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A second-order closure is developed for predicting turbulent flows of viscoelastic fluids
described by a modified generalised Newtonian fluid model incorporating a nonlinear
viscosity that depends on a strain-hardening Trouton ratio as a means to handle some
of the effects of viscoelasticity upon turbulent flows. Its performance is assessed by
comparing its predictions for fully developed turbulent pipe flow with experimental data
for four different dilute polymeric solutions and also with two sets of direct numerical
simulation data for fluids theoretically described by the finitely extensible nonlinear
elastic – Peterlin model. The model is based on a Newtonian Reynolds stress closure
to predict Newtonian fluid flows, which incorporates low Reynolds number damping
functions to properly deal with wall effects and to provide the capability to handle
fluid viscoelasticity more effectively. This new turbulence model was able to capture
well the drag reduction of various viscoelastic fluids over a wide range of Reynolds
numbers and performed better than previously developed models for the same type
of constitutive equation, even if the streamwise and wall-normal turbulence intensities
were underpredicted.

Keywords: turbulence model; drag reduction; polymer solutions; second-order closure

1. Introduction

The first turbulence models for viscoelastic fluid flows date from the 1970s with [1–3]
and were both motivated and aimed at drag reduction by polymer solutions in turbulent
pipe and channel flows. The scope of these earlier models was rather limited, because they
depended to a large extent on parameters that needed to be selected for each fluid in each
flow situation and were just modifications of turbulence models for Newtonian fluids. These
models had no link between the flow dynamics and the non-Newtonian rheology, with the
exception of Mizushina et al.’s [1] model, which incorporated effects of relaxation time
in the Van Driest damping function for the eddy viscosity. In the 1980s and 1990s, new
two-equation turbulence models appeared [4–6], this time linking the model development
with fluid rheology, but these models were limited to inelastic fluids described by the power
law viscosity model, where the viscosity function depends on the second invariant of the
rate of deformation tensor.

The development of turbulence models based on rheological constitutive equations for
viscoelastic fluids has taken place this century along two different but complementary
paths. One method, embodied in the works of [7–10] and the present contribution, relies
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2 P.R. Resende et al.

on the adoption of a generalised Newtonian fluid (GNF) constitutive equation that models
some relevant behaviour of real polymer solutions. The GNF model has been modified to
incorporate the effect of elastic properties that are known to be relevant in the context of
turbulent flows of drag-reducing viscoelastic fluids. This is accomplished by incorporating
simultaneously the dependence of the viscosity on the second and third invariants of the
instantaneous rate of deformation tensor, the latter via an indexer of the Trouton ratio.
This constitutive model does not possess memory effects, but does incorporate strain
hardening, which here has been made to act directly into the viscosity function. In these
works, experimental data were used for both the fluid rheology and the flow dynamics for
the purpose of calibration and validation of the turbulence models, which are capable of
predicting the experimentally measured flow characteristics in fully developed pipe flow.

The second approach to turbulence modelling of viscoelastic fluid flows is more fun-
damental, but in contrast to the previous approach, it has not yet been able to reproduce
experimental data quantitatively. Here, the development of the turbulence closures and their
calibration and validation rely on post-processed direct numerical simulation (DNS) data
for viscoelastic constitutive equations, which only agree qualitatively with experimental
data. Even though there are DNS data-sets for several models such as the finitely extensible
nonlinear elastic model with Peterlin’s closure (FENE-P), the Oldroyd-B model [11] and
the Giesekus constitutive equation [12,13], the development of Reynolds-averaged Navier–
Stokes (RANS) models has been restricted to fluids described by the FENE-P constitutive
equation and the existing discrepancies relative to experimental data [14] have so far been
attributed to the inherent simplicity of the underlying dumb-bell model, such as the lack
of configurational degrees of freedom, the oversimplification of the Peterlin closure of the
FENE equation [15], whose failure is even more dramatic in the context of turbulent flow
[16] and to concentration and polymer degradation effects in experiments, amongst others.

Using the DNS data for FENE-P fluids, several turbulence models have been developed,
such as the eddy viscosity closure of Li et al. [17], the k–ε models of Pinho and co-workers
[18,19], the k–ω model of Resende et al. [20] and the k–ε–v2–f closures of the Stanford
group [21,22]. Regarding the two most recent models of this set, the adoption of Durbin’s
approach [23] for the eddy viscosity by Iaccarino et al. [22] is particularly successful at
predicting the whole range of drag reduction for the FENE-P fluids, but is unable to predict
all components of the polymer stress in turbulent flow, in contrast to the model of Resende
et al. [19] which can predict all components of the polymer stress tensor. However, the
model of Resende et al. [19] has a poorer prediction of the Reynolds stresses and its range
of application is limited to about 50% drag reduction, since it invokes turbulence isotropy.

Therefore, in spite of their promise, rooted on apparently a more realistic constitutive
equation, none of these models for FENE-P fluids is yet capable of predicting quantitatively
experimental flows and this is unrelated to limitations of the turbulent closures, in contrast
to the predictions by the turbulence model relying on the simpler modified generalised
Newtonian model, which have always been developed against experimental data. In fact,
for the reasons invoked above, experiments with polymer solutions and DNS performed
on a FENE-P model with parameters quantified by the corresponding rheological and flow
rate measurements give results with a significant disagreement in regard to the amount of
drag reduction and consequently of the various stress profiles [14], so it is not surprising
that the corresponding turbulence models also fail to quantitatively predict such flows.

Summarising, on one side there are turbulence models grounded on simpler constitutive
equations, which are capable of predicting experimental flows, and on the other side there
are turbulence models rooted on more robust viscoelastic rheological equations, but which
fail to predict quantitatively experimental flows, thus showing that a lot of ground still
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Journal of Turbulence 3

needs to be threaded. Thus, the reason for developing a second-order turbulence model for
the modified GNF constitutive equation is clear: to improve on existing turbulence models
for the modified GNF equation that are able to predict real flows of viscoelastic polymer
solutions, but which were also developed on the basis of isotropic turbulence. Additionally,
and in spite of the different rheological constitutive equations upon which the two families
of turbulence models are based on, they share common features and predictive capabilities,
so that the earlier k–ε models of Pinho and co-workers [9,10] for GNF fluids largely
facilitated their development of the k–ε model for the FENE-P fluids [18,19], and similarly,
we expect the development of this second-order turbulence closure to facilitate the future
development of a second-order model for FENE-P fluids. In this respect, modifications will
need to be implemented in the future on the viscoelastic constitutive equations, such as the
FENE-P model, in order to allow them to predict experimental turbulent flows via a new
generation of turbulence models. The existing turbulence closures for viscoelastic fluids
represented by both the modified GNF and the FENE-P constitutive equations will help to
arrive at a compromise between prediction accuracy by a complex theoretical model and
the capacity to solve real engineering problems using a simpler constitutive equation as an
alternative to start all over again with a different and better, but certainly more complex
viscoelastic constitutive equation.

In the remainder of this introduction, we briefly explain the development of the existing
two equation models for the modified GNF rheological constitutive equation followed by
an overview of second-order turbulence models for Newtonian fluids in order to understand
the selection of the base model and the scope of the present contribution.

The original first-order turbulence model developed following this approach is described
in detail in [7,8] by Pinho [7] and Cruz and Pinho [8]. This is a low Reynolds number k–ε

model, which was developed on the basis of the Nagano and Hishida’s k–ε model [24] for
Newtonian fluids, and includes a closure for the Reynolds-averaged molecular viscosity, in
order to properly account for the effect of fluctuating strain rates on the nonlinear viscosity
function, and a damping function for the eddy viscosity to account for wall proximity,
shear thinning of the shear viscosity and strain thickening of the Trouton ratio. However,
this turbulence model neglected the new term of the momentum equation quantifying the
cross correlation between the fluctuating viscosity and the fluctuating rate of deformation,
which was called pseudo-elastic stress and for which a closure was subsequently developed
by Cruz et al. [9]. They also accounted for and developed the closure for the extra stress
work term originating from the pseudo-elastic stress appearing in the transport equation
of turbulent kinetic energy. Consideration of this pseudo-elastic stress work improved the
predictions of turbulent kinetic energy and of friction factors especially at large Reynolds
numbers.

Duct flows with drag reduction have enhanced anisotropy of the Reynolds stresses as
shown in experimental work [10,14,25] and in DNS investigations with various differential
viscoelastic models [11,12,26]. However, turbulence anisotropy is not captured by linear
forms of the k–ε turbulence model and requires either the use of higher order versions of the
eddy viscosity closure as was done by Resende et al. [10] using a nonlinear k–ε model or
higher order turbulence models as is done in this work. This latter option brings additional
benefits to complex flow prediction such as a more realistic description of turbulence by
the use of transport equations for the individual Reynolds stresses, which incorporates,
amongst other things such effects as the pressure-strain mechanism for the distribution of
turbulent kinetic energy components or a better capability to deal with flows with curvature.
In fact, first-order turbulence models have shortcomings when it comes to predicting
Newtonian flows with separation or streamline curvature, amongst other things (cf. [27]).
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4 P.R. Resende et al.

The use of anisotropic first-order models can offset some, but not all, of these disadvantages
[28,29].

Early second-order models for Newtonian fluids accounting for wall proximity, the so-
called low Reynolds number Reynolds stress (RS) models, appeared in the 1970s [30,31].
To improve their performance in complex flows and better capture the anisotropic Reynolds
stresses in the near-wall region, better near-wall closures were formulated in [32–34]. How-
ever, some of the earlier [27] and improved [30] near-wall closures were not asymptotically
consistent and, to correct this deficiency, Lai and So [35] analysed in detail the anisotropic
behaviour of the Reynolds stresses near the wall and developed an asymptotically correct
near-wall RS closure, by improving the closures for the pressure redistribution and viscous
dissipation. Based on the earlier investigations of Lai and So [35], Shima [36] incorporated
an extra contribution to the production of ε in the rate of dissipation equation, which im-
pacted favourably on the budgets of uiuj . This issue had been found originally by Hanjalic
and Launder [31], but Shima realised that the model proposed by them was not asymptoti-
cally correct near the wall. The model of Lai and So [35] captures well the RS anisotropy
of Newtonian fluids in turbulent pipe flow, as also confirmed by Thakre and Joshi [37], who
compared also their predictions with those of the model of Prud’homme and Elghobashi
[33]. For convenience and given its good performance and simplicity, it is easier to adopt
at this stage the model of Lai and So as the base for the second-order turbulence model for
shear-thinning viscoelastic fluids, rather than select other more complex closures, such as
the model of Craft [38].

The model of Craft [38] is an extension of the model of [39] and is also able to capture
well the RS anisotropy. It is particularly suitable to recirculating flows and flows near walls
with curvature and its predictions are in reasonable agreement with experimental and DNS
data for Newtonian fluid flows. The advantage of Craft’s model is its independence from
wall-normal vectors and distances, thus allowing its easy use in complex geometries, at the
expense of a rather complex formulation, so its adoption would imply more severe modifi-
cations to deal with viscoelastic fluids, whereas at this stage only fully developed channel
flow is being considered, which does not require such a complex formulation. Note also
that following a different approach, Shima [40] developed a simpler low Reynolds number
second-moment closure and tested it in thin shear layer flows. Its overall performance was
good, but its predictions of the normal Reynolds stresses in Newtonian turbulent channel
flow were less accurate than those of Craft’s model [38].

In this work a second-order RS model is developed for viscoelastic fluids described
by the modified generalised Newtonian model of Pinho [7] and applied to predict fully
developed turbulent channel flows of polymer solutions. The present RS closure is a step
forward in the hierarchy of models for viscoelastic fluids and is built on top of the model
of Lai and So [35] for Newtonian fluids. As hinted above, this base model was selected
because it combines simplicity with a low Reynolds number capability, which is an essential
requirement to deal with viscoelastic fluids for which no universal law of the wall exists.
The performance of the model is tested against the experimental data-sets of Resende
et al. [10] and Escudier et al. [41] for dilute aqueous solutions of polymers. Predictions
by this turbulence model are also compared with DNS data obtained for viscoelastic fluids
described by the FENE-P constitutive equation after an adequate comparison between the
material functions of both the modified GNF and the FENE-P models.

The next section presents the governing equations for viscoelastic turbulent flow. The
terms that require modelling are identified in Section 3 together with the development of
the corresponding closures. The calibration of the model is made in Sections 4 and 5 for
Newtonian and viscoelastic fluids, respectively. The results of the numerical simulations
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Journal of Turbulence 5

and their discussion are presented in Section 6. The paper closes with a summary of the
main conclusions.

2. Governing equations

In what follows overbars or upper-case letters denote Reynolds-averaged quantities and
lower case letters are used for fluctuating quantities. The indicial notation of Einstein is
used throughout the paper.

The Reynolds-averaged governing equations for incompressible fluids are the continuity
equation:

∂Ui

∂xi

= 0, (1)

and the momentum equation:

ρ
∂Ui

∂t
+ ρUk

∂Ui

∂xk

= − ∂p̄

∂xi

+ ∂

∂xk

(
2μ̄Sik − ρuiuk + 2μ′sik

)
, (2)

where p is the pressure, μ̄ is the average molecular viscosity, ui is the ith compo-
nent of the velocity vector and Sij is the rate of deformation tensor defined as Sij ≡(
∂ui/∂xj + ∂uj/∂xi

)
/2.

This momentum equation is written down for a fluid described by a modified form of
the GNF model, originally formulated in Pinho [7] and given in Equations (3) and (4):

σij = μ (γ̇ , ε̇) Sij , (3)

μ (γ̇ , ε̇) = Kv

[
γ̇ 2
](n−1)/2︸ ︷︷ ︸

ηv

Ke

[
ε̇2
](p−1)/2︸ ︷︷ ︸
η∗

e

. (4)

This constitutive equation incorporates non-Newtonian characteristics which are relevant
to turbulent flow of viscoelastic fluids, such as the effect of strain-hardening extensional
viscosity. The coefficients Kv and n are the consistency and exponent of the power-law fit
of ηv to the shear viscosity data with γ̇ = √

2SijSij , an invariant of the rate of strain tensor.
The dimensionless strain-hardening contribution (η∗

e ) is defined as one-third of the non-
dimensional Trouton ratio ηe (ε̇)/(3ηv (γ̇ )), and the coefficients Ke and p represent fitting
parameters to this quantity, which depend on the viscoelastic fluid rheology measurements.
Here, the other invariant of the rate of strain tensor is quantified as ε̇ = γ̇ /

√
3, as explained

in Barnes et al. [42]. More details of this model can be found in [7,8]. Note that in a pure
shear flow Equation (4) reduces to the shear viscosity contribution, but in the presence of
turbulent fluctuations it contains a non-unitary contribution from the extensional viscosity.

The momentum equation, Equation (2), contains the divergent of the molecular stress,
of the Reynolds stress and of a new non-Newtonian stress, called the pseudo-elastic stress.

To determine the pseudo-elastic stress, 2μ′sik, in the context of the second-order turbu-
lence closure, a specific model needs to be developed, the subject of the next section. The
average molecular viscosity (μ̄) is also affected by turbulence and the closure of Pinho [7]
is used without modifications. It is given by Equation (5), which combines the pure visco-
metric viscosity contribution, ηv, defined in Equation (4) for a Reynolds-averaged shear rate
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6 P.R. Resende et al.

(γ̇ ), with the high Reynolds number Reynolds-averaged molecular viscosity contribution
(μ̄h) of Equation (6):

μ̄ = fvμ̄h + (1 − fv) ηv, (5)

μ̄h = (
Cμρ

)3m(m−1)A2/(8+3m(m−1)A2) × 24m(m−1)A2/(8+3m(m−1)A2)

× k6m(m−1)A2/(8+3m(m−1)A2) × ε([8−3(m−1)A2]m)/(8+3m(m−1)A2) × B8/(8+3m(m−1)A2), (6)

where ε is the rate of dissipation of turbulent kinetic energy (k), and

m = n + p − 2

n + p
and B =

[
KvKe

A
p−1
ε

]1−m

2[(n−1)−m(n+1)]/2ρm. (7)

The matching function fv, defined in Equation (8), was made equal to the damping function
fμ, appearing in the eddy viscosity of the two-equation k–ε model of [8, 9]. The remaining
coefficients take the values, Aε = 10, A2 = 0.45 and Cμ = 0.084:

fv =
⎧⎨
⎩1 −

[
1 +

∣∣∣∣1 − n

1 + n

∣∣∣∣ y+
]−

∣∣∣1 + n/1 − n

∣∣∣/A+
⎫⎬
⎭

×
⎧⎨
⎩1 −

[
1 +

∣∣∣∣p − 1

3 − p

∣∣∣∣ y+C
1−p
2−p

]−
∣∣∣3 − p/p − 1

∣∣∣/A+
⎫⎬
⎭ . (8)

The RS tensor (ρuiuk) is determined via its transport equation (Equation (9)), which
contains a large number of new terms on its right-hand side due to the non-Newtonian
nature of the governing rheological constitutive equation. This exact equation, derived by
Pinho [7], contains three sets of terms: first, those terms that are formally independent
of the rheological constitutive equation, but that require modelling, which may depend
on the fluid rheology (for instance, it is known from DNS that the addition of polymers
affect turbulent diffusion and in particular the pressure strain term, [43]); second, the terms
where the constant viscosity of the Newtonian fluids has been substituted by the Reynolds-
averaged viscosity of the modified GNF model (terms IV, V) and finally, the new terms
which are either associated to viscosity fluctuations or to spatial variations of the Reynolds-
averaged viscosity (terms VI–XVII), here denoted as pseudo-elastic terms. The specific
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modifications and new closures of this equation are discussed in Section 3.2,

ρ
Duiuj

Dt
+ ρujuk

∂Ui

∂xk

+ ρuiuk

∂Uj

∂xk

= −ρ
∂

∂xk

uiujuk︸ ︷︷ ︸
I

−

⎛
⎜⎜⎜⎝ ∂

∂xi

p′uj + ∂

∂xj

p′ui︸ ︷︷ ︸
II

⎞
⎟⎟⎟⎠

+p′
(

∂uj

∂xi

+ ∂ui

∂xj

)
︸ ︷︷ ︸

III

+ μ̄
∂2uiuj

∂xk∂xk︸ ︷︷ ︸
IV

− 2μ̄
∂ui

∂xk

∂uj

∂xk︸ ︷︷ ︸
V

+ ∂μ̄

∂xk

∂uiuj

∂xk︸ ︷︷ ︸
VI

+ ∂μ̄

∂xk

⎛
⎜⎜⎜⎝∂ukuj

∂xi︸ ︷︷ ︸
VII

+ ∂ukui

∂xj︸ ︷︷ ︸
VIII

− 2uksij︸ ︷︷ ︸
IX

⎞
⎟⎟⎟⎠+ μ′ ∂

2uiuj

∂xk∂xk︸ ︷︷ ︸
X

− 2μ′ ∂ui

∂xk

∂uj

∂xk︸ ︷︷ ︸
XI

+ ∂μ′

∂xk

∂uiuj

∂xk︸ ︷︷ ︸
XII

+ ∂μ′

∂xk

(
uj

∂uk

∂xi

+ ui

∂uk

∂xj

)
︸ ︷︷ ︸

XIII

+μ′uj

∂2Ui

∂xk∂xk︸ ︷︷ ︸
XIV

+ μ′ui

∂2Uj

∂xk∂xk︸ ︷︷ ︸
XV

+uj

∂μ′

∂xk

(
∂Ui

∂xk

+ ∂Uk

∂xi

)
︸ ︷︷ ︸

XVI

+ui

∂μ′

∂xk

(
∂Uj

∂xk

+ ∂Uk

∂xj

)
︸ ︷︷ ︸

XVII

. (9)

3. Closures for non-Newtonian terms

3.1. Momentum equation

The momentum equation (2) contains two stress terms related to the variable viscosity, which
require modelling. The stress, 2μ̄Sik, can be computed with the closure for the Reynolds-
averaged molecular viscosity (μ̄) presented in the previous section, but the pseudo-elastic
stress, 2μ′sik, must be modelled. Cruz et al. [9] proposed a closure for the pseudo-elastic
stress in the context of their low Reynolds number k–ε model. Here, a different closure
is developed to be consistent with the use of the full RS model, which incorporates the
anisotropic nature of turbulence and its impact upon this stress component. To develop a
closure for the pseudo-elastic stress tensor, we provide estimates of the fluctuating viscosity
and strain rate tensors, on the basis of known quantities, and then combine them with a
coefficient. From Equation (4), the fluctuating viscosity is proportional to

μ′ ∝ KvKe(ε̇′)p−1(γ̇ ′)n−1 (10)

with

γ̇ ′ ∼ √
sij sij and ε̇′ ∼

√
sij sij

Aε

, (11)

where γ̇ and ε̇ are invariants of the fluctuating rate of strain tensors, and Aε is an empirical
parameter used to quantify the relation between shear rates and strain rates within the
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8 P.R. Resende et al.

flow [9]. Denoting S ≡ √
sij sij and back substituting

μ′ ∝ KvKe

A
p−1
ε

Sp+n−2. (12)

Combining this with the fluctuating rate of strain tensor, one gets

μ′sij ∝ KvKe

A
p−1
ε

Sp+n−2sij . (13)

To arrive at closures for S and sij concepts of near-wall turbulence are invoked, specifi-
cally (1) that we are in the equilibrium region, where production of turbulence is balanced
by its rate of dissipation and (2) that, as a first approximation, this balance is not affected
significantly by the new pseudo-elastic stress. Similarly, we further assume that the rate of
dissipation, ρε, is essentially equal to 2μ̄S2, i.e., for channel flow, one gets

Pk = −ρuv
∂U

∂y
≈ ρε ≡ 2

	
μs2

ij ∼ 2μ̄S2 ⇒ S2 = −ρuv

2μ̄

∂U

∂y
. (14)

We now generalise the shear stress and shear rate tensors of Equation (14) to the full tensor,
considering also that S2 ≥ 0, to obtain

S2 =
∣∣∣∣−ρuiuj

4μ̄
Sij

∣∣∣∣ . (15)

Within the boundary layers sij ≈ ∂ui/∂xj and ui ∼ √
uiuj , thus sij can be calculated by

sij ∼ ∂ui

∂xj

∼ ui

Lc

, (16)

where Lc is an estimate of the spatial scales of turbulence. Here this length scale is given
by the following expression developed in [9]:

1

Lc

= ε

u3
R

, (17)

where uR is a turbulence velocity scale defined by

u2
R = k∣∣exp

(− (
k
/
u2

τ

)α)− 1
∣∣1/α

with α = 2. (18)

To conclude, the final expression for the pseudo-elastic stress in the context of a second-
order turbulence closure is

2μ′sij = C̃
KvKe

A
p−1
ε

[∣∣∣∣ρuiuj

4μ̄
Sij

∣∣∣∣
] (p+n−2)

2

× 1

Lc

× uiuj√∣∣uiuj

∣∣ (19)
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Journal of Turbulence 9

with

C̃ = (1 + C0)p+n−2 − 1. (20)

The pseudo-elastic stress vanishes in the Newtonian limit (n = 1 and p = 1) as it should,
an effect properly accounted for by parameter C̃, which depends on parameter C0 to be
quantified later.

3.2. Reynolds stress transport equation

The terms on the left-hand side of the RS transport equation (9) concern the time variation,
the advection and the production of the Reynolds stress. They are all exact terms that do not
require modelling, but on the right-hand side all terms need to be modelled. However, as
mentioned at the end of Section 2, one set of terms is identical to those in the corresponding
equation for Newtonian fluids (terms I–III), in the second set, the constant viscosity has
been substituted by the Reynolds-averaged viscosity and only the third set contains new
terms that do not exist for Newtonian fluids.

Even though the terms of the first two sets have differences relative to the corresponding
Newtonian equation, they play a similar physical role, whereas the various terms of the third
set are all new. Unfortunately, there are no DNS data for this modified GNF constitutive
equation from which one could gather information as to the relevance of each term, but
Pinho [7] performed an order of magnitude analysis of all terms of this transport equation to
assess the relevance of the new terms in comparison to the terms found in the corresponding
equation for Newtonian fluids, which is briefly reviewed here. In that analysis, the following
scales were used: U was the velocity scale for the mean flow, u ≈ √

k was the velocity scale
for velocity fluctuations, L represented the large length scale for the mean flow and the
energy containing eddies and l was the length scale associated with small fluctuations and its
gradients. This small length scale is related to the Kolmogorov length scale, η = (ν̄3/ε)1/4,
therefore, the ratio of small to large length scales is l/L ∼ (uL/ν̄)−3/4, where the inviscid
estimative of the rate of dissipation, ε = u3/L, was used.

Since the viscosity is not constant it was also necessary to estimate the magnitude of
the viscosity fluctuations and Pinho [7] arrived at

ν ′

ν̄
∼
(

uL

ν̄

)3a/4

− 1, (21)

where a = 0.225m (m − 1) and m = (n + p − 2)
/

(n + p).
Table 1, adapted from [7], presents the estimate of the order of magnitude of each

non-Newtonian term relative to the Newtonian dissipative term ((2μ̄(∂ui/∂xk)(∂uj/∂xk)).
Inspection of Table 1 shows the need to model the largest terms of order 1, which

are significantly larger than the others and always involve fluctuating viscosities. The
terms in the fourth line involve viscosity fluctuations, but are otherwise alike to terms
on the first line. Since these latter terms are of small magnitude they do not require
modelling. Simultaneously, given the lack of information in the literature regarding the
triple correlations of the derivatives of fluctuating viscosities, like terms in lines one, two
and four were put together and closed as in Equations (22) and (23), introducing parameters
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10 P.R. Resende et al.

Table 1. Order of magnitude relative to the dissipative term (Reprinted from Journal of Non-
Newtonian Fluid Mechanics, Vol. 114, Pinho, A GNF framework for turbulent flow models of drag
reducing fluids and proposal for a k-ε type closure, Pages 149–184, Copyright (2003), with permission
from Elsevier).

Term Order Estimate

∂μ̄

∂xk

(
∂uiuj

∂xk

+ ∂ukuj

∂xi

+ ∂ukui

∂xj

) (
uL

ν̄

)−3/2

1 × 10−6

− ∂μ̄

∂xk

2uksij

(
uL

ν̄

)−3/4

1 × 10−3

μ′ ∂
2uiuj

∂xk∂xk

− 2μ′ ∂ui

∂xk

∂uj

∂xk

(
uL

ν̄

)3a/4

− 1 1

∂μ′
∂xk

∂uiuj

∂xk

+ ∂μ′
∂xk

(
uj

∂uk

∂xi

+ ui

∂uk

∂xj

) (
uL

ν̄

)3a/4

− 1 1

μ′uj

∂2Ui

∂xk∂xk

+ μ′ui

∂2Uj

∂xk∂xk

[(
uL

ν̄

)3a/4

− 1

]
U

u

(
uL

ν̄

)−3/2

1 × 10−5

uj

∂μ′
∂xk

(
∂Ui

∂xk

+ ∂Uk

∂xi

)
+ ui

∂μ′
∂xk

(
∂Uj

∂xk

+ ∂Uk

∂xj

) [(
uL

ν̄

)3a/4

− 1

]
U

u

(
uL

ν̄

)−3/4

1 × 10−3

CV1 and CV2, to be quantified later:

∂μ̄

∂xk

∂uiuj

∂xk

+ ∂μ′

∂xk

∂uiuj

∂xk

∼ CV 1 × ∂μ̄

∂xk

∂uiuj

∂xk

, (22)

∂μ̄

∂xk

(
∂ukuj

∂xi

+ ∂ukui

∂xj

− 2uksij

)
+ ∂μ′

∂xk

(
uj

∂uk

∂xi

+ ui

∂uk

∂xj

)

∼ CV 2 × ∂μ̄

∂xk

(
∂ukuj

∂xi

+ ∂ukui

∂xj

)
. (23)

Extensive tests were made on the magnitude of these contributions to the transport equation
of the RS and on their impact upon the predictions, and it was verified that here there was
no need for any special near-wall treatment.

The diffusion-like triple correlation involving the fluctuating viscosity, the first term in
the third line of Table 1, for which there is also lack of information, is added to the standard
molecular diffusion of RS term (Dv

ij ) and both are modelled together as in Equation (24):

μ̄
∂2uiuj

∂xk∂xk

+ μ′ ∂
2uiuj

∂xk∂xk

≈ μ̄
∂2uiuj

∂xk∂xk

. (24)

The second term in the same third line is related to the fluctuating viscosity, but is
otherwise very similar to the term V based on the Reynolds-averaged viscosity. The sum of
both terms, in Equation (25), is here defined as the rate of dissipation tensor of the Reynolds
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Journal of Turbulence 11

stresses, εij , for the modified GNF model:

− 2μ̄
∂ui

∂xk

∂uj

∂xk

− 2μ′ ∂ui

∂xk

∂uj

∂xk

= ρεij . (25)

The rate of dissipation tensor needs to be modelled and this is achieved here considering
turbulence anisotropy and near-wall effects related to the fluid rheology as in the model of
Lai and So [35] of Equation (26), initially developed by Shima [36]. These are also related
to the fluid rheology with the help of the damping function, fw,1:

εij = 2

3
ε (1 − fw,1) δij + fw,1

(
ε
/
k
) [

uiuj + uiuknknj + ujuknkni + ninjukulnknl

]
1 + 3ukulnlnk

/
2k

.

(26)

The model for the rate of dissipation tensor of Equation (26) relies on the scalar isotropic
rate of dissipation of turbulent kinetic energy ε, which is calculated by its own transport
equation. The exact form of this transport equation is rather complex, even for Newtonian
fluids and more so for non-Newtonian fluids, but in this model we will minimise the changes
in relation to the closed form adopted by Lai and So [35], i.e., only the constant kinematic
viscosity of Newtonian fluids is substituted by the Reynolds-averaged kinematic viscosity
of the modified GNF model (ν̄):

Dε

Dt
= ∂

∂xk

(
ν̄

∂ε

∂xk

)
+ ∂

∂xk

(
Cs

k

ε
ukui

∂ε

∂xi

)
+ Cε1 (1 + σfw,2)

ε

k
P̃

−Cε2fε

εε̃

k
+ fw,2

[(
7

9
Cε2 − 2

)
εε̃

k
− 1

2k

(
ε − 2ν̄k

y2

)2
]

. (27)

Equation (27) uses the pseudo-dissipation (ε̃) given by

ε̃ = ε − 2ν̄

(
∂k

1/2

∂xy

)2

. (28)

The other non-Newtonian terms in Table 1 are neglected in this model and the remaining
terms of the transport equation of the Reynolds stresses are mathematically identical to those
used in the context of Newtonian turbulence, i.e., they do not contain either the Reynolds-
averaged or the fluctuating molecular viscosity. Nevertheless, it is known from DNS data
for polymer solutions modelled by the FENE-P rheological constitutive equations (cf.
[43]) that the turbulent diffusion and in particular the pressure strain are affected by drag
reduction, especially close to the wall. Therefore, although we model these terms inspired
by Lai and So [35], especially on what concerns the high Reynolds number contributions,
modifications are implemented on the near-wall corrections, as discussed next.

The turbulent diffusion by velocity fluctuations, DT
ij , is modelled as originally by Lai

and So [35] in Equation (29):

−ρ
∂

∂xk

uiujuk = ρ
∂

∂xk

{
Cs

k

ε

[
uiul

∂ujuk

∂xl

+ ujul

∂ukui

∂xl

+ ukul

∂uiuj

∂xl

]}
. (29)
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12 P.R. Resende et al.

The two pressure fluctuation correlations, φ∗
ij , are the turbulent diffusion by pressure,

φ
p
ij , and the pressure strain, φij , the first and second terms on the right-hand side of Equation

(30), respectively,

φ∗
ij = −

(
∂

∂xi

p′uj + ∂

∂xj

p′ui

)
︸ ︷︷ ︸

φ
p
ij

+p′
(

∂uj

∂xi

+ ∂ui

∂xj

)
︸ ︷︷ ︸

φij

. (30)

Usually φ
p
ij is neglected at high Reynolds number flows or incorporated as part of DT

ij ,
but without any modification to the closure of DT

ij , because φ
p
ij is negligible in comparison

to DT
ij according to Laufer [44]. The pressure strain φij is responsible for the distribution

of turbulent kinetic energy among its three normal components; therefore, it plays a crucial
role since non-Newtonian fluids exhibit a more anisotropic distribution of normal Reynolds
stresses than Newtonian fluids. The adequate modelling of the pressure strain thus requires
a near-wall sub-model to capture correctly the behaviour of the Reynolds stresses next to
the wall, in addition to a far from wall closure (φij,1). The adopted model for the pressure
strain is given in Equation (31), where φij,wfw,1 compensates for the shortcomings of φij,1

next to the wall, in particular, introducing the different behaviour of the RS according to
the orientation of the flow and wall (for instance, the RS normal to the wall is subject
to a stronger attenuation than the other two normal stress components), and additionally
incorporating the strong rheological effects there via function fw,1:

φ∗
ij = φij = φij,1 + φij,wfw,1. (31)

The idea behind this closure allows the turbulence model to handle successfully a wide
range of complex flows and has been around at least since [30]. Here, we adopt for φij,1

and φij,w the closures of Lai and So [35] for Newtonian fluids, presented in Equations (32)
and (33):

φij,1 = −C1
ε

k

(
uiuj − 2

3
kδij

)
− α

(
Pij − 2

3
P̃ δij

)
− β

(
Dij − 2

3
P̃ δij

)

− γ k

(
∂Ui

∂xj

+ ∂Uj

∂xi

)
, (32)

φij,w = C1
ε

k

(
uiuj − 2

3
kδij

)
− ε

k

(
uiuknknj + ujuknkni

)− α∗
(

Pij − 2

3
P̃ δij

)
, (33)

In Equations (32) and (33), the various quantities are given by

Pij =
[
uiuk

∂Ui

∂xk

+ ujuk

∂Ui

∂xk

]
,Dij =

[
uiuk

∂Uk

∂xj

+ ujuk

∂Uk

∂xi

]
,

P̃ = 1

2
Pii, α = (8 + C2)

11
, β = (8C2 − 2)

11
, γ = (30C2 − 2)

55
. (34)

The effect of Reynolds number on the pressure-strain model is taken care of by the damp-
ing function fw,1 and here we do not adopt the function Lai and So [35], but use instead
a new function that incorporates rheological effects also, namely the shear thinning of the
shear viscosity and the strain hardening of the Trouton ratio. For this purpose, we rely
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Journal of Turbulence 13

on a Van Driest type damping function (fVD ∝
(
1 − exp

(−y+/A
))2

) [45] developed on
the same principles as the eddy viscosity damping function of Cruz and Pinho [8], but
further modified to take into account the stronger necessary damping of φij,w required by
the non-Newtonian fluids. This modification takes into account the contributions of the new
viscoelastic terms in the governing equations and leads to a significant improvement over the
previous k–ε turbulence model. In this RS model, the pseudo-elastic stress appearing in the
momentum equation plays a more significant role there and in the energy budget. In the k–ε

model, a significant proportion of the drag reduction was captured by the damping function
of the eddy viscosity and the impact of the pseudo-elastic stress on the momentum equation
was limited, whereas here the pseudo-elastic stress plays a more relevant role at the expense
of the RS via the eddy viscosity. Simultaneously, we ensured that Newtonian fluid flow pre-
dictions remained equally accurate. The adopted function fw,1 is given by Equation (35):

fw,1 = exp

[
−
(

2.5

⎧⎨
⎩1 −

[
1 +

∣∣∣∣1 − n

1 + n

∣∣∣∣ y+
]−

∣∣∣1 + n/1 − n

∣∣∣/A+
⎫⎬
⎭

×
⎧⎨
⎩1 −

[
1 +

∣∣∣∣p − 1

3 − p

∣∣∣∣ y+C
1−p
2−p

]−
∣∣∣3 − p/p − 1

∣∣∣/A+
⎫⎬
⎭
)1.1]

. (35)

The current turbulence model must remain valid for Newtonian fluids which are obtained
by setting n = 1 and p = 1. In this case all non-Newtonian closures vanish, but the
damping function fw,1 does not revert to the form used by Lai and So [35], which relies
on the turbulent Reynolds number RT , whereas here the Reynolds number based on wall
coordinates is being used (y+ = uτy/ν̄w, where uτ is the friction velocity). Predictions of
the Newtonian turbulent channel flow with this modification are similar to those of Lai and
So [35] model as assessed in Section 4.

Summarising, we put together all terms and the modelled transport equation for the RS
tensor is given by

ρ
Duiuj

Dt
+ ρujuk

∂Ui

∂xk

+ ρuiuk

∂Uj

∂xk

= ρ
∂

∂xk

{
Cs

k

ε

[
uiul

∂ujuk

∂xl

+ ujul

∂ukui

∂xl

+ ukul

∂uiuj

∂xl

]}

+ φij,1 + φij,wfw,1︸ ︷︷ ︸
φ∗

ij

+ρεij + μ̄
∂2uiuj

∂xk∂xk

+CV 1
∂μ̄

∂xk

∂uiuj

∂xk

+ CV 2 × ∂μ̄

∂xk

(
∂ukuj

∂xi

+ ∂ukui

∂xj

)
(36)

with the closure of εij given by Equations (26)–(28) and the closure for φ∗
ij given by

Equations (31)–(35). The turbulent Reynolds number RT is here defined as RT = k2/ν̄ε.

4. Newtonian fluids simulations

The computer code used to carry out the numerical simulations for fully developed pipe flow
is based on a finite-volume discretisation of the governing and turbulence model equations
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14 P.R. Resende et al.

Table 2. Coefficients and damping functions used by the Reynolds stress model (as in Lai and So’s
model [35]).

Constants
C1 = 1.5 C2 = 0.4 α∗ = 0.45 Cε1 = 1.35 Cε2 = 1.8 Cs = 0.11
Damping functions

fw,2 = exp

[
−
(

RT

64

)2
]

fε = 1 −
(

2

9

)
exp

[
−
(

RT

6

)2
]

using staggered meshes and second-order central differences. The Tri-Diagonal Matrix
Algorithm (TDMA) solver is used to calculate the solution of the discretised algebraic
governing equations. The mesh is non-uniform with 199 cells across the pipe, giving mesh-
independent results for Newtonian and non-Newtonian fluids within 0.1%. The full domain
is mapped exclusively in the transverse direction, hence only the following wall boundary
conditions need to be imposed:

Ui = 0; uiuj = 0 and ε = 2ν̄

(
∂k

1/2

∂y

)2

at r = R.

As explained at the end of Section 3.2, the damping function for the pressure strain
(fw,1) is new to accommodate both low Reynolds number and rheology effects. Even though
this new function does not reduce to the same form as the function of Lai and So [35] for
Newtonian fluids, it is necessary to ensure that under those conditions its predictions are
at least as good as those of the Lai and So’s [35] model in fully developed turbulent pipe
flow. To ensure this, the damping function was calibrated with the numerical value of the
coefficient A+ = 35.

The coefficients and functions of the model presented in Table 2 take on the same values
as Lai and So’s model [35].

Simulations were carried out with both the present model and the original model of Lai
and So [35] and compared with the extensive data-set of Durst et al. [46] pertaining to a
Reynolds number of 7340. Further simulations were performed at three higher values of
the Reynolds number just to compare the predictions of the friction factor with the values
given by the Colebrook equation for smooth pipe (Eq. 37):

1√
f

= −2.0 log10

[
2.51

Re
√

f

]
. (37)

Table 3. Darcy friction factor for Newtonian pipe flow. Comparison between Colebrook equation
(37) and the predictions by this model and the Lai and So’s model [35].

Re 7,430 13,450 21,490 33,530

fCo – Colebrook equation 0.03345 0.02858 0.02543 0.02288
fLS – Lai and So’s model 0.03755 0.03066 0.02622 0.02323
f – present model 0.03673 0.03006 0.02578 0.02279
(fLS − fBl)/fBl(%) 12.23 7.24 3.09 1.52
(f − fBl)/fBl(%) 9.85 5.14 1.36 −0.39
(f − fLS)/fLS(%) −2.2 −2 −1.7 −1.9
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Journal of Turbulence 15

Figure 1. Comparison between the predicted and the measured mean velocity profile for fully
developed turbulent pipe flow of Newtonian fluid at Re = 7430 in wall coordinates.

Table 3 compares the data and predictions of the Darcy friction coefficient and the
differences between predictions by this model and by Lai and So’s model are of the order
of 2%. In relation to the Colebrook equation, the differences are larger at low Reynolds
numbers, both for this model and for Lai and So’s model. The small difference between the
predictions of this model and of Lai and So’s model have a corresponding small difference
in the predictions of the mean velocity profiles in wall coordinates shown in Figure 1. At
larger Reynolds numbers, our model approaches Lai and So’s model predictions even better,
with differences in the velocity profiles becoming negligible, but these are not shown here
for conciseness.

The corresponding profiles of the normalised turbulent kinetic energy and Reynolds
normal stresses are shown in Figure 2, which includes the experimental data from Durst
et al. [46]. These turbulent quantities are normalised using the friction velocity (uτ ) as in
Equation (38):

u′+ =
√

u2
/

uτ
; v′+ =

√
v2
/

uτ
; w′+ =

√
w2
/

uτ
. (38)

Actually, predictions of u′+ by this model are closer to the experimental data than those
of Lai and So’s closure [35] and this also improves the predictions of k+ .
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16 P.R. Resende et al.

Figure 2. Comparison between the predicted (lines) and the measured (symbols) profiles of nor-
malised turbulent kinetic energy and Reynolds normal stresses for fully developed turbulent pipe
flow of Newtonian fluid at Re = 7430 in wall coordinates: ◦ k+ , � u′ + , ♦ w′ + , � v′ + data [46]; —
present model; - - Lai and So’s model [35].

5. Calibration of the viscoelastic model

The turbulence model was calibrated first to predict well the turbulent channel flow of
Newtonian fluids, as was described in the previous section, since some changes were made
to the original closures of Lai and So [35]. Then, as described next, it was calibrated for
the viscoelastic fluids using experimental data from a single fluid, an aqueous solution of
polyacrylamide (PAA) at 0.125% by weight concentration taken from Escudier et al. [41].
Subsequently, without changing the turbulence model its performance is assessed in Section
6 for the remaining three viscoelastic fluids made from aqueous solutions of xanthan gum
(XG), carboxymethylcellulose sodium salt (CMC) and a combination of XG and CMC
at various weight concentrations. Specifically, the following solutions were used: 0.2%
XG, 0.25% CMC and 0.09%/0.09% XG/CMC. The viscosity parameters in the modified
GNF model of Equation (4) are presented in Table 4 for all fluids. These are the same as
used previously in [9,10], and were obtained from the experimental shear and extensional
viscosity measurements of Escudier et al. [41].

Table 4. Parameters of the viscosity model (cf. [9]).

Fluid KV (Pa.sn) n Ke p

0.25% CMC 0.2639 0.6174 2.0760 1.2678
0.09% CMC/0.09% XG 0.15178 0.5783 2.1833 1.1638
0.2% XG 0.2701 0.4409 3.8519 1.2592
0.125% PAA 0.2491 0.425 8.25 1.4796
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Figure 3. Variation across the pipe of the shear components of pseudo-elastic viscoelastic stress,
defined by Equations (19) and (20), and of the Reynolds stress, in the context of the Reynolds stress
model (symbol �) and the k–ε model (dashed line - - - ), for 0.125% PAA fluid in turbulent pipe flow
at Re = 42,900.

The coefficients of the viscoelastic turbulence model were quantified by an extensive
parametric investigation to assess the impact of its various contributions to the performance
of the model. First, we compare in Figure 3 the predictions of the pseudo-elastic stress by
the RS model with those of the previous k–ε model for the same flow of 0.125% PAA. For
reference, the predictions by both models of the corresponding shear RS are included. The
pseudo-elastic stress in the momentum equation predicted by the RS model is larger by a
factor of 3 than that of the former model, but what is more relevant is that this pseudo-elastic
stress is important well within the buffer layer, whereas in the previous model the pseudo-
elastic stress only existed inside the viscous sub-layer and in the lower buffer layer, an
unlikely feature for a turbulent quantity. Additionally, the larger pseudo-elastic stress in the
buffer layer allows for larger drag reductions. This is achieved here through an optimisation
of the RS distribution and as a consequence the coefficient C0 of the pseudo-elastic stress,
defined by Equations (19) and (20), takes the new numerical value of C0 = −0.95, which
is slightly different from the value used in the context of the k–ε model of Cruz et al.
[9]. Simultaneously, the new value of C in the viscoelastic damping function (Equation
(35)) became C = 25, which is three times smaller than the value used in the previous
k–ε model. These changes are related to the fact that in this RS model we imposed the
maximum possible contribution from this pseudo-elastic stress while reducing the role of
the viscoelastic damping function, which was taking most of the viscoelastic effects in the
previous k–ε model. Note that the viscoelastic terms related to coefficients CV 1 and CV 2
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18 P.R. Resende et al.

Figure 4. Comparison between the predicted (lines) and measured (symbols) mean velocity profile
for fully developed turbulent pipe flow with the 0.125% PAA solution at Re = 42,900 in wall
coordinates: ◦ [41]; - × - present model with CV 1 = 0; - - - present model with CV 2 = 0; — present
model; – – k–ε model [10].

also took over some of the viscoelastic contributions, but due to a lack of information on
the distribution of turbulent energy among the various terms, we chose to maximise the
role of elastic contribution via the pseudo-elastic term. For this reason, the coefficient CV 1

of the viscoelastic term in Equation (22) was set to CV 1 = −1.7, keeping the same sign of
the pseudo-elastic stress but with a major impact away from the wall.

Even though this term contributes to all components of the RS tensor, for the pipe flow
of 0.125% PAA at Re = 42,900, its main contribution is to the streamwise normal and shear
components. In contrast, the contribution of the similar viscoelastic closure of Equation
(23) is to the transverse and spanwise normal components, and here CV 2 = 0.2. These two
closures are used to improve the global behaviour of the turbulence model and that can
be assessed in Figure 4, where predictions of the main velocity profiles are shown in wall
coordinates for the 0.125% PAA turbulent pipe flow at Re = 42,900 with and without the
CV 1 and CV 2terms, and compared also with the prediction by the nonlinear k–ε model of
Resende et al. [10]. There is clearly an improvement by the use of the RS model. Note that
the data for the 0.125% PAA solution and the corresponding prediction are close to Virk’s
maximum drag reduction asymptote for the velocity (MDRA) [47], given by Equation (39),
corresponding to a drag reduction of 60%–70%,

u+ = 11.7 ln
(
y+)− 17. (39)
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Figure 5. Comparison between predictions and measurements of Darcy friction factor in wall
coordinates for fully developed turbulent pipe flow with 0.125% PAA fluid: ◦ experimental data [41];
— present model; - - k–ε model [10].

The predicted variation of the Darcy friction factor with Reynolds number for the
0.125% PAA solution can be observed in Figure 5, which includes the Colebrook
equation (37) for the Newtonian friction factor and MDRA equation (40):

1/
√

f = 9.5 × log
(

Rew

√
f
)

− 19.06. (40)

The predictions compare well with the experimental data, but all models tend to under-
predict f as the Reynolds number is reduced so that there is a difference of about 16% at
Re = 10,000. According to Resende et al. [10], the 0.125% PAA solution is a highly elastic
fluid with a large drag reduction approaching Virk’s MDRA.

The predicted profiles of the various normal Reynolds stresses (RSs) and the corre-
sponding experimental data of Resende et al. [10] are compared in Figure 6, which also
includes the corresponding turbulent kinetic energy profiles and also the predictions by the
nonlinear k–ε model of Resende et al. [10]. As we can see, the present RS model underpre-
dicts k and u2 near the wall, especially in the region of the peak stress. The prediction of w2

is good, but there is also an underprediction of v2, near and away from the wall. Therefore,
the variations of the RS with the polymer additive are captured by the present RS turbulence
model, but not so well as by the k–ε nonlinear model of Resende et al. [10]. This is so
because in developing this RS model we kept the modifications of the Lai and So’s model
to a minimum, and essentially only one damping function was changed. In contrast, in the
anisotropic k–ε model of Resende et al. [10], several damping functions were used and
the authors were thus able to match more closely the experimental and numerical data, but
this also suggests that the model of Resende et al. [10] is less robust than this RS model.
Nevertheless, and in spite of the minimal number of changes made in the present model,
the shift of the location of peak turbulence away from the wall is captured, but this came at
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20 P.R. Resende et al.

Figure 6. Comparison between the predicted (lines) and the measured (symbols) profiles of nor-
malised turbulent kinetic energy and Reynolds normal stresses for fully developed turbulent pipe flow
of 0.125% PAA fluid at Re = 42,900 in wall coordinates: ◦ k+ data [41]; � u′ + , ♦ w′ + , � v′ + data
[10]; — present model; - - k–ε model [10].

the expense of an increased dissipation of the turbulence leading to a reduction of the peak
value of k.

In Figure 7, the distributions of the various shear stresses are plotted for the 0.125%
fluid. The predictions by the RS model (symbols) are different from those of the nonlinear
k–ε model of Resende et al. [10], especially for the pseudo-elastic stress in the buffer layer.
The pseudo-elastic stress is larger leading to an increase in the average molecular stress
in the buffer layer to compensate and improve significantly the performance of the present
turbulence model relative to the previous k–ε models.

In this RS model, the pseudo-elastic stresses are larger than in the model Cruz and
Pinho [9], but they are still negative. This negative stress is not a deficiency of the model
as deduced from the following reasoning: considering the total extra stress from a more
fundamental point of view as the sum of a polymer contribution with a Newtonian solvent
contribution (τt = τp + τs), and since the modified GNF model does not make directly
this separation, the polymer contribution to the total extra stress has to be computed by
subtracting from the total stress the Newtonian solvent contribution, leading to the following
result for the shear stress component:

τp = 2μ̄Sxy + 2μ′sxy − 2μsSxy, (41)

where μs is the solvent viscosity. The transverse variations of τp, −ρu′v′ and τs are plotted
in Figure 8 for the same case of Figure 7, i.e., for 0.125% PAA. The flow corresponds to the
maximum drag reduction (DR) regime (60% < DR < 70%) with DR = 69% for 0.125%
PAA at Re = 42,900, and the variation of those stresses across the pipe is qualitatively
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Figure 7. Comparison between the predictions of the various shear stress profiles by the Reynolds
stress (RS) and k–ε turbulence models for pipe flow of 0.125% PAA at Re = 42,900.

similar to those seen by Ptasinski et al. [25] in their turbulent pipe flow experiments with
other viscoelastic fluids. It also compares with the k–ε model predictions, where both
models behave similarly next to wall. Across the pipe, we observe a shift away between the
predictions by the RS and k–ε models of the shear Reynolds and polymeric stresses, but
due to the lack of independent detailed information it is impossible to quantify the error
predictions of the models. In both cases, the polymer shear stress remains positive and
increases with drag reduction as it should. Additionally, when added to the positive solvent
shear stress and to the positive Reynolds shear stress, the latter contribution decreasing
with DR, the total shear stress now varies linearly across the pipe flow as it must from the
momentum equation balance and regardless of the assumptions used to model the flow.

The various non-Newtonian terms of the momentum and RS equations affect different
flow regions. The pseudo-elastic stress directly affects the buffer layer, but this is sufficient to
change the flow across the whole pipe and it is especially important to create drag reduction.
Indeed, and in contrast to the earlier k − ε model of Cruz and Pinho [9], where the drag
reduction was basically achieved by a reduction of the eddy viscosity, and the pseudo-
elastic stress played a small role, this RS model has a more correct behaviour because the
drag reduction is achieved by the increasing importance of the polymer stress (τp) and not
just by a reduction of the RS, in agreement with experimental and DNS investigations for
viscoelastic fluids (e.g., [11,25]). In the context of the rheological model used here, this is
achieved also via the pseudo-elastic stress (cf. Equation (41)) and not exclusively by 2μ̄Sij .
Additionally, the RS turbulence model captures the increased turbulence anisotropy, and
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Figure 8. Radial distribution of the various shear stresses predictions by the Reynolds stress (RS)
and k–ε turbulent models, for pipe flow of 0.125% PAA at Re = 42,900.

in particular, the reduction in the transverse normal RS which is usually associated with
drag reduction. As the pseudo-elastic stress increases with drag reduction, there is also an
increase of k+ , which represents an additional improvement over the k–ε closure of Cruz
et al. [9].

6. Results and discussion

Following the calibration of the model against the experimental data-set of Escudier et al.
[41] for the aqueous solution of 0.125% PAA, the performance of the developed RS model
is now assessed against experimental data for three other different fluid flows. This is done
both in terms of the predictions of the friction factor, but also in terms of profiles of the
mean and turbulent velocities.

For the 0.25% CMC solution, the predictions of f as a function of the Reynolds number
and of the mean and turbulent velocities at Re = 16,600 are presented in Figures 9–11,
respectively. The slope of the predicted f–Re curve is lower than that of the experiments
only by a small amount and the mean velocity profile shows also a good agreement with
the experiments. In terms of the turbulent quantities, these are well predicted in terms of
magnitude, but the locations of the predicted peak axial normal stress and k are shifted to
higher values of y+. Comparing with the k–ε model of Resende et al. [10], next to the wall
there is an underprediction in all components of the RS tensor, but not so intense as occurs
in the 0.125% PAA fluid. Across the pipe we obtained similar behaviour with the exception
of the v2 underprediction and a small improvement in the u2 component.
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Figure 9. Comparison between predictions and measurements of Darcy friction factor in wall
coordinates for fully developed turbulent pipe flow with 0.25% CMC fluid: ◦ experimental data [41];
— present model; × k–ε model [10].

The predictions of the Darcy friction factor for the two aqueous polymer solutions based
on XG, the blend of 0.09% CMC with 0.09% XG and the 0.2% XG solution, match very
well with the experimental data as shown in Figures 12 and 13. For the blend, there is a 16%
difference in the value of f at Re = 52,400, which decreases at lower Reynolds numbers.
The opposite variation is observed to occur with the 0.2% XG fluids; now there is a 9%
difference between the predicted and the experimental f at Re = 15,000, which decreases
with increasing Reynolds numbers.

It must be emphasised at this stage that the predictions for these two fluids, and in
particular for the 0.2% XG solution, are significantly better than was previously achieved
by any of the linear two-equation closures developed in the past for viscoelastic fluids
[8–10], and in particular, by the anisotropic k–ε model of Resende et al. [10]. This is an
important achievement of the current RS model as is clear from the previous and subsequent
plots, which include the predictions by the nonlinear k–ε model.

The corresponding predictions of the mean velocity and of the normal Reynolds stresses
for the blend (0.09%/0.09% CMC/XG) and the 0.2% XG solutions, at Re = 45,200 and
39,000, respectively, match the experimental data. This is shown in Figures 14 and 15 for
the blend, and in Figures 16 and 17 for the 0.2% XG solution. The predictions are better
than those by the previous model of Resende et al. [10] with significant improvements,
especially for the 0.2% XG solution for which the previous models were not particularly
successful. Note that the flow of this solution of 0.2% XG is in the regime of maximum
drag reduction. As for the previous two non-Newtonian fluids, the axial and radial Reynolds
normal stresses and k are underpredicted near the wall. For the 0.2% XG solution, the
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24 P.R. Resende et al.

Figure 10. Comparison between the predicted and measured mean velocity profile for fully
developed turbulent pipe flow with the 0.25% CMC solution at Re = 16,600 in wall coordinates.

Figure 11. Comparison between the predicted (lines) and the measured (symbols) profiles of nor-
malised turbulent kinetic energy and Reynolds normal stresses for fully developed turbulent pipe flow
of 0.25% CMC fluid at Re = 16,600 in wall coordinates: ◦ k+ data [41]; � u′ + , ♦ w′ + , � v′ + data
[10]; — present model; - - k–ε model [10].
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Figure 12. Comparison between predictions and measurements of Darcy friction factor in wall
coordinates for fully developed turbulent pipe flow with 0.09%/0.09% CMC/XG fluid: ◦ experimental
data [41]; — present model; × k–ε model [10].

tangential Reynolds normal stress is slightly over-predicted. In addition, there is almost
always an underprediction in k, u2 and v2 near the wall, whereas w2 is usually well
predicted.

The shear stress distributions for the 0.2% XG solution can be observed in Figure 18,
which can be compared with that of the 0.125% PAA solution (cf. Figure 7). Both flows
belong to the maximum drag reduction regime (DR = 60.3% for 0.2% XG at Re = 39,000
and DR = 69% for 0.125% PAA at Re = 42,900). The profile of the pseudo-elastic stress
of 0.2% XG is qualitatively similar to that of the 0.125% PAA solution acting essentially
in the buffer layer, but with a higher magnitude, which is necessary to correct the previous
failure of the k–ε model in predicting the velocity field, as mentioned before. This confirms
that in the context of the RS model, the closure of the new pseudo-elastic stress model is
significantly better than the closure of Cruz and Pinho [9] used in the context of the k–ε

turbulence models. As for the 0.125% PAA in Figures 8 and 19, it plots the distribution of
all relevant shear stresses across the pipe for the 0.2% XG solution. Again, the behaviour is
alike that for the viscoelastic fluids of Ptasinski et al. [25] at maximum drag reduction (the
103 wppm, Weight Parts per Million, solution of Superfloc A110 with DR = 63% in their
Figure 11), except for the proportion of the total stress distribution between the solvent and
the polymer close to the wall. This difference stems from the fact that in Ptasinski et al. [25]
the polymer solution is dilute whereas here the viscosity model was fit to the fluid rheology
and the 0.2% XG is well above the critical concentration for the dilute regime, and for that
reason the 50% distribution of the wall stress between solvent and polymer is reasonable.
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26 P.R. Resende et al.

Figure 13. Comparison between predictions and measurements of Darcy friction factor in wall
coordinates for fully developed turbulent pipe flow with 0.2% XG fluid: ◦ experimental data [41];
— present model; × k–ε model [10].

Figure 14. Comparison between the predicted and measured mean velocity profile for fully
developed turbulent pipe flow with the 0.09%/0.09% CMC/XG solution at Re = 45,300 in wall
coordinates.
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Figure 15. Comparison between the predicted (lines) and the measured (symbols) profiles of
normalised turbulent kinetic energy and Reynolds normal stresses for fully developed turbulent
pipe flow of 0.09%/0.09% CMC/XG fluid at Re = 45,300 in wall coordinates: ◦ k+ data [41];
� u′ + , ♦ w′ + , � v′ + data [10]; — present model; - - k–ε model [10].

Figure 16. Comparison between the predicted and measured mean velocity profile for fully
developed turbulent pipe flow with the 0.2% XG solution at Re = 39,000 in wall coordinates.
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28 P.R. Resende et al.

Figure 17. Comparison between the predicted (lines) and the measured (symbols) profiles of nor-
malised turbulent kinetic energy and Reynolds normal stresses for fully developed turbulent pipe
flow of 0.20% XG fluid at Re = 39,000 in wall coordinates: ◦ k+ data [41]; � u′ + , ♦ w′ + ,
� v′ + data [10]; — present model; - - k–ε model [10].

Figure 18. Comparison between the Reynolds stress and k–ε turbulence models of the various shear
stresses across the pipe for 0.2% XG at Re = 39,000.
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Figure 19. Distributions of the various shear stresses predictions by the Reynolds stress (RS) and
k–ε turbulent models, across the pipe for 0.2% XG at Re = 39,000.

6.1. Comparison with turbulence models for FENE-P fluids

As referred to at the introduction, there have been recent developments in turbulence
modelling for fluids described by the FENE-P constitutive equation and these developments
are grounded on DNS results. However, as was also referred to, the DNS predictions
with a given set of FENE-P models fitted to real fluids do not match quantitatively the
corresponding experimental observations, as described in detail in Ptasinski et al. [14].

Nevertheless, we compare predictions by the present turbulence model with both ex-
perimental and DNS data-sets of Ptasinski et al. [14]. In order to do so, we must first
quantify the rheological parameters, and for this reason we fit the modified GNF model
to the rheology of the FENE-P fluid of [14] for different runs (e.g., their Run A with L
= 10, β = 0.6, Weτ0 = 54, Rew = 8609 and ηw/η0 = 0.792). The shear and extensional
viscosities of the FENE-P model are given by Purnode and Crochet [48]. Figure 20 (a)
and (b) plots the shear viscosity and the Trouton ratio, respectively, for both the GNF and
FENE-P models. Here the fit of the GNF model to determine n and Kvwas only in the region
of the measured data. The extensional viscosity is related to the Trouton ratio through the
relation: Tr = ηe (ε̇)/3ηv (γ̇ ). As is obvious from Figure 20 (b), the FENE-P predicts two
plateaux with an abrupt variation in the middle, whereas the GNF model cannot predict the
plateaux, so a simple power law was fit to the range of shear rates from 10−4 to 10+ 5 s−1,
as in the plot, giving the coefficients p and Ke (details on the coefficients can be found in
[8]). Figure 20 also includes data for two cases at Reτ0 = 1000 as discussed below.

Figure 21 compares the velocity profiles in turbulent channel flow predicted by our RS
model, with the GNF model adjusted as in Figure 20 (a) and 20 (b), with the experiments
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30 P.R. Resende et al.

Figure 20. Comparison between the steady viscosities for the FENE-P model of [14,50] equivalent
to case A (I), and [49–51] for the run DR = 30%, Thais1 (II) and DR = 58%, Thais2 (III), and the
modified GNF model: (a) shear viscosity; (b) Trouton ratio.
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Figure 21. Comparison between the Reynolds stress model predictions (line), DNS data (dashed
line) and experimental data (symbols) of [14,50].

and DNS data of Ptasinski et al. [14] (their Exp A which is equivalent to their DNS Run
A), which we call here Case A. The predictions by the RS model compare well with the
experimental data. In addition, Table 5 compares the drag reduction of the experimental
and DNS data of Ptasinski et al. [14] with the simulations of this RS model for Case A.
Although the RS predictions compare well with the measured velocity profile, there is an
over-prediction of the amount of DR. Similarly, if we compare the experimental data of
Ptasinski et al. [14] with the DNS data of Li et al. [11] equivalent to DR = 29%, we observe
that both velocity profiles coincide, but we obtain different drag reductions, DR = 29%
against DR = 23% of [14].

To understand better, the RS model limitations of other cases were simulated based on
the FENE-P model data of Ptasinski et al. [14] such as their Run D, which pertains to the
intermediate DR region. As listed in Table 5, in this case, the DR of the RS prediction is

Table 5. Comparison between the drag reductions of the experiments and DNS simulations of
Ptasinski et al. [14] and the prediction of this RANS model.

Description [14] (experimental) [14] (DNS) Reynolds stress model

DR 23% (Exp A) 26% (Run A) 32% (Case A)
– 40% (Run D) 39% (Case D)

63% (Exp B) 61% (Run B) – (Case B)

Note: For the DNS data, the FENE-P model coefficients are not from experiments but modified by Ptasinski et al.
[14] to provide the correct drag reduction.

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

P]
, [

Fe
rn

an
do

 P
in

ho
] 

at
 0

8:
53

 1
2 

D
ec

em
be

r 
20

13
 



32 P.R. Resende et al.

Figure 22. Comparison between the Reynolds stress model predictions (line) and DNS data
(symbols) of [49–51]: ◦ DNS data; — present model (equivalent to DR = 30%, Thais1); - - present
model (equivalent to DR = 58%, Thais2).

nearly the same as for the DNS simulation. For Case B pertaining to high drag reduction, we
could not obtain converged solutions with our model and code, because the corresponding
flow Reynolds number was too small, within the transition regime.

Finally, to assess the behaviour of the RS model against high Reynolds number DNS
of FENE-P fluids, comparisons also carried out against data of Thais et al. [49–51]. We
adjusted the rheological parameters of the GNF constitutive equation to represent the FENE-
P for the following two cases: flow case Thais1 (DR = 30%, Weτ0 = 50, Reτ0 = 1000, L
= 30 and β = 0.9) and flow case Thais2 (DR = 58%, Weτ0 = 115, Reτ0 = 1000, L = 100
and β = 0.9) and the corresponding plots of the steady shear and extensional viscosities
appear in Figure 20. Figure 22 compares the predicted mean velocity profiles with the
corresponding DNS data. For the Reτ0 = 1000, DR = 30% flow (Thais1), the model
underpredicts the velocity profile, which corresponds to a predicted DR = 23%. Increasing
the Weissenberg number to that of the Thais2 flow conditions, DR = 58%, and above,
convergence difficulties arise due to excessive turbulence dampening by the model first in
the buffer layer and at higher Weissenberg numbers in the log-law region. For the Thais2
case, the model still converges but provides unrealistic results, shown by the thick dashed
velocity profile of Figure 22, which is close to that of the DR = 30% case, but exhibits lower
velocities in the buffer layer. The corresponding profile of the turbulent kinetic energy (not
shown for conciseness) shows excessive turbulence dampening in the buffer layer.

This is due to the very high values of the properties Ke and p quantifying the di-
mensionless strain-hardening extensional viscosity (η∗

e in Equation (4)) and their un-
bounded nature (near the wall this quantity can be very high, unless it is controlled by the
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dampening function fv). This result for the Thais2 flow case is in line with previous ob-
servations of convergence difficulties for fluids with very high drag reductions (DR >

60%) when associated with very high values of Ke and p as was the case for a solution of
0.2% PAA [8] for which we could never obtain converged predictions with this class of
turbulence closures. This problem is independent of the Reynolds number except in regard
to a possible reduction of the dampening effect of fvwith increasing Re but there is no clear
value of Ke and p establishing the limit of application of the model since it also depends
on other quantities, like Kv and n. Nevertheless, an excessive decrease of u+ in the buffer
layer region accompanied by a severe reduction of turbulence indicates that the upper limit
of the model has been reached.

These comparisons with DNS data of FENE-P model should always be looked upon with
some caution. After all, the current class of turbulence models were developed exclusively
on the basis of experimental data, including data from the opposed jet rheometer for the
extensional viscosity. Simultaneously, we stress again that none of the DNS data-sets for
FENE-P in the literature has ever been matched quantitatively with experimental data both
in terms of rheology and fluid dynamics.

7. Conclusions

An RS model has been developed to predict the flow of viscoelastic solutions based on a
generalised Newtonian constitutive equation modified to account for elastic effects. The RS
model is a modified version of the low Reynolds number turbulence model of Lai and So
[35] and includes several new non-Newtonian terms. Closures for all these new terms were
developed as well as for the pseudo-elastic stress term appearing in the momentum equation
to better describe turbulence anisotropy so common in turbulent flows of viscoelastic fluids.

The predictions of friction factor and mean velocity profiles by this model are good for
all fluids tested. In particular, this turbulence model was able to successfully predict the
flows involving polymer solutions containing the semi-rigid XG molecule, for which the
linear and nonlinear k − ε models of [9,10] systematically underpredicted the measured
levels of drag reduction. Regarding turbulence quantities, the model was able to capture
the enhanced turbulence anisotropy with drag reduction and the shift away from the wall of
the peak values of k typical of increasing drag reduction levels. However, the streamwise
Reynolds normal stress (u2) was, in general, underpredicted especially near the wall. The
tangential normal RS (w2) was always well predicted, and in all cases v2 was underpredicted,
near and away from the wall. Note that these predictions of the normal stresses are as good
as those obtained by the anisotropic k − ε model of Resende et al. [10].

We also analysed the performance of the present model against experimental data for
channel flow from the literature and the corresponding set of DNS simulations, which
were based on the FENE-P rheological constitutive equation. The DNS data-sets predicted
well the measured DR only because the FENE-P coefficients, and in particular the model
relaxation time, were adjusted for that purpose, not adjusted to the experimentally measured
relaxation time. Our GNF model, which was adjusted to the fluid shear rheology and to the
FENE-P Trouton ratio, also provided good predictions, even though not as good as those of
the DNS. This RS model behaves well at low and intermediate DR but can become unstable
close to the maximum DR, especially when the flow Reynolds number is low and close to
the transition regime if the values of Ke and p are very high.

Even though the present model represents a significant improvement over the previous
turbulence models for viscoelastic solutions, all of which are two-equation models, it will
be necessary to extend the analysis to more complex geometries in order to assess whether
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the RS model is able to behave effectively. Since the changes to the original model of Lai
and So were kept to a minimum, it is our belief that this model will perform better than the
earlier two-equation closures of [9,10].
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