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a b s t r a c t 

In this work we investigate the role played by viscoelasticity on the thermocapillary motion of a deformable 

Newtonian droplet embedded in an immiscible, otherwise quiescent non-Newtonian fluid. We consider a regime 

in which inertia and convective transport of energy are both negligible (represented by the limit condition of 

vanishingly small Reynolds and Marangoni numbers) and free from gravitational effects. A constant temperature 

gradient is maintained by keeping two opposite sides of the computational domain at different temperatures. 

Consequently the droplet experiences a motion driven by the mismatch of interfacial stresses induced by the non- 

uniform temperature distribution on its boundary. The departures from the Newtonian behaviour are quantified 

via the “thermal ” Deborah number, De T and are accounted for by adopting either the Oldroyd-B model, for 

relatively small De T , or the FENE-CR constitutive law for a larger range of De T . In addition, the effects of model 

parameters, such as the concentration parameter 𝑐 = 1 − 𝛽 (where 𝛽 is the viscoelastic viscosity ratio), or the 

extensibility parameter, L 2 , have been studied numerically using a hybrid volume of fluid-level set method. The 

numerical results show that the steady-state droplet velocity behaves as a monotonically decreasing function of 

De T , whilst its shape deforms prolately. For increasing values of De T , the viscoelastic stresses show the tendency 

to be concentrated near the rear stagnation point, contributing to an increase in its local interface curvature. 
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. Introduction 

In this work we study the role played by viscoelasticity on the ther-

ocapillary induced motion of a deformable droplet in a polymeric

uid, which arises when the system is subjected to a temperature gradi-

nt. There are many industrial and technical applications in which non-

niform heating is applied to a polymeric liquid. Typical examples in-

lude (but are not limited to) processes for plastics joining [1,2] , the heat

reatment of polymers aimed at mechanical and tribological properties

mprovement (Aly [3] and references therein), the welding of plastics

4] , and thermocapillary actuation of synthetic and biopolymeric flu-

ds for dispersing, mixing and pumping at the microscale [5] , amongst

any other manufacturing processes in engineering [6,7] . What sets

hese examples apart from similar processes using Newtonian fluids is

he presence of additional (elastic) stresses in the fluid phase. Indeed,

olymeric materials are known for their ability to display both viscous

nd elastic stresses when subjected to deformation, that is, they exhibit

iscoelastic behaviour . Superimposed onto this conceptual characteristic,

e often find the presence of immiscible phases, which allow surface-

ension driven effects to influence the fluid dynamics . 

There have been several works dedicated to the effect of surface ten-

ion on polymer liquid dynamics (the interested reader may consider,
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.g., Dee and Sauer [8] for an exhaustive review). Firstly, whenever

wo immiscible fluids are in contact, the interfacial tension acts to min-

mise the surface energy of the system by reducing the area separating

he two phases. If the conditions are favourable, the formation of discon-

ected droplets is a direct consequence of such process of energy mini-

ization. Then, since frequently the components are also characterised

y different densities, gravity can induce subsequent droplet displace-

ent. There is indeed a large body of literature dedicated to the study of

he motion of bubbles and drops undergoing sedimentation or flotation

n the presence of non-Newtonian fluids under isothermal conditions.

o the best of our knowledge, the first documented experiments on the

otion of bubbles in viscoelastic fluids is due to Philippoff [9] , who

nvestigated the motion of air bubbles rising through elastic solutions

ade of rubber dissolved in organic solvents. The experiments revealed

hat the bubbles assumed a characteristic tear-like shape with the pres-

nce of a trailing cusp which was observed to become more pronounced

hen the fluid relaxation time was increased. For such reason, the be-

aviour was ascribed to the presence of memory effects. Subsequently,

he motion of bubbles rising on otherwise quiescent viscoelastic fluids

ave been investigated by a number of other authors (see, e.g. [10–16] ).

n particular, Hassager [16] was the first to realise that the cusp might

ot be axisymmetric even though the flow conditions were such that

here was no apparent motivation to predict such asymmetry. Later Liu

t al. [17] conducted systematic experiments considering air bubbles

ising through viscoelastic solutions in containers with different cross-

ections (i.e., rounded, squared and rectangular) and discovered that
2019 
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Fig. 1. Schematics of the parallelepipedic configuration (equivalent to the ex- 

periment of Hadland et al. [22] .) and coordinate axes considered in the numer- 

ical study. 
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he trailing cusp might actually assume a variety of different shapes.

nother interesting phenomenon that can be observed with regard to

he motion of both solid and fluid particles translating in a viscoelastic

iquid, is the presence of a “negative wake ” [16] . The term ‘negative’

riginates from the fact that although very close to the rear stagnation

oint the velocity is in the direction of the particle motion, immediately

urther away from the trailing end the flow reverts direction. On the

ontrary, when the continuous phase is Newtonian, the velocity in the

ake is everywhere in the same direction of the motion of the particle.

Although buoyancy-induced motion is the most immediate effect one

an imagine, other mechanisms based on a different type of forces ex-

rted directly at the droplet interface can be responsible for the activa-

ion of the droplet displacement, one typical example being the so-called

hermal Marangoni migration . In this case, a non-uniform temperature

istribution within the fluid generates interfacial tension gradients. The

hermally induced capillary stresses generate flow inside and around

he droplet in addition to droplet displacement, which is produced to

ounter-balance, through viscous (if the fluid is Newtonian) or both vis-

ous and elastic stresses (if the fluid is viscoelastic), the mismatch of the

apillary stresses at the interface separating the two immiscible compo-

ents. In the present work we specifically concentrate on the Marangoni

igration of a droplet in the presence of viscoelastic effects (no buoy-

ncy present). 

The existing literature on thermal Marangoni droplet migration for

he case of Newtonian fluids is vast. Starting from the seminal work by

oung et al. [18] a wealth of research has been published encompass-

ng experimental works both in labs (see for instance [19–21] ) as well

s under microgravity conditions (see, e.g., Hadland et al. [22] ), ana-

ytical solutions [23–25] , numerical simulations based on a variety of

umerical methods, such as volume of fluid [26–28] , level-set [29,30] ,

attice Boltzmann [31,32] , and hybrid techniques [33,34] . All these ef-

orts pertain to Newtonian fluids, i.e., there is a clear lack of work on the

arangoni migration of droplets in viscoelastic fluids, which we address

n the present work. 

Although there is a relevant amount of literature dedicated to the

tudy of thermocapillary flows of fluid layers in the presence of vis-

oelastic fluids (see, e.g. [35–39] ), the non-Newtonian thermocapillary

roblem for bubbles and drops seems to be relatively unexplored. To

he best of our knowledge, the analytical solution by Jiménez-Fernández

nd Crespo [40] is the only existing attempt where the migration phe-

omenon induced by Marangoni effects was considered in combination

ith viscoelasticity under very restrictive conditions. They used a per-

urbation procedure to find an analytical solution for the case of a non-

eformable gas bubble surrounded by an Oldroyd-B fluid in the limit

f weak viscoelastic effects (i.e. Deborah numbers smaller than unity),

nd found that the migration velocity decreases monotonically with the

quare of the Deborah number for this range of Deborah numbers. 

In this work we go well beyond the analysis of Jiménez-Fernández

nd Crespo [40] by taking into account droplet deformability and inves-

igating the role played by the presence of viscoelasticity on the ther-

ocapillary motion of drops over a much wider range of Deborah num-

ers ( De T ≤ 30). We rely on numerical computations based on a hybrid

olume of fluid-level set method implemented into OpenFOAM for the

o-called Stokes regime, i.e. for vanishingly small Reynolds ( Re ) and

arangoni ( Ma ) numbers, considering a Newtonian drop embedded in

 viscoelastic continuous fluid modelled using two different rheological

onstitutive equations of constant viscosity (i.e., Oldroyd-B and FENE-

R models). 

After this introduction, in Section 2 we describe the problem under

xamination and list the full set of governing equations. Section 3 fo-

uses on the numerical methodology, followed by the validation of the

iscoelastic multiphase solver. The results of the present investigation

re then discussed in the subsequent Section 4 , in which we first assess

he dynamics of droplet migration in an infinitely diluted solution and

hen describe the effects of polymer concentration for varying Deborah

umbers. The impact of other relevant parameters, such as molecule
9 
xtensibility, is also analyzed. Chapter 5 summarises the main findings

nd conclusions. 

. Mathematical formulation 

.1. Statement of the problem 

We consider the thermocapillary motion of a Newtonian droplet of

adius 𝑅 = 0 . 5 cm surrounded by an otherwise quiescent immiscible vis-

oelastic liquid contained in a parallelepipedic domain having dimen-

ions (4.5 ×4.5 ×6) cm 

3 with walls on all sides (see Fig. 1 ). These geo-

etrical constraints are similar to those adopted in the experiments of

adland et al. [22] and have also been used in our previous investiga-

ions [41, 42] . 

The outer (matrix) viscoelastic phase is characterized by a shear

ndependent viscosity, 𝜂0 ,𝑚 = 𝜂𝑠,𝑚 + 𝜂𝑝,𝑚 , resulting from the summation

f the Newtonian (solvent) contribution, 𝜂s,m 

, with the viscoelastic

polymer) contribution, 𝜂p,m 

. A constant temperature gradient, 𝐺 𝑇 =
 𝑇 ℎ𝑜𝑡 − 𝑇 𝑐𝑜𝑙𝑑 )∕ 𝐿 , is maintained by external means. The fluid properties

re assumed to be constant with the exception of the interfacial tension,

, which decreases with temperature, T , with a constant rate of change,

𝑇 = − 𝑑𝜎∕ 𝑑𝑇 [8] . 

In order to introduce the various dimensionless parameters govern-

ng the physics of the problem under discussion, we use R as a ref-

rence length scale and define the reference velocity scale as 𝑈 𝑇 =
𝜎𝑇 |𝑅 𝐺 𝑇 ∕ 𝜂0 ,𝑚 , having assumed that the thermocapillary stresses at the

nterface generate velocity gradients of order of magnitude U T / R . Pres-

ure and stresses are non-dimensionalized with the characteristic vis-

ous stress, 𝜂s,m 

U T / R , whilst the temperature is made dimensionless

y subtracting the reference value T 0 ( T 0 is defined as the tempera-

ure at the centre of mass of the translating drop) and then dividing

he temperature difference by the scaling temperature, RG T . Finally,

ime is scaled with the quantity R / U T . Using these scalings, we intro-

uce the Reynolds number, 𝑅𝑒 = 𝜌𝑚 𝑅 𝑈 𝑇 ∕ 𝜂0 ,𝑚 , the Marangoni number,

𝑎 = 𝜌𝑚 𝑐 𝑝,𝑚 𝑅 𝑈 𝑇 ∕ 𝜅𝑚 , and the Prandtl number 𝑃 𝑟 = 𝜂0 ,𝑚 𝑐 𝑝,𝑚 ∕ 𝜅𝑚 (these

uantities are not independent since 𝑀𝑎 = 𝑅𝑒𝑃 𝑟 ), where c p,m 

and 𝜅m 

re heat capacity and thermal conductivity of the outer phase, and the

eborah number defined as 𝐷 𝑒 𝑇 = 𝜆𝑈 𝑇 ∕ 𝑅 (here called “thermal ” Deb-

rah number to distinguish from the usual Deborah number definition

𝑒 = 𝜆𝑈∕ 𝑅 based on the droplet velocity, U , instead of U T ). The dimen-

ionless description of the problem is complete with the introduction

f the capillary number, 𝐶𝑎 = 𝜂0 ,𝑚 𝑈 𝑇 ∕ 𝜎 and all the material property

atios between the two phases. 
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In all the numerical simulations proposed in the present study, we

dopted the following values for the dimensionless parameters: 𝑅𝑒 =
 × 10 −4 , 𝑀𝑎 = 1 × 10 −5 and 𝐶𝑎 = 2 × 10 −1 , while the Deborah number,

e T was varied within the range 0 to 30. According to the fluid dynamic

egime considered, the flow is purely “diffusive ” both in terms of mo-

entum and energy, and the temperature field can be assumed to be

inear everywhere as the thermal properties of the two fluids are the

ame (as explained later in Section 2.2 ). 

.2. Governing equations 

It is customary to describe the motion of a non-isothermal system

omposed of two incompressible immiscible fluids by a single set of

overning equations [43] . With such a description, the conservation of

ass and momentum equations, in the absence of gravity and other body

orces, can be cast in compact form as: 

 ⋅ 𝐮 = 0 (1)

𝐷𝐮 
𝐷𝑡 

= − 𝛁 𝑝 + 𝛁 ⋅ 𝚺 + 𝐟 𝜎 (2)

here 𝜌 is the density of the fluid, u and t represent velocity vector and

ime, respectively, p is the pressure and 𝚺 = 2 𝜂𝑠 𝐃 + 𝝉 is the total extra

tress tensor, comprising the Newtonian contribution, 2 𝜂s D , and the vis-

oelastic extra-stress tensor, 𝝉. In the Newtonian part, 𝐃 = 

1 
2 ( 𝛁 𝐮 + 𝛁 𝐮 𝑇 )

s the rate-of-strain tensor. The symbol 𝐷( ⋅) ∕ 𝐷𝑡 = 𝜕( ⋅) ∕ 𝜕 𝑡 + 𝐮 ⋅ 𝛁 ( ⋅) de-

otes the substantial derivative. The last term on the right hand side of

q. (2) , f 𝜎 , accounts for the capillary, ( f 𝜎, n ), and thermocapillary, ( f 𝜎, t )

orces at the interface: 

 𝜎 = 𝐟 𝜎, 𝐧 + 𝐟 𝜎, 𝐭 = 𝜎𝑘 𝐧 𝛿𝑆 + 𝛁 𝑆 𝜎( 𝑇 ) 𝛿𝑆 (3)

The operator, 𝛁 𝑆 = 𝛁 − 𝐧 ( 𝐧 ⋅ 𝛁 ) , is the projection of the operator ∇
n the direction tangent to the interface, n and k are the normal unit

ector and the curvature at the interface, respectively. Finally, 𝛿S is a

calar-valued distribution which identifies the interface. As illustrated

y Dee and Sauer [8] , the surface tension for many polymer molecules

an be assumed to vary linearly with temperature: 

( 𝑇 ) = 𝜎
(
𝑇 0 
)
− 𝜎𝑇 

(
𝑇 − 𝑇 0 

)
(4)

The mathematical formulation of the problem is completed by in-

luding the energy balance equation: 

𝑐 𝑝 
𝐷𝑇 

𝐷𝑡 
= 𝛁 ⋅ ( 𝜅𝛁 𝑇 ) , (5)

here c p is the specific heat and 𝜅 the thermal conductivity coefficient.

It is instructive to point out that in the regime of interest (small

arangoni and Reynolds number), the temperature field can be assumed

o be linearly uniform everywhere, provided the thermal properties of

he two fluids are the same (which is indeed the case in the present

ork). The problem could therefore have been addressed leaving aside

he energy equation. Nonetheless, since the solution of the energy equa-

ion did not produce specific problems for the present computations (not

ontributing to increase significantly the computational cost), the equa-

ion has been retained in the solving algorithm. 

To model the viscoelastic fluid behaviour, we consider both the

ldroyd-B [44] and the FENE-CR [45] constitutive models (see e.g. [7,

6–49] ) generally represented by the following evolution equation for

he conformation tensor: 

∇ 
𝐀 = − 𝑓 ( 𝑡𝑟 ( 𝐀 ) ) ( 𝐀 − 𝐈 ) (6)

here 
∇ 
𝐀 = 𝐷 𝐀 ∕ 𝐷𝑡 − ( 𝛁 𝐮 𝑇 ⋅ 𝐀 + 𝐀 ⋅ 𝛁 𝐮 ) represents the upper-convected

erivative of the so-called conformation tensor A . For the FENE-CR

odel, the function f appearing in Eq. (6) reads: 

 ( 𝑡𝑟 ( 𝐀 ) ) = 

𝐿 

2 

𝐿 

2 − 𝑡𝑟 ( 𝐀 ) 
, (7)
10 
here L 2 is the extensibility parameter of the polymer molecule.

he specific condition 𝑓 ( 𝑡𝑟 ( 𝐀 ) ) = 1 corresponds ideally to a polymer

olecule with infinite extension, i.e. L 2 →∞, for which the standard

ldroyd-B model is recovered. The elastic extra-stress tensor 𝝉 included

n the momentum equation can finally be obtained from the conforma-

ion tensor via the relationship: [50] 

= 

𝜂p 

𝜆
𝑓 ( 𝑡𝑟 ( 𝐀 ) ) ( 𝐀 − 𝐈 ) (8)

Although the governing equations are solved in dimensional form, it

s useful to show their non-dimensional counterpart in order to appreci-

te the dependence of the considered problem on the non-dimensional

arameters introduced in Section 2.1 . It is worth noting that all the ma-

erial properties appearing in the governing equations may, in general,

ary across the interface. For this reason, a generic fluid property, 𝜒 ,

s generally expressed as a linear combination (although other types of

ombination are sometimes used, see e.g., Capobianchi et al. [51] ) of

he values assumed inside the two phases using the volume fraction 𝛼k 

s combination parameter ( 𝛼k being 0 or 1 depending on the considered

uid): 

= 𝛼𝑘 𝜒𝑑 + 

(
1 − 𝛼𝑘 

)
𝜒𝑚 (9)

Considering the generic material property of the matrix fluid 𝜒m 

as

he reference for the 𝜒 property, fluid properties can be written in di-

ensionless form (subscript r ) as 𝜒𝑟 = 𝛼𝑘 𝜒𝑑 ∕ 𝜒𝑚 + ( 1 − 𝛼𝑘 ) . It is worth

ointing out that in the present investigation we assumed that the two

uids have the same properties (except for the viscoelastic properties,

or obvious reasons). Therefore, in the present case, Eq. (9) becomes

elevant only when applied to the values of 𝜂p and 𝜆. 

Taking into account the dimensionless characteristic numbers de-

ned in Section 2.1 , the following set of dimensionless governing equa-

ions is obtained 

𝑟 𝑅𝑒 
𝐷𝐮 
𝐷𝑡 

= − 𝛁 𝑝 + 𝛁 ⋅
[
(1 − 𝑐) 𝜂0 ,𝑟 𝐃 + 𝝉

]
+ 

1 
𝐶𝑎 

𝑘 𝐧 𝛿𝑆 + 

(
𝑇 − 𝑇 0 

)
𝑘 𝐧 𝛿𝑆 

+ ( 𝐈 − 𝐧𝐧 ) 𝛁 𝑇 𝛿𝑆 (10) 

𝑟 𝑐 𝑝,𝑟 
𝐷𝑇 

𝐷𝑡 
= 

1 
𝑀𝑎 

𝛁 ⋅
(
𝜅𝑟 𝛁 𝑇 

)
(11)

∇ 
 = − 

1 
𝜆𝑟 𝐷 𝑒 𝑇 

𝑓 ( 𝑡𝑟 ( 𝐀 ) ) ( 𝐀 − 𝐈 ) (12)

= 

𝑐 𝜂𝑟, 0 

𝜆𝑟 𝐷 𝑒 𝑇 
𝑓 ( 𝑡𝑟 ( 𝐀 ) ) ( 𝐀 − 𝐈 ) (13)

here 𝑐 = 𝜂𝑝,𝑚 ∕ 𝜂0 ,𝑚 is a parameter proportional to the concentration of

olymer molecules dispersed into the solution, related to the viscoelastic

iscosity ratio, 𝛽 = 𝜂𝑠,𝑚 ∕ 𝜂0 ,𝑚 , by the simple relation 𝑐 = 1 − 𝛽. 

In the following, not to increase excessively the complexity of the

athematical model, we assume that the capillary number is small

nough to guarantee that the condition 1 
𝐶𝑎 
𝑘 𝐧 𝛿𝑆 >> ( 𝑇 − 𝑇 0 ) 𝑘 𝐧 𝛿𝑆 is sat-

sfied. Accordingly, the fourth term on the right-hand-side of Eq. (10) is

eglected in the ensuing calculations. 

It is worth emphasising that, although the contribution of the ne-

lected term discussed above is of the same order of magnitude of the

th term of the same equation (note that both are proportional to the

emperature difference established at the drop interface), their effects on

he droplet dynamics are profoundly different. In fact, the 4th term is

ssentially a force acting along a direction perpendicular to the surface

f the droplet. It can be seen as a temperature-induced ‘perturbation’ of

he local surface tension and it is generally balanced by a correspond-

ng change in the distribution of normal stresses at the interface. Its

ffects are limited to minor variations in the shape of the droplet, if its

elative strength is negligible compared to the normal stress associated

ith 𝜎( T 0 ). The 5th term, on the other hand, is a force acting tangen-

ially to the interface. It has to be balanced by the tangential viscous

tresses produced in the fluid and plays an important role in propelling

he droplet, i.e., it is the main force driving the dynamics of interest. 
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Fig. 2. Schematic of the domain and initial flow conditions (top) considered for 

the shear flow validation case. Steady state deformed droplet shape (bottom), 

showing the major and minor axes used to calculate the deformation parameter, 

D, and the orientation angle, 𝜑 . 
. Numerical method 

.1. The hybrid level-set VOF solver 

The numerical results presented in the following sections were ob-

ained using a thermocapillary solver [42] based on a hybrid level-set

olume of fluid implemented in the OpenFOAM code [52] . The solver is

ased on the original formulation of Albadawi et al. [53] and has been

horoughly described and tested in Capobianchi et al. [41, 42, 51] , hence

ere we provide only a general overview. 

In the standard algebraic volume of fluid (VOF) “interFoam ” solver

vailable in OpenFOAM, the volume fraction phase, 𝛼k , is advected us-

ng a surface compression approach [54] in combination with high-

esolution numerical schemes, thereby making unnecessary a geometric

econstruction of the interface. The main advantage of such procedure

ies in its robustness and ability to handle complex interfaces with lim-

ted computational cost. This approach uses the specific variant of Al-

adawi et al. [53] , who combined the excellent mass-preserving prop-

rties of the VOF with the ability of the level-set method to improve the

epresentation of the interface. In the following, we describe briefly the

implified LS-VOF methodology of Albadawi et al. [53] as implemented

n OpenFoam by Yamamoto et al. [52] . 

In standard LS-VOF codes, the volume fraction 𝛼k and the level-set

unction 𝜑 k are integrated in time by means of the following advection

quation on the basis of an operator splitting technique (see e.g., Tryg-

vason et al. [55] ): 

𝜕 𝐺 𝑘 

𝜕𝑡 
+ 𝛁 ⋅

(
𝐺 𝑘 𝐮 

)
= 0 , (14)

here G k is either the volume fraction (i.e., 𝐺 𝑘 = 𝛼𝑘 ) or the level-set

unction (i.e., 𝐺 𝑘 = 𝜑 𝑘 ). Afterward, the interface is geometrically re-

onstructed from the volume fraction field, and the curvature is sub-

equently updated by means of the level-set function. As referred to

bove, since in the interFoam code of OpenFOAM there is no geomet-

ic reconstruction of the interface, such strategy cannot be applied in

 straightforward manner. In the alternative methodology proposed by

lbadawi et al. [53] used here, the initial level-set function is computed

n a simplified way from the volume fraction 

 0 ,𝑘 = 

(
2 𝛼𝑘 − 1 

)
Δ, (15)

here Δ is a dimensionless number which depends on the mesh res-

lution (Albadawi et al. [53] ), set as Δ = 0 . 75Δ𝑥 , with Δx set as the

rid resolution. Subsequently, a re-initialization equation is solved for

 k with the initial condition set as 𝜑 𝑘 ( 𝐱, 0 ) = 𝜑 0 ,𝑘 ( 𝐱) 
𝜕 𝜑 𝑘 

𝜕 𝜏𝑓 
= sgn 

(
𝜑 0 ,𝑘 

)(
1 − 

||𝛁 𝜑 𝑘 
||), (16)

here sgn ( 𝜑 0 ,𝑘 ) = 𝜑 0 ,𝑘 ∕ |𝜑 0 ,𝑘 | is the sign function and 𝜏𝑓 = 0 . 1Δ𝑥 is a fic-

itious time. Subsequently, the field 𝜑 k is used to evaluate the inter-

ace normal and curvature, which in turn are used for the calculation

f the capillary force f 𝜎 . According to our experience, the hybrid code

f Yamamoto et al. [52] appears to be more accurate than the original

nterFoam solver, nevertheless we further improved its performance by

ntroducing a smoothing strategy (notice that by definition the level-set

unction is per se already a smooth function) to better describe the inter-

ace. This simple strategy is based on the solution of a purely diffusive

quation for the level-set function for a prefixed number of mollification

ycles m 

 

𝑚 +1 
𝑘,𝑚𝑜𝑙 

= 𝜑 𝑚 
𝑘,𝑚𝑜𝑙 

+ 

(
𝛁 

2 𝜑 𝑚 
𝑘,𝑚𝑜𝑙 

)
Δ𝜏𝑚𝑜𝑙 (17)

here 𝜏mol is a fictitious time defined by means of stability considera-

ions (the reader is referred to Capobianchi et al. [42] for a more detailed

escription of the method) that depends on the grid spacing. Once the

moothed level-set function, 𝜑 k, mol , is known, the normal unit vector

nd curvature at the interface are evaluated in the usual manner 

 

(
𝜑 𝑘,𝑚𝑜𝑙 

)
= − 

𝛁 𝜑 𝑘,𝑚𝑜𝑙 ||𝛁 𝜑 𝑘,𝑚𝑜𝑙 
|| , (18)
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(
𝜑 𝑘,𝑚𝑜𝑙 

)
= 𝛁 ⋅ 𝐧 

(
𝜑 𝑘,𝑚𝑜𝑙 

)
. (19)

Finally, the terms accounting for the capillary and thermocapillary

orces Eq. (3) are computed using Eqs. (13) and (14) , yielding the fol-

owing form of the momentum equation: 

𝐷𝐮 
𝐷𝑡 

= − 𝛁 𝑝 + 𝛁 ⋅
(
𝜂𝑠 𝐃 + 𝝉

)
+ 𝜎𝑘 

(
𝜑 𝑘,𝑚𝑜𝑙 

)
𝐼 
(
𝜑 𝑘,𝑚𝑜𝑙 

)
𝛁 𝜑 𝑘,𝑚𝑜𝑙 

+ 𝜎𝑇 
(
𝐈 − 𝐧 

(
𝜑 𝑘,𝑚𝑜𝑙 

)
𝐧 
(
𝜑 𝑘,𝑚𝑜𝑙 

))
𝛁 𝑇 ||𝛁 𝛼𝑘 

|| (20) 

here 𝐼 
(
𝜑 𝑘 

)
= 

{ 

0 if ||𝜑 𝑘 || > 𝜀 
1 
2 𝜀 

(
1 + cos 

(
𝜑 𝑘 𝜋

𝜀 

))
if ||𝜑 𝑘 || ≤ 𝜀 

(21) 

s an “indicator function ” and ɛ is an empirical parameter such that

 = 1 . 5Δ𝑥 , in accordance to previous works (see, e.g. [56-58] ). 

.2. Viscoelastic solver 

For the solution of the viscoelastic flow problem, we used a multi-

hase version of the viscoelasticFluidFoam solver originally developed by

avero et al. (2010) [59] . Our solution procedure is formally identical

xcept in the approach used to update the stress tensor (formalised by

q. (8) ) before solving the momentum equation, since for our purposes

e found advisable to re-formulate the governing equation in terms of

he conformation tensor. Additional specific information on the treat-

ent of the viscoelastic stress term can be found in Appendix A, with

he remainder of this section providing detailed information about the

alidation strategy used. 

Towards this end, we considered the deformation of a two-

imensional droplet subjected to shearing, inertialess motion inside a

lanar Couette cell either in the presence of one or two viscoelastic

hases (see, for instance, the cases discussed in Pillapakkam and Singh

60] and in Chinyoka et al. [61] ). 

A circular droplet of radius R is placed at the centre of a domain

f height h and width 𝜋h (see Fig. 2 ) delimited by two parallel walls

oving in opposite directions along the x -axis direction with a constant

elocity of magnitude U 0 . At the moving walls, we imposed no-slip and

o-through flow boundary conditions for the velocity, while the wall

ressure is assigned the values calculated at the nearest neighbour cells

entre (i.e., denoted as the “zeroGradient ” boundary condition in Open-

OAM). At the two lateral boundaries, periodic conditions have been
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Table 1 

Comparison between our steady state results and those of Chinyoka et al. [61] 

in terms of droplet deformation, D , and orientation angle, 𝜑 . 

Chinyoka et al. [61] . Current Deviation% 

D 𝜑 [°] D 𝜑 [°] D 𝜑 [°] 

N-N 0.288 32.3 0.283 31.8 < 2 < 2 

V-N 0.282 31.2 0.271 31.9 < 4 ≈2 

N-V 0.265 28.2 0.265 28.2 < 1 ≈0 

V-V 0.260 28.2 0.258 29.2 < 1 < 4 
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pplied. The flow field is initialised by imposing fully developed uni-

orm shear flow in the whole domain (including also the interior of the

roplet) and zero viscoelastic stresses (i.e., 𝐀 = 𝐈 ). Even though the ini-

ial condition for the stresses is not consistent with the imposed velocity

eld, this does not impact the steady state solution as long as the Capil-

ary number is low enough to guarantee relatively moderate droplet de-

ormations (for more details about this assumption, see again Chinyoka

t al. [61] ). In all the simulations, we employed a uniformly spaced

esh of resolution Δ𝑥 = 𝑅 ∕ 25 . 
The effect of viscoelasticity on the droplet deformation was taken

nto account in the framework of the Oldroyd-B viscoelastic model

onsidering the four possible different flow configurations: Newtonian

roplet in a Newtonian phase (N 

–N), viscoelastic droplet and Newto-

ian matrix phase (V-N) and the other two possible combinations, N-V

nd V-V. The flow conditions are such that, 𝑅𝑒 = 𝜌𝑚 ̇𝛾𝑅 

2 ∕ 𝜂0 ,𝑚 = 3 × 10 −4 ,
𝑎 = 𝜂0 ,𝑚 ̇𝛾𝑅 ∕ 𝜎 = 0 . 24 , 𝐷 𝑒 𝑖 = 𝜆𝑖 ̇𝛾 = 0 . 4 , 𝛽 = 𝜂𝑠,𝑖 ∕ 𝜂0 ,𝑖 = 0 . 5 (the subscript

i ” stands for “m ” or “d ” depending on whether the viscoelastic phase is

he matrix or the droplet), where �̇� = 2 𝑈 0 ∕ ℎ is the imposed shear rate.

he two fluids are assumed to have the same density and viscosity (i.e.

0 ,𝑑 ∕ 𝜂0 ,𝑚 = 1 and 𝜌0 ,𝑑 ∕ 𝜌0 ,𝑚 = 1 ) and the same 𝛽 when both phases are

iscoelastic, while the geometric confinement is set to 𝑅 ∕ ℎ = 0 . 125 as in

hinyoka et al. [61] ). 

Table 1 summarises the steady state results of the orientation angle,

 , and the deformation parameter 𝐷 = ( 𝑎 − 𝑏 ) ∕ ( 𝑎 + 𝑏 ) , with a and b being

he major and minor axes as indicated in Fig. 2 . The present results are

n good agreement with those obtained by Chinyoka et al. [61] with a

aximum relative difference of ∼4% both in terms of deformation and

rientation angle. 

. Results 

As explained in the introduction, the objective is to investigate the

ole of elasticity on the thermocapillary motion of a droplet in the ab-

ence of gravity. We performed a series of three-dimensional simula-

ions for a single Newtonian drop translating in an otherwise stagnant

iscoelastic fluid (c.f. the 3D configuration shown in Fig. 1 .) using an

daptive mesh with resolution Δ𝑥 = 𝑅 ∕ 28 in the region of the droplet.

he outcomes of the related mesh-refinement study performed to guar-

ntee grid-independent 3D solutions are described in Appendix B. 

To model the viscoelastic phase and investigate a broad range of

eborah numbers, the simulations were carried out considering a) the

ldroyd-B model, for relatively small Deborah numbers (up to 𝐷 𝑒 𝑇 =
 . 75 ), and b) the FENE-CR model, for larger Deborah numbers (up to

 𝑒 𝑇 = 30 ). This twofold choice is dictated by the presence of an un-

hysical singularity in the solution of the Oldroyd-B model in exten-

ional flows, which in this specific case develops at the rear stagnation

oint of the drop (the reader is referred, e.g., to [ 7 , 62–64 ] for addi-

ional insights). In the following sections, we discuss the effect of the

arious relevant dimensionless numbers (namely De T , c and L 2 ) on the

roplet dynamics and in particular on the migration and deformation of

he droplet. 

.1. Infinitely dilute solution 

First, we consider the case of the Oldroyd-B fluid ( L 2 →∞) in the lim-

ting situation in which the concentration of polymer molecules in the
12 
olution is infinitely small, i.e., c →0 (in practice, we set 𝑐 = 0 in our sim-

lations, which corresponds to a Newtonian fluid). However, we can still

etermine the conformation tensor evolution by solving Eq. (12) , thus

llowing us to separate effects and therefore to better understand the

ynamics of droplet motion and deformation, since, in this case, we are

ble to observe the deformation and orientation of polymer molecules as

hey flow around the droplet without taking into account the presence

f viscoelastic stresses that would modify the flow field and the droplet

hape. Then, in Section 4.2 the presence of viscoelastic stresses will be

nalysed corresponding to finite (non-zero) values of c . 

Fig. 3 a shows the temporal evolution of the scaled droplet velocity

or 𝑐 = 0 and 𝐷 𝑒 𝑇 = 3 . 75 . After a relatively short transient, the droplet

elocity approaches the theoretical value obtained by Young et al.

18] for Newtonian fluids under the assumption of negligible inertia

nd negligible convective transport of energy, given by 

 𝑌 𝐺𝐵 = 

2 ||𝜎𝑇 ||𝐺 𝑇 𝑅 ∕ 𝜂0 , 𝑚 (
2 + 

𝜅𝑑 

𝜅𝑚 

)( 

2 + 3 𝜂𝑑 
𝜂0 , 𝑚 

) 

. (22)

In this case the shape is nearly spherical (for a discussion on the small

epartures from the exact shape, please refer to appendix B). In particu-

ar, to analyse the distribution of the conformation tensor at the droplet

nterface, we consider the centreplane 𝑥 ∕ 𝑤 = 0 . 5 passing through the

entre of the drop, as shown in Fig. 3 b. 

The three components of the conformation tensor on such region

re reported in Fig. 4 (qualitatively similar results were obtained for

ther planes passing through the axis of the drop). We do not display

he xx -component as we found it to remain nearly constant throughout

he reference interface. 

To provide a direct visual representation of the deformation and orien-

ation of the polymer molecule as it flows around the droplet, in Fig. 4 a we

ave also represented the conformation tensor by including ellipses with

xes parallel to the principal axes defined by the eigenvectors of A (while

he extensions are proportional to the corresponding eigenvalues, see,

.g. Harlen, 2002. [65] ). We now analyse the polymer molecule dynam-

cs as it moves from the front ( 𝑧 ′∕ 𝐷 1 = 1 ) towards the rear stagnation

oint ( 𝑧 ′∕ 𝐷 1 = 0 ). It can be seen that as the polymer chains approach

he front stagnation point, they initially experience a bi-axial extension

long the y -direction while being compressed along the z -direction (cf.

he ellipsoid shown at 𝑧 ′∕ 𝐷 1 = 1 ). Subsequently, when the molecules

ove further towards the rear of the drop A yy gradually decreases to

 minimum (for z ′ / D 1 ∼0.6) where the deformation is “compressive ”

 A yy < 1). On the other hand, A zz follows the opposite trend: it gradu-

lly increases, becomes extensional and reaches a peak approximately

t the same location where the other component attains its minimum

alue (i.e. at z ′ / D 1 ∼0.6). It is worth noticing that for z ′ / D 1 ∼0.6, A zy is

pproximately zero. As the molecules move further towards the rear re-

ion, they extend along the y -direction, with A yy reaching a maximum

alue and finally vanishing as they approach the rear stagnation point.

n the other hand, A zz decreases and reaches a minimum at z ′ / D 1 ∼0.1

where A zz is close to unity, indicating a nearly relaxed state along the

 -direction) after which the deformation suddenly increases and even-

ually reaches its largest value when z ′ / D 1 is almost zero. Note that the

alues for small z ′ / D 1 are not shown in Fig. 4 for sake of representa-

ion (cf. the caption in Fig. 4 ). Regarding the shear component, A zy , it

s worth highlighting its sudden decrease near the rear region, which

s responsible for the change of the orientation of the molecules along

he z -direction. As illustrated by the ellipse for z ′ / D 1 ∼0.04, although

he polymer filaments are relatively close to the rear region, their ori-

ntation is still far from being aligned with the z -axis. The large shear

omponent will guarantee that the molecules are oriented in the direc-

ion of z axis when they reach the rear stagnation point. 

Fig. 4 b shows the distribution of the trace of the conformation tensor,

r( A ), along the same reference interface providing an indication of the

egree of stretching of the molecules . We notice that the largest deforma-

ion occurs in a narrow region near the rear stagnation point ( z ′ / D ∼0),
1 
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Fig. 3. (a) Scaled droplet migration velocity as a function of the dimensionless time for the Oldroyd-B model with 𝐷 𝑒 𝑇 = 3 . 75 and 𝑐 = 0 . The dashed line indicates 

the theoretical steady state value obtained by Young et al. [18] for Newtonian fluids. (b) Sketch of the flow domain and the droplet cut by the plane 𝑥 ∕ 𝑤 = 0 . 5 (for 

the sake of representation, only the portion of the drop where the reference interface (contour 𝛼𝑘 = 0 . 5 ) is taken is shown). The ( x ′ , y ′ , z ′ ) coordinate system we 

consider is also shown and is not fixed in space but advected with the drop, and has the origin of the axes coincident with the rear stagnation point. 

Fig. 4. Conformation tensor along the droplet reference interface for the Oldroyd-B model with 𝐷 𝑒 𝑇 = 3 . 75 and 𝑐 = 0 , showing the normal and shear components 

A zz , A yy , A zy (a) and its trace (b). z ′ is taken in such a way that 𝑧 ′∕ 𝐷 1 = 0 corresponds to the rear stagnation point, and 𝑧 ′∕ 𝐷 1 = 1 to the front stagnation point (as 

shown in Fig. 3 b and in the inset of Fig. 4 a). The component A zz for z ′ / D 1 < 0.04 has been cut off to make the representation more intelligible, since its maximum 

value is far larger than the maximum value of the other components. In the inset of plot (a) the conformation tensor has been represented at four different locations 

of the interface by drawing ellipses that have major and minor axes parallel to the eigenvectors of A and lengths proportional to the corresponding eigenvalues. 

w  

r  

q  

o  

u  

w  

t  

n  

c  

o  

t  

s

4

 

p  

s  

a  

m

 

t  

𝑐  

𝐷  

i  
here the flow field is essentially a uniaxial straining flow. The occur-

ence of the largest molecular stretching at the rear of the droplet is

ualitatively similar to what can be observed for the analogous case

f the gravitational motion of a Newtonian drop in a viscoelastic liq-

id in isothermal conditions, where the drop assumes a tear-drop shape

ith a characteristic pointed tail (the interested reader being referred

o the collection of experimental images available in Chhabra [6] or the

umerical results of Pillapakkam et al. [66] ). This suggests that the vis-

oelastic stresses tend to concentrate in a small area around the rear

f the drop, with significant consequences on the morphological evolu-

ion of the droplet and distribution of the velocity field near the rear

tagnation point. 
13 
.2. The effect of the polymer concentration 

In this section we focus on the effect of finite, non-vanishingly small,

olymer concentrations. In contrast to the case addressed in the previous

ection, the molecular deformation associated with the flow field gener-

tes viscoelastic stresses, which are related to the presence of polymer

olecules in the viscoelastic phase. 

Fig. 5 a shows the comparison between the normal components of

he conformation tensor for three different values of the parameter c ,

 = 0 , 𝑐 = 0 . 5 and 𝑐 = 0 . 89 , for a fixed value of the Deborah number,

 𝑒 𝑇 = 3 . 75 . Irrespective of the value of c , the trends for A zz remain qual-

tatively similar to those discussed in Section 4.1 , with the main quan-
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Fig. 5. (a) Normal components of the conformation tensor A zz , A yy and (b) trace of the conformation tensor A along the droplet reference interface obtained using 

the Oldroyd-B model for three different polymer molecules concentrations ( 𝑐 = 0 , 0 . 5 and 0 . 89 ) and for 𝐷 𝑒 𝑇 = 3 . 75 . The inset in figure (b) shows the trace of A in the 

region near the rear stagnation point in linear scale. 

Fig. 6. Effect of concentration on the droplet migration velocity. (a) Time evolution of the scaled droplet speed for different polymer concentrations (the points are 

taken at every 0.5 s and the lines are a guide to the eye) and (b) scaled steady state velocity as a function of the concentration of dumbbells ( c ). In both cases the 

Oldroyd-B model has been used considering 𝐷 𝑒 𝑇 = 3 . 75 . 
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itative difference being a small increment of the peak observed in the

egion corresponding to the front half of the droplet (0.5 < z ′ / D 1 < 1) as

he concentration is increased. On the contrary, A yy remains substan-

ially unvaried in the front half, then, as the polymer molecules move

owards the rear region, the trends appear remarkably different. In par-

icular, for 𝑐 = 0 , the maximum extent of the elongation along the y -

irection appears very close to the rear stagnation point. As the poly-

er concentration is increased, the maximum value of A yy is gradually

hifted towards higher values of z ′ / D 1 . 

Fig. 5 b shows the trace of A for the same three values of c . As the

olecules approach the rear of the drop, tr( A ) is smaller for higher

oncentration (at the stagnation point, the value of tr( A ) for 𝑐 = 0 . 89
s about four times smaller than that for the case 𝑐 = 0 ). This means that

he maximum elongation decreases when the concentration of polymer

ncreases. It is worth noticing that although the results are obtained at

 constant thermal Deborah number, the alternative Deborah number

valuated using the actual droplet velocity (typically used in the litera-

ure for the case of buoyant-driven isothermal flows) would decrease for
14 
ncreasing values of c since, as it will appear clear soon, the migration

elocity is a monotonic decreasing function of the polymer concentra-

ion. In addition there are a number of influential factors affecting the

ow field near the rear of the droplet, as tentatively illustrated in the

ollowing. As in the considered simulations the total viscosity is main-

ained constant, the reduction of the Newtonian solvent contribution

mplies a reduced solvent viscosity ( 𝜂𝑠 = ( 1 − 𝑐 ) 𝜂0 ) , which, in turn, leads

o a reduction of the Newtonian contribution to the total stress. Simul-

aneously, the polymer contribution generates increasingly higher vis-

oelastic stresses, which are mainly concentrated in a small area near

he rear stagnation point where they are essentially extensional. These

tresses “pull back ” the droplet interface and, if they are large enough

o overcome the capillary force, they can contribute to increase the lo-

al interface curvature. In turn, an increased local curvature results in

 localised increment of the pressure jump across the droplet interface

ffecting the flow conditions near the rear region of the droplet. 

The influence of polymer concentration on the droplet velocity is

llustrated in Fig. 6 a, where the scaled droplet speed is shown as a func-
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Fig. 7. (a) Scaled migration velocity for a droplet surrounded by the Oldroyd-B fluid as a function of the Deborah number for two values of c . (b) Droplet shapes 

for different values of the thermal Deborah for 𝑐 = 0 . 5 (top), and for 𝑐 = 0 . 89 (bottom). Note the presence of a “pointed end ” for the largest values of the Deborah 

number. 

Fig. 8. Contours of the trace of the conformation tensor, A , around the droplet (logarithmic scale) at steady state obtained using the Oldroyd-B model for 𝑐 = 0 . 5 : 
(a) 𝐷 𝑒 𝑇 = 1 . 5 , and (b) 𝐷 𝑒 𝑇 = 3 . 75 . 

Fig. 9. (a) Droplet interface in a polar coordinate system attached to the drop at the rear stagnation point for different viscoelastic cases obtained using the Oldroyd-B 

model ( c = 0.5 and 0.89 at De T = 2.25 and 3.75), in comparison with the Newtonian solution. For completeness, the “reference ” spherical shape has been also included 

(continuous line). (b) Corresponding A yy – A zz and A yz distribution along the reference interface for the viscoelastic simulations at De T = 3.75 when a cusp is visible 

in the rear region of the drop. 

15 
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Fig. 10. Streamlines in a diagonal plane passing through 

two opposite edges of the domain under different condi- 

tions as the droplet is moving upward for Newtonian (a) 

and Oldroyd-B matrix fluid with (b) De T = 1.5, c = 0.5, (c) 

De T = 2.25, c = 0.5 and (d) De T = 3.75, c = 0.5. 
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ion of the dimensionless time for a constant value of 𝐷 𝑒 𝑇 = 3 . 75 . Ini-

ially, the droplet speed increases rapidly, exhibiting an overshoot be-

ore reaching steady state conditions. We notice that the magnitude of

he velocity peak depends on the parameter c , becoming larger when

 is increased. Note also that for higher values of c the overshoot is

ollowed by an undershoot before the velocity tends to the steady state

alue. Such behaviour can be understood considering that the viscoelas-

ic stresses need a certain amount of time to develop, and, hence (at least

n an initial stage) the stresses at the interface are mainly of a “Newto-

ian nature ”. In other words, since the concentration is given by the

atio of the polymer viscosity to the total viscosity, having assumed the

atter property constant for each simulation, a larger value of c implies

 smaller solvent viscosity, thus the Newtonian stresses prevailing at the

rst stage of the transient determine the observed behaviour. The corre-

ponding steady state velocity for the cases under discussion are shown

n Fig. 6 b, which shows that when the amount of polymer is increased,

he droplet speed decreases monotonically. 

.3. The effect of the Deborah number 

Fig. 7 a shows the steady state droplet velocity as a function of De T 
btained using the Oldroyd-B model for two different values of the pa-
16 
ameter c , 𝑐 = 0 . 5 and 𝑐 = 0 . 89 . The plot indicates that for both cases the

roplet velocity decreases with De T . The two trends can be well approx-

mated by a quadratic polynomial, 𝑈∕ 𝑈 𝑌 𝐺𝐵 ≈ 1 − 𝑘 1 𝐷 𝑒 𝑇 − 𝑘 2 𝐷𝑒 
2 
𝑇 

, with

 1 and k 2 being two constants that depend on the value of c . The steady

tate droplet shapes are illustrated in Fig. 7 b for different values of De T 
nd c . 

As already discussed, the droplet tends to be stretched along the di-

ection of motion in the presence of a viscoelastic surrounding phase.

or 𝐷 𝑒 𝑇 = 1 . 5 the droplet is nearly spherical, while for the largest value

f De T , the loss of fore-and-aft symmetry is evident, with the droplet dis-

laying a “pointed end ” (similar to the gravity-driven motion case dis-

ussed in the introduction) generated by the large viscoelastic stresses

ocalised at the rear stagnation point (cf. Fig. 8 a,b). The effect of the

oncentration parameter on these shapes is only minimal under those

onditions (even though for larger concentrations, slightly larger de-

ormations are observed), whereas the effect of the thermal Deborah

umber is far more pronounced. 

To better highlight the effect of elasticity on the droplet shape, it is

onvenient to plot the interface in a polar coordinate system as shown

n Fig. 9 a (notice that in the current representation we are using ab-

olute dimensions). This plot includes the results of our computations

or the Newtonian case and various viscoelastic cases obtained with the
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Fig. 11. Scaled steady state migration velocity obtained with the FENE-CR model as a function of De T for two values of c and 𝐿 2 = 100 (a), and as a function of the 

extensibility parameter for 𝐷 𝑒 𝑇 = 7 . 5 and 𝑐 = 0 . 5 (b). The results for the Oldroyd-B case are also shown for comparison. 
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d  
ldroyd-B model for different values of c and De T . We notice that the

imulated Newtonian shape (red dashed line) is nearly spherical, but

 small deviation ( ∼1%) is seen in the numerical curve resulting in a

lightly oblate interface for the reasons explained in Appendix B. On the

ther hand, when we are in the presence of viscoelasticity, the droplets

ecome prolate and the shapes deviate further from a sphere as De T is

ncreased. It is worth noticing that at the rear stagnation point, the in-

erface assumes different configurations depending on the value of the

eborah number: for De T = 2.25, the droplet is, in fact, still rounded

ear the rear stagnation point (cf. also Fig. 7 b), and the corresponding

olar plots are qualitatively similar to the Newtonian case; while for

e T = 3.75, a cusp is seen in this region (also visible in Fig. 7 b). We also

bserve that the polar plots for all cases intersect as a direct consequence

f the conservation of mass. More interestingly all viscoelastic cases in-

ersect the corresponding Newtonian plot in the same region, which we

elieve is related to the distribution of the first normal stress difference

proportional to A yy – A zz ) and viscoelastic shear stresses (proportional

o A yz ) at the interface, which are shown in Fig. 9 b for De T = 3.75 and

wo different values of c . We notice that regardless the value of the

olymer concentration, the first normal stress difference shows a rela-

ive minimum in the region in which the intersection of the polar plots

ccurs (here the deformation in the z -direction prevails, since the value

f the difference is negative), while the shear component is roughly zero.

A comparison of the flow patterns for the Newtonian flow field and

ome representative viscoelastic cases obtained at different values of

e T with the Oldroyd-B model are shown in Fig. 10 . In the absence

f elasticity, a large portion of the flow field is occupied by two main

ecirculations passing through the droplet, while a second pair of minor

olls is established next to the “cold ” wall. When De T is increased, the

atter two recirculations tend to shrink and two new rolls become visible

t the opposite “hot ” wall. Finally, for the largest considered De T , the

egion covered by the new vortices embraces the whole area adjacent

o the “hot ” wall. 

As discussed in Section 3.2 , the Oldroyd-B model imposes severe re-

triction on the maximum allowable value of the Deborah number be-

ause of the singular nature of its solution when the flow field is ex-

ensional. For such reasons, the simulations shown using the Oldroyd-

 model were limited to a maximum value of the Deborah number of

e T = 3.75. In order to study the impact of larger Deborah numbers,

e performed a series of additional simulations on the basis of the al-

ernative FENE-CR model. This constitutive law bounds the maximum

longation of the polymer chain through the extensibility parameter L 2 ,
17 
hereby allowing the investigation of flows at significantly higher Deb-

rah numbers, when the Oldroyd-B model becomes unphysical. 

Fig. 11 a shows the scaled migration velocity for the FENE-CR cases

 𝐿 

2 = 100 and two values of c , 𝑐 = 0 . 5 and 𝑐 = 0 . 89 ) as a function of De T .

he migration velocity for the Oldroyd-B cases ( L 2 →∞) for De T ≤ 3.75

re also shown for comparison and it is clear that both models yield

imilar terminal velocities for 𝐷 𝑒 𝑇 = 3 . 75 . In fact, the relative velocity

ifference between these two cases is about 1%, providing evidence that,

or relatively small Deborah number, the maximum extensibility of the

olecules does not affect the migration velocity significantly. In addi-

ion, in line with what has been observed for the case with the Oldroyd-

 model at low De T , the steady-state droplet velocity decreases mono-

onically with increasing De T ; moreover, larger values of the polymer

oncentration result in smaller terminal velocities. The main qualitative

issimilarity in the trends for low De T and for high De T is the differ-

nt concavity of the curve, with the scaled velocity tending to a plateau

egion for high Deborah numbers. 

In order to investigate the influence of the extensibility parameter,

e conducted a series of simulations for some representative values of

 

2 , considering 𝐷 𝑒 𝑇 = 7 . 5 and 𝑐 = 0 . 5 . Fig. 11 b shows how the terminal

igration velocity decreases as the maximum allowable molecular ex-

ension is increased, tending to plateau at large values of L 2 . It is also

nteresting to notice that for 𝐷 𝑒 𝑇 = 7 . 5 , the velocity reduction relative

o the YGB limit (Young et al., [18] ) is about 15% for 𝐿 

2 = 400 , high-

ighting the large impact of elasticity on the migration velocity for this

ange of Deborah numbers. 

Fig. 12 shows the contours of the trace of the conformation tensor

or different values of the extensibility parameter, confirming, as ex-

ected, that the normal stresses grow as the extensibility parameter L 2 

s increased. It is also evident that the region of large extension, cor-

esponding to higher values of tr( A ), occupies a wider region near the

ear of the droplet for small values of L 2 ( 𝐿 

2 = 10 shown in Fig. 12 a),

hereas it is very localised for large values of L 2 ( 𝐿 

2 = 10 0 , 200 and 400
hown in Fig. 12 b–d). These localized stresses will arguably have a di-

ect impact on the deformation of the droplet surface and the formation

f the cusp as shown in Fig. 13 , where we plot the droplet interface in

 polar coordinate system (akin to that used in Fig. 9 ) to highlight the

ifferences in droplet shape for varying L 2 . Notice that the shape for the

hree largest values of L 2 studied is very similar, exhibiting a cusp near

he rear stagnation point ( 𝜃 = 𝜋∕2 ), while this cusp is absent for 𝐿 

2 = 10 .
Additional insights can be gathered from Fig. 14 , which shows the

roplet shape evolution for the cases 𝑐 = 0 . 5 (a) and 𝑐 = 0 . 89 (b) for
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Fig. 12. Contours of the trace of the conformation tensor, A , at steady state obtained using the FENE-CR model for 𝐷 𝑒 𝑇 = 7 . 5 , 𝑐 = 0 . 5 and: (a) 𝐿 2 = 10 , (b) 𝐿 2 = 100 , 
(c) 𝐿 2 = 200 and (d) 𝐿 2 = 400 . 

Fig. 13. Droplet interface in a polar coordinate system attached to the drop at 

the rear stagnation point obtained using the FENE-CR model for 𝐷 𝑒 𝑇 = 7 . 5 , 𝑐 = 
0 . 5 and: (a) 𝐿 2 = 10 , (b) 𝐿 2 = 100 , (c) 𝐿 2 = 200 and (d) 𝐿 2 = 400 . The spherical 

reference shape (continuous black line) has been added for comparison. 
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18 
 𝑒 𝑇 = 30 and 𝐿 

2 = 100 . Initially (instant t 1 ), the drop does not display

 significant deformation, and its shape is a prolate ellipsoid. As time

asses (instant t 2 ), the viscoelastic stresses, which are mainly developing

round the rear of the droplet (as already discussed for the cases with

he Oldroyd-B model), lead to fore-and-aft symmetry breaking (though

he pointed end is not yet visible). In particular, at this stage the rear of

he drop is more flattened for the case 𝑐 = 0 . 89 than for the case 𝑐 = 0 . 5 ,
ndicating that during the transient the viscoelastic stresses tend to be

istributed differently depending on the value of parameter c . At the

nstant t 3 , for 𝑐 = 0 . 5 the presence of a pointed end can be noticed, which

s not yet visible for the higher concentration 𝑐 = 0 . 89 . Finally, at the

ast stage (instant t 4 ) the presence of the pointed end can also be clearly

oticed for the larger value of c . Interestingly, even though the terminal

elocity is larger for smaller values of c , between the instants t 1 and t 2 
he droplet has travelled for a longer distance in the case of 𝑐 = 0 . 89
han in the case 𝑐 = 0 . 5 . Such a difference has to be ascribed to the well-

nown fact that viscoelastic stresses require a certain amount of time

o develop. Initially, the contribution to the hydrodynamic resistance

s mainly due to the presence of viscous stresses. As these stresses are

roportional to the solvent viscosity, 𝜂s, m 

, and since for 𝑐 = 0 . 89 , 𝜂s, m 

is

ower than that for 𝑐 = 0 . 5 , the velocity is initially larger. 

We conclude that independently of the Deborah number, polymer

oncentration and extensibility parameter, the flow patterns established

n the first half of the drop seem to be qualitativley similar. On the

ontrary, in the rear part of the drop, the differences are much more
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Fig. 14. Droplet shape temporal evolution obtained using the FENE-CR model for 𝐷 𝑒 𝑇 = 30 and 𝐿 2 = 100 , for 𝑐 = 0 . 5 (a), and for 𝑐 = 0 . 89 (b). The time frames are 

the same for the two pictures, evidencing the different droplet transient velocity evolution. 
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ronounced, and might be attributed to memory effects that become

ore prominent as the polymer molecules travel around the drop. 

. Conclusions 

The thermocapillary motion of a Newtonian deformable droplet sur-

ounded by a viscoelastic immiscible liquid has been investigated nu-

erically over a relatively wide range of conditions. The impact of vis-

oelasticity on the droplet morphology and migration mechanism has

een assessed in the framework of two viscoelastic constitutive laws. In

articular, the classical Oldroyd-B model, used for relatively small val-

es of the thermal Deborah number (due to its simplicity and widespread

uccess in the literature), has been replaced by the more stable and re-

listic FENE-CR model (in order to circumvent the typical unphysical

ingularities that develop for such conditions in the equations governing

uid flow when using the Oldroyd-B model) in this way higher values

f De T have been attained, up to a maximum value of 30. In addition,

wo distinct flow conditions have been addressed, namely the case of an

infinitely dilute ” solution, expressly considered to analyse the defor-

ation history of polymer molecules flowing in a Newtonian flow field

i.e., in absence of viscoelastic stresses), and the case of a finite small

ilution, where the coupling between the viscoelastic stresses and the

ow field is expected to modify such a process and the extent of the

eformation of the molecules (as they flow around the drop). 

The numerical experiments show that large viscoelastic stresses tend

o be concentrated in proximity to the rear stagnation point, where ow-

ng to the extensional nature of the flow the largest polymer molecules

eformation is attained. The value of the parameter c has a strong impact

n the maximum dumbbell elongation, which decreases for increasing

alues of the concentration. For finite values of c , it has a remarkable

nfluence on the viscoelastic stresses and, as a natural consequence, on
19 
oth the migration velocity (higher droplet migration velocities are seen

or lower concentrations) and droplet shape. 

In terms of the effect of Deborah number, the migration velocity of

he droplet has been found to be a monotonic decreasing function of

e T for the range of conditions considered. With regard to the droplet

orphological evolution, the droplet initially becomes a prolate ellip-

oid and then a certain degree of loss of fore-and-aft symmetry develops

s the Deborah number increases. Specifically, for the largest values of

he thermal Deborah number, the concentration of viscoelastic stresses

ear the rear stagnation point has been found to be responsible for the

evelopment of a “pointed tail ”. 

Finally, the effect of the extensibility parameter on droplet dynam-

cs has been investigated for some selected cases. The results show

hat the related impact in terms of the steady state droplet speed and

hape (when compared to the Newtonian case) is more pronounced

or larger values of L 2 , for which the normal stresses are larger and

ore localised near the rear stagnation point, than for small values

f L 2 . For large values of L 2 ( L 2 > 100), the droplet shape and speed

ecome nearly independent of the value of L 2 . Data files containing

he numerical setup and the results of the simulations correspond-

ng to Fig. 6 a presented in this paper are available for download at

ttps://doi.org/10.15129/76e3aee7-8a95-4368-ad4c-4160308703aa . 
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ppendix A. Algorithm description 

The governing equations are solved in a structured Cartesian grid us-

ng a Finite Volume Method (FVM) relying on their integral formulation

ver a set of control volumes. All the variables are stored at the centre

f cells, however the solution methodology employed by OpenFOAM

nvolves also their values interpolated at the cell face. In order to avoid

nphysical oscillations (checkerboard effect) due to the non-staggered

ollocation of the variables, the Rhie-Chow [67] interpolation is used. 

The solution of the entire set of equations can be summarised as

ollows: 

1. Set the boundary and initial conditions; 

2. Solve the re-initialization Eq. (11) to calculate the level-set func-

tion 𝜑 k ; 

3. Solve the diffusion Eq. (12) to obtain the smoothed level-set func-

tion 𝜑 k, mol ; 

4. Calculate the interface normal and curvature by means of

Eqs. (13) and (14) ; 

5. Advect the volume fraction, 𝛼k , by means of Eq. (14) using the

MULES algorithm (Multidimensional Universal Limiter with Ex-

plicit Solution) (see, e.g.,Deshpande et al. [68] ). Applying Gauss’

theorem, the integration of Eq. (14) leads to 

∫Γ𝑐.𝑖 
𝜕 𝛼𝑘 

𝜕𝑡 
𝑑𝑉 + ∫𝜕 Γ𝑐.𝑖 

(
𝛼𝑘 𝐮 + 𝛼𝑘 

(
1 − 𝛼𝑘 

)
𝐮 𝑐 
)
⋅ n 𝑑𝑆 = 0 (22)

where Γc, i is the volume of the computation cell i and 𝜕Γc, i its

boundary. Using the forward Euler scheme, the discrete counter-

part of Eq. (22) can be written as 

|||Γ𝑐,𝑖 |||𝛼𝑛 +1 𝑐,𝑖 
− 𝛼𝑛 

𝑐,𝑖 

Δ𝑡 
= − 

∑
𝑓 𝑐,𝑖 

𝐹 𝑛 
𝑢 
− 

∑
𝑓 𝑐,𝑖 

𝜁𝑀 

𝐹 𝑛 
𝑐 

(23)

where the flux term F u arises from the integration of ∇ · ( 𝛼k u ),

and the term F c is a linear combination of the flux associated

with the integration of the compressive term 𝛁 ⋅ ( 𝛼𝑘 ( 1 − 𝛼𝑘 ) 𝐮 𝑐 ) = 0
and the previous flux F u (see Deshpande et al. [68] for more de-

tails). The coefficient 𝜁M 

appearing in the second term on the

right-hand-side of Eq. (18) is the MULES limiter. The term F c is

active only across the interface, where 𝜁𝑀 

= 1 , whereas 𝜁𝑀 

= 0
away from the interface, which makes F c inactive. The limiter

therefore splits the numerical treatment of the advection term

into two parts: away from the interface, the second summation

appearing in Eq. (23) is set to zero, and F u is treated with an up-

wind scheme, while across the interface, where a better accuracy

is required, a higher order scheme is employed. This strategy al-

lows to reduce the computational effort by activating the more

accurate scheme only in the region of the interface, where higher

accuracy is required. Finally, the compressive velocity u c defined

previously takes the following form 

𝐮 𝑐 = min 
⎡ ⎢ ⎢ ⎣ 𝐶 𝛼

|||𝐮 𝑓 ⋅ 𝐒 𝑓 ||||||𝐒 𝑓 ||| , max 
⎛ ⎜ ⎜ ⎝ 
|||𝐮 𝑓 ⋅ 𝐒 𝑓 ||||||𝐒 𝑓 |||

⎞ ⎟ ⎟ ⎠ 
⎤ ⎥ ⎥ ⎦ 𝐧 𝑓 (24)

Here, u f , S f and n f are the velocity vector interpolated at the

cell face, cell face vector and cell face normal, respectively. The

numeric constant, C 𝛼 , is a user defined parameter usually set in

the range 0 (the compressive velocity is inactive) to 2. Larger

values of C 𝛼 correspond to a sharper interface but higher spurious

currents. In our simulations we used 𝐶 𝛼 = 2 for all cases. 

6. Solve the energy Eq. (4) to get the temperature field. This equa-

tion was implemented in our method in a slightly different form,

as discussed in detail by Capobianchi et al. [42] that was proved

to be more stable, particularly for problems at large Marangoni

numbers. Recalling the definition of the thermal diffusivity, 𝛼𝑡ℎ =
𝜅∕ 𝜌𝑐 𝑝 , after some manipulations the energy equation can be writ-

ten as: 
𝐷𝑇 

𝐷𝑡 
= 𝛁 ⋅

(
𝛼𝑡ℎ 𝛁 𝑇 

)
+ 

1 
𝜌𝑐 𝑝 

𝛁 𝜅 ⋅ 𝛁 𝑇 − 𝛁 𝛼𝑡ℎ ⋅ 𝛁 𝑇 (25)
20 
The first term on the right hand side is treated implicitly, while

the gradients appearing on the other two terms are treated ex-

plicitly; 

7. Calculate the thermocapillary force, 𝐟 𝜎, t =
𝜎𝑇 ( 𝐈 − 𝐧 ( 𝜑 𝑘,𝑚𝑜𝑙 ) 𝐧 ( 𝜑 𝑘,𝑚𝑜𝑙 ) ) 𝛁 𝑇 |𝛁 𝛼𝑘 |; 

8. Solve for the viscoelastic model Eq. (6) ; 

9. Calculate of the elastic stress tensor 𝝉 by means of Eq. (8) ; 

10. Evaluate the divergence of the total stress tensor: 𝛁 ⋅ 𝚺 = 𝛁 ⋅
( 2 𝜂𝑠 𝐃 + 𝝉) . This term is treated into the code in the following

form 

𝛁 ⋅ 𝚺 = 𝛁 ⋅
((
𝜂𝑠 + 𝜂𝑝 

)
𝛁 𝐮 

)
− 𝛁 ⋅

(
𝜂𝑝 𝛁 𝐮 

)
+ 𝛁 𝐮 ⋅ 𝛁 𝜂𝑠 + 𝛁 ⋅ 𝝉 (26)

where all the terms on the right hand side are treated explicitly,

with the exception of the first term, which is treated implicitly.

Note the addition and subtraction of 𝛁 · ( 𝜂p 𝛁 u ). The presence of

this extra diffusive term serves to stabilise the solution of the

momentum equation; 

11. Solve the momentum Eq. (15) for a prefixed number of predictor

steps to get an initial value of the velocity field; 

12. Perform the PISO loop to calculate the pressure and the velocity

fields until momentum and mass conservation are both satisfied;

13. Check convergence criterion and go back to step 2 or end the

calculation. 

ppendix B. Grid refinement analysis 

The outcomes of a mesh-refinement study are described here. Fol-

owing common practice in the literature (see, e.g., Ling et al. [69] ),

n order to save computational time we performed the assessment in

D under the assumption that, for the considered category of problems,

he same level of grid refinement in the 3D space will lead to the same

evel of grid independence. In particular, the effect of the grid spacing

as assessed for three different mesh resolutions, namely M 1 , M 2 and

 3 (as indicated in Table B.1 ) considering both the Newtonian and vis-

oelastic configurations (adopting the Oldroyd-B model with De T = 3.75,

= 0.5) and setting the maximum Courant number at 𝐶 𝑜 max = 0 . 02 . The

ime step is already very restrictive, but this was deemed necessary to

uarantee acceptable droplet shapes (as discussed below). The results

ummarised in Table B.1 show the good convergence in terms of migra-

ion velocity and the relative difference between grids M 1 and M 3 for

ll cases considered. 

The effect of the time integration step has been investigated con-

idering a Newtonian and viscoelastic case adopting mesh M 2 . We ex-

cuted different simulations by considering four different values of the

aximum Courant number, namely, 𝐶 𝑜 max = 0 . 1 , 0 . 04 , 0 . 02 , 0 . 01 again

or both a Newtonian-Newtonian system and a viscoelastic-Newtonian

onfiguration using the Oldroyd-B constitutive equation to model the

ontinuous phase (considering the same parameters adopted for the

revious spatial refinement study). As pointed out previously, we ob-

erved a dependence of the droplet shape on the time step. In order

o quantify the magnitude of the deformation relative to the circular

hape, we define the droplet aspect ratio, AR d , as the ratio between the

roplet major and minor axes, D 1 and D 2 (unlike the case for the shear

ow discussed before, where the droplet assumes ellipsoidal shapes,

 Newtonian droplet migrating in a viscoelastic fluid can be affected

y loss of fore-and-aft symmetry, therefore we found advisable to de-

cribe the droplet deformation adopting different quantities), respec-

ively. Table B.2 shows the values of AR d and of the terminal droplet

elocity for the four Courant numbers considered. We notice that the

eparture from the reference circular shape ( 𝐴 𝑅 𝑑 = 1 ) decreases by de-

reasing the maximum time step allowable for the simulation. In partic-

lar, for 𝐶 𝑜 max = 0 . 1 the relative percentage deviation from the circular

hape is 6.4%, while reaching a minimum value of 0.8% for the smallest

o max . Additionally, we tested the effect of the grid spacing and noticed

hat by using a finer mesh, keeping the same maximum Courant number,

oes not have appreciable influence on the droplet shape. For complete-
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Table B.1 

Characteristics of the 2D meshes used for the mesh-independence assessment 

study. The results are shown in terms of velocity at t ’ = 40 for three different 

meshes and the velocity difference is evaluated relative to the case M 3 . 

M 1 M 2 M 3 

No. of cells per droplet diameter 37 56 84 

Grid spacing ( Δz = Δy ) 0.000268 0.000178 0.0001191 

Newtonian 

Velocity (mm/s) 2.296 2.290 2.286 

Relative velocity difference (magnitude) (%) 0.437 0.175 

Oldroyd-B ( 𝐷 𝑒 𝑇 = 3 . 75 , 𝑐 = 0 . 5 ) 
Velocity (mm/s) 2.146 2.113 2.085 

Relative velocity difference (magnitude) (%) 2.926 1.343 

FENE-CR ( 𝐷 𝑒 𝑇 = 30 , 𝑐 = 0 . 5 ) 
Velocity (mm/s) 1.699 1.655 1.626 

Relative velocity difference (magnitude) (%) 4.489 1.784 

Table B.2 

Effect of the time integration step on the droplet aspect ratio and terminal velocity. We consider a 

two-dimensional droplet for a Newtonian case and a viscoelastic case using the Oldroyd-B model. 

All the simulations have been carried out by employing mesh M 2 . The relative differences have 

been evaluated considering the results obtained for C o max = 0 . 01 as a reference. 

𝐶 𝑜 𝑀𝑎𝑥 = 0 . 1 𝐶 𝑜 𝑀𝑎𝑥 = 0 . 04 𝐶 𝑜 𝑀𝑎𝑥 = 0 . 02 𝐶 𝑜 𝑀𝑎𝑥 = 0 . 01 

Newtonian 

Droplet aspect ratio D a 0.936 0.973 0.986 0.992 

Relative aspect ratio difference (%) 5.60 1.90 0.60 

Terminal velocity (mm/s) 2.223 2.284 2.288 2.296 

Relative velocity difference (%) 3.18 0.52 0.35 

Viscoelastic 

Droplet aspect ratio D a 0.967 0.997 1.008 ∗ 1.014 ∗ 

Relative aspect ratio difference (%) 7.70 4.00 0.60 

Terminal velocity (mm/s) 2.040 2.079 2.113 2.132 

Relative velocity difference (%) 4.30 2.49 0.89 

∗ The prolate shape is consistent with the presence of the viscoelastic stresses that act to deform the droplet 

along the direction of the motion. The values in bold face reported in column " Co Max = 0.02" highlight the 

small relative percentage difference with the results obtained with a Co Max = 0.01. 
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ess, we did the same tests also for the viscoelastic configuration. The

esults indicate a good convergence both in terms of deformation and

he terminal velocity, when the time step is decreased (cf. Table B.1 ). 

In light of these results, we performed all subsequent three-

imensional simulations adopting a 3D equivalent of mesh M 2 and set-

ing 𝐶 𝑜 max = 0 . 02 , keeping in mind that the shapes we show might be

ffected by an uncertainty of the order of 1% or less. It is worth men-

ioning that the effect of the time step used to integrate Eq. (14) has

lso been investigated. In particular, we considered the configuration

esh M 2 and 𝐶 𝑜 max = 0 . 02 by changing systematically the number of

ub-cycles (in a number of 2, 5 and 10). No appreciable differences in

he shape were observed, providing evidence that the droplet shape was

nsensitive to the time step adopted for the integration of Eq. (14) . 
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