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ABSTRACT
Using direct numerical simulations of turbulent plane channel
flow of homogeneous polymer solutions, described by the Finitely
Extensible Nonlinear Elastic-Peterlin (FENE-P) rheological constitu-
tive model, a-priori analyses of the filtered momentum and FENE-P
constitutive equations are performed. The influence of the polymer
additives on the subgrid-scale (SGS) energy is evaluated by compar-
ing the Newtonian and the viscoelastic flows, and a severe suppres-
sion of SGS stresses and energy is observed in the viscoelastic flow.
All the terms of the transport equation of the SGS kinetic energy for
FENE-P fluids are analysed, and an approximated version of this equa-
tion for use in future large eddy simulation closures is suggested.
The terms responsible for kinetic energy transfer between grid-scale
(GS) and SGS energy (split into forward/backward energy transfer) are
evaluated in the presence of polymers. It is observed that the proba-
bility and intensity of forward scatter events tend to decrease in the
presence of polymers.

1. Introduction

In 1949, Toms [1] observed experimentally that the addition of small amounts of poly-
mer to Newtonian turbulent flows can severely reduce the turbulent friction drag by up
to 80%. Over the last decades, the development of accurate and efficient numerical and
experimental methods has made it possible to investigate the mechanism of drag reduc-
tion in detail.[2–5] Amongst others, two different explanations for this mechanism were
postulated by Lumley [6] and Tabor and de Gennes.[7] Lumley [6] related the mecha-
nism of drag reduction by polymer additives to the polymer chains extension, suggesting
that in the buffer layer, where strong deformations occurs, the stretching of coiled poly-
mers increases the effective extensional viscosity thereby further dissipating small scale
eddies, which thickens the viscous sublayer and consequently leads to drag reduction.
Tabor and de Gennes [7] studied the drag reduction by polymer additives in the context of
homogeneous isotropic turbulence, and related drag reduction to storage and release of
energy by the polymer molecules.
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Several direct numerical simulation (DNS) investigations of fully developed turbulent
channel and pipe flow have been carried out to understand the effect of rheological param-
eters on the structure of turbulence and turbulence statistics. Extensive results about the
influence of rheological parameters on the amount of drag reduction have been reported in
[8,9]. These authors used the Finitely Extensible Nonlinear Elastic-Peterlin (FENE-P) and
Giesekus constitutive equations to investigate the effects of polymer relaxation time, chain
extensibility, and polymer to solution viscosity ratio on the turbulent flow characteristics.

DNS of turbulent viscoelastic flows has shed light on the mechanism and different
aspects of drag reduction (DR) by polymer additives over the last two decades; however,
the DNS of the turbulent flows with homogenous polymer additives is much more expen-
sive than the corresponding Newtonian turbulent flow, because the constitutive equation
increase the number of primary variables, and these extra equations must be solved to
account for the polymer contribution. Moreover, as DR increases, the near wall streaks
become progressively stabilised and elongated, thus requiring the use of longer simula-
tion boxes in particular for high DR cases.[8] Consequently, for a given Reynolds num-
ber, the CPU time and memory requirements for DNS of viscoelastic flows are at least one
order of magnitude larger than for the corresponding Newtonian case, which is unfeasible
for engineering applications. Hence, large eddy simulation (LES) and Reynolds-averaged
Navier–Stokes (RANS)models need to be developed formodelling turbulent flows of dilute
polymer solutions for engineering applications.

In the context of RANS models for FENE-P fluids Iaccarino et al.,[10] and Masoudian
et al. [11] developed k − ε − v2 − f models for FENE-P fluids. These models are fairly
simple, introducing the concept of turbulent polymer viscosity to calculate various time
averaged quantities. However, the quantitative information about turbulence from RANS
is limited because of the inherent nature of RANS.

In order to cope with the high computational cost of DNS and the limitation of RANS
models, LES of turbulent flows of viscoelastic fluids need to be developed in order to allow
carrying out numerical simulations for engineering applications. The first attempts at LES
of turbulent drag-reducing channel flow of viscoelastic fluids was carried out by Thais
et al. [12] in the context of temporal large eddy simulation. Using this method, they were
able to predict all turbulence statistics. More recently, Wang et al. [13] performed LES of
forced homogeneous isotropic turbulence of FENE-P fluids using the temporal approxi-
mate de-convolution method, and investigated the characteristics of turbulence structures
and statistics.

Recently,Ohta et al. [14] developed amodified Smagorinskymodel for turbulent channel
flow of generalisedNewtonian fluids, with viscosity described by the power-lawmodel, and
focused on low-Reynolds-number wall turbulence of non-Newtonian inelastic fluids.

Presently, subgrid-scale (SGS) models for large eddy simulations of turbulent drag-
reducing flows with additives described by differential viscoelastic constitutive equations,
such as the FENE-Pmodels, are rare. This work is preciselymotivated by the need to under-
stand the effect of viscoelasticity on the filtered governing equations arising in LES. For this
purpose, DNSs of turbulent channel flow of FENE-P fluids were carried out. In this work,
a top filter is used to separate the grid scales (GS) and SGS. The additional terms appear-
ing in the momentum equation for FENE-P fluids due to the filtering procedure are then
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calculated and the influence of rheological parameters is investigated. Additionally, the fil-
tered FENE-P constitutive equation is also investigated and the resolved and unresolved
terms are identified and assessed.

As stressed by [15–17] in the context of Newtonian turbulent flows, accurate modelling
of the direct and inverse energy transfer between GS and SGS is crucial, particularly for
non-equilibrium flows. Although this issue has received attention for Newtonian fluids,
no effort has actually been made to quantify this phenomenon in turbulent drag reducing
flows described by the FENE-P constitutive equation, particularly in wall bounded flows.
In this work, we analyse for the first time the backward and forward scatter behaviour of the
terms incorporating the GS/SGS energy transfer by using the SGS kinetic energy transport
equation appropriate for FENE-P fluids.

The organisation of this paper is as follows. In the next section, the governing equa-
tions for FENE-P fluids and the numerical methods used in the DNSs will be presented.
In Section 3, the DNS data will be assessed. In Section 4, the results will be presented and
discussed, and finally the conclusions will be summarised in Section 5.

2. Governing equations and numerical method

2.1. Governing equations

Figure 1 shows a schematic of the channel flow studied in this work, where the x-axis is cho-
sen as the mean flow direction, and the y- and the z-axes are the wall-normal and spanwise
directions, respectively. The conservation of mass and momentum equations appropriate
for FENE-P fluid are

∇.
−→u = 0, (1)

∂
−→u
∂t

+ −→u . ∇ −→u = −∇ p+ 1
Reτ0

[
β ∇2 −→u + (1 − β)∇. τ v

]
, (2)

where −→u , p, and τ v denote the instantaneous velocity vector, pressure, and viscoelastic
tensor contribution to the total extra stress tensor, respectively. The zero shear rate fric-
tion Reynolds number, Reτ 0, is defined as Reτ 0 = hUτ /ν0, where ν0 is the zero shear rate
kinematic viscosity of the solution, Uτ is the friction velocity, Uτ = (τw/ρ)1/2, and h is the
half-height of the channel, that together with the time scale, h/Uτ , are utilised to normalise

Figure . Schematic of the flow geometry, x: streamwise, y: wall normal, and z: spanwise directions.
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546 M. MASOUDIAN ET AL.

the equations. The parameterβ is the ratio of the solvent to the total solution zero shear-rate
viscosity, β = νs/ν0.

The additional viscoelastic stress tensor (τ v) in Equation (2) arises due to the presence
of polymer. The stress tensor for the FENE-P dumbbells is given by

τ v = f (ckk)c − I
Wih

, (3)

where Wih = λUτ /h = Wiτ 0/Reτ 0, is the dimensionless relaxation time, also known as
Weissenberg number, c is the conformation tensor, which quantifies the normalised second
moment of the dumbbell end-to-end distance vector, and I is the identity matrix. Function
f(ckk) is known as the Peterlin function defined by

f (ckk) = L2

L2 − ckk
. (4)

Note that c and L2 are made dimensionless with respect to kBT/H∗, where kB, T, and
H∗ denote the Boltzmann constant, the absolute temperature, and the Hookean dumbbell
spring constant, respectively. The polymer conformation tensor is obtained by solving the
following evolution equation for the dimensionless conformation tensor,

∂c
∂t

+ −→u . ∇ c −
[
c. ∇ −→u + (∇ −→u )

T
. c

]
− D∇2c = −τv . (5)

2.2. Filtering procedure

In LES, all variables of the flow (ϕ) are decomposed into a GS (ϕ<) and a SGS part (ϕ>).
Using this notation, the main flow variables are decomposed as

ui = u<
i + u>

i , p = p< + p>, τv,i j = τ<
v,i j + τ>

v,i j ,

where the GS are identified by

ϕ<(x) =
∫




ϕ(x′)G�(x − x′)dx . (6)

In this equation, G�(x) is the filter kernel of width �, which must satisfy
∫



G�(x)dx =

1, ϕ(x) is a given flow variable, and the integration is extended over the entire flow domain,

.

In a-priori tests, the resolved velocity fields obtained from DNS are explicitly filtered in
order to obtain the exact quantities of interest. The filter kernel that is used here is the box
or top-hat filter defined as

G(x) =
{
1/�
0

if |x| ≤ �/2
otherwise . (7)
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JOURNAL OF TURBULENCE 547

... Filtered Navier–Stokes equation
Applying the filtering operation to the continuity and Navier–Stokes equations yields the
so-called filtered Navier–Stokes equations, which govern the evolution of the GS of motion

∂ui<

∂t
+ ∂ui<uj

<

∂x j
= −∂ p<

∂xi
+ β

Reτ0

∂

∂x j

(
∂ui<

∂x j
+ ∂uj

<

∂xi

)
− ∂τi j

∂x j
+ (1 − β)

∂τv,i j
<

∂x j
,

(8)

∂ui<

∂xi
= 0, (9)

where τi j is the unknown subgrid-stress tensor defined by τi j = (uiu j)
< − ui<uj

<, which
quantifies the momentum exchanges between the grid and subgrid scales, and it needs to
be modelled in LES.

... Filtered conformation tensor equation
The last term on the right-hand side of the filtered Navier–Stokes equation is the filtered
polymer extra stress tensor which arises by filtering Navier–Stokes equation for FENE-P
fluids, and can be expressed as

τ<
i j,v = ηp

λ

[
f (ckk)ci j − f (L)δi j

]< = ηp

λ

(
f (ckk)ci j

)< − ηp

λ
f (L)δi j . (10)

By applying the filtering operation described above, the filtered FENE-P constitutive
equation is obtained

∂c<i j
∂t

+ u<
k

∂c<i j
∂xk

−
(
c<ik

∂u<
j

∂xk
+ c<jk

∂u<
i

∂xk

)
+ τ<

i j,v

ηp
= FTi j + STi j , (11)

where the two terms on the right-hand side include the following SGS contributions:

FTi j = u<
k

∂c<i j
∂xk

−
(
uk

∂ci j
∂xk

)<

,

and

STi j =
(
cik

∂uj

∂xk
+ c jk

∂ui
∂xk

)<

−
(
c<ik

∂u<
j

∂xk
+ c<jk

∂u<
i

∂xk

)
,

where FTi j and STi j are unknown terms representing grid/subgrid-scale interactions in the
FENE-P constitutive equation.

... Transport equations for the grid-scale and subgrid-scale kinetic energy
In order to study the interaction between GS and SGS kinetic energies, the equations
governing these quantities in a viscoelastic turbulent channel flow will be analysed. The
transport equation for (twice) the GS kinetic energy (k = 1

2ui
<ui<) for viscoelastic fluids
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548 M. MASOUDIAN ET AL.

described by the FENE-P model is given by

∂ui< ui<

∂t︸ ︷︷ ︸
(A)

+ ∂ui< ui<uj
<

∂x j︸ ︷︷ ︸
(B)

= −2
∂ p< ui<

∂xi︸ ︷︷ ︸
(C)

+ β

Reτ

∂

∂x j

(
∂k
∂x j

)
︸ ︷︷ ︸

(D)

− 2β
Reτ

∂ui<

∂x j

∂ui<

∂x j︸ ︷︷ ︸
(E)

− 2
∂τi jui<

∂x j︸ ︷︷ ︸
(F)

+ 2τi jSi j<︸ ︷︷ ︸
(G)

+ 2(1 − β)
∂τv,i j

< ui<

∂x j︸ ︷︷ ︸
(H)

−2(1 − β)τv,i j
<Si j<︸ ︷︷ ︸

(I)

. (12)

It is important to recall the physical meaning of this equation and its respective
terms. Terms A and B account for the total (local and advection) variation of GS kinetic
energy, respectively. Terms C and D represent the diffusion of GS kinetic energy by pres-
sure/velocity interactions and molecular viscosity, respectively. Term E is the local GS
kinetic energy dissipation associated to the molecular viscosity. The terms F and G are the
only terms involving the subgrid-stress tensor τ ij and they are directly related to the kinetic
energy exchanges between GS and SGS. Term F (GS/SGS diffusion) represents a diffusion
of GS kinetic energy by interactions between the GS velocity and the SGS stresses. The
GS/SGS transfer (term G), also called SGS dissipation, represents the transfer of kinetic
energy between GS and SGS. Terms H and I account for the interactions between GS and
polymer. Term H is hereafter called GS/Polymer diffusion, and term I is the GS/Polymer
dissipation.

The transport equation for (twice) the SGS kinetic energy is given by

∂τii

∂t︸︷︷︸
(J)

+ ∂τiiu j
<

∂x j︸ ︷︷ ︸
(K)

= ∂

∂x j

(
(uiui)< uj

< − (
uiuiu j

)<)
︸ ︷︷ ︸

(L)

−2
∂

∂xi

(
p<ui< − (

pui
)<)

︸ ︷︷ ︸
(M)

+ β

Reτ

∂

∂x j

(
∂τii

∂x j

)
︸ ︷︷ ︸

(N)

− 2β
Reτ

((
∂ui
∂x j

∂ui
∂x j

)<

− ∂ui<

∂x j

∂ui<

∂x j

)
︸ ︷︷ ︸

(O)

+ 2
∂τi jui<

∂x j︸ ︷︷ ︸
(P)

−2τi jSi j<︸ ︷︷ ︸
(Q)

+ 2(1−β)
∂
(
τv,i jui

)<

∂x j︸ ︷︷ ︸
(R)

− 2(1 − β)
∂τv,i j

<ui<

∂x j︸ ︷︷ ︸
(S)

−2(1−β)
(
τv,i jSi j

)<

︸ ︷︷ ︸
(T)

+ 2(1−β)τv,i j
<Si j<︸ ︷︷ ︸

(U)

.

(13)

Equation 13 expresses themechanisms governing the evolution of (twice) the unresolved
or SGS kinetic energy, in which terms J and K represent the local and advective variation of
the SGS kinetic energy, respectively. The diffusion caused by the turbulence fluctuations of
SGS kinetic energy is represented by term L (SGS turbulent transport), term M represents
the SGS pressure/velocity interactions and term N accounts for the SGS viscous diffusion.
TermO is the SGS viscous dissipation, while terms P andQ are the only terms involving the
subgrid-stress tensor τ ij and are directly related to the kinetic energy exchanges between
GS and SGS. These two terms represent the classical kinetic energy cascade, which also
exists in viscoelastic turbulent flows. Term P (GS/SGS diffusion) represents a redistribu-
tion of SGS kinetic energy by interactions between the GS velocity and the SGS stresses,
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whereas the GS/SGS transfer (term Q) also often named SGS dissipation represents the
transfer of kinetic energy between GS and SGS. It is important to notice that terms P and
Q are, respectively, the symmetric of terms F and G appearing in the GS equation. Since
these terms appear in both equations with opposite signs, they represent the kinetic energy
exchange betweenGS and SGS. Although the same happensmathematically with viscoelas-
tic terms H, I, S and U, respectively, here the transfer of energy between GS and SGS is
carried out through GS/polymer and SGS/polymer interactions. If term Q is positive, the
kinetic energy cascades from GS to SGS (forward scatter), otherwise SGS kinetic energy
flows into the GS (backward scatter). As can be assessed by these equations, in the pres-
ence of polymer additives four new mechanisms must be accounted to study the GS/SGS
interactions, which are absent in Newtonian flows. These are represented by terms R, S, T,
and U. Term R represents additional diffusion prompted by polymer/velocity interactions,
and at the end it does not involve net GS/SGS energy exchanges. This contrasts with term
S, which also represents a diffusion prompted by the polymer, but involves a net GS/SGS
energy exchange even if intermediated by the polymer. Terms T and U are similar to terms
R and S, respectively, but are associated with source/sinks prompted by the polymer. Term
T does not involve net energy exchange between GS and SGS, while term U does indeed
involve kinetic energy exchanges betweenGS and SGS induced by the polymers in the solu-
tion.Aswith termsP andQ, positive values for termsUand S imply forward scatter, whereas
negative values describe backward scatter events.

2.3. Numerical methods and fluid properties

The numerical algorithm proposed by [18] is used to carry out DNSs of turbulent channel
flows. The algorithm relies on a semi-implicit spectral technique with periodic boundary
conditions applied along the streamwise and spanwise directions. The channel sizes are
equal to the sizes used in [8] to adequately capture the streaky structures and the elongated
vortical structures arising in the turbulent flow. For the spatial discretisation in the two
periodic directions (x, z), Fourier representations were used, whereas a Chebyshev approx-
imation in the non-homogeneous shear direction was employed.

Note that, as demonstrated in [8,19], for low drag reduction (LDR), the temporal averag-
ing is performed over 10–15 computational units (h/Uτ ), whereas a much longer temporal
averaging period of over 30–50 h/Uτ is required to obtain converged statistics for high drag
reduction (HDR) flow due to the significant variations in xz plane.

The numerical integration of the evolution equation for the conformation tensor in tur-
bulent channel flows relies on the use of a numerical diffusivity (term D�2c) as described
in [18,20,21], where D is a dimensionless number (equivalent to the inverse of a Schmidt
number) defined as D = κ/hUτ , where κ denotes a constant isotropic artificial numerical
diffusivity coefficient. This additional numerical diffusivity is small enough so that it does
not affect the physics of the FENE-P model, and the corresponding computational results,
while ensuring the numerical stability and realisability of the conformation tensor.[8,19]
As in earlier studies,[8] the artificial numerical diffusivity D was taken to be of O(10−2)
resulting in a numerical Schmidt number Sc+ = 1/Reτ 0D of the order of O(10−1).

Note that the solvent and polymer stress fields are fully characterised by four dimension-
less groups, namely, Reτ , β , L2, andWiτ . Table 1 summarises the computational parameters
for the simulations carried out in this work.
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550 M. MASOUDIAN ET AL.

Table . Summary of the physical and computational parameters for the DNS cases used in this
work.

Case Re
τ0 u

τ
Domain size Lx × Ly × Lz Grid size nx , ny , nz L Wi

τ0 β DR

DNS  . .h× h× .h × ×     %
DNS  . .h× h× .h × ×    . %
DNS  . .h× h× .h × ×    . %

3. Flow statistics and DNS assessment

Streamwise mean velocity profiles in wall units for the cases described in Table 1 are shown
in Figure 2. For the sake of comparison, the profiles for Virk’s asymptote [22] (red solid line)
and the Newtonian DNS data are also included. For the Newtonian case (DNS0), excellent
agreement with the linear distribution in the viscous sublayer as well as in the logarithmic
region is observed. In the drag reduced flows, it can be seen that all profiles in the viscous
sub-layer also collapse on the linear distribution U+ = y+. Since the simulations are per-
formed with a constant pressure gradient, drag reduction is manifested via an increase in
the flow rate, hence further away from the wall the mean velocity of the drag reduced flows
increases as compared to that in Newtonian flows, and the logarithmic profile is shifted
upwards parallel to that of the Newtonian flow. The upward shift of the logarithmic pro-
file is synonymous to drag reduction and can be interpreted as a thickening of the buffer
layer.[6] Similar behaviour to the one described here was also found in the mean stream-
wise velocity profile in the channel flow experiments of Ptasinski et al. [23] and in earlier
DNS studies.[8]

Figure . Mean streamwise velocity profiles as a function of distance from the wall for the DNSs used in
this work (Table ).
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Figure . Rootmean square of the velocity fluctuations for theDNSs used in thiswork (Table ): (a) stream-
wise, (b) wall normal, and (c) spanwise components.

The corresponding transverse profiles of the rootmean square of the streamwise velocity
fluctuations for viscoelastic and Newtonian cases listed in Table 1 are shown in Figure 3(a).
As is well known [8], the streamwise velocity fluctuations urms monotonically increase with
increasing drag reduction. Simultaneously, the peak location of urms moves away from the
wall as drag reduction increases, a behaviour that is consistent with the shift of the log-
arithmic region in the mean velocity profile. The wall normal and spanwise components
of velocity fluctuations, vrms and wrms, are depicted in Figures 3(b) and 3(c), respectively.
They show that vrms and wrms monotonically decrease as DR is increased, with the peak
values of vrms and wrms also decreasing to almost half of their corresponding Newtonian
values. Furthermore, the location of maxima of vrms andwrms also shifts away from the wall
as drag reduction increases. All these results are consistent with previous experimental and
numerical findings.[23]

In Figures 4(a)–4(c), the various contributions to the total shear stresses as a function of
the distance from the wall are shown for the DNS0, DNS1, and DNS2 cases, respectively. In
all cases, the total shear stresses follows the expected linear profiles over the channel height,
indicating that the stationary fully developed state has been reached (for all cases in Table 1,
this behaviour was checked). The figures indicate that for cases DNS1 and DNS2, low and
high drag reduction, respectively, the polymer stress contribution increases monotonically
with increasing DR, while the Reynolds stresses decrease. The polymer stress contribution
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552 M. MASOUDIAN ET AL.

Figure . Total, Reynolds, solvent, and polymeric stresses for the DNSs used in this work (Table ): (a) case
DNS, (b) case DNS, (c) case DNS, rheological and flow properties are described in Table .

is relatively small for low drag reduction (DNS1) and the location of the maximum is close
to the wall, within the buffer layer. However, as DR increases, the Reynolds shear stress
is significantly reduced, and the polymer stresses correspondingly increase, in agreement
with the experimental results of [23]. In conclusion, the DNS data is consistent and over the
next section will be used to investigate the GS–SGS interactions in viscoelastic turbulent
channel flow.

4. Results and discussions

In this section, we analyse the grid/subgrid-scale interactions in turbulent channel flows
with viscoelastic properties described in Table 1. The separation between grid and sub-
grid scales is achieved through the application of a box filter, with filter sizes equal to
4�xi, 6�xi, and 8�xi (these filter sizes are reported in Table 2 in terms of viscous length).
Figure 5 shows the filtering procedure, where dashed lines represent the coarse grid filter,
and the solid lines represent the DNS grid. The filters used in this work are applied in all
three directions in such a way that the coarse grid, which has the size of filter (dashed line in
Figure 5), was applied in the DNS domain, and the filtered quantity of interest at a specific
point (for example point a in Figure 5) is equal to the mean value of the DNS points inside
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Table . Filter sizes used in this work in viscous units.

Filter size x+ y+ z+

4�xi . .< y+ < . .
6�xi . .< y+ < . .
8�xi . .< y+ < . .

the course grid. For points in the vicinity of walls (point b in Figure 5), the averaging is
performed over the available DNS data.

Note that, the averaged ratio of the SGS to GS kinetic energy for all chosen filter sizes
are below 30% which indicates that all chosen filter sizes are representative of actual LES
calculations.[15] Furthermore, all the conclusions and findings in this work were checked
for all three filter sizes.

4.1. Subgrid-scale terms in themomentum and conformation tensor equations

The subgrid-stress tensor,τi j, in the momentum equation is responsible for the momentum
exchanges between the grid and subgrid scales. Most SGS models are based on an artificial
eddy viscosity approach,where the effects of the SGS turbulence are lumped into a turbulent
or eddy viscosity as

τi j − 1
3
τkkδi j = −2υTS<

i j , (14)

where υT is the turbulent eddy viscosity and S<
i j is the large-scale rate of strain tensor. For

instance, in the Smagorinsky model, one assumes that the turbulent eddy viscosity is pro-
portional to the rate of strain norm, |S<| =

√
2(S<

i j S<
i j ). In order to analyse the influence

of viscoelasticity on the subgrid stresses tensor, the quantity τxy/(−S<
xy|S<|), which is equal

Figure . Schematic of the filtering procedure for two specific points (‘a’ away from the wall and ‘b’ at
the wall), x: streamwise, and y: wall normal directions. The solid line represents the DNS grid, while the
dashed line represents the filter cell.
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554 M. MASOUDIAN ET AL.

Figure . (a) Profiles of τxy/(−S<
xy|S<|) for New., LDR, and HDR cases. (b) Solid line: (τxy/

(−S<
xy|S<|))LDR/(τxy/(−S<

xy|S<|))
New.

and dashed line: (τxy/(−S<
xy|S<|))

HDR
/(τxy/(−S<

xy|S<|))
New.

.
New., LDR, and HDR denote DNS, DNS, and DNS cases, respectively. The filter size is �x.

to (Cs�g)
2 in LES of Newtonian turbulence, is plotted in Figure 6(a) using the a-priori

DNS data for viscoelastic (high drag reduction (HDR): case DNS2 and low drag reduc-
tion (LDR): case DNS1) and Newtonian cases. As can be seen, this quantity is severely
suppressed by the addition of polymers to the solvent and keeps decreasing for increasing
DR. In order to have an idea about the amount of suppression and the overall change in the
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Figure . Profiles of components of term : (ηp/λ)(f (ckk)ci j )
< − (ηp/λ)f (ckk)

<ci j
< and term :

(ηp/λ)[f (ckk)
<ci j

< − f (L)δi j] for the: (a) streamwise, (b) wall normal, (c) spanwise components, (d) xy
components of HDR case (DNS).

shape of this quantity for viscoelastic cases in relation to theNewtonian flow case, the quan-
tities (τxy/(−S<

xy|S<|))LDR and (τxy/(−S<
xy|S<|))HDR over (τxy/(−S<

xy|S<|))New. are plotted in
Figure 6(b). It is interesting to note that the ratios are almost constant, with values of about
0.12 for low drag reduction and of 0.03 for high drag reduction regimes, indicating that
for FENE-P fluids the overall shape of (Cs�g)

2 remains similar to that for Newtonian fluid,
suggesting that a simple extension of the Newtonian closures may be effective to account
for the influence of viscoelasticity on the SGS tensor.

Another unknown term that appears in the filtered momentum equation is the filtered
viscoelastic stress tensor, which can be split into

τ<
i j,v = (

ηp
/
λ
) [(

f (ckk)ci j
)< − f (ckk)<ci j<

]
︸ ︷︷ ︸

term 1

+ (
ηp

/
λ
) [

f (ckk)<ci j< − f (L)δi j
]

︸ ︷︷ ︸
term 2

. (15)

In this equation, term 2 is available in the LES grid since it contains only large
scale quantities, whereas term 1 involves SGS contributions of the Cij and there-
fore is unknown in LES. Both terms are compared in Figure 7 for the smallest and
largest filter sizes used in this study, and it is clear that regardless of the filter size

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

P]
 a

t 0
6:

59
 2

4 
M

ay
 2

01
6 



556 M. MASOUDIAN ET AL.

in all directions (ηp/λ)[( f (ckk)ci j)< − f (ckk)<ci j<] is nearly 40 times smaller than
(ηp/λ)[ f (ckk)<ci j< − f (L)δi j] indicating that it is possible to safely approximate the filtered
viscoelastic extra stress tensor in the filtered Navier–Stokes equation, τ<

i j,v , using only its
second GS term, i.e.

τ<
i j,v � ηp

λ

[
f (ckk)<ci j< − f (L)δi j

]
. (16)

Essentially, this is in agreement with the suppression of small scale turbulence structures
in the flow in the presence of polymer additives as observed in Figure 6. In order to shed
light on this phenomenon, the visualisation of the coherent structures using the Q criterion
(Q = 1/2(‖
‖2 − ‖S‖2),where
 and S are the antisymmetric and symmetric parts of∇u)
are shown in Figure 8 for theNewtonian, low, and high drag reduction flow cases. The figure
illustrates the dramatic weakening of the flow structures as drag reduction is increased,
since it can be observed that the number of vortices is severely reduced with increasing
drag reduction. This reduction is particularly significant at the high drag reduction regime,
showing smaller number of small scale structures compared to the other cases.

In the filtered conformation tensor equation (Equation 11), there are also two unknown
SGS terms, which need to be analysed, terms FTij and STij. FTij represents the SGS contri-
bution to the advective transport of the filtered conformation tensor by the velocity field,
and STij represents the SGS contribution from the interaction between the components of
the conformation tensor and the velocity gradient tensor, and is originated from the distor-
tion term of the Oldroyd derivative of the filtered conformation tensor. Regardless of the
filter size and the amount of drag reduction, it was found that FTij is almost zero across
the channel (see Figure 9), hence the contribution from this term to the filtered confor-
mation tensor can be safely neglected. The trace and xy component of STij are also plotted
in Figure 9, for the LDR and HDR cases using different filter sizes and are compared with
the corresponding GS exact term (c<ik∂u

<
j /∂xk + c<jk∂u

<
i /∂xk). As can be observed, STkk has

a very small magnitude in comparison with c<ik∂u
<
j /∂xk + c<jk∂u

<
i /∂xk and is almost inde-

pendent of the filter size. On the other hand, its xy component is somehow comparable
to c<xk∂u

<
y /∂xk + c<yk∂u

<
x /∂xk especially for larger filter sizes, where STxy is almost 15% of

the corresponding GS term, (c<ik∂u<
j /∂xk + c<jk∂u

<
i /∂xk). Hence, STij, and in particular its

shear component, is non-negligible in our point of view especially for high drag reduction
regime (it is negligible for low drag reduction case, see Figure 9(d)), where the resolved
polymer mean shear stress is comparable to the Reynolds shear stress (see Figure 4(c)). In
summary, the term-by-term analysis of the filtered conformation tensor reveals that the
filtered conformation equation can be approximated as

∂c<i j
∂t

+ u<
k

∂c<i j
∂xk

−
(
c<ik

∂u<
j

∂xk
+ c<jk

∂u<
i

∂xk

)
+ τ<

i j,v

ηp
= STi j. (17)

4.2. Analysis of the grid and subgrid-scale interactions

Figures 10(a)–10(g) plot plane-averaged profiles of the various terms in the budget of the
SGS kinetic energy transport equation, as a function of the dimensionless wall distance, y+,
forNewtonian and the low andhigh drag reduction viscoelastic cases (HDR: caseDNS2 and
LDR: caseDNS1). As in all the results presented here, the number of realisations is sufficient
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Figure . Vortex visualisation through iso-surfaces of Q > : (a) Newtonian, (b) LDR, and (c) HDR cases.
The same threshold was used for all cases.
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558 M. MASOUDIAN ET AL.

Figure . Comparison between FTij, STij, and term A: (c<
ik∂u

<
j /∂xk + c<

jk∂u
<
i /∂xk): (a) tensor trace, HDR;

(b) xy component, HDR; (c) tensor trace, LDR; and (d) xy component, LDR.

to converge the budgets. In order to have an idea about the instantaneous behaviour of
different terms, the probability density function (PDF) of terms K, L, M, N, O, and P at
y+ = 5 and y+ = 21 are plotted in Figure 11(a) and 11(b), respectively.

The advective variation of the SGS kinetic energy, termK, is plotted in Figure 10(a). The
magnitude of the maxima is almost constant, and only weakly affected by the presence of
the polymers and intensity of DR, although a shift of the peak location can be observed.
This shift is consistent with the notion of the expansion of the buffer layer associated with
drag reduction by polymer additives.

The terms involving only GS/SGS interactions within the solution, i.e. terms associated
with the SGS turbulent transport, SGS pressure/velocity interactions, SGS viscous diffu-
sion, and SGS viscous dissipation are plotted in Figures 10(b)–10(e), respectively. Themag-
nitude of the maxima and minima of all these terms display a pronounced suppression
with increasing DR especially close to the wall. The figures show that these quantities for
LDR regime decrease by around 60% relative to the Newtonian case, and for HDR case
this reduction is around 80%. In addition, a shift farther from the wall of the peak value is
observed with increasing DR, which is also conceptually consistent with the notion of the
expansion of the buffer layer associated with drag reduction. It can be inferred that these
terms show the most significant reduction relative to their Newtonian values and provide
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Figure . Plane-averaged terms appearing in the SGS transport equation (Equation ()). New., LDR, and
HDR denote DNS, DNS, and DNS cases, respectively. The filter size is �x. A horizontal dashed line is
shown in parts (a)–(d) to separate positive and negative mean values of the terms.
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560 M. MASOUDIAN ET AL.

Figure . Probability density function of terms K, L, M, N, O, and P, for case HDR (DNS). The filter size is
�x: (a) at y+ =  and (b) at y+ = .

insight into the effects of polymer additives onto the SGS kinetic energy transport equa-
tion. Note that as for the Newtonian fluid, in the viscoelastic cases the advective term as
well as all the diffusion-like terms, such as pressure–velocity, viscous, SGS diffusion, and
turbulent transport, do not create or destroy energy but only redistribute it between adjoin-
ing volumes. The mean classical GS/SGS diffusion and SGS dissipation for the viscoelastic
and Newtonian flows are plotted in Figure 10(f). For the HDR case, the peak value of the
GS/SGS diffusion has decreased to 30% of the corresponding Newtonian value showing
that polymer additives cause a severe reduction in the local energy transfer between the GS
and SGS.

Comparing the magnitude of all the terms in Figure 10 shows that term M is less than
1% of the magnitude of other terms for both Newtonian and viscoelastic flows, hence it is
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Figure . Joint PDF of terms L and P for case HDR (DNS). The filter size is �x.

negligible in the budgets of SGS transport. This is also confirmed from its PDF depicted
in Figure 11(a) and 11(b). The SGS turbulent transport (term L) and SGS diffusion (term
P) have a noticeable magnitude in the SGS transport equation. In figure 12 the joint PDF
for terms L and P for HDR case is plotted at y+ = 17, the locus of its peak value showing
that for all events these quantities are highly correlated for the viscoelastic fluids as it is
also for Newtonian fluids (not shown for conciseness). The correlation coefficient for these
terms exceeds −98% all across the channel, indicating that terms L and P are in local and
statistical equilibrium for viscoelastic cases as for Newtonian. This is important because it
shows that for viscoelastic fluids as for Newtonian flows based on the findings of [15], the
SGS diffusion, although significant, cancels the turbulent transport term almost exactly.
Consequently, as stated in [15] for Newtonian flows, if one wishes to model the SGS kinetic
energy transport equation for viscoelastic fluids, the SGS diffusionmay be lumped together
with the other diffusion terms.

Another classical term that has a noticeable magnitude in the mean SGS kinetic
energy transport is the SGS viscous diffusion (term N). Figure 10(d) shows that this
term is active very close to the wall and drops to zero at around y+ = 10, regardless
of the fluid. Comparing Figures 10(d), 10(e), 11(a), and 11(b) the SGS viscous diffusion
(term N) has a similar magnitude, but an opposite sign to the SGS viscous dissipation
(term O) at y+ < 10. The joint PDF of both terms at y+ = 5 is shown in Figure 13,
indicating that these terms not only in the mean but also instantaneously are highly
correlated, their correlation coefficient close to the wall, where the viscous dissipation is
more active (y+ < 10), is equal to−90% confirming that almost all the energy produced by
term N, dissipates by the SGS viscous dissipation.

The last four terms on the SGS kinetic energy transport equation are the new terms con-
taining the viscoelastic stresses, and are plotted in Figure 10(g). The figure shows that by
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562 M. MASOUDIAN ET AL.

Figure . Joint PDF of terms O and N for case HDR (DNS). The filter size is �x.

increasing DR the peak values associated with these terms display a slight increase, and
move away from the wall. The terms R,S and T,U seem to be nearly symmetric in plane-
averaged budgets of SGS transport equation. In Figure 14 terms U+T and R+S are plot-
ted, and for the sake of comparison the classical SGS dissipation (term Q) is also included
in the figure. The two diffusion-like terms associated with the polymer stresses, terms R

Figure . Mean U+T and R+S terms. LDR and HDR denote DNS and DNS, respectively. The filter size
is �x.
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Figure . Joint PDF of terms (a): R and S, (b): U and T, for case HDR (DNS). The filter size is �x.

and S, nearly cancel out across the channel and their sum has a small magnitude in com-
parison to the SGS dissipation. The same happens for terms T and U close to the wall,
for which the figure shows that their sum is very small compared to the SGS dissipation
(around 5-15%), however as can be seen, far from the wall, term T+U has samemagnitude
as term Q. In order to better assess the behaviour of these two pairs of terms, their joint
PDFs are plotted at y+ = 17 (the place of its maximum value) for the HDR case (Figure 15),
showing that for all events these quantities, U,T and R,S, are highly correlated. Further-
more, the variation across the channel of the correlation coefficient for terms R,S and for
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564 M. MASOUDIAN ET AL.

Figure . Correlation coefficient of terms U,T and R,S for case HDR (DNS). The filter size is �x.

terms T, U are calculated using the instantaneous field data for the largest filter size and the
plane-averaged correlation is plotted in Figure 16. The figure shows that terms R and S
are highly correlated (their correlation coefficient is above −99%), whereas the plane-
averaged correlation coefficient for terms T and U varies between −99% to −90% stating
that although they are highly correlated for all events, some part of kinetic energy induced
by the polymer plays a small role in the budget of SGS kinetic energy transport equation.

In summary, although term T+U has a noticeable magnitude far from the wall, each
pair of the new viscoelastic terms U, T and R,S, are in local and statistical equilibrium.
Concerning the relevance (in terms of the mean and instantaneous values) of the terms for
the SGS kinetic energy transport equation in turbulent channel flow of FENE-P fluids, the
most important terms are the classical SGS viscous diffusion (term N),viscous dissipation
(term O), and SGS dissipation (term Q). On the other hand, when taken together several
other terms investigated cancel each other, e.g. terms P, L, R, S, or have small magnitudes,
e.g. termM. These observations suggest that the SGS kinetic energy transport equation for
viscoelastic fluids can be well approximated by the following relationship:

∂τii

∂t︸︷︷︸
(J)

+ ∂τiiu j
<

∂x j︸ ︷︷ ︸
(K)

� β

Reτ

∂

∂x j

(
∂τii

∂x j

)
︸ ︷︷ ︸

(N)

− 2β
Reτ

((
∂ui
∂x j

∂ui
∂x j

)<

− ∂ui<

∂x j

∂ui<

∂x j

)
︸ ︷︷ ︸

(O)

−2τi jSi j<︸ ︷︷ ︸
(Q)

−2(1 − β)
(
τv,i jSi j

)<

︸ ︷︷ ︸
(T )

+ 2(1 − β)τv,i j
<Si j<︸ ︷︷ ︸

(U )

.

(18)

This equation could be used as a starting point in the development of LES closures for
viscoelastic fluids, similar to LES approaches based on SGS energy equations, e.g.[24]

4.3. Influence of viscoelasticity on kinetic energy inverse transfer or backscatter

The interaction between resolved and unresolved scales through the SGS dissipation (term
Q) has received much attention in Newtonian turbulent flow.[15–17] In this section, the
influence of polymer additives on the kinetic energy transfer (backward as well as forward
scatter) is investigated by analysing the SGS dissipation in more detail. The PDF of the
SGS dissipation at y+ = 30 (i.e. at the peak of turbulent kinetic energy) is plotted for the
low and high drag reduction cases along with the Newtonian case in Figure 17. It can be
observed that although the forward scatter dominates for all flows in the near wall region,
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Figure . PDFof the SGSdissipation (termQ). New., LDR, andHDRdenoteDNS, DNS, andDNS, respec-
tively. The filter size is �x.

the increase in drag reduction severely reduces these events while leaving the backscatter
tail nearly unchanged. Hence, this implies that backscatter of SGS dissipation is relatively
more important for viscoelastic flows than for Newtonian flows particularly for high drag
reduction regimes. This can be observed also in the instantaneous field data plotted for
Newtonian and viscoelastic cases in Figure 18. In order to investigate this, the backward

Figure . Contours of the SGS dissipation (termQ). (a) Newtonian and (b) HDR, case DNS. The filter size
is �x. White spots are backward scatter events.
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Figure . Fraction of points with backward scatter events for the filter sizes defined as (a) �x, (b) �x,
and (c) �x. New., LDR, and HDR denote DNS, DNS, and DNS, respectively.

and forward scatter part of εSGS are quantified as

ε− = 1
2
(εSGS − |εSGS|) , ε+ = 1

2
(εSGS + |εSGS|), (19)

where ε− and ε+ denote backward and forward scatter contributions to the SGS dissipation,
respectively. Using this definition, the fraction of points with backward scatter events (ratio
of computational cells experiencing backward scatter in each wall normal plane over the
total number of cells in the plane) are calculated and plotted in Figure 19 across the chan-
nel for the three simulations and for the three filter sizes. The figure shows that the back-
ward scatter is almost independent of grid size (the maximum variation caused by the filter
size is around ±5%), similarly to what is observed for Newtonian channel flows.[15,16]
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Figure . Mean backward and forward scatter of SGS dissipation. New., LDR, and HDR denote DNS,
DNS, and DNS cases, respectively. The filter size is �x.

Moreover, Figure 19 indicates that the fraction of points experiencing the backward scatter
increases (in the mean) with the addition of polymer to the fluid. Regardless of the filter
size the average number of points/events experiencing backward scatter across the channel
is 24%, 31%, and 35% for the Newtonian, LDR and HDR flows, respectively. The inten-
sity of the plane-averaged forward and backward scatter contributions to SGS dissipation
computed by Equation (19) is plotted in Figure 20 for the three flow cases. We observe a
severe decrease in forward scatter as drag reduction increases, although it remains more
important than backscatter. Conceptually, this severe reduction of forward scatter events
is in agreement with the suppression and laminarisation of turbulence structures by the
addition of polymers to the carrier flow, as previously shown in Figure 8, i.e. as also seen in
Figure 10(f) (plane-averaged SGS dissipation), the total amount of SGS dissipation events
is severely reducedwith increasingDR, hence the instantaneous intensity of energy transfer
between GS and SGS is dramatically reduced. The figure further indicates that the ratio of
backward scatter to forward scatter nearly doubles with enhancing drag reduction, and at
the peak location this ratio is 0.15, 0.24, and 0.27 for the Newtonian, LDR, and HDR flows,
respectively. In summary, Figures 18 and 19 indicate that not only the number of backward
scatter events increases by the addition of polymer to the flow, but also the intensity of the
backward scatter events increases in relation to the forward scatter.

As mentioned before, the dissipation term prompted by the polymer (term U) is also
responsible (indirectly) for the net kinetic energy exchange between resolved and unre-
solved scales. In order to investigate this specific mechanism the PDF of this term close
to the wall (y+ = 30) is plotted in Figure 21, showing that this viscoelastic term is mostly
responsible for forward scatter. This is also confirmed by the fraction of points experiencing
backward scatter due to the polymer induced dissipation, plotted in Figure 22. This figure
shows that similarly as for the SGS dissipation, the polymer induced indirect backward scat-
ter is almost independent of the filter size. Furthermore, close to the wall only 2% of the
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Figure . PDF of the term U for case HDR (DNS). The filter size is �x.

points are experiencing polymer induced backward scatter with the maximum at the chan-
nel centreline region which is around 10%, i.e. backward scatter events due to the polymer
induced dissipation are rare. Finally, iso-surfaces of the backward scatter of the dissipation
prompted by the polymer along with forward and backward scatter of classical SGS dis-
sipation for the HDR case are plotted in Figure 23. The figure shows that backward and
forward scatter events of the SGS dissipation in turbulent viscoelastic fluids usually occur
in close proximity to each other, with the backscatter event being generally surrounded by a

Figure . Fraction of points experiencing backward scatter due to the polymer induced dissipation. LDR
and HDR denote DNS and DNS, respectively.
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Figure . Iso-surface of backward (light grey/blue), forward (dark grey/black) scatter of SGS dissipation,
and of backward scatter of term U (medium grey/Red), using a filter size of� = �x for case DNS.

region of significant forward scatter, as previously reported by Piomelli et al. [16] for New-
tonian fluids. Figure 23 also confirms that backward scatter events associatedwith polymer-
induced SGS dissipation are very rare in comparisonwith the backward and forward scatter
events of the SGS dissipation. Moreover it is interesting to note that the polymer induced
backscatter event of dissipation also takes place in close proximity to backward and forward
scatter events generated by the SGS dissipation (they are surrounded by a region of signif-
icant forward and backward scatter events of SGS dissipation). These regions are shown
in Figure 23 using dashed circles (Note that equal thresholds were chosen to illustrate iso-
surfaces of the various quantities).

5. Conclusion

The main goal of this work was to understand how the grid/subgrid-scale interactions
are affected by the presence of the polymer additives in turbulent channel flow. This was
achieved by the application of the top-hat filter to DNSs of channel flow of viscoelastic
fluids described by the FENE-P rheological constitutive equation. The influence of rheo-
logical parameters on the SGS stress tensor show that in the presence of polymer addi-
tives the SGS stresses are considerably reduced compared to the Newtonian case. The ratio
τxy/(−S<

xy|S<|), which is equal to (Cs�g)
2, the key parameter in classical closures for LES,

was analysed and it was observed that although this quantity severely decreases for vis-
coelastic fluids, the overall shape and behaviour remains proportional to that for Newto-
nian fluids, and the ratio of this quantity for viscoelastic case and Newtonian fluid is almost
constant, which is a useful result for future attempts to develop SGS modes for viscoelastic
fluids.

The exact filtered polymer extra stress tensor arising in the filtered Navier–Stokes equa-
tion shows that even for high drag reduction cases with the largest filter size this term
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can be safely approximated by its large-scale contribution and does not require modelling.
The filtered evolution equation for the conformation tensor was also inspected in detail
and an approximated form was introduced after a quantitative assessment of its GS/SGS
terms.

The energy transfer between grid scales, subgrid scales, and polymer in the SGS kinetic
energy transport equation appropriate for the FENE-P fluids was investigated. The budgets
for Newtonian, low, and high drag reduction cases exhibit a severe suppression of some
GS/SGS terms for the viscoelastic cases. It was also found that new terms appearing in this
equation due to the presence of polymer additives (SGS/polymer interactions) are almost
symmetric, and highly correlated, hence an approximated SGS kinetic energy transport
equation was suggested for viscoelastic turbulent flows, which can be used to develop new
SGS models based on the SGS kinetic energy transport equation models.[24,25]

Additionally, it was shown that the amount of points in the flow domain experiencing
backward scatter events of the SGS dissipation is almost independent of the filter size for
viscoelastic turbulent flows as for Newtonian fluids.[15] Moreover, it was observed that
the amount of forward scatter events of SGS dissipation in the flow domain decreases sig-
nificantly in the presence of polymer additives, indicating that backward scatter of SGS
dissipation in viscoelastic fluids is proportionally more frequent than in Newtonian fluids
and requires attention. Polymer induced dissipation, which is a polymeric term involved in
GS/Polymer/SGS energy transfer via GS/polymer and SGS/polymer interactions, causes a
very small amount of energy backward scatter, which is negligibly small close to the wall.

Finally, it was found that as for Newtonian fluids,[16] backward and forward scatter
events of SGS dissipation for viscoelastic fluids occur in close proximity of each other, with
the backward scatter event being generally surrounded by a region of significant forward
scatter. Rather surprisingly, it was also observed that the backward scatter events associated
to the polymer induced dissipation, although very small, occur in close proximity of the
backward and forward scatter events generated by SGS dissipation.
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