
flow are the continuity Eq. (1) and the following modified form of the Cauchy Eq. (2).  
 !.u = 0  (1) 

 !"p +".# + $
e
E = 0  (2) 

where u is the velocity vector, p is the pressure, and !  is the fluid extra-stress tensor. In the skimming layer this 
extra-stress tensor describes a Newtonian fluid of viscosity !

s
 via Eq. (3), whereas elsewhere the fluid is 

described by the Phan-Thien— Tanner (PTT) model of Eq. (4). The !
e
E  term represents the applied external 

electric field (or the induced streaming potential in Poiseuille flow with electroviscous effects), where !
e
 is the 

net electric charge density in the fluid. If the EDL is much thinner than the skimming layer the electrical field 
forcing ( !

e
E ) is negligible outside the skimming layer, but for generality we keep the electro-osmotic forcing 

inside and outside the skimming layer and we consider always that the EDL is thinner, but not necessarily much 
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thinner, than the skimming layer. The electric field E is related to the existing potential via E = !"# , where 
! =" +# . !  is the applied streamwise potential and !  is the potential spontaneously formed by the 
interaction between the walls and the fluid, which only varies in the cross-stream direction. We also consider that 
the electric properties of the polymer solution and Newtonian solvent are identical. As mentioned, the 
rheological models for the fluid inside and outside the skimming layer are expressed mathematically as  
- for the solvent (layer I): ! = 2"

s
D  (3) 

- for the polymeric liquid (layer II): f tr!( )! + "!
#

= 2$D , (4) 

where the rate of deformation tensor is D = !u + !u( )
T( ) 2 , !  is the relaxation time of the polymeric fluid 

having a viscosity coefficient ! . !
"

 denotes the upper convected Oldroyd derivative given in Eq. (5). 

 
 

!
"

=
D!

Dt
# "u( )

T

i! # ! i"u  (5) 

The stress coefficient for the PTT model is given by its linear form [11], f tr!( ) = 1+
"#

$
tr! , introducing 

parameter ! , which is responsible for bounding the extensional viscosity. 
The flow under analysis is steady, fully-developed and the electric double layers forming near each wall are 
sufficiently thin to be considered independent of each other. In addition, the flow geometry and conditions are 
symmetric, so only half the channel needs to be considered. These EDL (or Debye layers) are formed 
spontaneously from the contact between the dielectric walls and the polar fluid as schematically shown on the 
left side of Fig. 1. These conditions imply that the Nernst- Planck equations governing the ionic and induced 
electric potential field (ψ) distributions simplify so that in the EDL ψ  is expressed by the following Poisson- 
Boltzmann equation [13]: 

 !2" = #
$
e

%
 (6) 

where !  is the dielectric constant of the solution assumed constant. Following Bruus [1] the electric charge 
density distribution in equilibrium near a charged surface, as in this fully-developed flow geometry, is given by  

 !
e
= "2n

0
ez sinh

ez

k
B
T
#

$
%&

'
()

 (7) 

with n0 representing the ionic density, e the elementary electronic charge and z the valence of the ions. kB stands 
for Boltzmann constant and T is the absolute temperature. 

2.1 Boundary conditions 
As mentioned above, only half of the channel is considered (0≤ y ≤ H) given the flow symmetry, with H 
denoting the half-channel width. At the wall the no-slip condition applies, here for an immobile wall, and at the 
centreplane flow symmetry conditions apply (flow symmetry conditions are anti-symmetry of the shear stress, 
hence ! xy = 0 at y= 0). At the interface between the skimming layer and the bulk of the fluid a no-slip condition 
for velocity is valid, i.e., both fluids move at the same velocity at their interface. 
Regarding the Poisson- Boltzmann equation governing the electric charge distribution, at the interface between 
the dielectric wall and the electrolyte fluid there is a wall potential !

0
, also called the zeta potential, which 

depends on the properties of the wall and fluid. The constant potential gradient of the applied electric field in the 
streamwise direction ( !" l , where l is the channel length) is sufficiently weak not to interfere with the induced 
ion distribution across the channel, i.e., !" l <<#

0
$ . These are the conditions of the so-called standard 

electrokinetic model (see [8] for further details). The potential !  decreases very quickly with distance from the 
wall and even though it is not null at the skimming layer interface, it is sufficiently small to have a negligible 
direct influence upon the viscoelastic fluid lying outside the skimming layer, as will be seen later.  

For small zeta potentials the EDL thickness is thin and for small values of ez! k
B
T( ) , Eq. (7) can be linearized, 

i.e., sinh x ! x . This is called the Debye- Hückel approximation, which we invoke here, thus limiting the zeta 
potential to values smaller than 26 mV at room temperatures [4,5]. 
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3 Analytical solution 
We start by integrating the Poisson- Boltzmann equation after back-substituting Eq. (7) into Eq. (6) and 
considering the Debye- Hückel hypothesis of Section 2.1.  

 
d
2!
dy

2
=

2n
0
ez sinh

ez

kBT
!

"
#$

%
&'

(
)

d
2!
dy

2
=
2n

0
e
2
z
2!

kBT (
 (8) 

Defining the Debye- Hückel parameter (! ) as ! 2
=
2n

0
e
2
z
2

k
B
T "

, which is related to the EDL thickness by ! = 1 " , 

the integration of Eq. (8) leads to the transverse distribution of the electric potential of Eq. (9), where !
0

 is the 
wall potential, also known as zeta potential. 

 ! =!
0

cosh " y( )
cosh "H( )

 (9) 

The corresponding distribution of the electric charge density is obtained by back substitution in Eq. (7) and is 

given by !e = " #$ 2%
0

cosh $ y( )
cosh $H( )

, which is positive  when the wall charge is negative, as it should.  

We can now integrate the momentum equation, which for the streamwise component is expressed as 

 
d! xy
dy

= "#eE + p
,x $

d! xy
dy

= " " %& 2'
0

cosh & y( )
cosh &H( )

(

)*
+

,-
Ex + p,x  (10) 

and its integration results in the following shear stress distribution 

 !
xy
="#$

0
E
x

sinh # y( )
cosh #H( )

+ p
,x
y . (11) 

Note that the constant of integration appearing from the integration of Eq. (10) is null due since ! xy
= 0  at the 

centreplane.  
To determine the velocity field, it is now necessary to consider the correct expressions for the shear stress from 
the corresponding rheological equations, a task performed in the next two subsections. 
 

3.1 Skimming layer (Layer I) 
Inside the skimming layer ( H ! "

L
# y # H ) the velocity profile is obtained from integration of Eq. (12) subject 

to the no-slip boundary condition at the wall ( u = 0  at y = H ), which results in the expression of Eq. (13) for 
the velocity profile. This velocity profile is written as the sum of two contributions: u

E
 is the velocity profile for 

pure electro-osmotic flow (in the absence of pressure gradient forcing) and u
P

 is for pure Poiseuille flow (in the 
absence of electro-osmosis). The two contributions are independent since the superposition principle is valid for 
the Newtonian fluid [8].  

 !s

du

dy
="#$

0
Ex

sinh # y( )
cosh #H( )

+ p
,x y . (12) 

 u
I
y( ) = uE!I y( ) + uP!I y( )  with (13-a) 

 u
E!I y( ) =

"#
0
E
x

$
s

cosh % y( )
cosh %H( )

!1
&

'
(

)

*
+ ; uP!I y( ) =

p
,x

2"
s

y
2
! H

2( )  (13-b) 

 

3.2 Outside the skimming layer (Layer II) 
Outside the skimming layer ( 0 ! y ! H " #

L
) the PTT fluid leads to a more complex expression. As in other 

fully-developed channel flows of the PTT fluids (cf. [8, 14]), simplification of Eqs. (4) and (5) leads to the 
following relationships between the velocity gradient and the two non-zero components of the extra stress tensor.  

 du

dy
=
1

!
1+

"#
!

$ xx
%
&'

(
)*
$ xy  (14) 
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with !
xx
=
2"

#
!
xy

2 . (15) 

A consequence of Eqs. (11) and (15) is the transverse distribution of the normal stress for the PTT fluid given by 
Eq. (16), whereas inside the skimming layer the Newtonian solvent implies !

xx
=0 under fully-developed flow 

conditions. 

 !
xx
=
2"
#

$%&
0
E
x

sinh % y( )
cosh %H( )

+ p
,x
y

'

()
*

+,

2

 (16) 

Back-substitution of Eqs. (15) and (11) into Eq. (14) provides the differential Eq. (17) for the velocity gradient to 
be integrated subject to the boundary condition of equal velocities at the interface between the skimming layer 
and the bulk flow, i.e., at y = H ! "

L
, the velocity u

Newtonian
(H ! "

L
) = u

PTT
(H ! "

L
) . This integration and 

application of the boundary conditions leads to the velocity profile of Eq. (19), where A = cosh ! y( ) cosh !H( ) , 

B = sinh ! y( ) sinh !H( ) , C = 1 cosh
2
!H( ) , D = tanh !H( ) , E = cosh ! H " #

L( )$% &' cosh !H( )  and 

F = sinh ! H " #
L( )$% &' sinh !H( )  are used for compactness. 

 
du

dy
=
1

!
1+

"#
!

2#
!

$%&
0
Ex

sinh % y( )
cosh %H( )

+ p
,x y

'

()
*

+,

2-

.
/
/

0

1
2
2

3
4
5

65

7
8
5

95
$%&

0
Ex

sinh % y( )
cosh %H( )

+ p
,x y

'

()
*

+,
 (17) 

 u
II
y( ) = uE!II y( ) + uP!II y( ) + uEP!II y( )  with (18-a) 

 uE!II (y) ="#
0
Ex

1

$
A ! E%& '( +

1

$s

E !1%& '(
)
*
+

,
-
.
+
2

3

/02

1
"#

0
1Ex

$
2
34

5
67

3

A ! E( ) B2D2 ! 2C( )  (18-b) 

 u
P!II y( ) =

p
,x

2

y
2 ! H ! "

L( )
2

#
+

H ! "
L( )

2

! H 2

#
s

$

%
&
&

'

(
)
)
+
*+2 p

,x

3

2#3
y
4 ! H ! "

L( )
4$

%
'
(  (18-c) 

 uEP!II y( ) =
6"#2 p

,x

$% 2

&'
0
%Ex

$
(
)*

+
,-

&'
0
%Ex

$
%D
2

yAB ! H ! .L( )EF( ) !
C

4
% y( )

2 !% 2
H ! .L( )

2/
0

1
2 +

E
2 ! A2( )
4

/

0
3
3

1

2
4
4

5
6
7

87
 

 +
p
,x

!"
A " y( )

2
+ 2#

$
%
& ' E " 2

H ' (L( )
2

+ 2#
$

%
& ' 2D " yB '" H ' (L( )F#$ %&

#
$

%
&

#

$
)

%

&
*
+
,
-

 (18-d) 

The velocity profile outside the skimming layer has an extra contribution, in addition to the pure electro-osmotic 
and pure Poiseuille flow terms. The extra term ( u

EP!II
) accounts simultaneously for both effects and is non-zero 

only when there is simultaneous forcing by pressure gradient and electric potential, thus showing that for the 
PTT fluid the superposition principle no longer applies.  
 

3.3 Nondimensional velocity profile 
It is worth presenting the main equations in a normalised form. For this purpose the following quantities are 
introduced: y = y H  and ! = !H  are nondimensional lengths, the Helmholtz- Smoluchowski electro-osmotic 
velocity u

sh
= !"#

0
E
x
$  is used to normalise the velocity and the Deborah number is based on the EDL 

thickness and u
sh

, De
k
= !u

sh
" = !#u

sh
 as in [8]. See also this reference for other definitions of Deborah 

number used in the context of pure Poiseuille flows. To account for the combined forcing of pressure gradient 
and electro-osmosis, the non-dimensional ratio between these two forcings is given by 
! = " H

2 #$
0( ) p

,x
E
x( ) . Finally, the presence of a Newtonian fluid in the skimming layer introduces the ratio 

of viscosity coefficients ! = " "
s

 and the normalized skimming layer thickness !
L
= !

L
H .  

Inside the skimming layer the normalised velocity profile is rewritten as 

 
uI y( )
ush

= 1! A( )" !
1

2
"# 1! y 2( )  (19) 

where the first and second terms on the right-hand-side (RHS) are the normalized u
E!I

 and u
P!I

 contributions. 
The normalised profile outside the skimming layer is written as 
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uII y( )
ush

= uE!II y( ) + uP!II y( ) + uEP!II y( )  with (20-a) 

 uE!II (y ) = E ! A"# $% + & 1! E"# $% + 2'De(
2
E ! A( ) 2C ! B2D2( )  (20-b) 

 u
P!II y( ) =

"
2

y
2 ! 1! #

L( )
2$

%&
'
()
1+

*De+
2"2

+ 2
y
2
+ 1! #

L( )
2$

%&
'
()

,
-
.

/
0
1
+
"2
2

1! #
L( )

2

!1$
%&

'
()

 (20-c) 

 uEP!II y( ) =
6"De#

2$

# 2

D

2
# yAB !# 1! %L( )EF&
'

(
) !

C

4
# y( )

2

!# 2
1! %L( )

2&
'*

(
)+
+
E
2 ! A2( )
4

,
-
.

/.
 

 !
"

# 2
A # y( )

2

+ 2$
%

&
' ! E # 2

1! (L( )
2

+ 2$
%)

&
'*
! 2D # yB !# 1! (L( )F$

%
&
'

$
%)

&
'*
+
,
-

 (20-d) 

 

3.4 Nondimensional Flow Rate 
Integration of the full nondimensional velocity profile gives the relationship between the flow rate and the 
independent variables, in particular the forcing parameter ! , the viscosity ratio ! , the EDL thickness !  and 

thickness ratio !
L

. The normalized flow rate, which is defined as Q = Q u
sh
H( )  is given as the sum of the 

following five contributions,  

 Q = Q
E!I

+Q
P!I

+Q
E!II

+Q
P!II

+Q
EP!II

, (21) 

which are expressed by: 

 Q
I
= Q

E!I +QP!I = 2" #
L
+
D

$
F +1( )

%

&
'

(

)
* !
1

2
+ #

L
!
1

3
+
1

3
1! #

L( )
3%

&'
(
)*

,
-
.

/
0
1

 (22-a) 

 Q
E!II = 2 1! "L( ) # + E 1! #( )$% &' !

2FD

(
+
4)De(

2
1! "

L( )
3(

2C FD ! E( 1! "
L( )$

%
&
' +

F
2
D
2

3
!FD + 3E( 1+ "

L( )$
%

&
'

*
+
,

-
.
/

 (22-b) 

 Q
P!II = !" 1! #

L( )
2

3
1! #

L( )
2

1+
6$De%

2

5% 2
"2

1! #
L( )

2&

'
(

)

*
+ + ,#

L
2 ! #

L( )
-
.
/

0/

1
2
/

3/
 (22-c) 

 Q
EP!II =12"De#

2$ 1!%
L( )

3 C

6
1!%

L( ) !
EFD

2#

&
'
(

)
*
+

 

 !
12"De#

2

# 5
$2

1!%
L( ) 3FD 2 +# 2

1!%
L( )

2&
'(

)
*+!#E 1!%

L( ) 6 +# 2
1!%

L( )
2&

'(
)
*+{ }  (22-d) 

 

4 Discussion of flow results 
The above equations allow us to understand better the flow dynamics via some plots, which are analysed below. 
We start by looking at Fig. 2a), to pure EO flow (! = 0), which pertains to a situation with ! = 1 Also, first we 

concentrate our attention to the analysis of the four Newtonian curves (
  
!De

"

2
= 0 ) at different values of ! , 

which are plotted in colours other than black for easier identification. Since ! = 1 these four cases are indeed 
equivalent to a single Newtonian fluid. One of the effects we want to investigate in this work is that of the ratio 
between the thicknesses of the skiming layer and of the EDL, which is here carried out by fixing 

 
!

L
 at 0.1 and 

varying ! . Since 
  
!

L
> "

#1 , then it must be that 
  
!

L
" #1 . These four profiles in Fig. 2a) exhibit a large shear rate 

at the wall and a nearly constant plateau outside the EDL. Since the velocity is normalized by the Smoluchowski 
velocity, the plateau value is equal to 1 and here the effect of EDL thickness is clear from this plot.  
However, a skimming layer has usually a lower viscosity and this entails ! > 1. Looking for the same four cases 
in Fig. 2b) i.e., the four coloured curves pertaining to Newtonian fluid outside the skimming layer, this plot 
shows the corresponding velocity profiles for ! = 10 all other quantities being identical. Direct comparison 
between the coloured profiles in Figs. 2a) and 2b) shows that the normalised velocities with ! = 10  are higher 
than those for ! = 1  by a factor of up to 10. This is actually a consequence of the use of the higher inner fluid 
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viscosity coefficient to calculate the Smoluchowski velocity scale used in the normalization. In fact, when the 
skimming layer is much thicker than the EDL, say ! = 100  and !

L
= 0.1 , the fluid near the wall is still the same 

solvent as in Fig. 2a) and the electro-osmosis acts identically, but by using a velocity scale which is ten times 
lower than the true Smoluchowksi velocity fictitously increases the normalized velocity. We also observe that at 
the skimming layer interface the velocity profile is already constant. However, as the thicknesses of the two 
layers approach each other the action of the EDL is felt directly inside as well as outside the skimming layer and 
at the layer interface the profile is not yet constant. In these cases the electro-osmosis effect reaches a lower 
maximum velocity and a kink is also observed at the interface, because of the sudden increase in viscosity and 
the concomittant sudden reduction in shear rate associated with the constant value of the shear stress. Hence, 
values of u u

sh
< !"1  indicate a reduction in the true flow rate due to the higher fluid viscosity outside the 

skimming layer. 
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Fig. 2. Effects of !  and !De

"

2  on the profiles of normalized velocity for sPTT fluids in pure EO flow ( ! = 0) 

with !
L

= 0.1: (a) ! = 1; (b) ! = 10. 

 
Still for pure EO flow the remaining curves (black curves) in Figs. 2a) and 2b) now analyse the effect of !  in 
combination with the effect of shear-thinning quantified by parameter !De

"

2  for ! =1 and 10, respectively. The 
shear viscosity of the sPTT fluid is characterized by a Newtonian plateau at low shear rates followed by the 
shear-thinning effect at larger shear rates. Since in pure EO the high shear rates are found only near the wall, 
where the skimming layer is actually occupied by a Newtonian fluid, the fluid outside the skimming layer 
behaves essentially as a Newtonian fluid when !

L
" >>1 as is clear from the collapse of the curves for  ! =100  

and in spite of the large values of !De
"

2 . As the thickness of the skimming layer approaches the thickness of the 

EDL (!
L
" # 1 ) then the shear-thinning becomes noticeable because at the interface the shear layer is no longer 

negligible and there is a sudden jump in viscosity.  
Here, we must distinguish between the two situations shown in Figs. 2a) and 2b). In Fig 2b) the fluid outside the 
skimming layer is more viscous than the skimming layer fluid ( ! = 10) and on crossing the interface from the 
skimming layer to the bulk fluid there is a sudden increase in flow resistance, and a concomittant reduction in 
shear rate, so the effect of shear-thinning is fairly weak even with large values of !De

"

2 . In Fig. 2a) there is 
apparently a large effect of !De

"

2 , but the depicted situation is unrealistic. In fact, with ! = 1, the zero shear rate 
viscosity of the sPTT fluid is identical to the viscosity of the skimming layer Newtonian fluid, meaning that at 
shear rates above the threshold of shear-thinning the PTT fluid will be less viscous than the Newtonian fluid. 
This results in the observed large effect of shear-thinning for this particular limiting case, where in reality the 
bulk fluid will be more viscous than the skimming fluid corresponding to ! >1 and the true situation more akin 
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to that shown in Fig. 2b). In conclusion, for pure electroosmosis the effect of !De
"

2  is essentially non-existent 
when the EDL is much thinner than the skimming layer and fairly weak otherwise.  
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Fig. 3. Combined effect of !  and !  on the profiles of normalized velocity of Newtonian fluids ( !De

"

2 = 0) 

under combined forcing ( ! ≠ 0) with !
L

= 0.1: (a) ! = 1; (b) ! = 10. 

 
Fig. 3 plots velocity profiles for Newtonian fluids in a situation with combined forcing (pressure gradient in 
addition to electro-osmosis). The plots in Fig. 3a) correspond to a single fluid, since ! = 1, and include both the 
adverse and favorable pressure gradients as well as the effect of ! . The profiles are in agreement with those of 
Afonso et al [8]. Except for the EDL region the normalized profiles are identical elsewhere for the same values 
of  all other quantities but ! , with the profiles at higher values of !  showing higher velocities near the wall. As 
these correspond to the single fluid of Afonso et al [8], the onset of reverse flow occurs for ! = 2, even though 
this curve is not shown here. 
When the bulk fluid is more viscous than the fluid in the skimming layer by a factor of 10 ( ! = 10), the 
corresponding profiles are represented in Fig. 3b), all other parameters being equal. There are important 
qualitative differences between Figs. 3a) and 3b). Velocity profiles for different values of ! , with all other 
parameters identical, now are different. The value of !  required for reverse flow is now larger and dependent of 
! . Since forcing is no longer exclusively by a surface mechanism the stresses are larger at the skimming layer 
interface than for pure EO flow and consequently the kink in the velocity profile is more apparent. Only part of 
the differences are related to the viscosity coefficient defining the Smoluchowski velocity scale used to 
normalise the profile. In fact, if the Newtonian solvent viscosity is used instead, all the profiles are reduced by a 
factor of ! , but their relative position remains the same, i.e., say for ! = 2.5 we still do not have reverse flow . 

Qualitatively the surface forcing mechanism acts exclusively on the low viscosity fluid (when !
L
" >> 1 ) 

whereas the pressure forcing acts everywhere, i.e., for !
L
= 0.1  it acts upon the 81% of the total surface area 

occupied by the viscous fluid and on the 19% occupied by the Newtonian solvent, thus the pressure gradient 
needs to be stronger in order to obtain the same profile than in Fig 3a). Hence, it is clear that having a skimming 
layer with a less viscous fluid gives rise to different solutions than those for a single fluid. The exact 
quantification of this difference and whether a simple expression can be used to correct the single fluid solution 
of Afonso et al [8] to provide the two fluid solution is left for a subsequent more extensive investigation of the 
data. 

Fig. 4 shows plots for the sPTT fluid to investigate the combined effects of all parameters. When !
L
" >> 1  

(! = 100 ) and regardless of whether ! = 1 or ! = 10, the sPTT profiles are very close to the Newtonian profiles 
for !De

"

2  of up to 100. We observe a small effect for the stronger adverse pressure gradient and a similar effect 
is expected for larger favourable pressure gradients (not plotted for conciseness), but these are only observed if 
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simultaneously the value of !De
"

2  is quite large, because for low values of !De
"

2  and |! | the range of shear rates 
outside the skimming layer are within the first Newtonian plateau of the viscoelastic fluid.  
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Fig. 4.  Profiles of normalized velocity for sPTT fluids under combined forcing with!

L
= 0.1 : (a) ! = 1 and 

! = 20 ; (b) ! = 1 and ! = 100 ; (c) ! = 10 and ! = 20 ; (d) ! = 10 and ! = 100. 

 

However, a small shear-thinning effect is already observed when !
L
" # 1  (! = 20 ) and especially for lower 

values of ! ( ! = 1), conditions which allow the shear rates outside the skimming layer to be in the power law 
region. As we mentioned before, the conditions with ! = 1 are unrealistic because the bulk fluid becomes less 
viscous than the skimming layer fluid, but it is obvious that there is an intermediate range of conditions for 
which the shear-thinning characteristics of the fluid will have a non negligible impact on the flow characteristics. 
This corresponds roughly to 1 < !  < 10 and 

  
1< !"

L
<10 , but the upper limits of these two ranges may rise the 

larger the value of |! |. Incidentally, note also from Figs. 4a) and c) that for ! = -1 there is essentially no effect 
of 

  
!De

"

2 , because the variations imposed by 
  
!De

"

2  and !  cancel each other. 
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5 Conclusions 
Solutions of macromolecules tend to migrate towards or away from the walls depending on the interactive forces 
at play between the wall, the solvent and the molecules, thus forming either an adsorpion or a skimming layer, 
respectively. When a layer depleted of molecules is formed, a possible model describing the behavior of a 
viscoelastic fluid is that of skimming layer near the wall with a Newtonian fluid and an outer layer away from 
the wall with the unmodified viscoelastic solution. An analytical solution was derived for such a generalized 
model and the results have shown that the flow becomes dominated by the Newtonian wall layer especially when 
the electric double layer (! "1 ) is much thinner than the skimming layer thickness (!

L
), even for large values of 

!De
"

2  and when the viscosity of the Newtonian fluid is much lower than the zero shear rate ( ! >> 1 ). 
The shear-thinning nature of the viscoelastic fluid influences the flow characteristics essentially at intermediate 
flow conditions, i.e., 1 <!"

L
< 10  and for 1 < ! < 10 . 
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