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a b s t r a c t

This work deals with the development of a numerical technique for simulating three-dimensional
viscoelastic free surface flows using the PTT (Phan-Thien–Tanner) nonlinear constitutive equation. In
particular, we are interested in flows possessing moving free surfaces. The equations describing the
numerical technique are solved by the finite difference method on a staggered grid. The fluid is modelled
by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The
full free surface stress conditions are considered. The PTT equation is solved by a high order method,
which requires the calculation of the extra-stress tensor on the mesh contours. To validate the numerical
technique developed in this work flow predictions for fully developed pipe flow are compared with an
analytic solution from the literature. Then, results of complex free surface flows using the PTT equation
such as the transient extrudate swell problem and a jet flowing onto a rigid plate are presented. An
investigation of the effects of the parameters ε and � on the extrudate swell and jet buckling problems is
reported.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Industrial flows of viscoelastic materials, such as polymer melts,
often involve non-isothermal three-dimensional flow with mul-
tiple moving free surfaces. From a numerical point of view the
corresponding free surface conditions are not yet satisfactorily
dealt with. Some of the difficulties relate to the treatment of the
advective terms in the rheological constitutive equation and how to
accurately impose the free surface stress conditions. Nonetheless,
many authors have developed a variety of numerical techniques
for simulating viscoelastic free surface flows. For instance, Keun-
ings and his co-workers were among the earliest contributors
to viscoelastic two-dimensional free surface flows (e.g. [7,8,15]).
Other classical works in the field were, for instance, the early
attempts at simulating extrudate swell of an upper convected
Maxwell (UCM) fluid by Tanner [28] and Ryan and Dutta [27].
Crochet and Keunings [10] presented a methodology for solving
circular and planar extrudate swell using the Oldroyd-B model and
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compared favourably their numerical results with available exper-
imental data. Literature on three-dimensional flows with moving
free surfaces are scarce (e.g. [6,9,13,30,31]). Among the constitutive
models used, the nonlinear Phan-Thien–Tanner (PTT) constitu-
tive equation provides a better fitting to the rheology of polymer
melts and concentrated solutions than other simpler models such
as the UCM or Oldroyd-B. This fact, amongst others, motivated
various researchers to solve contraction flows in two and three
dimensions using the PTT model (see [2–4,35,36]), but its appli-
cation to three-dimensional free surface flows has not yet been
demonstrated.

In this work we present a numerical method capable of simu-
lating three-dimensional free surface flows governed by the PTT
constitutive equation. It is an extension to three dimensions of the
two-dimensional technique presented by Paulo et al. [19,21]. The
numerical technique is based on the discretization by the finite
difference scheme on a staggered grid while the fluid is traced
by a Marker-and-Cell approach [13]. The numerical results were
validated against the analytic solution of Alves et al. [1] for fully
developed pipe flow of PTT fluids. Then, results obtained from the
simulation of three-dimensional problems involving moving free
surfaces, such as jet buckling and the time-dependent extrudate
swell, are given. Moreover, an investigation of the effects of the
PTT parameters ε and � on the extrudate swell and jet buckling was
performed.

0377-0257/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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2. Governing equations

The equations governing incompressible isothermal flows are
the mass conservation equation

∂ui
∂xi

= 0, (1)

and the equation of motion

�
Dui
Dt

= − ∂p
∂xi

+ ∂�ik
∂xk

+ �gi (2)

where t is the time,ui is the velocity vector, p is the pressure,� is the
fluid density, gi is the gravitational field and �ij is the extra-stress
tensor. The symbol D/Dt = (∂(•)/∂t) + (∂(uk •)/∂xk) represents the
material derivative. In this work we shall be concerned with flows of
viscoelastic fluids governed by the nonlinear constitutive equation
PTT (Phan-Thien–Tanner) (see [22])

f (�kk)�ij + �
�
�ij = 2�Dij (3)

where

Dij = 1
2

(
∂uj
∂xi

+ ∂ui
∂xj

)
is the rate of deformation tensor, � is the fluid relaxation time and
� is the polymer viscosity coefficient. f (�kk) is the linearized stress
coefficient function, proposed in the original paper of Phan-Thien
and Tanner [22] and is given by

f (�kk) = 1 + �ε

�
�kk. (4)

The symbol (
�· ) represents the Gordon–Schowalter convected

derivative defined as Eq. (5)

�
�ij = D�ij

Dt
− �jk

(
∂ui
∂xk

− �Dik
)

− �ik
(
∂uj
∂xk

− �Djk
)
. (5)

The positive parameters ε and � can be used to control viscoelastic
properties, such as the amount of strain-hardening in extensional
flow and the second normal stress difference coefficient in shear
flow, respectively.

2.1. Problem formulation

To solve Eqs. (1)–(3) the EVSS transformation (Elastic-Viscous
Stress-Splitting) [23] is adopted. This formulation splits the poly-
mer extra-stress tensor �ij into the sum of a Newtonian contribution
2�Dij and an elastic contribution represented by tensor Sij , accord-
ing to

�ij = 2�Dij + Sij. (6)

Back-substituting Eq. (6) into Eqs. (2), (3) and (5) we obtain the
transformed equations which we write in non-dimensional form:

∂ui
∂t

+ ∂(uk ui)
∂xk

= − ∂p
∂xi

+ 1
Re

∂2ui
∂xk∂xk

+ ∂Sik
∂xk

+ 1
Fr2
gi, (7)

f (Skk)Sij +We
�
Sij = 2

1
Re

[1 − f (Skk)]Dij − 2
We

Re

�
Dij (8)

where f (Skk) = 1 + εReWe(Skk); Re = �UL/�, We = �U/L and Fr =
U/
√
L g denote the Reynolds, Weissenberg and Froude numbers,

respectively. In these non-dimensional numbers, g is the gravita-
tional constant and U, L, � and � denote typical velocity, length,
density and viscosity scales, respectively. Equations above were
normalized according to

xk = Lx̄k, ui = Uūi, Sij = �U2S̄ij, gi = gḡi,

t = (L/U)t̄, p = �U2p̄,

where the overbars indicate the non-dimensional quanti-
ties. For conciseness the overbars were dropped in Eqs. (7)
and (8), whereas the mass conservation Eq. (1) remains
unchanged.

3. Boundary conditions

To solve Eqs. (1), (7) and (8) we need to specify appropri-
ate boundary conditions for ui. For the momentum equation, we
employ the no-slip condition (ui = 0) on stationary rigid bound-
aries. At fluid entrances (inflows) the normal velocityun is specified
while the two tangential components ut1 and ut2 are set to zero. On
outflows (fluid exits) we impose homogeneous Neumann condi-
tions, namely ∂un/∂n = 0, ∂ut1/∂n = 0 and ∂ut2/∂n = 0.

3.1. Free surface stress conditions

We shall consider unsteady free surface flows of a viscoelastic
fluid moving into a passive atmosphere (which we may take to be at
zero relative pressure). In the absence of surface tension effects the
normal and tangential components of the stress must be continu-
ous across any free surface, so that on such a surface (see Batchelor
[5])

ni	ijnj = 0, t1i	ijnj = 0, t2i	ijnj = 0, (9)

where ni as before, denotes unit normal vector to the surface, t1i
and t2i denote the two unit tangential vectors to the surface and 	ij
is the normalized total stress tensor given by

	ij = −pıij +
2
Re
Dij + Sij.

4. Computation of the stress on mesh boundaries

When solving the constitutive equation it is necessary to employ
an appropriate effective method to approximate the derivatives
of the advective terms in order to obtain accurate results and
avoid unphysical solutions. In this work we employ the high
order stabilized upwind scheme CUBISTA developed by Alves et
al. [2] for viscoelastic models. This scheme requires the values
of a generic variable, say 
, that can be positioned upstream
(
U), downstream (
D) or remote-upstream (
R) with respect to
a reference point (see Fig. 1) at which the variable is being approx-
imated (
P). Therefore, when calculating the advective terms of
the stress equations near boundaries, the values of the compo-
nents of the non-Newtonian stress tensor on mesh boundaries

Fig. 1. Reference points used for the CUBISTA upwind scheme.
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are required. We point out that many authors do not com-
pute the non-Newtonian stress tensor on rigid boundaries and
therefore when calculating the non-Newtonian stress tensor on
points that lie near the boundaries (e.g. rigid walls, outflows)
they employ a lower order method, often the first order upwind
scheme.

To compute the non-Newtonian stress tensor on rigid walls we
employ a methodology similar to that used by Tomé et al. [33] for
the flow of an Oldroyd-B fluid in two dimensions. First we make
the change of variables Sij = e−(1/We)t S̃ij in Eq. (8) and obtain the
equation:

e−
1
We t[f (S̃ij) − 1]S̃ij +We

�
S̃ij = 2

1
Re

[1 − f (S̃ij)]Dij − 2e
1
We t
We

Re

�
Dij.

(10)

Eq. (10) provides a (6 × 6)-nonlinear system for the components
of tensor S̃ij . We use the no-slip condition and solve this system
analytically. The details of the analytic solution of this nonlinear
system are given in Appendix A.

4.1. Computation of the non-Newtonian stress tensor on inflow
and outflow boundaries

These can be specified as follows:

Inflow boundary: If the velocity at the fluid entrance un is con-
stant then we follow the strategy of Crochet and Marchal [16] and
Mompean and Deville [17], namely:

Sij = 0.

For fully developed pipe flows there is a complete analytic solution
of the stress equations which is given in Section 7.
Outflow boundary: At the fluid exit, we impose homogeneous Neu-
mann conditions for the components of non-Newtonian stress
tensor (see [17,33]) namely

∂Sij
∂n

= 0.

5. GENSMAC-PTT3D

The method of solution is based on the ideas of Tomé et al. [31]
for an Oldroyd-B fluid. It is an extension of the numerical method
developed by Paulo et al. [21] for simulating two-dimensional vis-
coelastic free surface flows governed by the PTT model. We solve
the momentum equations followed by the solution of the consti-
tutive equation. Thus, to solve Eqs. (1), (7) and (8) we proceed as
follows.

We assume that at time t0 the velocity field ui(xl, t0) and the
non-Newtonian stress tensor Sij(xl, t0) are known and the values of
ui and Sij on the boundary are given. The new fields ui(xl, t), p(xl, t)
and Sij(xl, t), at the new time level t = t0 + ıt, are calculated as
follows:

Step 1: Let p̃(xl, t) be a pressure field that satisfies the correct pres-
sure condition on the free surface (9).

Step 2: Calculate the intermediate velocity field ũi(xl, t) from the
momentum equation

∂ũi
∂t

= −∂(uk ui)
∂xk

− ∂p̃

∂xi
+ 1
Re

∂2ui
∂xk∂xk

+ ∂Sik
∂xk

+ 1
Fr2
gi, (11)

with ũi(xl, t) = ui(xl, t0) and it must obey the same bound-
ary conditions of velocity ui(xl, t).

Step 3: Solve the Poisson equation for the potential function
 (xl, t)

∂2 (xl, t)
∂xk∂xk

= ∂ũk(xl, t)
∂xk

(12)

subject to the boundary conditions (see Tomé and McKee
[34]): ∂ /∂n = 0 on rigid boundary and inflows and  = 0
on free surfaces and outflows.

Step 4: Compute the final velocity

ui(xl, t) = ũi(xl, t) − ∂ (xl, t)
∂xk

. (13)

Step 5: Compute the pressure field from (see Tomé et al. [32])

p(xl, t) = p̃(xl, t) +  (xl, t)
ıt

. (14)

Step 6: Calculation of the non-Newtonian tensor Sij(xl, t)
6.1 Update the non-Newtonian tensor on rigid boundaries

according to the equations derived in Section 4.
6.2 Update the non-Newtonian tensor on inflows

and outflows according to the equations given in
Section 4.1.

6.3 Compute the non-Newtonian tensor Sij(xl, t) elsewhere
from Eq. (8).

Step 7: Update the markers positions: the last step in the calcula-
tion is to move the markers to their new positions. This is
performed by solving

dxi
dt

= ui, (15)

for each particle. The fluid surface is defined by a piecewise
linear surface composed of triangles and quadrilaterals
having marker particles on their vertices. For details see
Castelo et al. [9].

6. Finite difference approximation

The equations presented in the previous section for three-
dimensional Cartesian flows are solved by a finite difference
method on a staggered grid. In the following we denote the velocity
vector ui by its components u, v and w along directions x, y and z,
respectively. A typical cell of dimensions ıx × ıy× ız is displayed
in Fig. 2. The components of the non-Newtonian tensor Sij together
with the pressure field are stored at the centre of a cell, while the
velocity components u, v and w are staggered by ıx/2, ıy/2 and
ız/2, respectively.

As the fluid is continuously moving, a procedure for identify-
ing the fluid region and the free surface is employed. To do this,

Fig. 2. Typical cell for calculation.
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the cells within the mesh are flagged as: Empty (E) – cells that do
not contain fluid; Full (F) – Cells full of fluid that do not share a
face with an Empty cell; Surface (S) – Cells that contain fluid and
share at least one face with an Empty cell (these cells contain the
free surface); Boundary (B) – Cells that define a rigid boundary,
where the no-slip condition is verified; Inflow (I) – Cells that define
an inflow boundary; Outflow (O) – Cells that define an outflow
boundary.

The time derivative in the intermediate velocity field Eq. (11) is
approximated by the explicit Euler method while the linear spatial
terms are approximated by central differences. The advective terms
are approximated by the CUBISTA method. Details of this high order
upwind scheme can be found in Alves et al. [2]. For instance, the x-
component momentum Eq. (7) is approximated by the following
finite difference equation

ũi+ 1
2 ,j,k

= ui+ 1
2 ,j,k

+ıt
[
−A(uu)i+ 1

2 ,j,k
−A(vu)i+ 1

2 ,j,k
−A(wu)i+ 1

2 ,j,k

− p̃i+1,j,k − p̃i,j,k
ıx

+ 1
Re

(
ui− 1

2 ,j,k
− 2ui+ 1

2 ,j,k
+ ui+ 3

2 ,j,k

ıx2

+
ui+ 1

2 ,j−1,k − 2ui+ 1
2 ,j,k

+ ui+ 1
2 ,j+1,k

ıy2

+
ui+ 1

2 ,j,k−1 − 2ui+ 1
2 ,j,k

+ ui+ 1
2 ,j,k+1

ız2

)

+
Sxx
i+1,j,k − Sxx

i,j,k

ıx
+
Syx
i+ 1

2 ,j+ 1
2 ,k

− Syx
i+ 1

2 ,j− 1
2 ,k

ıy

+
Szx
i+ 1

2 ,j,k+ 1
2

− Szx
i+ 1

2 ,j,k− 1
2

ız
+ 1
Fr2
gx

]
,

(16)

where the advective terms A(uu)i+(1/2),j,k, A(vu)i+(1/2),j,k and
A(wu)i+(1/2),j,k are approximated by the CUBISTA method and the
subscripts i, j, k denote the location in the mesh where the quan-
tities are calculated. Terms like Syx

i+(1/2),j+(1/2),k are obtained by
averaging the nearest neighbours, for instance,

Syx
i+ 1

2 ,j+ 1
2 ,k

=
Syx
i,j,k

+ Syx
i+1,j,k + Syx

i,j+1,k + Syx
i+1,j+1,k

4
.

Here, and elsewhere when necessary, the components of the ten-
sors Sij and Dij are indicated by superscripts, for conciseness. The
difference equations for the y and z-components of the momentum
equation are obtained similarly.

The Poisson Eq. (12), the final velocity correction (13) and the
pressure Eq. (14) are equal to the corresponding equations for
Newtonian flows. Therefore, the corresponding approximations
for Eqs. (12), (13) and (14) using finite differences can be found
in Tomé et al. [30] (for reasons of space they are not presented
here).

The constitutive Eq. (8) is approximated by finite differences and
applied at cell centres. The time derivative and the linear spatial
derivatives are approximated by the explicit Euler method and by
central differences, respectively. Attention is given to the advec-
tive terms which are discretized by using the high order upwind
CUBISTA method [2]. For instance, the x-component of the mod-
ified constitutive Eq. (8) is approximated by the following finite
difference equation

(Sxx
i,j,k

)(n+1) = Sxx
i,j,k

+ ıt
{

− 1
We

(f (Skk))|i,j,kSxxi,j,k −A(uSxx)i,j,k

−A(vSxx)i,j,k −A(wSxx)i,j,k + 2(1 − �)Dxx
i,j,k
Sxx
i,j,k

+
[

(2 − �)
ui,j+ 1

2 ,k
− ui,j− 1

2 ,k

ıy
− �

vi+ 1
2 ,j,k

− vi− 1
2 ,j,k

ıx

]
Sxy
i,j,k

+
[

(2 − �)
ui,j,k+ 1

2
− ui,j,k− 1

2

ız
− �

wi+ 1
2 ,j,k

−wi− 1
2 ,j,k

ıx

]
Sxz
i,j,k

+ 2
ReWe

[1 − f (Skk)|i,j,k]Dxxi,j,k − 2
Re

(
Dxx (n+1)
i,j,k

− Dxx
i,j,k

ıt

+(A(uDxx) +A(vDxx) +A(wDxx))i,j,k − 2(1 − �)(Dxx
i,j,k

)2

−

⎡
⎢⎣(2 − �)

ui,j+ 1
2 ,k

− ui,j− 1
2 ,k

ıy
− �

vi+ 1
2 ,j,k

− v
i−

1
2
, j, k

ıx

⎤
⎥⎦Dxyi,j,k

−
[

(2 − �)
ui,j,k+ 1

2
− ui,j,k− 1

2

ız
− �

wi+ 1
2 ,j,k

−wi− 1
2 ,j,k

ıx

]
Dxz
i,j,k

)}
,

(17)

where,

Dxx
i,j,k

=
(
ui+(1/2),j,k − ui−(1/2),j,k

ıx

)
,

Dxy
i,j,k

= 1
2

(
ui,j+(1/2),k − ui,j−(1/2),k

ıy
+ vi+(1/2),j,k − vi−(1/2),j,k

ıx

)
,

Dxz
i,j,k

= 1
2

(
ui,j,k+(1/2) − ui,j,k−(1/2)

ız
+ wi+(1/2),j,k −wi−(1/2),j,k

ıx

)
,

(18)

and f (Skk)|i,j,k = 1 + εReWe(Sxx
i,j,k

+ Syy
i,j,k

+ Szz
i,j,k

).
In Eq. (17) terms which are not defined at cell positions are

obtained by averaging, e.g.

wi+ 1
2 ,j,k

:=wi,j,k+(1/2) +wi+1,j,k+(1/2) +wi,j,k−(1/2) +wi+1,j,k−(1/2)

4
.

The finite difference equations for the components Syy, Szz , Sxy,
Syz and Sxz are similar to Eq. (17).

6.1. Approximation of the components of non-Newtonian stress
tensor on rigid boundaries

When computing the advective terms of Eq. (17) using the
CUBISTA scheme on nodes adjacent to a rigid boundary the value of
Sxx on the boundary cells is required. The derivation of the equations
for calculating the non-Newtonian stress tensor on rigid bound-
aries is lengthy and for this reason it is considered in Appendix A
and their discretization is presented in Appendix B.

6.2. Free surface stress conditions

By taking ni = (nx, ny, nz), t1i = (t1x, t1y, t1z) and t2i =
(t2x, t2y, t2z), the stress conditions (9) can be written in Cartesian
coordinates in the form of

p̃ = 2
Re

[
∂u

∂x
n2
x + ∂v

∂y
n2
y + ∂w

∂z
n2
z +

(
∂v
∂x

+ ∂u

∂y

)
nxny

+
(
∂w

∂x
+ ∂u

∂z

)
nxnz +

(
∂w

∂y
+ ∂v
∂z

)
nynz

]
+Sxxn2

x + Syyn2
y + Szzn2

z + 2[Sxynxny + Sxznxnz + Syznynz],

(19)
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Fig. 3. Examples of plane surfaces which approximate the real free surface: (a) 1D-surface; (b) 2D-surface; (c) 3D-surface.

2
∂u

∂x
nxt1x + 2

∂v
∂y
nyt1y+2

∂w

∂z
nzt1z+

(
∂v
∂x

+ ∂u

∂y

)
(t1xny + t1ynx)

+
(
∂w

∂x
+ ∂u

∂z

)
(t1xnz + t1znx)+

(
∂w

∂y
+∂v
∂z

)
(t1ynz + t1zny) =

−Re
[
Sxxnxt1x + Syynyt1y + Szznzt1z + Sxy(t1xny + t1ynx)

+Sxz(t1xnz + t1znx) + Syz(t1ynz + t1znx)
]
,

(20)

2
∂u

∂x
nxt2x+2

∂v
∂y
nyt2y+2

∂w

∂z
nzt2z +

(
∂v
∂x

+ ∂u

∂y

)
(t2xny + t2ynx)

+
(
∂w

∂x
+ ∂u

∂z

)
(t2xnz + t2znx) +

(
∂w

∂y
+ ∂v
∂z

)
(t2ynz + t2zny) =

−Re
[
Sxxnxt2x + Syynyt2y + Szznzt2z + Sxy(t2xny + t2ynx)

+Sxz(t2xnz + t2znx) + Syz(t2ynz + t2znx)
]
.

(21)

To apply these conditions we follow the ideas of Tomé et al.
[30]. We assume that the mesh spacing is small so that the free
surface can be approximated by a set of linear surfaces. Three types
of linear surfaces are considered: 1D-surface, 2D-surface and 3D-
surface (see Fig. 3). The finite difference equations arising from
these approximations are the same as those for an Oldroyd-B fluid
and for this reason they are not presented here. Details of these
finite differences can be found in Tomé et al. [31].

6.3. Time-step calculation

To increase the efficiency of the method an automatic procedure
is employed to compute the time-step at each calculational cycle.
We select a ıt that satisfies the conditions below (written in non-
dimensional form):

ıtCFL <
h

ui
, interpreted component-wise (22)

ıtVISC <

⎧⎪⎨
⎪⎩
Re
h2

6
, if Re < 1,

h2

6
, otherwise.

(23)

where h is the mesh spacing. Inequality (22) represents the
Courant–Friedrichs–Lewy (CFL) restriction while (23) gives the
usual viscous restriction. The time-step selected is given by

ıt = A ∗ min{A1 ∗ ıtCFL, A2 ∗ ıtvisc},
where 0< A,A1, A2 < 1. The implementation of these inequalities
follows the procedure described in Tomé et al. [30].

7. Validation of the approach: fully developed pipe flow

The analytic solution for fully developed pipe flows of PTT fluids
was presented by Alves et al. [1] (see also [18] for the special case

� = 0 – SPTT Model). In non-dimensional form this solution is given
by Eqs. (24)–(27) below using a cylindrical Coordinate system:

w(r) = 1
2
Re

�
�pz(1 − r2) + 1

ReWe2�(2 − �)�pz

(
1+ 2
�

)[
ln

1 +
√

1 − (ar)2

1 +
√

1 − a2

+
(

1 +
√

1 − a2

)
−
(

1 +
√

1 − (ar)2
)]

,

(24)

�zr(r) = 1
2
�pzr, (25)

�zz(r) = 1
2ReWe�

(
1 −

√
1.0 − (ar)2

)
, ar ≤ 1, (26)

�rr(r) = − �

(2 − �)�zz(r), (27)

where a = −ReWe�pz
√
�(2 − �), � ≤ 2 and � = �(2 − �)/ε(1 − �).

To simulate pipe flow using the 3D numerical technique described
in this paper, we need to write these equations in a Cartesian coordi-
nate system (x, y, z) to employ them as inflow boundary condition
in appropriate problems. By using a rotation matrix, it can be shown
that the components of the extra-stress tensor, written in three-
dimensional Cartesian coordinates, are given by

�xx(x, y) = − x2

2ReWe(2 − �)(x2 + y2)

(
1 −

√
1 − a2(x2 + y2)

)
,

(28)

�yy(x, y) = − y2

2ReWe(2 − �)(x2 + y2)

(
1 −

√
1 − a2(x2 + y2)

)
,

(29)

�zz(x, y) = − 1
2ReWe�

(
1 −

√
1 − a2(x2 + y2)

)
, (30)

�xy(x, y) = − xy

2ReWe(2 − �)(x2 + y2)

(
1 −

√
1 − a2(x2 + y2)

)
,

(31)

�xz(x, y) = 1
2
�pzx, (32)

�yz(x, y) = 1
2
�pzy. (33)

The velocity w(x, y) is given by (24) where r =
√
x2 + y2 and u =

v = 0.
We validated the treatment of the viscoelastic extra-stress ten-

sor on rigid boundaries and on interior points by simulating pipe
filling followed by pipe flow. We considered a pipe of radius R and
length 5R. At the pipe entrance we imposed the analytic values
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of the velocity w(x, y) given by (24) as well the analytic values of
the components of the non-Newtonian tensor, Sxx(x, y), Syy(x, y),
Szz(x, y), Sxy(x, y), Sxz(x, y) and Syz(x, y) according to Eqs. (28)–(33)
(we recall that Sij and �ij are related by the EVSS formulation (see Eq.
(6))). At the pipe walls the velocity satisfied the no-slip condition
(in this paper the walls do not move) and the non-Newtonian ten-
sor Sij was calculated by the equations derived in Section 4. At the
pipe exit the velocity satisfied the conditions given on Section 3 and
the non-Newtonian tensor Sij satisfied the homogeneous Neumann
condition (see Section 4.1).

The simulation started with the pipe empty and the fluid was
injected through the pipe entrance which was gradually filled. Ini-
tially, there was a free surface within the pipe. On the free surface
of the fluid the boundary conditions were the free surface stress
conditions presented in Section 3.1. The numerical solutions were
calculated using the numerical method presented in Section 5.

We simulated the pipe flow with the following input data
and scaling parameters: ε = 0.2, � = 0.15, R = L = 1.0 cm, U =
1.0 cm s−1, � = 1000 kg m−3, � = 0.13333 Pa s and � = 0.6 s, so that
Re = 0.75 andWe = 0.6. The normalized value�pz = −3.9054 was
chosen so that wmax = w(0,0) = 1 (see Eq. (24)), i.e., the velocity
scale used in the non-dimensionalization (U) was the centreline
velocity.

To analyse the convergence of GENSMAC3D-PTT on this problem
we computed the numerical solution on three meshes:

M12: 12 × 12 × 60 cells (12 cells across the diameter),
M16: 16 × 16 × 80 cells (16 cells across the diameter),
M20: 20 × 20 × 100 cells (20 cells across the diameter).

We simulated the pipe flow until steady state was achieved and
calculated the numerical solutions at the cross-section z = 5R/2
for meshes M12, M16 and M20. We performed 3D-plotting with
both numerical and analytic solutions and the 3D plots displayed
good agreement between the two solutions. However, for ease of
understanding we present two-dimensional plots of the results
only. Thus, we shall either fix y = 0.5 and vary x or fix x = 0.5 and
vary y, i.e., the profiles shown are off centred. Note that by choos-
ing x = 0 the analytic expressions for �xx, �xy and �xz show that they
vanish (�yy, �xy and �yz also vanish if we choose y = 0). The numer-
ical solutions together with the analytic solutions are displayed in
Figs. 4 and 5.

We can observe in Figs. 4 and 5 that the numerical solutions
obtained using the three meshes are in good agreement with the
analytic solutions. Moreover, we can see that as the mesh is refined
the numerical solutions converge to the analytic solutions.

Fig. 4. Numerical and analytic solutions of the velocity w at time t = 50 s. Results
shown at y = 0.5 and z = 5/2. APO refers to Alves et al. [1] analytic solution.

To confirm the convergence of GENSMAC3D-PTT for each simu-
lation we computed the relative errors between the exact solution
(�ij) and the numerical solutions (�∗

ij
) as

E(�) =

√√√√√√√
∑
(i,j)

(�ij − �∗
ij
)2

∑
(i,j)

�2
ij

. (34)

Table 1 shows the errors obtained on the three meshes while
Fig. 6 displays the errors as a function of the mesh spacing h. Table 1
shows that the errors decrease with mesh refinement with those
for velocity being very small (E(w) � 1%) and those of stress being
larger but not exceeding 4% in the finer mesh. These results validate
the numerical method developed in this work for solving the PTT
model for three-dimensional flows.

8. The effects of ε and � on extensional and shear viscosities

The dimensionless shear and extensional viscosities are shown
in Fig. 7 for a range of ε and � values. In Fig. 7(a) we illustrate the
influence of the ε parameter, keeping � = 0.03, and in Fig. 7(b) the
influence of � for ε = 0.01. It is clear that ε influences mostly the
extensional viscosity, and for small values of ε the plateau of the
extensional viscosity at high strain rates is found to be inversely
proportional to this parameter. On the other hand, parameter �
influences mostly the shear viscosity with shear thinning taking
place at lower shear rates as � increases.

For high ε values (about 0.5) the extensional viscosity does not
increase significantly above the Newtonian plateau, and a quasi-
Newtonian behaviour is expected under strong extensional flow. In
fact, for ε > 0.5 an inversion in the extensional viscosity behaviour
is observed, with a minimum value occurring at high strain rates, in
deep contrast with the behaviour at lower ε values, where higher
extensional viscosities are found.

In summary, Fig. 7 shows that the effects of viscoelasticity pro-
vided by the PTT model will be stronger if ε and � are small.

9. Numerical simulation of the time-dependent extrudate
swell

When a jet of fluid leaves a tube and flows into the air then under
certain circumstances the diameter of the jet can become signifi-
cantly larger than the diameter of the tube. This phenomenon is
known as extrudate swell and it is an important effect caused by
viscoelasticity. It occurs mainly because of the effects associated to
the first normal stress difference at the tube exit. Many applica-
tions in the polymer industry suffer from this problem and many
researchers have developed a fair amount of numerical techniques
to simulate the extrudate swell both in two- and three-dimensions
(e.g. [10,14,15,27,28,31,33], to mention only a few). The swelling
ratio is defined by Sr = (Dmax − D)/D, where Dmax represents the
maximum diameter of the extrudate and D is the tube diameter.

We shall demonstrate that GENSMAC3D-PTT can simulate the
transient extrudate swell of highly viscoelastic jets. The three-
dimensional viscoelastic jet emerging from a pipe was simulated
imposing at the pipe exit the velocity and stress fields corre-
sponding to fully developed flow. For the Reynolds numbers under
consideration, it would be more realistic to impose fully devel-
oped flow conditions at a plane upstream of the exit and to let
the flow evolve and adapt prior to exit. However, since our pur-
pose was essentially that of assessing the code performance in free
flow, the fully developed conditions were imposed right at the exit.
Therefore, the simulations started with the fluid emerging into the
atmosphere through the pipe exit. When the jet emerges into the
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Fig. 5. Numerical and analytic solutions at time t = 50 s. Components �xx , �zz , �xy , �xz are shown at y = 0.5 and z = 5/2 while components �yy and �yz were evaluated at x = 0.5
and z = 5/2. APO refers to Alves et al. [1] analytic solution.

Table 1
Errors of the numerical solutions obtained on various meshes according to Eq. (34).

Mesh E(w) E(�xx) E(�yy) E(�zz) E(�xy) E(�xz) E(�yz)

M12 0.00982 0.0671 0.0671 0.0640 0.0599 0.0268 0.0268
M16 0.00707 0.0370 0.0371 0.0390 0.0474 0.0139 0.0140
M20 0.00258 0.0331 0.0331 0.0329 0.0327 0.0104 0.0104

Reference is the analytic solution of Alves et al. [1].
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Fig. 6. Decrease of the errors as a function of the mesh spacing h.

air, it continues to flow moving the free surface in the atmosphere.
On the free surface of the fluid the boundary conditions were those
presented in Section 3.1. A circular outflow boundary with diam-
eter of 6R was colocated at a distance of 10R from the pipe exit.
Fig. 8 displays the domain and the objects used in the simulations
of the transient extrudate swell. We performed several simulations
where we fixed the Reynolds number and varied the Weissenberg
number.

The input data used were ε = 0.3, � = 0.01, L = R = 1 cm
(radius of the pipe), U = wmax = 1 cm s−1, � = 1000 kg m−3, � =
0.13333 Pa s, so that Re = 0.75. We chose � = 0.1 s, 0.5 s, 1.0 s to
obtain We = 0.1,0.5,1.0, respectively. According to the analytic
solution of Eq. (24), to maintain wmax = 1 cm s−1 the normalized
pressure gradient was set to �pz = −5.2701, −4.3983, −3.4601,
for We = 0.1,0.5,1.0, respectively. In these simulations a dimen-
sionless mesh spacing of ıx = ıy = ız = 0.125 was employed giving
(48 × 48 × 160) cells within the flow domain. Hereafter, we shall
refer to this mesh as MSWELL.

Fig. 9 shows the results obtained from the simulations for
We = 0.1,0.5,1.0 at times t = 5 s, 17.5 s and 42.5 s. At time t = 5 s
we can already observe that larger Weissenberg numbers have

Fig. 7. Extensional viscosity (�e) as function of the strain rate and shear viscosity
as function of the shear rate for the PTT model: influence of the parameter ε for
� = 0.03 (above); influence of the � parameter for ε = 0.01 (below).

larger swelling and the differences become more noticeable as time
increases. At time t = 42.5 s the swelling ratios (Sr) calculated for
these three flows were 11.54% for We = 0.1, 29.23% for We = 0.5
and 32.30% for We = 1.0. We point out that these swelling ratios
do not change if the calculations are left to proceed further, hence

Fig. 8. Numerical simulation of the time-dependent extrudate swell: description of the flow domain. (a) Three-dimensional region; (b) Objects used: 3D-tube (gray surface),
pipe exit (yellow surface) and outflow boundary (pink surface). For interpretation of the references to color in this figure legend, the reader is referred to the web version of
the article.
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Fig. 9. Numerical solution of the time-dependent extrudate swell. Fluid flow visu-
alization at selected times. ε = 0.3, � = 0.01, Re = 0.75 andWe = 0.1,0.5,1.0.

the simulations were stopped at t = 42.5 s (results for t > 42.5 s
are not shown here). The swelling ratios obtained forWe = 0.5 and
We = 1.0 are very similar, most probably because the value of ε
used in these simulations is large. Indeed, in the next section we
show that the value of parameter ε has a strong influence on the
extrudate swell phenomenon, as it is anticipated from the material
functions shown in Fig. 7.

9.1. The effect of the ε parameter on the extrudate swell

In this section we demonstrate that extrudate swell predicted by
the PTT model is strongly affected by parameter ε. In particular, we
show that for high values ofε (ε > 0.5), the PTT model applied to the
extrudate swell can produce results similar to the Newtonian case,
in accordance with the extensional viscosity behaviour illustrated
in Fig. 7.

We carried out various simulations where the following data
were kept fixed: � = 0.01, L = R = 1 cm, U = wmax = 1 cm s−1, � =
1000 kg m−3, � = 0.2 Pa s and � = 0.5 s. The flow domain and the
mesh employed were the same used in the previous section (see
Fig. 8 and MSWELL). With these data we have Re = 0.5 andWe = 0.5.
To show that the ε parameter has a strong influence on the extru-
date swell we performed four simulations where ε assumed the
values 10−3,10−2,10−1 and 1 (cf. Fig. 7(a) for details of shear
and extensional viscosity behaviour). Fig. 10 displays the three-
dimensional view of the results obtained at times t = 10 s, 20 s and
t = 30 s, while Fig. 11 shows a front view of the results at times t =

Fig. 10. Numerical simulation of the extrudate swell for various values of ε and
Re = 0.5, We = 0.5, � = 0.01. Fluid flow visualization at times t = 10 s (a), t = 20 s
(b) and t = 30 s (c).

20 s and t = 30 s. The variation of swelling ratio with ε is displayed
in Fig. 12. Swelling decreases as ε increases and the maximum
swelling (Sr = 38.33%) is seen for ε = 10−3. For ε = 1, and although
the Weissenberg number is large (We = 0.5), the swelling ratio
was small (21.67%), which is similar to the swell produced by GNF
fluids. This variation can be understood on the basis of the exten-
sional viscosity behaviour of the PTT fluid. Fig. 7 illustrates that as
ε increases, the extensional viscosity of the fluid decreases signifi-
cantly. The normal stresses in shear flow (not represented in Fig. 7)
also decrease as ε increases. Thus, the effective Weissenberg num-
ber is smaller for higher values of ε, and therefore the flow becomes
less elastic. The effective Weissenberg number (We∗) is determined
asWe∗ = � (̇) ̇ , where the characteristic shear rate is estimated as
̇ = U/L and the effective relaxation time as� (̇) = �1(̇)/[2� (̇)],
where �1 represents the first normal stress difference coefficient.
The effective Weissenberg numbers for the cases shown in Fig. 11
are We∗ = 0.5,0.498,0.478, and 0.386 for ε = 10−3,10−2,10−1

and 1, respectively, thus justifying the observed behaviour in the
extrudate swell for different ε values atWe = 0.5.

9.2. The effect of parameter � on the extrudate swell

To show that the parameter�has an effect on the extrudate swell
phenomenon we performed several simulations for increasing
values of �, keeping all other data constant.
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Fig. 11. Fluid flow visualization of the simulation of the extrudate swell. Re = 0.5,
We = 0.5, � = 0.01. Frontal view at times t = 20 s (a) and t = 30 s (b).

The following input data were kept fixed: L = 1 cm (radius),
U = wmax = 1 cm s−1, � = 1000 kg m−3, � = 0.2 Pa s, ε = 0.01 and
� = 0.5 s, leading to Re = 0.5 and We = 0.5. The flow domain and
the mesh employed were the same used in the previous Sec-
tion (see Fig. 8 and MSWELL). We performed four simulations
where the parameter � assumed the values of 0.001,0.01,0.1,0.2,
respectively. To maintain wmax = 1 in Eq. (24), for each value of
� the normalized pressure gradient was set to �pz = −7.368012,
−7.3177, −6.8385, −6.34025, respectively.

Fig. 13 displays the fluid flow visualization obtained from these
simulations at different times while Fig. 14 shows the front view of
the results at time t = 30 s. We can observe in both of these figures
that as � increases from 0.01 to 0.2 the swelling decreases by a small
amount of order 5%. This is confirmed in Fig. 15 where it is shown

Fig. 12. Swelling ratio as a function of ε. Re = 0.5,We = 0.5, � = 0.01.

Fig. 13. Numerical simulation of the extrudate swell for various values of � and
Re = 0.5,We = 0.5, ε = 0.1. Fluid flow visualization at times (a) t = 10 s, (b) t = 20 s,
(c) t = 30 s.

that the swelling ratios vary from 30.87% at � = 0.2 to a maximum
of 35.57% for � = 0.001. The effect of � on the extrudate swell was
not too pronounced as in the case of the parameter ε. Indeed, the
main effect of this parameter is on�2, and does not have a strong
effect on �E which is the more important property for this type of
flow.

Fig. 14. Numerical solution of the time-dependent extrudate swell for various val-
ues of �. Re = 0.5,We = 0.5, ε = 0.1. Front view at time t = 30 s.



Author's personal copy

M.F. Tomé et al. / J. Non-Newtonian Fluid Mech. 165 (2010) 247–262 257

Fig. 15. Numerical solution of the time-dependent extrudate swell. Re = 0.5,We =
0.5, ε = 0.1. Swelling ratio as a function of �.

10. Numerical simulation of jet buckling

Jet buckling occurs when a jet impacts a rigid plate at small
Reynolds numbers and the ratio H/D between the height of the

jet and its diameter exceeds a critical value. Jet buckling has
been investigated by several authors both numerically and experi-
mentally ([6,11,12,20,21,24–26,29,31,33]), but a consistent theory
explaining this instability has yet to be developed. With regard to
axisymmetric Newtonian jets, Cruickshank and Munson [12] pre-
sented criteria for this instability based on experimental data. They
reported jet buckling for Re < 1.2 and H/D > 7.2.

In this work we demonstrate numerically the role of viscoelas-
ticity on the jet buckling phenomenon by performing a variety
of simulations for Newtonian and PTT jets impacting a flat plate
at a Reynolds number of Re = 0.5 and H/D = 20. According to
Cruickshank and Munson [12] under these conditions a Newto-
nian jet will buckle while for the PTT jet no analysis is available
yet. In these simulations, the following geometric input data were
used: jet diameter D = 6 mm, height from the outlet to the rigid
plateH = 12 cm, mesh spacing ıx = ıy = ız = 1 mm, constant inlet
velocity U = 1.0 m s−1, gravity acting in the Z-direction with gz =
−9.81 m s−2, � = 12 Pa s, � = 1000 kg m−3; thus Re = U D/� = 0.5.
The PTT variables were: ε = 0.01, � = 0.01 and � = 0.006 s, so that
We = �U/D = 1.0.

The results obtained are displayed in Fig. 16 where it can be
observed that soon after jet impingement (cf. t = 0.175,0.3 s), the
Newtonian jet develops a cone shape geometry while the PTT jet
starts buckling. Only at t = 0.375 s the Newtonian jet, due to vis-
cous forces, loses its conical shape and the jet begins to become

Fig. 16. Numerical simulation of jet buckling at Re = 0.5. Fluid flow visualization at selected times. Column 1 and 3: Newtonian fluid. Column 2 and 4: PTT fluid withWe = 1
(ε = � = 0.01).



Author's personal copy

258 M.F. Tomé et al. / J. Non-Newtonian Fluid Mech. 165 (2010) 247–262

Fig. 17. Numerical simulation of a jet flowing onto a rigid surface. Fluid flow visualization at selected times. First column: Newtonian jet with Re = 1.5; Second column: PTT
jet with Re = 1.5,We = 10 and ε = � = 0.8; Third column: PTT jet with Re = 1.5,We = 10 and ε = � = 0.01.

unstable. At subsequent times it is clear that the Newtonian jet
also undergoes buckling and we can see that at time t = 0.675 s
both jets present the coiling effect.

10.1. The effect of the ε and � parameters on jet buckling

The results obtained in Sections 9 and 9.1 for the extrudate swell
showed that although the value of We was large, depending on
the values selected for ε and �, the viscoelastic effects may not be
too pronounced. A similar situation is observed in the jet buckling
flow and to further demonstrate this fact we have performed three
additional simulations of a jet flowing onto a rigid surface. The first
simulation, illustrated in Fig. 17 shows a Newtonian jet impinging
on a rigid surface with a Reynolds number ofRe = 1.5 andH/D = 20
(U = 1 m s−1, D = 0.006 m, H = 12 cm). The input data used in this
Newtonian simulation were the same as those employed in Section
10, except for the lower viscosity of � = 4 Pa s required to produce
Re = 1.5. The second simulation considered the same data used in
the first simulation for the PTT model but now with parameters
� = 0.06 s, ε = � = 0.8. To show that the parameters ε and � can
affect this problem, a third simulation using ε = � = 0.01 was per-
formed (the other input data were kept unchanged). Therefore, in
these two PTT simulations we had Re = 1.5 andWe = 10, but these
two non-dimensional numbers were based on zero shear rate fluid
properties. As shown in Fig. 17, the differences between the results
of these two PTT fluid simulations are dramatic. Indeed, accord-
ing to Cruickshank’s predictions the Newtonian jet did not present
the buckling phenomenon and this is confirmed in our predictions
where the jet flows smoothly in the radial direction. However,

although the zero shear rate Weissenberg number is quite high
(We = 10), the results from the simulation using ε = � = 0.8 display
a flow behaviour similar to the Newtonian case while the simula-
tion with ε = � = 0.01 shows that the jet has buckled. Presumably,
this happened because of the increase of the extensional viscos-
ity after the jet impinged on the solid surface which made the jet
more viscous inhibiting the flow in the radial direction. This fact
has been confirmed for two-dimensional PTT jets (see Paulo et al.
[21]). These results demonstrate that if the values of parameters ε
and � are large then the effect of viscoelasticity is diminished, as
illustrated in the rheology plots of Fig. 7.

11. Conclusions

This paper presented a finite difference technique for solv-
ing three-dimensional free surface flows described by the
Phan-Thien–Tanner constitutive equation. The numerical method
described herein used a Marker-and-Cell approach to model the
fluid and an accurate approximation of the free surface stress con-
ditions was employed. The numerical method developed in this
work was included into the Freeflow3D simulation system [9]
extending Freeflow3D to viscoelastic flows described by PTT flu-
ids. The flow in a three-dimensional pipe was simulated and the
numerical results were compared with the corresponding analytic
solutions. The agreement between the two solutions was good and
mesh refinement demonstrated the convergence of the numeri-
cal technique. Numerical results for the transient extrudate swell
and jet buckling were presented and included an investigation of
the effects of the parameters ε and � on these flows. It was found
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that these parameters have a strong effect on these flows. The
extrudate swell was studied for Weissenberg numbers in the range
[0, 1] but depending on the parameters ε and �, converged solu-
tions can be obtained at higher We. In contrast, for the jet buckling
flow, an upper limit in the Weissenberg number was not observed.
The numerical technique presented in this paper proved capable
of simulating fully three-dimensional unsteady free surface flows
governed by the PTT constitutive equation. However, it has some
limitations that have to be addressed in the future. It is the case
of the momentum equations which are solved explicitly, there-
fore imposing a restriction on the time-step size and consequently,
realistic simulations can take many hours of CPU time. The simula-
tions presented in this paper were performed on a computer with
16GB memory, processor Intel Xeon E5345 of 2.33 GHz. One single
simulation of the extrudate swell took about 70 h while one simu-
lation of jet buckling took an average of 50 h. Therefore, an implicit
method for solving the momentum equations and the paralleliza-
tion of the code would result in large gains, a code improvement to
be undertaken in the future.
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Appendix A.

A.1. Calculation of the non-Newtonian tensor on rigid boundaries

To obtain expressions for the components of the non-Newtonian
stress tensor on rigid boundaries we extend the accurate methodol-
ogy employed in the two-dimensional case (see Paulo et al. [21]) to
the three-dimensional case. The components of the non-Newtonian
tensor on rigid boundaries are calculated from Eq. (10) (presented
in Section 4) which we assume to hold with the initial condition
Sij = 0. From Eq. (10) we obtain

∂S̃ij
∂t

= −�Re e−
t

We S̃kkS̃ij −
∂(uk S̃ij)

∂xk
+ S̃jk

(
∂ui
∂xk

− � Dik
)

+S̃ik
(
∂uj
∂xk

− � Djk
)

− 2� S̃kkDij −
2
Re
e

t

We

{
∂Dij
∂t

+ ∂(uk Dij)

∂xk

−Djk
(
∂ui
∂xk

− � Dik
)

− Dik
(
∂uj
∂xk

− � Djk
)} (A.1)

Eq. (A.1) is solved on rigid boundaries parallel to the xy-plane;
rigid boundaries parallel to the xz-plane and rigid boundaries par-
allel to the yz-plane as follows.

A plane normal to coordinate n has two tangential directions ut1
and ut2 . From the no-slip condition we have

∂

∂xt1
= ∂

∂xt2
= 0 ⇒ ∂un

∂xn
= 0

(from continuity and no summation on n). (A.2)

Thus, only the derivatives ∂ui/∂xj with i = t1, t2 and j = n are not
zero.

Expansion of Eq. (A.1) and application of these conditions leads
to a set of simplified equations. This set represents a (6 × 6)-
nonlinear system for the unknowns S̃ij . This nonlinear system must
be calculated on all rigid boundaries for each computational cell.

However, the termRe e−(t/We), which multiplies the nonlinear terms
is usually considerably less than unity in which case the corre-
sponding nonlinear terms of Eq. (A.1) may be neglected. Hence,
at the cells lying at rigid boundaries Eq. (A.3) is solved after simpli-
fication with the above no-slip condition

∂S̃ij
∂t

= +S̃jk
(
∂ui
∂xk

− � Dik
)

+ S̃ik
(
∂uj
∂xk

− � Djk
)

− 2� S̃kkDij

− 2
Re
e

t

We

{
∂Dij
∂t

− Djk
(
∂ui
∂xk

− � Dik
)

− Dik
(
∂uj
∂xk

− � Djk
)} (A.3)

By making t1 = x, t2 = y and n = z, the simplified form of Eq. (A.3)
can be solved for S̃ij by integrating it over the interval [t, t + ıt].

In general form, the integrals, such as∫ t+ıt

t

(
∂V

∂z
S̃lm
)

(x, y, z, s) ds,

are approximated by the trapezoidal rule, namely∫ t+ıt

t

(
∂V

∂z
S̃lm
)

(x, y, z, s)ds

= ıt

2

[(
∂V

∂z
S̃lm
)

(x, y, z, t) +
(
∂V

∂z
S̃lm
)

(x, y, z, t + ıt)
]
,

where V denotes either u or v while l and m denotes either x, y or z.

Integrals like
∫ t+ıt
t

e(1/We)s(∂V(x, y, z, s)/∂z)ds are solved by the
mean value theorem, namely∫ t+ıt

t

e
1
We s
∂V(x, y, z, s)

∂z
ds = e 1

We t(e
1
We ıt − 1)We

∂V(x, y, z, t∗)
∂z

,

where t∗ ∈ [t, t + ıt], while integrals such as
∫ t+ıt
t

e(1/We)s∂/∂s(
∂V(x, y, z, s)/∂z

)
ds are calculated using integration by parts,

∫ t+ıt

t

e
1
We s

∂

∂s

(
∂V(x, y, z, s)

∂z

)
ds

= e 1
We t

[
e

1
We ıt

∂V(x, y, z, t + ıt)
∂z

− ∂V(x, y, z, t)
∂z

− (e
1
We ıt − 1)

∂V(x, y, z, t∗)
∂z

]
,

where

∂V(x, y, z, t∗)
∂z

= 1
2

[
∂V(x, y, z, t)

∂z
+ ∂V(x, y, z, t + ıt)

∂z

]
.

Thus, integrating the simplified form of Eq. (A.3) over the inter-
val [t, t + ıt] we get,

S̃(n+1)
ij

= S̃ij +
ıt

2

[
S̃jk

(
∂ui
∂xk

− � Dik
)

+ S̃ik
(
∂uj
∂xk

− � Djk
)

+S̃(n+1)
jk

(
∂u(n+1)
i

∂xk
− � D(n+1)

ik

)
+ S̃(n+1)

ik

(
∂u(n+1)
j

∂xk
− � D(n+1)

jk

)]
−ıt �(S̃jkDij + S̃(n+1)

jk
D(n+1)
ij

)

−2
We

Re
e

t

We (eıt − 1)

{
−Djk

(
∂ui(t∗)
∂xk

− � Dik(t∗)

)
−Dik

(
∂uj(t∗)

∂xk
− � Djk(t∗)

)}
− 2
Re
e

t

We [e
ıt

We D(n+1)
ij

− Dij − (e
ıt

We − 1)Dij(t∗)]

(A.4)

where t∗ ∈ [t, t + ıt].
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Eq. (A.4) represents a (6 × 6)-linear system for the components
S̃(n+1)
ij

. By multiplying it by the factor e−(t+ıt/We) we obtain an

expression for the components of S(n+1)
ij

as follows:

S(n+1)
ij

= e−
ıt

We Sij +
ıt

2

{
e

−
ıt

We

[
Sjk

(
∂ui
∂xk

− � Dik
)

+ Sik
(
∂uj
∂xk

− � Djk
)]

+S(n+1)
jk

(
∂u(n+1)
i

∂xk
− � D(n+1)

ik

)
+ S(n+1)

ik

(
∂u(n+1)
j

∂xk
− � D(n+1)

jk

)}

−ıt � [e
−
ıt

We SkkDij + S(n+1)
kk

D(n+1)
ij

]

−2
We

Re
(1 − e−

ıt

We )
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−Djk(t∗)

(
∂ui(t∗)
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− � Dik(t∗)

)
−Dik(t∗)

(
∂uj(t∗)

∂xk
− � Djk(t∗)

)}
− 2
Re

[D(n+1)
ij

− e−
ıt

We Dij − (1 − e−
ıt

We )Dij(t∗)].

(A.5)

To solve this system of equations we expand (A.5) and substitute
the equations of Sxx, Syy, Szz and Sxy into the equations for Sxz and
Syz . In this case we obtain the following (2 × 2)-linear system for
the unknowns Sxz (n+1) and Syz (n+1){
a1X + b1Y = c1
a2X + b2Y = c2

(A.6)

where X = Sxz (n+1) and Y = Syz (n+1). The coefficients a1, b1 and c1
are given by

a1 = 1 +
[
�(2 − �) + 2ε(1 − �)

](ıt
2

)2(
∂u(n+1)

∂z

)2

+ (2 − �) �
4

(
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2

)2(
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4
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2
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(
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(
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4
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4
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1
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(
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2
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⎭

where C = ((�/2) + ε). The expressions for a2, b2, c2 are similar to
a1, b1, c1. The solution of Eq. the (A.6) is given by

Sxz
(n+1) =

(
c1
a1

− b1

a1

(a2c1 − a1c2)
(a2b1 − a1b2)

)
(A.7)

Syz
(n+1) =

(
(a2c1 − a1c2)
(a2b1 − a1b2)

)
(A.8)

since of course a1 /= 0 and (a2b1 − a1b2) /= 0.
Once Syz (n+1) and Sxz (n+1) have been computed, the other com-

ponents of the non-Newtonian tensor Sij can be calculated from Eq.
(A.5).

Appendix B.

In this section we present the equations for calculating the non-
Newtonian tensor Sij on rigid boundaries which are parallel to the
xy-plane. The equations for obtaining the tensor Sij on rigid bound-
aries parallel to the xz- and yz-planes are obtained in the same
manner and therefore they are not given here.

B.1. Boundary cells having only the bottom (or top) face
contiguous with an interior cell face

Rigid boundaries parallel to the xy-plane are identified by
boundary cells with the top (or bottom) face in contact with an inte-
rior cell face (F or S cell). The values of Sxx, Syy, Szz , Sxy, Sxz and Syz at
the centre of boundary cells are calculated from equations derived
in Section A.1. For instance, if we consider Fig. B.1, then the non-
Newtonian tensor Sij at cell centres is obtained as follows. First, we
discretize Eqs. (A.7), (A.8) and (A.5) to calculate an approximation
for Sij on the top face (i, j, k + 1

2 ) of a cell as follows.

Sxx(n+1)

i,j,k+ 1
2

= e− 1
We

ıtSxx
i,j,k+ 1

2

+ (2 − �) ıt
2

[
e−

1
We

ıt
(
∂u

∂z
Sxz

)∣∣∣
i,j,k+ 1

2

+
(
∂u(n+1)

∂z
Sxz

(n+1)
)∣∣∣

i,j,k+ 1
2

]
+ (2 − �)We

Re
(1 − e 1

We
ıt)

[
∂u(t∗)
∂z

∣∣∣
i,j,k+ 1

2

]2

,

(B.1)

Fig. B.1. Boundary cell with the top face contiguous with an interior cell face.
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Syy (n+1)
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(B.2)

Szz (n+1)
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(B.3)

Sxy (n+1)
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(B.4)

Sxz (n+1)
i,j,k+ 1

2
=
(
c1
a1

− b1

a1

(a2c1 − a1c2)
(a2b1 − a1b2)
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(B.5)

Syz (n+1)
i,j,k+ 1

2
=
(

(a2c1 − a1c2)
(a2b1 − a1b2)
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i,j,k+ 1

2

(B.6)

since of course a1|i,j,k+(1/2) /= 0 and (a2b1 − a1b2)|i,j,k+(1/2) /= 0. The
constants a1, b1, c1, a2, b2 and c2 have been defined in Section A.1.

The values of (∂u(t∗)/∂z)|i,j,k+(1/2) and (∂v(t∗)/∂z)|i,j,k+(1/2) are
obtained by averaging between times tn and tn+1, namely
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∣∣∣∣
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2

]
,

and the spatial derivatives are approximated by

∂u
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2
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i,j,k+1
2
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=
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,
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.

The velocities at (i, j, k + 1) are given by

ui,j,k+1 =
ui+ 1

2 ,j,k+1+ui− 1
2 ,j,k+1

2
and vi,j,k+1 =

vi,j+ 1
2 ,k+1 + vi,j− 1

2 ,k+1

2
,

respectively. Finally, the values of Sxx
i,j,k

, Syy
i,j,k

, Szz
i,j,k

, Sxy
i,j,k

, Sxz
i,j,k

and

Syz
i,j,k

are obtained using linear interpolation between the nodes
(i, j, k + (1/2)) and (i, j, k + 1).
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