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A B S T R A C T

A new theory is formulated for the description of the conformation state of the polymer chains in free turbulent
shear flows of viscoelastic fluids. Using self-similarity arguments and new scaling relations for the turbulent
flux of conformation tensor we show the existence of minimum and maximum solvent dissipation reduction
asymptotes, and four different polymer deformation regimes. The similarities with the maximum drag reduction
asymptote of turbulent pipe flow is discussed and new scaling laws are obtained for all components of the mean
conformation tensor at each deformation regime. Analytical solutions for the self-similar transverse profiles
of the conformation tensor components are also obtained, providing the complete solution for the mean flow
problem at the far field. The analysis is developed for both planar jets and wakes and covers the two limits of
shear flows, with large and small velocity differences, respectively. Comparisons of the new theoretical results
with several direct numerical simulations employing the FENE-P rheological model show excellent agreement.
. Introduction

Turbulent shear flows in the absence of solid walls, such as free
urbulent jets and wakes, constitute a case of particular importance
or the study of fluid turbulence. These flows have been subject to
heoretical analyses since the early days of turbulence research (Prandtl
925; Tollmien 1926; Schlichting 1930; Görtler 1942) [1–4] and the
esulting theory has been documented in several textbooks of turbu-
ence (Hinze 1959; Townsend 1976; Tennekes and Lumley 1972; Pope
000) [5–8]. For incompressible flows of Newtonian fluids, the two-
imensional mean velocity and Reynolds stress components are the
ain objects of analysis and their downstream evolution is described by

caling laws obtained from self-similarity arguments and the assump-
ion that the spreading of the shear layers is slow i.e., the thin-shear
ayer approximation, invoked for high Reynolds number flows. The
orresponding forms of the transverse profiles are typically obtained
rom the analytical solution of the momentum equation coupled with
n eddy viscosity assumption.

However, when long chain polymer molecules are added to the
ewtonian solvent the resulting fluid is viscoelastic and a complete de-

cription of the mean field problem requires the solution of additional
ntities like the mean conformation tensor, describing the elongation
nd orientation of the polymer chains, and the turbulent polymer
tretching tensor associated with the flux of turbulent kinetic energy of
he flow to elastic energy of the chains (Guimarães et al. 2020, 2022)
9,10].

∗ Corresponding author.
E-mail address: mateus.carvalho@tecnico.ulisboa.pt (M.C. Guimarães).

Here we present a detailed theory for the conformation of the poly-
mer chains in free turbulent shear flows with long-chain dilute polymer
solutions. The theory is based on a similarity analysis of the equations
governing the evolution of each component of the conformation tensor,
which allows us to obtain several new results that provide a rich
description of the elongation and orientation of the polymer chains.
We show that the far field of high Weissenberg number turbulent
shear flows is composed of four distinct sub-regions corresponding to
different regimes of polymer deformation.

A summary of the four flow regions and polymer deformation
regimes is displayed at figure Fig. 1. There is the near-field region,
where either the flow is transitioning from laminar to turbulent or it
is not yet fully developed, and the far-field fully turbulent region of
interest in this analysis. In terms of viscoelastic effects on the flow
dynamics, there is a highly elastic region encompassing the near field
and the initial portion of the far field, and farther away, a low elasticity
region where viscoelastic effects are milder [10]. When we consider the
deformation of the polymer chains there is a highly-stretched and a
nearly-coiled regime. The highly-stretched regime can be split into two
sub-regimes, anisotropic (HSA) and nearly-isotropic (HSI), while the
nearly-coiled regime contains a nearly-isotropic sub-regime (NCI) and
the final region of decay (FD). This is a result of the decaying character
of the flow strain rates, which are responsible for the deformation of the
polymers. As will be demonstrated later, the normalized conformation
vailable online 8 November 2023
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Fig. 1. Schematic diagram showing the different flow regions, at the bottom, and the
corresponding polymer chain deformation regimes at the top. The diagram depicts the
particular case of a jet with a high inlet Weissenberg number and a very long domain
size in the streamwise direction, so that all different polymer deformation regimes are
present. The scale is arbitrary.

tensor can be nearly-isotropic at both highly-stretched and nearly-
coiled regimes because at the corresponding sub-regimes the stretching
of the polymer chains is imposed predominately by intermediate and
small scale fluctuating strains which are approximately isotropic.

The evolution of flow instabilities at the near-field region has been
studied in [11–14], and also in Guimarães et al. (2023) [15], whereas
the turbulent velocity and passive/active scalar statistics at the far-field
were studied in Guimarães et al. (2020, 2022, 2022c) [9,10,16]. At
the highly-stretched anisotropic regime (Fig. 1) the polymer structure
is described by the scaling laws obtained in Guimarães et al. (2020,
2022) [9,10], to be briefly discussed later, and here the focus of the
theory is on the three subsequent regimes.

In this work new scaling laws are obtained for each component and
for the trace of the conformation tensor at the different deformation
regimes. By complementing the governing equations with some eddy
viscosity calculations for unclosed Newtonian terms, together with a
dissipation law generalized for viscoelastic fluids and, by solving the
resulting self-similar ordinary differential equations we are able to
obtain the asymptotic solutions for the mean conformation tensor at
𝑥 → ∞, providing the complete solution of the mean field problem
at this asymptotic limit, i.e. at the final region of decay. Additionally,

e show the existence of minimum and maximum solvent dissipation
eduction asymptotes and their relations with the obtained scaling
aws. The similarities and differences to the maximum drag reduction
symptote of turbulent pipe and channel flows are also discussed.

All new theoretical results are validated by a large number of
ew DNS of spatially evolving turbulent planar jets and wakes em-
loying the Finitely Extensible Non-Linear Elastic constitutive model
losed with Peterlin’s approximation (FENE-P) that use computational
omains that are considerably larger than those used at Guimarães
t al. (2020, 2022) [9,10] and that span a set of rheological and flow
arameters that are also considerably larger than that presented before.

The governing equations and the numerical and physical parameters
f the DNS are detailed at Section 2. Budgets of conformation tensor are
iscussed at Section 3 while the minimum and maximum 𝑆𝐷𝑅 asymp-

totes and the resulting scaling for the turbulent polymer stretching
tensor are derived at Section 4. Sections 5 and 6 present the self-
similarity analysis of the equations that dictate the conformation state
of the polymer chains, for turbulent planar wakes and jets, respectively,
and the asymptotic solutions for the transverse profiles are shown in
Section 7. A summary of the main results and conclusions are presented
in Section 8.
2

𝜈

To enhance the manuscript readability, several mathematical details
are left to appendix sections, and Section 6, devoted to planar jets, only
reports the results instead of discussing them in detail. The main ideas
of the theory can be learned from Sections 4 and 5, the latter discussing
in detail the wake flow, where we apply the framework summarized
below.

1.1. General framework of the theory

The first steps are the choice of a rheological model that provides an
evolution equation for the conformation tensor 𝑪 , and the decomposi-
tion of the conformation tensor into mean and fluctuating components,
𝑪 and 𝑪 ′, respectively. Then, physical intuition is used to obtain scaling
relations for each relevant term of the evolution equation of 𝑪 at the
different polymer deformation regimes. After normalization of each
term of the equation of 𝑪 , using the corresponding scaling relations,
the distinguished limits of the equation are calculated, resulting in
simplified equations that are the leading-order approximations of the
general equation at different asymptotic regimes. Budgets of conforma-
tion tensor are then used to verify the accuracy of the approximations.
Finally, mathematical inspection is used to analyse the possibility of
self-similarity solutions at each regime.

Here we adopt the FENE-P rheological model and the classical
Reynolds decomposition, i.e. 𝑪 = 𝑪 +𝑪 ′, where as usual the arithmetic

ean is used to evaluate 𝑪 from 𝑪 . However, the general framework
summarized above, and elaborated at Section 4 and Section 5, can be
applied to other rheological models, to flows with non-uniform polymer
concentrations, or can be used with alternative turbulent decomposi-
tions of 𝑪 , such as the geometric decomposition and averaging of 𝑪 or
he log-Euclidean averaging proposed recently by Hameduddin et al.
2018) [17] and Hameduddin and Zaki (2019) [18]. In Appendix E
e provide comparisons between the different definitions of 𝑪, i.e.
rithmetic and log-Euclidean means, and show that our scaling laws are
lso able to describe 𝑪 when the log-Euclidean mean is used instead of

the classical arithmetic mean.
A crucial assumption of the theory is the scaling law for the total

dissipation rate of turbulent kinetic energy, and their asymptotic limits
at high and low elasticity, discussed in detail in Section 4, the results
of which are applied in the analysis of Section 5.

2. Direct numerical simulations

2.1. Governing equations and numerical method

The rheology of the polymer solutions is characterized by the FENE-
P model developed by Bird et al. (1980) [19], but in a slightly modified
form due to Sureshkumar et al. (1997) [20]. The momentum equation
is
𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇𝒖 = −1
𝜌
∇𝑝 + 𝜈[𝑠]∇2𝒖 + 1

𝜌
∇ ⋅ 𝝈[𝑝], (1)

where 𝒖 is the velocity vector and 𝑝 is the pressure. The polymer stress
tensor is

𝝈[𝑝] =
𝜌𝜈[𝑝]

𝜏𝑝
[𝑓 (𝐶𝑘𝑘)𝑪 − 𝑰], (2)

and the equation for the evolution of the conformation tensor 𝑪 is given
by
𝜕𝑪
𝜕𝑡

+ 𝒖 ⋅ ∇𝑪 = ∇𝒖𝑇 ⋅ 𝑪 + 𝑪 ⋅ ∇𝒖 − 1
𝜏𝑝

[𝑓 (𝐶𝑘𝑘)𝑪 − 𝑰]. (3)

The Peterlin function used in the present work is given by 𝑓 (𝐶𝑘𝑘) ≡
(𝐿2−3)∕(𝐿2−𝐶𝑘𝑘) and the fluid incompressibility condition is imposed
by the continuity equation

∇ ⋅ 𝒖 = 0. (4)

The polymer and solvent zero-shear kinematic viscosities are 𝜈[𝑝] and
[𝑠]
, respectively, 𝜏𝑝 is the polymer relaxation time, 𝐿 is the maximum
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Table 1
Physical and computational parameters of the simulations. For wakes, consider 𝐿x∕𝑑 × 𝐿y∕𝑑 × 𝐿z∕𝑑 instead.

Flow type 𝑊 𝑖 𝑅𝑒 1 − 𝛽 𝐿 𝑅𝑒𝜆
𝛥𝑥
𝜂

𝑛x × 𝑛y × 𝑛z
𝐿x
ℎ

×
𝐿y

ℎ
×
𝐿z
ℎ

Non-dimensional
inlet noise

0.05 3500 0.20 100 162 1.9 1152 × 1024 × 128 40.5 × 36 × 4.5 0.1
0.15 3500 0.20 100 145 2.0 1152 × 1024 × 128 40.5 × 36 × 4.5 0.1
0.30 3500 0.20 100 146 2.0 1152 × 1152 × 144 40 × 40 × 5 0.1
0.60 3500 0.20 100 153 1.9 1152 × 1152 × 144 40 × 40 × 5 0.1
0.30 2500 0.20 100 146 2.0 960 × 768 × 88 50 × 40 × 4.6 0.15
0.30 2500 0.02 100 138 2.0 960 × 768 × 88 50 × 40 × 4.6 0.15
0.50 2500 0.02 100 150 2.0 960 × 768 × 88 50 × 40 × 4.6 0.15
0.30 1500 0.20 100 104 1.8 704 × 576 × 64 48.9 × 40 × 4.5 0.15
0.006 2000 0.20 100 125 1.7 896 × 768 × 96 42 × 36 × 4.5 0.15
2 3500 0.02 100 205 2.5 576 × 576 × 128 20 × 20 × 4.5 0.15
2 3500 0.20 100 260 2.5 576 × 576 × 128 20 × 20 × 4.5 0.15
3 3500 0.01 100 185 2.6 576 × 576 × 128 20 × 20 × 4.5 0.15
3 3500 0.02 100 208 2.4 576 × 576 × 128 20 × 20 × 4.5 0.15

Jet 3 3500 0.10 100 300 2.4 576 × 576 × 128 20 × 20 × 4.5 0.15
3 3500 0.20 100 311 2.3 576 × 576 × 128 20 × 20 × 4.5 0.15
3 3500 0.02 200 316 2.4 576 × 576 × 128 20 × 20 × 4.5 0.15
4 3500 0.01 100 188 2.6 576 × 576 × 128 20 × 20 × 4.5 0.15
4 3500 0.02 100 219 2.4 576 × 576 × 128 20 × 20 × 4.5 0.15
4 3500 0.20 100 350 2.4 576 × 576 × 128 20 × 20 × 4.5 0.15
4 3500 0.02 200 281 2.8 576 × 576 × 128 20 × 20 × 4.5 0.15
5 3500 0.02 100 222 2.4 576 × 576 × 128 20 × 20 × 4.5 0.15
4 2500 0.01 100 171 2.0 960 × 768 × 88 50 × 40 × 4.6 0.15
4 2500 0.02 100 181 2.0 960 × 768 × 88 50 × 40 × 4.6 0.15
4 2500 0.04 100 172 1.9 960 × 768 × 88 50 × 40 × 4.6 0.15
4 2500 0.06 100 212 1.9 960 × 768 × 88 50 × 40 × 4.6 0.15
5 2500 0.02 200 260 1.9 1408 × 1152 × 64 97.8 × 80 × 4.6 0.15

0.0001 1500 0.20 100 60 3.4 2048 × 192 × 64 160 × 15 × 5 0.15
0.0003 1500 0.20 100 61 3.4 1792 × 256 × 58 140 × 15 × 4.53 0.1
0.005 4000 0.20 100 100 3.1 3456 × 576 × 144 120 × 20 × 5 0.1
0.05 4000 0.20 100 114 2.8 3456 × 576 × 144 120 × 20 × 5 0.1
0.15 4000 0.20 100 115 2.8 3456 × 576 × 144 120 × 20 × 5 0.1
0.30 4000 0.20 100 115 2.8 3456 × 576 × 144 120 × 20 × 5 0.1
0.30 4000 0.02 100 114 2.8 3456 × 576 × 144 120 × 20 × 5 0.1

Wake 0.15 3000 0.20 100 102 3.2 2304 × 384 × 96 120 × 20 × 5 0.1
0.15 1500 0.20 100 70 3.0 1536 × 256 × 64 120 × 20 × 5 0.1
3 2000 0.02 200 107 1.6 4608 × 384 × 106 198 × 16.5 × 4.55 0.1
5 2000 0.02 100 102 1.4 4608 × 384 × 106 198 × 16.5 × 4.55 0.1
4 4000 0.01 100 166 2.6 2560 × 512 × 144 80 × 16 × 4.5 0.1
4 4000 0.02 100 204 2.5 2560 × 512 × 144 80 × 16 × 4.5 0.1
4 4000 0.04 100 217 2.4 2560 × 512 × 144 80 × 16 × 4.5 0.1
4 4000 0.06 100 211 2.3 2560 × 512 × 144 80 × 16 × 4.5 0.1
w
c
0

p
𝑅
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e
c
b

v
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length of the polymer dumbbell model normalized by its equilibrium
size and 𝜌 is the density of the fluid.

The momentum equation is solved with a highly accurate finite
ifferences code that uses a combination of pseudo-spectral and 6th-
rder Compact schemes [21,22]. An explicit 3rd-order Runge–Kutta

scheme is used for time-advancement [23] while the pressure–velocity
coupling is treated with a fractional step method [24]. Inflow and non-
reflective outflow boundary conditions are used at the two boundaries
facing the flow direction. The equation for the conformation tensor is
solved with the scheme proposed by Vaithianathan et al. (2006) [25],
which is based on the shock-capturing method of Kurganov and Tadmor
(2000) [26] and makes no use of any artificial numerical diffusion. This
method can give first or second order accuracy for the advection term
of the equation for 𝑪 depending on the values of its eigenvalues. For
the simulations presented here, it has been verified that second order
accuracy is obtained for more than 98% of the points of the domain at
all time steps. More details about the employed numerical methods and
validation of our code can be found at Guimarães et al. (2020) [9].

2.2. Physical and computational parameters

A summary of the physical and numerical parameters of the DNS
are given at Table 1. For planar jets with issuing velocity 𝑈𝐽 and slot
width ℎ, the inlet Weissenberg number is 𝑊 𝑖 = 𝜏𝑝𝑈𝐽∕ℎ and the inlet

eynolds number is 𝑅𝑒 = 𝑈𝐽ℎ∕𝜈[𝑠]. For planar wakes with free stream
3

elocity 𝑈∞, inlet velocity deficit 𝛥𝑈0, inlet momentum thickness 𝜃 and
solid body transverse length scale 𝑑, the inlet Weissenberg number is
𝑊 𝑖 = 𝜏𝑝𝛥𝑈0∕𝑑 and the inlet Reynolds number is 𝑅𝑒 = 𝛥𝑈0𝑑∕𝜈[𝑠]. The
ratio of zero shear rate viscosities is

𝛽 = 𝜈[𝑠]

𝜈[𝑠] + 𝜈[𝑝]
. (5)

For dilute solutions (𝛽 close to one) the polymer concentration is
approximately proportional to 1 − 𝛽. The number of grid points of the
uniform computational mesh in each spatial direction is 𝑛x, 𝑛y and 𝑛z,

ith corresponding domain sizes given by 𝐿x, 𝐿y and 𝐿z. Here we
onsider long polymer chains (𝐿 ≫ 1), semi-dilute (1 − 𝛽 = 0.20 and
.10) and dilute (1 − 𝛽 ≲ 0.06) polymer solutions.

A total of 41 DNS were performed, with rheological and flow
arameters varying in the ranges given by 0.0001 ≤ 𝑊 𝑖 ≤ 5, 1500 ≤
𝑒 ≤ 4000, 0.01 ≤ 1 − 𝛽 ≤ 0.20 and 100 ≤ 𝐿 ≤ 200. This large
umber of simulations allows us to validate the theory over a wide
ange of conditions. Additionally, in Appendix C we provide analytical
xpressions defining the domain of validity of each scaling law. They
an be useful e.g. to assess the validity of each law when they have to
e used in conditions that are outside the range of our simulations.

The local Reynolds number based on the root-mean-squared (rms)

elocity
√

𝑢′2 and Taylor micro-scale 𝜆 is 𝑅𝑒𝜆 =
√

𝑢′2𝜆∕𝜈[𝑠], where
𝜆 = (15𝜈[𝑠]𝑢′2∕𝜀[𝑠])1∕2 and 𝜀[𝑠] = 2𝜈[𝑠]𝑆′

𝑖𝑗𝑆
′
𝑖𝑗 is the solvent mean viscous

issipation rate of turbulent kinetic energy (𝑆′
𝑖𝑗 = (𝜕𝑢′𝑖∕𝜕𝑥𝑗 + 𝜕𝑢

′
𝑗∕𝜕𝑥𝑖)∕2

is the fluctuating rate of strain tensor). The mesh resolution is quan-
tified by the ratio between the grid spacing 𝛥𝑥 and the Kolmogorov
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𝑢

length scale 𝜂 = (𝜈[𝑠]3∕𝜀[𝑠])1∕4. In Table 1 we show values of 𝑅𝑒𝜆 and
𝛥𝑥∕𝜂 that are characteristic of the far field region of the flow.

The details of the velocity and conformation field prescribed at
the inlet boundary are described in detail in Guimarães et al. (2020;
2022) [9,10], for jets and wakes, respectively. The inlet velocity is
based on a hyperbolic-tangent mean profile and a fluctuating compo-
nent with a broadband white noise with a spectrum characteristic of
isotropic turbulence. Here we use similar values for the inlet velocity
parameters. For jets, the inverse of the normalized momentum thick-
ness is ℎ∕𝜃 = 30 and the Strouhal number associated with the inlet noise
spectrum peak is 𝑆𝑡 = 𝑓in𝜃∕𝑈conv = 0.03, where the convection velocity
at the inlet is 𝑈conv = (𝑈𝐽 +𝑈∞)∕2, with 𝑈∞ here beeing a small jet co-
flow velocity, the peak frequency of the inlet noise is 𝑓in = 𝑈conv𝜅𝑝∕(2𝜋)
and 𝜅𝑝 is the peak wave number. For wakes, the velocity gradient
parameter is 𝑑∕𝛷 = 60 while 𝑆𝑡 = 𝑓in𝛷∕𝑈conv = 0.11. The maximum
amplitude values of the inlet noise, normalized by the mean velocity
𝑈𝐽 or 𝑈∞ of each simulation, are also indicated at Table 1. For the
inlet conformation tensor we use the analytical solutions of the laminar
Couette flow of FENE-P fluids derived by Pinho et al. (2008) [27],
considering the local value of the velocity gradient at each grid point.

For turbulent jets we define the flow half width 𝛿(𝑥) as in Guimarães
et al. (2020) [9] i.e. based on an integral of the normalized mean
velocity profile: 𝛿(𝑥) = ∫ ∞

0 [�̄�(𝑥, 𝑦)∕𝑈𝑐 (𝑥)]𝑑𝑦. For wakes we adopt the
classical definition, that is 𝛥�̄�(𝑥, 𝑦 = 𝛿(𝑥)) = 𝛥𝑈 (𝑥)∕2, where the local
mean velocity deficit is 𝛥�̄�(𝑥, 𝑦) = 𝑈∞ − �̄�(𝑥, 𝑦) and 𝛥𝑈 (𝑥) = 𝛥�̄�(𝑥, 𝑦 = 0).

The scaling laws for the jet centreline mean velocity 𝑈𝑐 (𝑥) and 𝛿(𝑥)
are given by
[

𝑈𝑐 (𝑥)
𝑈𝐽

]−2
= 𝐴𝑈𝑐

(

𝑥 − 𝑥0
ℎ

)

,
𝛿(𝑥)
ℎ

= 𝐴𝛿

(

𝑥 − 𝑥0
ℎ

)

(6a,b)

while the scaling laws for the wake centreline mean velocity deficit
𝛥𝑈 (𝑥) = 𝑈∞ − �̄�(𝑥, 𝑦 = 0) and 𝛿(𝑥) are
[

𝛥𝑈 (𝑥)
𝑈∞

]−2
= 𝐴𝛥𝑈

(

𝑥 − 𝑥0
𝜃

)

,
[

𝛿(𝑥)
𝜃

]2
= 𝐴𝛿2

(

𝑥 − 𝑥0
𝜃

)

(7a,b)

where 𝑥0 is the virtual origin. The scaling law coefficients 𝐴𝛿 , 𝐴𝛿2 , 𝐴𝑈𝑐
and 𝐴𝛥𝑈 are typically obtained from an empirical fit of experimental
and numerical data, and presently there is no theory that is able to
calculate them from first principles, even for Newtonian flows. The
curve-fitted values for the scaling laws coefficients for different flows
follow the trends already reported and discussed in detail at Guimarães
et al. (2020, 2022) [9,10].

To illustrate the simulations we show two-dimensional contours of
instantaneous vorticity magnitude and polymer chain extension for tur-
bulent jets and wakes, in Figs. 2 and 3, respectively. The flow structures
have already been studied in detail in Guimarães et al. (2020, 2022) [9,
10]; the same trends have been observed in the new simulations
performed here, using much bigger computational domains.

3. Budgets of mean conformation tensor

Budgets of the mean conformation tensor components are useful
for identifying the physical mechanisms dictating the elongation and
orientation of the polymer chains for cases involving different flow
conditions and their description will be the focus of this section. Adopt-
ing the usual Reynolds decomposition and averaging, the equation
governing the evolution of each non-zero component of the mean
conformation tensor 𝐶𝑖𝑗 for a statistically steady flow is

̄𝑘
𝜕𝐶𝑖𝑗
𝜕𝑥𝑘

=
(

𝐶𝑗𝑘
𝜕�̄�𝑖
𝜕𝑥𝑘

+ 𝐶𝑖𝑘
𝜕�̄�𝑗
𝜕𝑥𝑘

)

− 𝑢′𝑘
𝜕𝑐′𝑖𝑗
𝜕𝑥𝑘

+
(

𝑐′𝑘𝑗
𝜕𝑢′𝑖
𝜕𝑥𝑘

+ 𝑐′𝑖𝑘
𝜕𝑢′𝑗
𝜕𝑥𝑘

)

−
𝜎𝑖𝑗

[𝑝]

𝜌𝜈[𝑝]
,

(8)

where an over-bar stands for the Reynolds average and a prime denotes
the fluctuations with respect to the mean value (e.g. the instantaneous
4

Fig. 2. Two dimensional contours of instantaneous vorticity modulus (a) and trace of
conformation tensor (b) for a planar jet with 𝑊 𝑖 = 0.5, 𝑅𝑒 = 2500 and 1− 𝛽 = 0.02. For
clarity, the colourmap range is changed for every 10 units increment in 𝑥∕ℎ. Notice
that the figures do not show the total extent of the domain in the vertical direction.

conformation tensor is 𝐶𝑖𝑗 = 𝐶𝑖𝑗 + 𝑐′𝑖𝑗). The mean polymer stress is
calculated from its definition i.e. 𝜎𝑖𝑗

[𝑝] = 𝜌𝜈[𝑝](𝑓 (𝐶𝑘𝑘)𝐶𝑖𝑗 − 𝛿𝑖𝑗 )∕𝜏𝑝. The
mean advection of 𝐶𝑖𝑗 is given by �̄�𝑘𝜕𝐶𝑖𝑗∕𝜕𝑥𝑘, mean polymer chain
stretching is 𝐶𝑗𝑘𝜕�̄�𝑖∕𝜕𝑥𝑘+𝐶𝑖𝑘𝜕�̄�𝑗∕𝜕𝑥𝑘 while turbulent advection is given
by 𝑢′𝑘𝜕𝑐

′
𝑖𝑗𝜕𝑥𝑘 and 𝑐′𝑘𝑗𝜕𝑢

′
𝑖∕𝜕𝑥𝑘 + 𝑐′𝑖𝑘𝜕𝑢

′
𝑗∕𝜕𝑥𝑘 is the turbulent stretching

term. The mean chain relaxation term is 𝜎𝑖𝑗
[𝑝]∕(𝜌𝜈[𝑝]). The turbulent

stretching tensor is very important and its trace appears in the transport
equation for the trace 𝐶𝑖𝑖 and also for the turbulent kinetic energy 𝜅, but
with opposite signs at each equation, so that it represents flux between
the turbulent kinetic energy of the flow and mean elastic energy of the
polymers (which is proportional to 𝐶𝑖𝑖).

The analysis of the four different regimes summarized in Fig. 1 is
supported by the budgets of 𝐶xy and 𝐶xx, presented here for turbulent
wakes. The budgets of the remaining 𝐶𝑖𝑗 components are shown in
Appendix A. The results for jets are qualitatively similar, and are also
shown in Appendix A.

Considering first the 𝐶xy component at the highly-stretched anisotr-
opic regime (HSA), most terms of the equation are important except for
𝐶xx𝜕�̄�∕𝜕𝑥 and −�̄�𝜕𝐶xy∕𝜕𝑦, which are negligible everywhere (Fig. 4a).
The 𝐶xy component has opposite signs for jets and wakes because
𝜕�̄�∕𝜕𝑦 is negative for jets and positive for wakes (for 𝑦∕𝛿 > 0) and
so the sign is reversed for jets. Nonetheless, the physical mechanism
is the same: increasing of ±𝐶xy is caused predominantly by mean
stretching 𝐶yy𝜕�̄�∕𝜕𝑦, while mean flow advection −�̄�𝜕𝐶xy∕𝜕𝑥 gives a
small contribution at 0 ≲ 𝑦∕𝛿 ≲ 1.5. Mean relaxation −𝜎xy

[𝑝]∕(𝜌𝜈[𝑝]) and
turbulent stretching 𝑐′𝑘y𝜕𝑢

′∕𝜕𝑥𝑘+𝑐′x𝑘𝜕𝑣
′∕𝜕𝑥𝑘 are responsible for dissipat-

ing ±𝐶xy. The turbulent advection term 𝑢′𝑘𝜕𝑐
′
xy∕𝜕𝑥𝑘 is the only term that

changes sign, advecting ±𝐶xy from the shear layer region (𝑦∕𝛿 ≈ 0.8),
where ±𝐶xy is maximum, to regions nearby the jet/wake irrotational
boundary. For the remaining deformation regimes the dynamics of 𝐶xy
becomes progressively simpler. At the highly-stretched nearly-isotropic
regime the turbulent advection term 𝑢′𝑘𝜕𝑐

′
xy∕𝜕𝑥𝑘 becomes negligibly

small (Fig. 4b). For the nearly-coiled regimes there is a tendency for
approaching a state where a balance between mean stretching 𝐶yy𝜕�̄�∕𝜕𝑦
and relaxation −𝜎xy

[𝑝]∕(𝜌𝜈[𝑝]) is observed (Fig. 4c,d).
The budgets for the normal 𝐶𝑖𝑗 components at the highly-stretched

anisotropic regime are qualitatively similar to that for 𝐶xy described
above (Fig. 4e). The main difference is that stretching by the mean ve-
locity gradient 𝐶 𝜕�̄� ∕𝜕𝑥 +𝐶 𝜕�̄� ∕𝜕𝑥 is zero for the 𝑖𝑗 = zz component
𝑗𝑘 𝑖 𝑘 𝑖𝑘 𝑗 𝑘
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Fig. 3. Two dimensional contours of instantaneous vorticity modulus (a) and trace of conformation tensor (b) for planar wakes with 𝑊 𝑖 = 0.3, 𝑅𝑒 = 4000 and 1 − 𝛽 = 0.02. For
clarity, the colourmap range is changed for every 24 units increment in 𝑥∕𝑑. Notice that the figures do not show the total extent of the domain in the vertical direction.
Fig. 4. Budgets of 𝐶xy (a-d) and 𝐶xx (e-h) for wakes at different regimes of polymer chain deformation: (a,e) highly-stretched anisotropic, (b,f) highly-stretched nearly-isotropic,
(c,g) nearly-coiled nearly-isotropic and (d,h) final region of decay. All quantities have been made non-dimensional using 𝑈∞ and 𝑑. Flow conditions are: (a) and (e) 𝑅𝑒 = 2000,
𝑊 𝑖 = 4, 1 − 𝛽 = 0.10, 𝐿 = 100, 𝑥∕𝑑 = 70; (b) and (f) 𝑅𝑒 = 2000, 𝑊 𝑖 = 3, 1 − 𝛽 = 0.02, 𝐿 = 200, 𝑥∕𝑑 = 180; (c) and (g) 𝑅𝑒 = 4000, 𝑊 𝑖 = 0.05, 1 − 𝛽 = 0.20, 𝐿 = 100, 𝑥∕𝑑 = 110; (d) and
(h) 𝑅𝑒 = 1500, 𝑊 𝑖 = 0.0001, 1 − 𝛽 = 0.20, 𝐿 = 100, 𝑥∕𝑑 = 110.
(due the symmetry of the mean flow) and is relatively small for the
𝑖𝑗 = yy component, giving an important contribution predominantly
for 𝐶xx. This is a consequence of the slender character of the shear
layer (small spreading rates) and results in 𝐶xx values that are larger
than 𝐶yy and 𝐶zz at the highly-stretched anisotropic regime. How much
larger depends on flow and rheological parameters, but for the cases
considered here it can be up to one order of magnitude larger—this
was also reported in our previous works [9,10]. For the two nearly-
isotropic regimes, highly stretched (HSI) and nearly-coiled (NCI), the
flow attains a state where turbulent stretching 𝑐′𝑘𝑗𝜕𝑢

′
𝑖∕𝜕𝑥𝑘 + 𝑐

′
𝑖𝑘𝜕𝑢

′
𝑗∕𝜕𝑥𝑘

is approximately balanced by mean relaxation 𝜎𝑖𝑗
[𝑝]∕(𝜌𝜈[𝑝]) (Fig. 4f,g),

as in the case of homogeneous isotropic turbulence, and indeed this
explains the nearly isotropic centreline 𝐶𝑖𝑗 values observed for these
flow regimes. This is in contrast with the behaviour described above
5

for 𝐶xy, but at these flow regimes the normal components of 𝐶𝑖𝑗 are
much larger than the shear component.

Finally, at the final region of decay (FD) the mean stretching terms
in the equations for 𝐶xx and 𝐶yy, i.e. 2𝐶xx𝜕�̄�∕𝜕𝑥 and 2𝐶yy𝜕�̄�∕𝜕𝑦 grow
to become the dominant terms of the equations while the turbulent
stretching terms become negligibly small (Fig. 4h). Interestingly, these
mean stretching terms for 𝐶xx and 𝐶yy have opposite signs due to the
incompressibility condition 𝜕�̄�∕𝜕𝑥 = −𝜕�̄�∕𝜕𝑦 and the nearly-coiled state
of the polymer chains (𝐶xx ≈ 𝐶yy ≈ 1) so that they cancel out when
the 𝑖𝑗 indexes are contracted to obtain the equation for the trace 𝐶𝑖𝑖,
meaning that the very small elongations at the final region of decay are
dictated purely by the fluctuating strain rates as in isotropic turbulence.
The budget of the trace 𝐶𝑖𝑖 is similar to the budget of 𝐶zz, shown in
Appendix A.
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4. Maximum and minimum 𝑺𝑫𝑹 asymptotes and the scaling of
the turbulent polymer stretching tensor

Here we show the existence of maximum and minimum 𝑆𝐷𝑅
asymptotes and develop expressions for the scaling of the turbulent
stretching term of the 𝐶𝑖𝑗 equation (normal components and trace) that
will be crucial in the derivation of the scaling laws. These expressions
will make use of the following scaling for the total (solvent plus
polymer) dissipation rate of turbulent kinetic energy

𝜀[𝑝] + 𝜀[𝑠] ∼ 𝜅3∕2

𝛿
∼ 𝑢′3

𝛿
, (9)

here 𝜅 = (𝑢′2 + 𝑣′2 + 𝑤′2)∕2 and 𝑢′ ∼
√

𝜅 is the turbulent velocity
scale. This hypothesis is similar to the classical dissipation law for
Newtonian fluids but the total dissipation appears in place of the
solvent dissipation. It has already been observed for homogeneous and
isotropic turbulence of viscoelastic FENE-P fluids [28,29] and can be
very useful to describe free shear layers too, as will be demonstrated
later.

This extended dissipation law will be used at both the highly-
stretched and nearly-coiled regimes of polymer deformation. The tur-
bulent velocity scale 𝑢′ is different for jets and wakes and so the final
forms of the 𝑐′𝑖𝑗𝜕𝑢

′
𝑖∕𝜕𝑥𝑗 scaling for each flow configuration will be

presented only later at Sections 5 and 6.
The highly-stretched anisotropic and nearly-isotropic sub-regimes

are dealt with at Section 4.1 whereas the nearly-coiled regimes, nearly-
isotropic and final region of decay, are considered in Section 4.2. In
fact, the maximum and minimum 𝑆𝐷𝑅 asymptotes appear predomi-
nantly at the highly-stretched anisotropic and final region of decay,
respectively, but the resulting scaling relations for the turbulent stretch-
ing tensor are valid also for the other sub-regimes (as shown at later
sections).

We expect that the expressions shown in this section are general and
can be applied to other turbulent flow configurations such as free shear
layers in the axisymmetric configuration, decaying turbulence behind a
grid and possibly some region of a flat plate boundary layer, provided
adequate turbulent velocity and length scales are specified. They can
also be useful in the derivation of RANS and LES closure models for
the turbulent polymer stretching term, as any closure equation should
at least capture the correct scaling behaviour at the limiting cases of
high and low elasticity. Finally, we note that no particular rheological
model is adopted in the derivation of the minimum and maximum 𝑆𝐷𝑅
asymptotes.

4.1. Highly-stretched regimes

In this regime we use the following hypothesis

𝜀[𝑝] + 𝜀[𝑠] ∼ 𝜀[𝑝], (10)

which states that the turbulent kinetic energy of the flow in the
highly elastic regime, where the polymer chains are very stretched,
is dissipated mainly by the polymers so that the total dissipation is
proportional to 𝜀[𝑝]. When the hypothesis is introduced in the definition
of 𝑆𝐷𝑅, which is given by

𝑆𝐷𝑅 = 𝜀[𝑝]

𝜀[𝑝] + 𝜀[𝑠]
, (11)

e obtain the following scaling law

𝐷𝑅 = 𝐴𝑆𝐷𝑅, (12)

here a scaling factor 𝐴𝑆𝐷𝑅 close to one has been introduced. Eq. (12)
ndicates that in the highly elastic regime 𝑆𝐷𝑅 is a constant indepen-
ent of 𝑥, and possibly also independent of the inlet and rheological
arameters 𝑊 𝑖, 𝑅𝑒, 1 − 𝛽 and 𝐿, if the constant 𝐴𝑆𝐷𝑅 is universal. To

validate this result, the streamwise evolution of 𝑆𝐷𝑅 is shown at Fig. 5
for turbulent jets and wakes with different combinations of inlet and
6

Fig. 5. Streamwise evolution of max[|𝜀[𝑝]|∕(𝜀[𝑠] + |𝜀[𝑝]|)] at highly elastic regime for jets
(a) and wakes (b), showing the maximum 𝑆𝐷𝑅 asymptote.

rheological parameters, but always with 𝑊 𝑖 ≥ 3, i.e. flows with high
elasticity. After the initial transition region of the flow 𝑆𝐷𝑅 attains a
plateau, confirming that 𝑆𝐷𝑅 is independent of 𝑥 at the high elasticity
portion of the far field, as predicted by Eq. (12). For large 𝑅𝑒, the
value of the plateau is approximately independent of 𝑅𝑒, 𝑊 𝑖 and 𝐿.
An initial increase in the polymer concentration parameter 1 − 𝛽 from
0.01 to 0.02 also increases the plateau value of 𝑆𝐷𝑅, however from
that point onwards it is clear that no more solvent dissipation reduction
can be obtained from an increase in the polymer concentration and
the flow has reached an asymptotic state where viscoelastic effects
have saturated. 𝑆𝐷𝑅 becomes invariant to 1 − 𝛽 in this asymptotic
regime. The value of this maximum 𝑆𝐷𝑅 asymptote is given by 𝐴𝑆𝐷𝑅 =
0.78 ± 0.03, for both jets and wakes. The wakes with 𝑅𝑒 = 2000 show
values of 𝑆𝐷𝑅 that are smaller than the maximum 𝑆𝐷𝑅 asymptote,
and the values of 𝐴𝑆𝐷𝑅 for different flow conditions are more scattered,
indicating that for these cases 𝑅𝑒 is not sufficiently high for 𝐴𝑆𝐷𝑅 to be
universal. Nevertheless, 𝐴𝑆𝐷𝑅 is always independent of 𝑥 at the high
elasticity region, even for these cases with a lower 𝑅𝑒.

The features of the maximum solvent dissipation reduction asymp-
tote discussed above are very similar to those of the maximum drag
reduction asymptote of turbulent pipe and channel flows, suggesting
that the fundamental explanation for the existence of these asymptotes
does not involve the presence of solid boundaries.

When the inlet 𝑊 𝑖 or local Deborah number 𝐷𝑒 (= 𝜏𝑝𝑈𝑐∕𝛿 for jets
nd 𝜏𝑝𝛥𝑈∕𝛿 for wakes) are not sufficiently high, the maximum 𝑆𝐷𝑅
symptote is not observed, and the value of 𝑆𝐷𝑅 will be in the range
etween the maximum and minimum asymptotes. The minimum 𝑆𝐷𝑅
symptote, discussed in the next section, is observed when the inlet
𝑖 is not high enough to stretch the polymers significantly and the

olymers will be in the nearly-coiled regime.
Combining Eq. (10) with the extended dissipation law (9) leads

o 𝜀[𝑝] ∼ 𝑢′3∕𝛿. The scaling of the turbulent polymer stretching term
s obtained from a scaling of 𝜀[𝑝] that is based on its definition i.e.
onsidering the relation given by 𝑓 (𝑐𝑛𝑛 + 3)𝑐′𝑖𝑘𝜕𝑢

′
𝑖∕𝜕𝑥𝑘 ∼ 𝜏𝑝𝜀[𝑝]∕𝜈[𝑝],

where 𝑐𝑖𝑖 = max|𝐶𝑖𝑖 − 3| so that 𝑓 (max|𝐶𝑖𝑖|) = 𝑓 (𝑐𝑛𝑛 +3) i.e., henceforth
e use 𝑐𝑖𝑗 (𝑥) (lower case without the fluctuation exponent) to denote

haracteristic values of the conformation tensor. Notice that we are
sing the same definition of the Peterlin function that has been adopted
or our DNS computations. Combining these expressions we obtain
he scaling of the turbulent stretching term at the highly-stretched
egimes:

𝑐′𝑖𝑗
𝜕𝑢′𝑖 ∼

𝜏𝑝𝑢′3 . (13)

𝜕𝑥𝑗 𝜈[𝑝]𝑓 (𝑐𝑛𝑛 + 3)𝛿
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4.2. Nearly-coiled regimes

At the nearly coiled regimes the local Deborah number 𝐷𝑒(𝑥) is low,
which leads us to propose the following scaling hypothesis for the total
(solvent plus polymer) dissipation rate

2𝜈[𝑠]𝑺′ ∶ 𝑺′ + 𝝈′[𝑝] ∶ ∇𝒖′
𝜌

∼ 2(𝜈[𝑠] + 𝜈[𝑝])𝑺′ ∶ 𝑺′. (14)

he hypothesis states that for low 𝐷𝑒(𝑥) elasticity plays a weaker
ole on the averaged flow dynamics and energy cascade mechanism,
erely introducing an extra dissipation of turbulent kinetic energy with
nearly (pseudo) viscous character, and a Newtonian behaviour is

ecovered with the total kinematic viscosity 𝜈[𝑠] + 𝜈[𝑝] [28,29]. Using
the definitions of 𝜀[𝑠], 𝜀[𝑝] and 𝛽, Eq. (14) can be written as

𝜀[𝑠] + 𝜀[𝑝] ∼ 𝜀[𝑠]

𝛽
. (15)

Isolating 𝜀[𝑝] and inserting the result in the definition of the solvent
issipation reduction parameter 𝑆𝐷𝑅 = 𝜀[𝑝]∕(𝜀[𝑝]+𝜀[𝑠]) leads to 𝑆𝐷𝑅 ∼

(1 − 𝛽), which after the introduction of a scaling factor 𝐴𝑆𝐷𝑅 gives

𝑆𝐷𝑅 = 𝐴𝑆𝐷𝑅(1 − 𝛽). (16)

The scaling relation given by Eq. (16) indicates that when the local
Deborah number is low 𝑆𝐷𝑅 is independent of 𝑥, and possibly of 𝑊 𝑖
and 𝑅𝑒 also, depending if 𝐴𝑆𝐷𝑅 is universal, and varies linearly with the
polymer concentration, which is proportional to 1 − 𝛽. It is interesting
to compare this law with Eq. (12) for the highly elastic regime, where
we found that 𝑆𝐷𝑅 is independent of the polymer concentration, at
least for very dilute solutions at sufficiently high 𝑅𝑒.

The results of our simulations indicate that at both nearly-coiled
regimes 𝑆𝐷𝑅 attains a plateau for large 𝑥∕ℎ or 𝑥∕𝑑, which is invariant

ith respect to 𝑅𝑒 or 𝑊 𝑖 and depends only on 1 − 𝛽. This is shown
t Figs. 6a,b, where it can also be seen that the plateau is reached
urther downstream as the inlet 𝑊 𝑖 is increased. The plateau values
ave been plotted against 1 − 𝛽 at Fig. 6c, which also includes data
rom homogeneous isotropic turbulence (HIT) DNS at low 𝐷𝑒, taken

from the literature [9,28,30,31]. It can be seen that Eq. (16) gives a
good fit to the data with 𝐴𝑆𝐷𝑅 = 0.92 indicating that Eqs. (15) and
16) can indeed capture the correct scaling relation. Thus, this scaling
aw defines the minimum possible value of 𝑆𝐷𝑅 parameter for a flow
ith a given polymer concentration.

Isolating 𝜀[𝑝] in (15) and using 𝜀[𝑝] = 2𝜈[𝑝]𝑐′𝑘𝑖𝜕𝑢
′
𝑖∕𝜕𝑥𝑘∕𝜏𝑝, which is an

exact relation for the Oldroyd-B fluid and an accurate approximation
7

c

for the FENE-P fluid in the particular case where the long chain
polymers are in the nearly-coiled state and so 𝑓 (𝐶𝑘𝑘) is close to unity,
will lead to

𝑐′𝑖𝑗
𝜕𝑢′𝑖
𝜕𝑥𝑗

∼
𝜏𝑝
𝜈[𝑠]

𝜀[𝑠]. (17)

Combining expression (17) with (15) and the extended dissipation
law given by (9) we obtain the scaling of the turbulent stretching term
at the nearly-coiled regimes

𝑐′𝑖𝑗
𝜕𝑢′𝑖
𝜕𝑥𝑗

∼
𝛽𝜏𝑝𝑢′3

𝜈[𝑠]𝛿
. (18)

5. Similarity laws of the conformation tensor: planar wake

It is instructive to do some preliminary considerations that are
useful for the derivation of the 𝑐𝑖𝑗 (𝑥) scaling laws at the different
polymer deformation regimes. The turbulent velocity scale of the planar
wake is given by [10]

𝑢′ ∼
√

𝛥𝑈𝑈∞
2𝛿

𝑑𝛿2
𝑑𝑥

. (19)

The momentum integral constraint of viscoelastic turbulent planar
wakes is 𝑑[𝛥𝑈 (𝑥)𝛿(𝑥)]∕𝑑𝑥 = 0 [10]. The momentum thickness Reynolds
umber 𝑅𝑒𝜃 = 𝑈∞𝜃∕𝜈[𝑠] is high and the non-dimensional spreading rate
oefficient 𝐴𝛿2 = (𝑑𝛿2∕𝑑𝑥)∕𝜃 is small. Also small is the non-dimensional
elocity deficit 𝛥𝑈 (𝑥)∕𝑈∞, while for dilute polymer solutions the pa-
ameter 𝛽∕(1 − 𝛽) is large. This flow condition will be considered at
oth highly-stretched and nearly-coiled regimes and, together with the
imit relations that are specific to each regime, i.e. very large 𝑐𝑖𝑖(𝑥) at
he highly-stretched regime and very small 𝑐𝑖𝑖(𝑥) at the nearly-coiled
egime, they allow several simplifications of the governing equations.

The scaling laws at the highly-stretched nearly-isotropic regime are
resented in Section 5.1, at the nearly-coiled nearly-isotropic regime
n Section 5.2 and at the final region of decay in Section 5.3. To
nhance the manuscript readability, some details of the derivation are
mitted here and shown only in Appendix B. As mentioned in the
ntroduction, the theory of the highly-stretched anisotropic regime has
een formulated at Guimarães (2020, 2022) [9,10] and thus will not
e shown here, only the final results will be briefly discussed at the
onclusions section.
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5.1. Highly-stretched nearly-isotropic regime

The balance equations for 𝐶𝑖𝑗 at the highly-stretched nearly-
isotropic regime are given by

𝐶yy
𝜕�̄�
𝜕𝑦

+ 𝑐′x𝑘
𝜕𝑣′
𝜕𝑥𝑘

+ 𝑐′y𝑘
𝜕𝑢′
𝜕𝑥𝑘

=
𝜎xy

[𝑝]

𝜌𝜈[𝑝]
, (20)

or the shear 𝐶xy component and

2𝑐′𝑖𝑘
𝜕𝑢′𝑗
𝜕𝑥𝑘

=
𝜎𝑖𝑗

[𝑝]

𝜌𝜈[𝑝]
, (21)

or the normal components and trace of 𝐶𝑖𝑗 . In Appendix B we show
that the system described by the equations above is the leading order
approximation of the general Eq. (8) when 𝑐𝑖𝑗 (𝑥) is large. The accu-
racy of the approximation can be evaluated from the budgets of 𝐶𝑖𝑗
presented in Section 3 (Fig. 4b,f). To obtain the scaling laws of 𝐶𝑖𝑗 we
onsider the following self-similarity relations

𝛥�̄�
𝛥𝑈

= 𝜓
(

𝑦
𝛿

)

, (22)

𝐶𝑖𝑗 − 𝛿𝑖𝑗
𝑐𝑖𝑗

= 𝑔𝑖𝑗

(

𝑦
𝛿

)

, (23)

𝜎𝑖𝑗
[𝑝]

𝑓 (𝑐𝑛𝑛 + 3)𝜌𝜈[𝑝]𝑐𝑖𝑗∕𝜏𝑝
= 𝜎𝑖𝑗

(

𝑦
𝛿

)

, (24)

2𝜁𝑓 (𝑐𝑛𝑛 + 3)𝑐′𝑖𝑘𝜕𝑢
′
𝑗∕𝜕𝑥𝑘

[𝛽∕(1 − 𝛽)]𝐷𝑒𝑅𝑒𝜃𝐴
5∕4
𝛿2
𝐴1∕4
𝛥𝑈 𝛥𝑈∕𝛿

= 𝑁𝑖𝑗

(

𝑦
𝛿

)

, (25)

𝑐′x𝑘𝜕𝑣
′∕𝜕𝑥𝑘 + 𝑐′y𝑘𝜕𝑢

′∕𝜕𝑥𝑘
𝑓 (𝑐𝑛𝑛 + 3)𝑐xy𝑢∗∕𝑟∗

= 𝑁xy

(

𝑦
𝛿

)

, (26)

where Eqs. (23) and (24) are for all normal and shear components,
without summation on repeated 𝑖𝑗 indexes, and also for the trace but
with a notation that avoids four repeated indexes on the same term.
Eq. (25) is for the normal components and trace. 𝛥�̄�(𝑥, 𝑦) = 𝑈∞ −
̄(𝑥, 𝑦) is the local velocity difference. The characteristic scales 𝑐𝑖𝑗 (𝑥)
re taken from the values of 𝐶𝑖𝑗 − 𝛿𝑖𝑗 at the 𝑦 position where |𝐶𝑖𝑗 − 𝛿𝑖𝑗 |
s maximum, for both shear and normal components i.e.

𝑖𝑗 (𝑥) = max|𝐶𝑖𝑗 (𝑥, 𝑦) − 𝛿𝑖𝑗 |, (27)

here as before 𝐶𝑖𝑗 (𝑥, 𝑦) is the mean conformation tensor.
All variables appearing on the numerator at the l.h.s. of Eqs. (22)–

26) are functions of both 𝑥 and 𝑦, while the corresponding charac-
eristic scales, i.e. those variables appearing on the denominator, are
unctions of 𝑥 only. At times, we shall explicitly show the 𝑥 dependency
f those quantities, for completeness, but often we will omit it, for
ompactness and clarity.

The validity of the self-similarity relations (22)–(26) is readily
erified at Figs. 7 and 8 showing that the transverse profiles taken at
ifferent 𝑥 stations collapse onto a single curve, for each quantity, when
ormalized according to Eqs. (22)–(26). The normalized mean velocity
eficit is also self-similar and is insensitive to the polymers at the far
ield, as shown by Guimarães et al. (2022). The 𝜓(𝑦∕𝛿) curve is shown

in that earlier paper, and also at Section 5.2 of the present manuscript.
The scaling for the turbulent polymer stretching components that

appears in expression (25) has been obtained from Eqs. (13) and (19).
The coefficient 𝜁 = 23∕2 for the trace, and stems from the factor 2
that appears in Eq. (19), and for each normal components we use
𝜁 = 3×23∕2 i.e. the scale for the trace is three times larger than the scale
of each normal component, as it should be. For the shear component of
the turbulent polymer stretching tensor we rely on the Lumley scales
of velocity 𝑢∗ and length 𝑟∗, which are related to each other by the
polymer relaxation time 𝑟∗∕𝑢∗ = 𝜏𝑝, and account well for the correlation
between the fluctuating velocity gradient and conformation tensors,
as explained in our previous works [9,10]. In fact, the Lumley scales
8
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Fig. 7. Transverse profiles at different 𝑥∕𝑑 stations normalized according to the
roposed theory at the highly-stretched nearly-isotropic regime: normal components
f (a) 𝑔𝑖𝑗 , (b) 𝜎𝑖𝑗 and (c) 𝑁𝑖𝑗 , for the wake with 𝑊 𝑖 = 5, 𝑅𝑒 = 2000, 1 − 𝛽 = 0.02 and
𝐿 = 100.

Fig. 8. Transverse profiles of shear components of 𝑔𝑖𝑗 and 𝜎𝑖𝑗 (a) and 𝑁𝑖𝑗 (b) at the
highly-stretched nearly-isotropic regime shown with similarity coordinates for the wake
with 𝑊 𝑖 = 5, 𝑅𝑒 = 2000, 1 − 𝛽 = 0.02 and 𝐿 = 100.

an also be used to formulate a scaling for the normal components
nd trace of the turbulent polymer stretching tensor, but the resulting
elf-similar equations are not useful for the derivation of the 𝑐𝑖𝑗 (𝑥)
ormal components and trace (not shown for brevity). The Peterlin
unction in Eq. (26) was introduced after an inspection of the resulting
elf-similarity equation of 𝐶xy.

Inserting Eqs. (22)–(26) into (20) and (21), performing some simple
algebraic manipulations and considering the limit conditions discussed
at the beginning of the section leads to the self-similarity equations

−
𝐷𝑒𝑐yy

𝑓 (𝑐𝑛𝑛 + 3)𝑐xy

{

𝑔yy
𝑑𝜓
𝑑𝜉

}

=
{

𝑁xy

}

−
{

𝜎xy

}

(28)

for the shear component 𝐶xy and

𝛽𝐷𝑒2𝑅𝑒𝜃
(1 − 𝛽)𝜁𝑓 (𝑐𝑛𝑛 + 3)2𝑐𝑖𝑗

𝐴
5
4
𝛿2
𝐴

1
4
𝛥𝑈

{

𝑁𝑖𝑗

}

=
{

𝜎𝑖𝑗

}

(29)

or the normal components and trace (no summation on repeated 𝑖𝑗
ndexes), where 𝜉 = 𝑦∕𝛿. Given the self-similarity of 𝑁 (𝜉) and 𝜎 (𝜉),
𝑖𝑗 𝑖𝑗
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Fig. 9. Streamwise evolution of the normalized trace 𝑐𝑖𝑖(𝑥) compared to the theory
or turbulent wakes at the highly-stretched nearly-isotropic regime. Solid curves are
traight line fits to the DNS data. Vertical shifts are applied for clarity. From top to
ottom curves, the shifts are equal to 3 (black diamonds) and 0 (brown triangles).

he l.h.s. of Eq. (29) is a function of both 𝑥 and 𝜉, while the r.h.s. is a
unction of 𝜉 only. The only possibility where this condition is satisfied
or all values of 𝜉 is when

𝛽𝐷𝑒2𝑅𝑒𝜃
(1 − 𝛽)𝜁𝑓 (𝑐𝑛𝑛 + 3)2𝑐𝑖𝑗

𝐴
5
4
𝛿2
𝐴

1
4
𝛥𝑈 ∼ 1, (30)

which after the substitution of the scaling laws for 𝛿(𝑥) and 𝛥𝑈 (𝑥) in
he definition of 𝐷𝑒(𝑥) and some rearrangement leads to the scaling law
or the trace and normal components of the mean conformation tensor
t the highly-stretched nearly-isotropic regime

(𝐿2 − 3)2(1 − 𝛽)𝐴3∕4
𝛥𝑈 𝑐𝑖𝑗 (𝑥)

[𝐿2 − 3 − 𝑐𝑛𝑛(𝑥)]2𝛽𝑊 𝑖2𝜃𝑅𝑒𝜃𝐴
9∕4
𝛿2

}−1∕2
= 𝐴𝑐𝑖𝑗

(

𝑥 − 𝑥0
𝜃

)

, (31)

where 𝐴𝑐𝑖𝑗 are scaling law coefficients, 𝑥0 is the virtual origin (the
onstant 𝜁 is absorbed by 𝐴𝑐𝑖𝑗 ) and 𝑊 𝑖𝜃 = 𝜏𝑝𝑈∞∕𝜃. Using similar

arguments for Eq. (28), a self-similar development is obtained provided
𝐷𝑒𝑐yy∕[𝑓 (𝑐𝑛𝑛 + 3)𝑐xy] ∼ 1, which will lead to the following scaling law
for 𝑐xy(𝑥) after the introduction of the scaling laws for 𝐷𝑒(𝑥) and 𝑐yy(𝑥)
and a scaling parameter 𝐴𝑐xy

(𝐿2 − 3)3(1 − 𝛽)𝐴1∕4
𝛿2
𝐴5∕4
𝛥𝑈 𝑐xy(𝑥)

[𝐿2 − 3 − 𝑐𝑛𝑛(𝑥)]3𝛽𝑊 𝑖3𝜃𝑅𝑒𝜃

}−1∕3
= 𝐴𝑐xy

(

𝑥 − 𝑥0
𝜃

)

. (32)

Considering Eq. (31) for the trace, isolating 𝑐𝑖𝑖(𝑥) by solving the
resulting second order algebraic equation for 𝑐𝑖𝑖(𝑥) and calculating the
limit 𝑊 𝑖2𝑅𝑒 → ∞ gives 𝑐𝑖𝑖(𝑥) = max|𝐶𝑖𝑖 − 3| → 𝐿2 − 3, which is the
expected behaviour for polymer chains with maximum extensibility
length given by 𝐿. This asymptotic value is also pertinent for the
highly-stretched anisotropic regime, as discussed later at Section 8. The
validity of the scaling laws is confirmed in Figs. 9 and 10. Because
𝑐xx(𝑥), 𝑐yy(𝑥), 𝑐zz(𝑥) and trace 𝑐𝑖𝑖(𝑥) follow the same scaling law at this
particular deformation regime, the resulting figures for the different
normal components are very similar except near the inlet of the com-
putational domain, and thus only the 𝑐xy(𝑥) component and trace 𝑐𝑖𝑖(𝑥)
are shown.

The values of the scaling law coefficients 𝐴𝑐𝑖𝑗 introduced here for
he highly stretched regime, and later for the nearly-coiled regimes,
re obtained for each case from a curve fitting of the DNS data,
imilarly to the procedure that is typically adopted in the classical
heory of Newtonian turbulent flows to obtain 𝐴𝛿2 , 𝐴𝛿 , 𝐴𝑈𝑐 and 𝐴𝛥𝑈 .
n normalized units such as those of Figs. 9 and 10, corresponding to
qs. (31) and (32), respectively, they represent the slopes of the straight
ines that best fits the DNS data at each regime.
9

Fig. 10. Streamwise evolution of normalized 𝑐xy(𝑥) compared to the theory for
turbulent wakes at the highly-stretched nearly-isotropic regime. The solid curves are
straight line fits to the DNS data.

5.2. Nearly-coiled nearly-isotropic regime

At the nearly-coiled nearly-isotropic regime the balance equation
for 𝐶xy is

𝐶yy
𝜕�̄�
𝜕𝑦

=
𝜎xy

[𝑝]

𝜌𝜈[𝑝]
, (33)

and Eq. (21) gives the balance for the normal components and trace.
This has been verified in Section 3 (cf. Fig. 4c) and is also demonstrated
in more detail in Appendix B. The scaling of the turbulent polymer
stretching tensor is

2𝜁𝑐′𝑖𝑗𝜕𝑢
′
𝑖∕𝜕𝑥𝑗

𝛽𝐷𝑒𝑅𝑒𝜃𝐴
5∕4
𝛿2
𝐴1∕4
𝛥𝑈 𝛥𝑈∕𝛿

= 𝑁𝑖𝑗

(

𝑦
𝛿

)

, (34)

𝑐′x𝑘𝜕𝑣
′∕𝜕𝑥𝑘 + 𝑐′y𝑘𝜕𝑢

′∕𝜕𝑥𝑘
𝑐yy𝐴𝛿2𝑢∗∕𝑟∗

= 𝑁xy

(

𝑦
𝛿

)

, (35)

where Eq. (34) is for the normal components and trace and was
obtained from Eq. (18) with (19). The validity of these scaling relations
of the nearly-coiled nearly-isotropic regime is verified at Fig. 11: when
profiles at different 𝑥∕𝑑 stations are normalized with the proposed
scaling they all collapse onto single curves for each quantity.

The shear component of the turbulent polymer stretching tensor
does not appear in the balance Eq. (33) for 𝐶xy but the scaling (35) is
important for the demonstration that Eq. (33) results from the general
Eq. (8) in the limit condition of the nearly-coiled regime, as detailed in
Appendix B. The spreading rate parameter of the wake, 𝐴𝛿2 , has been
introduced in Eq. (35) after an inspection of the resulting self-similarity
equation of 𝐶xy. The 𝑐yy(𝑥) component is used at Eq. (35) instead of
xy(𝑥) because it was verified from the DNS data that this is the scaling

that provides similarity of 𝑁xy(𝜉) at the nearly-coiled regime. The
relations given by Eqs. (22), (23) and (24) are also considered at the
nearly-coiled regime, where the approximation 𝑓 (𝑐𝑛𝑛−3) = 1 is adopted
to simplify the formulation, resulting in the following self-similarity
equations at the limit case of the nearly-coiled nearly-isotropic regime

𝛽𝐷𝑒2𝑅𝑒𝜃𝐴
5∕4
𝛿2
𝐴1∕4
𝛥𝑈

𝜁𝑐𝑖𝑗

{

𝑁𝑖𝑗

}

=
{

𝜎𝑖𝑗

}

, (36)

for the normal components and trace (no summation on 𝑖𝑗) and

𝐷𝑒
{

𝑑𝜓
}

=
{

𝜎xy

}

, (37)

𝑐xy 𝑑𝜉
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Fig. 11. Transverse profiles at different 𝑥∕𝑑 stations, at the nearly-coiled nearly-
isotropic regime, shown with similarity coordinates for a wake with 𝑊 𝑖 = 0.15,
𝑒 = 4000 and 1 − 𝛽 = 0.20: (a) normal components of 𝑔𝑖𝑗 , (b) normal components
f 𝑁𝑖𝑗 , (c) shear component of 𝑔𝑖𝑗 and 𝜓 , (d) shear component of 𝑁𝑖𝑗 .

or the shear component 𝐶xy. Using self-similarity arguments similar to
those of Section 5.1 we obtain the scaling laws for 𝑐𝑖𝑗 (𝑥) at the nearly-
coiled nearly-isotropic regime. For the normal components and trace,
the result is
[ 𝑐𝑖𝑗 (𝑥)

𝛽𝑊 𝑖2𝜃𝑅𝑒𝜃𝐴
−3∕4
𝛥𝑈 𝐴9∕4

𝛿2

]−1∕2
= 𝐴𝑐𝑖𝑗

(

𝑥 − 𝑥0
𝜃

)

. (38)

For the shear component we obtain
[ 𝑐xy(𝑥)

𝑊 𝑖𝜃(𝐴𝛥𝑈𝐴𝛿2 )−1∕2

]−1
= 𝐴𝑐xy

(

𝑥 − 𝑥0
𝜃

)

, (39)

here 𝐴𝑐𝑖𝑗 are scaling law coefficients.
Fig. 12 compares the DNS results with the scaling laws of Eqs. (38)

nd (39). Good agreement is obtained between the theory and the data.
he curves shown at Fig. 12 are approximately parallel at the far field
nd so 𝐴𝑐𝑖𝑗 is approximately independent of 𝑊 𝑖𝜃 , 𝑅𝑒𝜃 and 𝛽, suggesting
nother interesting result: the shear component of the conformation
ensor grows linearly with the inlet𝑊 𝑖𝜃 , while the extension of polymer
hains grows with 𝛽𝑊 𝑖2𝜃𝑅𝑒𝜃 . This can be seen by isolating 𝑐𝑖𝑗 (𝑥) in
qs. (38) and (39). The result is compared against the DNS data at
ig. 13. Again, good agreement is obtained.

.3. Nearly-coiled final region of decay

The balance equations for 𝐶xx and 𝐶yy at the nearly-coiled final
region of decay are

2𝐶xx
𝜕�̄�
𝜕𝑥

=
𝜎xx

[𝑝]

𝜌𝜈[𝑝]
, 2𝐶yy

𝜕�̄�
𝜕𝑦

=
𝜎yy

[𝑝]

𝜌𝜈[𝑝]
, (40a,b)

respectively, while the equation for 𝐶xy is given by Eq. (33), and for
the 𝐶zz component and trace 𝐶𝑖𝑖 by Eq. (21). This has been shown
in Section 3 (cf. Fig. 4h) and is also demonstrated in more detail in
10

Appendix B.
Fig. 12. Streamwise evolution of normalized 𝑐𝑖𝑗 (𝑥) compared to the theory for turbulent
wakes at the nearly-coiled nearly-isotropic regime: (a) shear component, (b) trace. For
clarity, different vertical shifts have been applied to each curve. For 𝑐𝑖𝑖(𝑥), from top to
bottom curves the shifts are equal to 112 (light brown circles), 97 (cyan circles), 65
(brown triangles), 55 (black diamonds), 25 (black triangles), and 0 (black circles). For
𝑐xy(𝑥), from top to bottom curves the shifts are equal to 920 (cyan circles), 740 (black
iamonds), 600 (brown triangles), 440 (light brown circles), 120 (black triangles), and
(black circles).

Fig. 13. DNS wake data are compared to analytical predictions. The figures show the
influence of inlet and rheological parameters on the far field conformation tensor at
the nearly-coiled nearly-isotropic regime: (a) and (b) normal components and trace, (c)
shear component.

Adopting the same scaling relations of Section 5.2 and considering
the limit condition detailed at the beginning of Section 5 leads to

± 𝐷𝑒 𝑑𝛿2
{

𝜓 + 𝜉
𝑑𝜓

}

=
{

𝜎xx,yy

}

(41)

𝑐xx,yy𝛿 𝑑𝑥 𝑑𝜉
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Fig. 14. Streamwise evolution of normalized 𝑐xx(𝑥) and 𝑐yy(𝑥) from DNS (symbols,
𝑅𝑒 = 1500, 𝑊 𝑖 = 0.0003, 𝐿 = 100, and 1 − 𝛽 = 0.20) compared to the theory (straight
lines) for turbulent wakes at the nearly-coiled final region of decay. The 𝑐yy(𝑥) curve
(brown squares) has been shifted upward by 5 units, for clarity.

Fig. 15. Transverse profiles of normalized conformation tensor components and trace
rom wake DNS (𝑅𝑒 = 1500, 𝑊 𝑖 = 0.0003, 𝐿 = 100, and 1 − 𝛽 = 0.20) at different 𝑥∕𝑑
tations at the final region of decay compared with analytical predictions: (a) normal
omponents of 𝑔𝑖𝑗 , (b) shear component and trace of 𝑔𝑖𝑗 .

here the subscript xx, yy refers to the result for the xx or yy normal
omponents, respectively, and ± is a plus sign for xx and a minus sign
or yy. Using similar arguments as before will lead to

𝑐xx,yy(𝑥)

𝑊 𝑖𝜃∕𝐴
1∕2
𝛥𝑈

]−2∕3
= 𝐴𝑐xx,yy

(

𝑥 − 𝑥0
𝑑

)

, (42)

here 𝐴𝑐xx,yy are scaling law coefficients. These laws for 𝑐xx,yy(𝑥) at the
inal region of decay are compared against the DNS data in Fig. 14,
howing good agreement between the theory and the data. The other
omponents of 𝑐𝑖𝑗 (𝑥) follow the scaling laws derived and validated in
ection 5.2 and thus are not shown in Fig. 14.

The scatter observed in the curves of Fig. 14 is due to an insufficient
evel of statistical convergence, which is difficult to obtain for that case
ince the Runge–Kutta time step of the simulation had to be decreased
ignificantly in order to maintain stable computations. The numerical
nstability at very low 𝜏𝑝 results from the fact that, in this case, the
olymer stress in Eq. (2) is a very small number resulting from the
ivision of two very small numbers (𝜏𝑝 and 𝑪 − 𝑰), a situation that is
rone to numerical problems. Presumably this could be alleviated using
he fact that 𝜈[𝑝] is proportional to 𝜏𝑝 when 𝜏𝑝 → 0 [32], but this has
ot been tested.

The transverse profiles of 𝐶𝑖𝑗 − 𝛿𝑖𝑗 at the final region of decay are
hown in Fig. 15, where some analytical solutions to be discussed in
ection 7 are also shown for comparison.
11
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6. Similarity laws of the conformation tensor: planar jet

The theory for the planar jet follows similar lines as those described
above for the planar wake. Thus, we only show some aspects of the
analysis that are different for jets and wakes and present the final
results and comparisons with the DNS data. The balance equations
(without normalizations) for 𝐶𝑖𝑗 at the different polymer deformation
regimes are the same for jets and wakes. The turbulent velocity scale
of the viscoelastic planar jet is different and equal to [9]

𝑢′ ∼ 𝑈𝑐
𝑑𝛿
𝑑𝑥
, (43)

which results in different scaling relations for the normal components
and trace of the turbulent polymer stretching tensor. Furthermore,
the momentum integral constraint of viscoelastic turbulent planar jets
is given by 𝑑[𝑈𝑐 (𝑥)2𝛿(𝑥)]∕𝑑𝑥 = 0 [9]. The local Reynolds number
𝑒𝛿(𝑥) = 𝑈𝑐 (𝑥)𝛿(𝑥)∕𝜈[𝑠] is high and the non-dimensional spreading rate
oefficient 𝐴𝛿 = 𝑑𝛿(𝑥)∕𝑑𝑥 is small. The self-similarity relation of the
ean velocity is

�̄�
𝑈𝑐

= 𝜓
(

𝑦
𝛿

)

. (44)

The results for the highly-stretched nearly-isotropic regime are
shown at Section 6.1, for the nearly-coiled nearly-isotropic regime
at Section 6.2 and for the nearly-coiled final region of decay in
Section 6.3. Some details of the derivation are presented in Appendix B.

6.1. Highly-stretched nearly-isotropic regime

The scaling of the normal components and trace of the turbulent
polymer stretching tensor that is obtained from Eq. (13) with Eq. (43)
is

2𝜁𝑓 (𝑐𝑛𝑛 + 3)𝑐′𝑖𝑘𝜕𝑢
′
𝑗∕𝜕𝑥𝑘

[𝛽∕(1 − 𝛽)]𝐷𝑒𝑅𝑒𝛿𝐴
3∕2
𝛿 𝑈𝑐∕𝛿

= 𝑁𝑖𝑗

(

𝑦
𝛿

)

, (45)

where 𝜁 = 1 for the trace and 𝜁 = 3 for each normal component. For
the shear component, the scaling is given by

𝑐′x𝑘𝜕𝑣
′∕𝜕𝑥𝑘 + 𝑐′y𝑘𝜕𝑢

′∕𝜕𝑥𝑘

𝐴−1
𝛿 𝑓 (𝑐𝑛𝑛 + 3)𝑐xy𝑢∗∕𝑟∗

= 𝑁xy

(

𝑦
𝛿

)

, (46)

which is very similar to the scaling used for wakes, given by Eq. (26),
but the inverse of the constant spreading rate coefficient 𝐴−1

𝛿 has been
ntroduced to make 𝑁xy order unity.

The resulting self-similarity equations are

𝛽𝐷𝑒2𝑅𝑒𝛿
(1 − 𝛽)𝜁𝑓 (𝑐𝑛𝑛 + 3)2𝑐𝑖𝑗

(

𝑑𝛿
𝑑𝑥

)
3
2
{

𝑁𝑖𝑗

}

=
{

𝜎𝑖𝑗

}

, (47)

for the normal components and trace (no summation on 𝑖𝑗) and for the
hear component we obtain

𝐴𝛿𝐷𝑒𝑐yy

𝑓 (𝑐𝑛𝑛 + 3)𝑐xy

{

𝑔yy
𝑑𝜓
𝑑𝜉

}

=
{

𝑁xy

}

− 𝐴𝛿

{

𝜎xy

}

. (48)

The resulting scaling laws are
{ (𝐿2 − 3)2(1 − 𝛽)𝐴3∕2

𝑈𝑐
𝑐𝑖𝑗 (𝑥)

[𝐿2 − 3 − 𝑐𝑛𝑛(𝑥)]2𝛽𝑊 𝑖2𝑅𝑒𝐴1∕2
𝛿

}−2∕5
= 𝐴𝑐𝑖𝑗

(

𝑥 − 𝑥0
ℎ

)

, (49)

or the normal components and trace and

(𝐿2 − 3)3(1 − 𝛽)𝐴2
𝑈𝑐
𝐴−1∕2
𝛿 𝑐xy(𝑥)

[𝐿2 − 3 − 𝑐𝑛𝑛(𝑥)]3𝛽𝑊 𝑖3𝑅𝑒

}−1∕4
= 𝐴𝑐xy

(

𝑥 − 𝑥0
ℎ

)

, (50)

for the shear component. For thin shear-layers at high 𝑅𝑒 the spreading
rate parameter 𝐴𝛿 = 𝑑𝛿∕𝑑𝑥 is small and the shear relaxation term of
q. (48) can be neglected as a first order approximation. Nevertheless,
ince 𝐴𝛿 is constant at the far-field [9] neglecting or retaining this term
eads to the exactly same scaling law for 𝑐 (𝑥).
xy
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Fig. 16. Transverse profiles at different 𝑥∕ℎ stations normalized according to the
proposed theory at the highly-stretched nearly-isotropic regime: normal components
of (a) 𝑔𝑖𝑗 , (b) 𝜎𝑖𝑗 and (c) 𝑁𝑖𝑗 , for the jet with 𝑊 𝑖 = 5, 𝑅𝑒 = 2500, 1 − 𝛽 = 0.02 and
𝐿 = 200.

Transverse profiles at different 𝑥 stations, normalized according
to the theory of the turbulent planar jet, are displayed at Figs. 16
and 17, for normal and shear components, respectively. When the
proposed normalization is adopted, the profiles collapse onto single
curves for each quantity. Because the similarity region of the shear
component starts later than those of the normal components, a DNS
with a very large computational domain (𝐿x∕ℎ = 97.8) was performed
to verify the scaling law for 𝑐xy(𝑥). However, we were unable to obtain
a perfect level of statistical convergence for this case, due the very high
computational cost of this simulation. The transverse profiles of 𝑔xy and
𝜎xy are not shown for this reason, but as mentioned in the paragraph
above, to a leading order approximation self-similarity of these profiles
is not required for the derivation of the 𝑐xy(𝑥) scaling law for the jet
flow configuration at the highly-stretched nearly-isotropic regime.

The validity of the scaling laws given by Eqs. (49) and (50) is
confirmed in Figs. 18 and 19 for the trace and shear component,
respectively, exhibiting good agreement between the theory and the
DNS. A similar level of agreement has been obtained for the normal
components individually (not shown).

6.2. Nearly-coiled nearly-isotropic regime

At the nearly-coiled nearly-isotropic regime the resulting scaling of
the 𝑁𝑖𝑗 (𝜉) normal components and trace is

2𝜁𝑐′𝑖𝑘𝜕𝑢
′
𝑗∕𝜕𝑥𝑘

𝛽𝐷𝑒𝑅𝑒𝛿𝐴
3∕2
𝛿 𝑈𝑐∕𝛿

= 𝑁𝑖𝑗 (𝑦∕𝛿), (51)

which is obtained from Eq. (18) with Eq. (43), and for the shear
component the scaling is given by Eq. (35) with 𝐴𝛿 instead of 𝐴𝛿2 . The
elf-similarity equations are

𝛽𝐷𝑒2𝑅𝑒𝛿𝐴
3∕2
𝛿

{

𝑁𝑖𝑗

}

=
{

𝜎𝑖𝑗

}

, (52)
12

𝜁𝑐𝑖𝑗
Fig. 17. Transverse profiles of the shear component of the turbulent polymer stretching
tensor (𝑁xy), at different 𝑥∕ℎ stations at the highly-stretched nearly-isotropic regime
hown with similarity coordinates for the jet with 𝑊 𝑖 = 5, 𝑅𝑒 = 2500, 1 − 𝛽 = 0.02 and
= 200.

Fig. 18. Streamwise evolution of the normalized trace 𝑐𝑖𝑖(𝑥) compared to the theory for
urbulent jets at the highly-stretched nearly-isotropic regime. Solid curves are straight
ine fits to the DNS data. Vertical shifts are applied for clarity. From top to bottom
urves the shifts are equal to 12 (black diamonds), 8 (brown triangles), 5 (light brown
riangles), 0 (black laying triangles), and −7 (dark cyan circles).

or the normal components and trace of 𝐶𝑖𝑗 (no summation on 𝑖𝑗) and
(37) for the shear component. The resulting scaling laws are given by
[ 𝑐𝑖𝑗 (𝑥)

𝛽𝑊 𝑖2𝑅𝑒𝐴1∕2
𝛿 ∕𝐴3∕2

𝑈𝑐

]−2∕5
= 𝐴𝑐𝑖𝑗

(

𝑥 − 𝑥0
ℎ

)

, (53)

for the normal components and trace and by
[ 𝑐xy(𝑥)

𝑊 𝑖𝐴−1∕2
𝑈𝑐

𝐴−1
𝛿

]−2∕3
= 𝐴𝑐xy

(

𝑥 − 𝑥0
ℎ

)

. (54)

for the shear component.
Transverse profiles at different 𝑥 stations collapse into a single curve

when normalized according to the proposed theory (Fig. 20). As shown
in Fig. 21, good agreement is obtained between the scaling laws and
the DNS data at the far field. As in the wake flow configuration, the
lines displayed at Fig. 21 for jets are approximately parallel and the
𝐴𝑐𝑖𝑗 coefficients are independent to the inlet 𝑅𝑒, 𝑊 𝑖 and 𝛽 parameters,

2 𝐶 at the far field, for the normal
suggesting a 𝛽𝑊 𝑖 𝑅𝑒 dependence of 𝑖𝑗
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Fig. 19. Streamwise evolution of normalized 𝑐xy(𝑥) compared to the theory for
turbulent jets at the highly-stretched nearly-isotropic regime. The solid curve is a
straight line fit to the DNS data.

Fig. 20. Transverse profiles at the nearly-coiled nearly-isotropic regime shown with
similarity coordinates for a jet with 𝑊 𝑖 = 0.15, 𝑅𝑒 = 3500 and 1 − 𝛽 = 0.20: (a) normal
omponents of 𝑔𝑖𝑗 , (b) normal components of 𝑁𝑖𝑗 , (c) shear component of 𝑔𝑖𝑗 and 𝜓 ,
d) shear component of 𝑁𝑖𝑗 .

omponents and trace, and a linear 𝑊 𝑖 dependence for the 𝐶xy com-
onents. This can be seen by isolating 𝑐𝑖𝑗 (𝑥) in Eqs. (53) and (54), and
he result is confirmed at Fig. 22.
13
Fig. 21. Streamwise evolution of normalized 𝑐𝑖𝑗 (𝑥) compared to the theory for turbulent
jets at the nearly-coiled nearly-isotropic regime: (a) shear component, (b) trace. For
clarity, different vertical shifts have been applied to each curve. For 𝑐𝑖𝑖(𝑥), from top to
bottom curves the shifts are equal to 80 (dark cyan laying triangles), 62 (light brown
circles), 44 (cyan squares), 32 (brown triangles), 16 (black diamonds), and 0 (black
triangles). For 𝑐xy(𝑥), from top to bottom curves the shifts are equal to 55 (dark cyan
aying triangles), 43 (light brown circles), 33 (cyan squares), 25 (brown triangles), 11
black diamonds), and 0 (black triangles).

Fig. 22. DNS jet data are compared to analytical predictions. The figures show the
influence of inlet and rheological parameters on the far-field conformation tensor at
the nearly-coiled nearly-isotropic regime: (a) and (b) normal components and trace, (c)
shear component.
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Fig. 23. Streamwise evolution of normalized 𝑐xx(𝑥) and 𝑐yy(𝑥) from DNS (symbols,
𝑅𝑒 = 2000, 𝑊 𝑖 = 0.006, 𝐿 = 100, and 1 − 𝛽 = 0.20) compared to the theory (straight
lines) for turbulent jet at the nearly-coiled final region of decay. The 𝑐yy(𝑥) curve
brown squares) has been shifted upward by 5 units, for clarity.

Fig. 24. Transverse profiles of normalized conformation tensor components and trace
rom jet DNS (𝑅𝑒 = 2000, 𝑊 𝑖 = 0.006, 𝐿 = 100, and 1 − 𝛽 = 0.20) at different 𝑥∕ℎ
tations at the final region of decay compared with analytical predictions: (a) normal
omponents of 𝑔𝑖𝑗 , (b) shear component and trace of 𝑔𝑖𝑗 .

.3. Nearly-coiled final region of decay

The self-similarity equation for 𝐶xx and 𝐶yy at the final region of
decay is

∓
𝐷𝑒(𝑥)
𝑐xx,yy(𝑥)

𝑑𝛿
𝑑𝑥

{

𝜓 + 2𝜉
𝑑𝜓
𝑑𝜉

}

=
{

𝜎xx,yy

}

, (55)

nd the resulting scaling laws are given by

𝑐xx,yy(𝑥)

𝑊 𝑖∕𝐴1∕2
𝑈𝑐

]−2∕3
= 𝐴𝑐xx,yy

(

𝑥 − 𝑥0
ℎ

)

. (56)

he scaling laws are compared to the DNS data in Fig. 23, showing
ood agreement at the far field. The data scatter observed in Fig. 23
s due the very small Runge–Kutta time step of this simulation, which
akes it difficult to obtain a perfect level of statistical convergence for

hat case (cf. the detailed explanation at Section 5.3).
Transverse profiles are displayed at Fig. 24, where some analytical

esults to be presented in Section 7 are also shown for comparison—
gain, good agreement is obtained between the theory and the DNS
ata.

. Asymptotic solutions for the transverse profiles at the final
egion of decay

The scaling laws presented at Sections 5 and 6 have been derived
rom scaling analyses and asymptotic considerations that make no use
14
f any turbulence model for unclosed terms of the governing equations.
hese laws provide a detailed description for the downstream evolution
f the conformation and polymer stretching tensors in terms of inlet
nd rheological parameters 𝑅𝑒, 𝑊 𝑖, 𝛽, 𝐿, and the distance 𝑥 from
he jet orifice or wake object, and the self-similarity relations for the
ransverse 𝑦 profiles. However, they do not describe the variation
f these tensors on the 𝑦 direction i.e. the geometrical form of the
ransverse profiles. In the present section we obtain the solutions for the
elf-similar transverse profiles of the conformation tensor components
𝑖𝑗 (𝜉) at the final region of decay, providing the complete solution for
he mean field problem at 𝑥 → ∞, which is a limit case that has always
eceived considerable attention for both laminar and turbulent shear
lows. In fact, the solutions obtained here for 𝑔xx(𝜉), 𝑔yy(𝜉) and 𝑔zz(𝜉)
re valid only at the final region of decay, but the solutions for 𝑔xy(𝜉)
nd the trace 𝑔𝑖𝑖(𝜉) are also valid at the nearly-coiled nearly-isotropic
ub-regime (see Appendix C for a discussion on the domain of validity
f the results).

From the self-similarity balance equations given by Eqs. (37) and
41), for wakes, and (37) and (55), for jets, it is clear that 𝜎xx(𝜉)
nd 𝜎yy(𝜉) at the final region of decay and 𝜎xy(𝜉) at the nearly-coiled
egime can be obtained directly from the normalized mean velocity
rofile 𝜓(𝜉), which is known to be the same as for a Newtonian fluid
[9,10] and references therein). The expression for 𝜓(𝜉) is obtained
rom eddy viscosity and mixing length arguments and a correction that
ccounts for the intermittent character of the position of the irrotational
oundary. The adopted expression for the turbulent shear stress is

𝑢′𝑣′ = 𝜈𝑡𝜕�̄�∕𝜕𝑦, (57)

where 𝜈𝑡(𝑥) = 𝜈𝑡𝑢′(𝑥)𝛿(𝑥) is the eddy viscosity and 𝜈𝑡 is a constant model
parameter. The two-state intermittency model, proposed originally for
boundary layers [33–35] and that has some similarities with models
for turbulent premixed flames [36], is used here for the irrotational
boundary intermittency correction.

The details of the derivation of the 𝑔xx(𝜉), 𝑔yy(𝜉) and 𝑔xy(𝜉) closed
form analytical solutions, using the procedure described above, are
given at Appendix D. These analytical solutions are compared to the
DNS data in Figs. 11 and 15, for wakes, and in Figs. 20 and 24, for
jets, showing good agreement.

To calculate the profiles of 𝐶𝑖𝑖 and 𝐶zz at 𝑥 → ∞ an expression
for the turbulent stretching term 2𝑐′𝑖𝑘𝜕𝑢

′
𝑗∕𝜕𝑥𝑘 is needed. This will be

obtained from the solution of the transport equation of 𝜅, which for a
steady mean flow is given by

�̄� ⋅ ∇𝜅 = −∇ ⋅ 𝑝′𝒖′∕𝜌 − ∇ ⋅ 𝒖′𝒖′ ⋅ 𝒖′∕2 + 𝜈[𝑠]∇2𝜅

−𝒖′𝒖′ ∶ ∇𝒖 − 𝜈[𝑠]∇𝒖′ ∶ ∇𝒖′

+∇ ⋅ 𝝈′[𝑝] ⋅ 𝒖′∕𝜌 − 𝜀[𝑝]. (58)

Neglecting the viscoelastic advection term ∇ ⋅ 𝝈′[𝑝] ⋅ 𝒖′∕𝜌, that is much
smaller than the dominant terms [9,10] and considering the closure
assumptions of Prandtl (1945) [37] for the unclosed Newtonian turbu-
lent diffusion and turbulent production terms of the equation (see also
Wilcox 1998 [38] chapter 4) i.e.

−∇ ⋅ 𝑝′𝒖′∕𝜌 − ∇ ⋅ 𝒖′𝒖′ ⋅ 𝒖′∕2 = (𝜈𝑡∕𝐴𝜎)𝜕2𝜅∕𝜕𝑦2, (59)

−𝒖′𝒖′ ∶ ∇𝒖 = 𝜈𝑡(𝜕�̄�∕𝜕𝑦)2, (60)

where 𝐴𝜎 is a constant model parameter, we arrive at a closed equation
for 𝜅 when the following assumption is invoked:

[𝑝] + 𝜀[𝑠] = 𝐴𝜀
𝜅3∕2

𝛿
, (61)

which is analogous to the extended dissipation law of Eq. (9), but with
an equality sign and a dimensionless proportionality coefficient 𝐴𝜀.

Combining Eq. (61) with the scaling law for the solvent dissipation
reduction parameter 𝑆𝐷𝑅 of Eq. (16), the balance equation for the
trace 𝐶 (Eq. (21)), together with the Oldroyd-B approximation to
𝑖𝑖
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Fig. 25. Transverse profiles of normalized polymer chain extension at different 𝑥
tations at the nearly-coiled nearly-isotropic regime for (a) wake with 𝑊 𝑖 = 0.15,
𝑒 = 4000 and 1 − 𝛽 = 0.20 and (b) jet with 𝑊 𝑖 = 0.15, 𝑅𝑒 = 3500 and 1 − 𝛽 = 0.20.

elate 𝐶𝑖𝑖 with 𝜎𝑖𝑖
[𝑝], and 𝜀[𝑝] with 2𝑐′𝑖𝑘𝜕𝑢

′
𝑖∕𝜕𝑥𝑘 (cf. end of Section 4.2),

e obtain

𝐶𝑖𝑖 − 𝛿𝑖𝑖 =
𝜏2𝑝
𝜈[𝑝]

(1 − 𝛽)𝐴𝑆𝐷𝑅𝐴𝜀
𝜅3∕2

𝛿
, (62)

o that the solution for 𝐶𝑖𝑖 − 𝛿𝑖𝑖 can be obtained from the solution for
. Considering the self-similar turbulent kinetic energy profile

(𝑦∕𝛿(𝑥)) = 𝜅(𝑥, 𝑦)∕(𝑢′(𝑥)2), (63)

the balance equation for 𝜅, written with similarity variables, is obtained
nd solved for jets and wakes after the introduction of the correspond-
ng turbulent velocity scales 𝑢′(𝑥). The resulting profiles of 𝜅 are also

corrected to account for the intermittent character of the turbulent
interface, similarly to the correction made for the mean velocity—Krug
et al. (2017) [34] have shown that the two state intermittency model
is also valid for the turbulent velocity fluctuations.

More details on the derivation of the analytical solution for 𝑔𝑖𝑖(𝜉)
are given at Appendix D, where the final form of the obtained 𝑔𝑖𝑗 (𝜉)
solutions are also shown. For wakes, a closed-form analytical solution
is derived for 𝑔𝑖𝑖(𝜉) and 𝑔zz(𝜉). For jets, a numerical solution for 𝑔𝑖𝑖(𝜉)
and 𝑔zz(𝜉) is obtained, since we were not able to solve the ordinary
differential equation (ODE) analytically for jets (see Appendix D).

The analytical and numerical solutions are compared to the DNS
data in Figs. 15 and 25a, for wakes, and in 24 and 25b, for jets. As
before, good agreement is obtained between the theory and the data.

8. Summary of main results and conclusion

A new theory has been formulated for the description of the con-
formation state of the polymer chains in free turbulent shear flows
with viscoelastic fluids. The theory is based on a similarity analysis of
the equations governing the evolution of each component and trace of
the mean conformation tensor. The crucial assumption is the scaling
of the turbulent polymer stretching tensor, whose trace is responsible
for the energy flux between the turbulent kinetic energy of the flow
and the mean elastic energy of the polymer chains. Two different
scalings have been developed for the limits of low and high elasticity
corresponding to the nearly-coiled and highly-stretched regimes of
polymer deformation, respectively. These scalings are associated with
the existence of minimum and maximum solvent dissipation reduction
(𝑆𝐷𝑅) asymptotes at these two limit cases. The maximum 𝑆𝐷𝑅 asymp-
tote is approximately invariant to rheological and flow parameters,
similarly to the maximum drag reduction asymptote of turbulent pipe
and channel flows, while the minimum 𝑆𝐷𝑅 asymptote is proportional
15

to the polymer concentration. w
For each polymer deformation regime (nearly-coiled and highly-
stretched) there are two sub-regimes, giving a total of four differ-
ent sub-regimes of polymer deformation (see Fig. 1). At the highly-
stretched anisotropic regime the scaling laws obtained by Guimarães
(2020,2022) [9,10] apply. The present work focused on the three
subsequent sub-regimes and a summary of all scaling laws is presented
at the simplified diagram of Fig. 26, for turbulent planar jets and
wakes.1 The domains of validity of each scaling laws are delimited by
the characteristic distances 𝓁𝑐𝑖𝑗 , also depicted in Fig. 26 and discussed
at Appendix C. Since the flow strain rates responsible for the defor-
mation of the polymer chains decay with 𝑥, it follows that different
polymer deformation sub-regimes can exist sequentially in the same
flow domain, but one may also have a single sub-regime. As shown at
Appendix C, this will depend on how high the values of the inlet𝑊 𝑖 and
𝑅𝑒 are and also on how large is the domain length 𝐿x. Fig. 27 shows
a case with a sufficiently large 𝐿x so that two different sub-regimes
can be observed in the flow. With a longer domain, the remaining two
additional sub-regimes would be seen, but the simulation would be very
costly.

All theoretical predictions have been validated through comparisons
with results from new DNS of spatially evolving turbulent planar jets
and wakes that make use of highly accurate numerical schemes and the
FENE-P rheological model. Detailed theoretical studies of viscoelastic
turbulent flows in general are hard to find, and often invoke exotic
assumptions that are difficult to verify using results from DNS or
experiments. In contrast, the present work is possibly the first where
analytical predictions are obtained directly from the equations of the
conformation tensor and where all hypothesis can be easily verified.
We expect some of these ideas to be useful in the description of
other spatially evolving canonical turbulent flows such as isotropic
turbulence decaying behind a grid of bars, mixing-layers and the outer
region of a flat plate boundary layer.
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Fig. 26. Simplified diagram with a summary of the new scaling laws obtained for different polymer deformation regimes: (a) planar jets, (b) planar wakes. The theory describing
the highly-stretched anisotropic sub-regime is presented at Guimarães (2020, 2022) [9,10]. The scale is arbitrary.
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Fig. 27. Comparison between scaling laws for different polymer deformation regimes
nd the DNS data for a jet with 𝑅𝑒 = 2500, 𝑊 𝑖 = 5, 𝐿 = 200 and 1−𝛽 = 0.02. The domain
ength 𝐿x is sufficiently large so that two different polymer deformation regimes can
e observed in the same flow.
16
Appendix A. Budgets of the conformation tensor components:
complementary data

This appendix shows the data that are complementary to the discus-
sion of Section 3, concerning the budgets of the 𝐶𝑖𝑗 components. This
is shown in Figs. A.28 and A.29, for jets and wakes, respectively.

Appendix B. Asymptotic limits of the conformation tensor equa-
tion

Here we show more details regarding the asymptotic evaluation
of the balance equations for 𝐶𝑖𝑗 , given by Eq. (8), that reduce to the
implified equations exposed at Sections 5 and 6 when the limit cases
f the different polymer deformation regimes are considered. All terms
f Eq. (8) are retained except the turbulent advection term. We start by
ormalizing each term of the equations according to the self-similarity
ransformations, and write the result so that terms inside curly brackets
re 𝑂(1) functions of 𝜉 = 𝑦∕𝛿(𝑥) only. Thus, the order of magnitude

of each term is given by the corresponding multiplying factors and
the simplified equations of Sections 5 and 6 can be obtained as the
distinguished limits of the general equation. The planar wake results
are discussed in Appendix B.1 and the planar jet equations are shown
in Appendix B.2. At each section, we start with the highly-stretched
nearly-isotropic sub-regime, followed by the nearly-coiled sub-regimes.
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Fig. A.28. Budgets of 𝐶𝑖𝑗 for jets at different regimes of polymer chain deformation: (a-d) highly-stretched anisotropic, (e-h) highly-stretched nearly-isotropic, (i-l) nearly-coiled
nearly-isotropic and (m-p) final region of decay. All quantities have been made non-dimensional using 𝑈𝐽 and ℎ. Flow conditions are: (a-d) 𝑅𝑒 = 3500, 𝑊 𝑖 = 3, 1 − 𝛽 = 0.20,
𝐿 = 100, 𝑥∕ℎ = 15, (e-h) 𝑅𝑒 = 2500, 𝑊 𝑖 = 4, 1 − 𝛽 = 0.02, 𝐿 = 100, 𝑥∕ℎ = 35, (i-l) 𝑅𝑒 = 3500, 𝑊 𝑖 = 0.15, 1 − 𝛽 = 0.20, 𝐿 = 100, 𝑥∕ℎ = 36, (m-p) 𝑅𝑒 = 1500, 𝑊 𝑖 = 0.006, 1 − 𝛽 = 0.20,
𝐿 = 100, 𝑥∕ℎ = 40.
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Fig. A.29. Budgets of 𝐶yy (a-d) and 𝐶zz (e-h) for wakes at different regimes of polymer chain deformation: (a,e) highly-stretched anisotropic, (b,f) highly-stretched nearly-isotropic,
c,g) nearly-coiled nearly-isotropic and (d,h) final region of decay. All quantities have been made non-dimensional using 𝑈∞ and 𝑑. Flow conditions are: (a) and (e) 𝑅𝑒 = 2000,
𝑖 = 4, 1 − 𝛽 = 0.10, 𝐿 = 100, 𝑥∕𝑑 = 70; (b) and (f) 𝑅𝑒 = 2000, 𝑊 𝑖 = 3, 1 − 𝛽 = 0.02, 𝐿 = 200, 𝑥∕𝑑 = 180; (c) and (g) 𝑅𝑒 = 4000, 𝑊 𝑖 = 0.05, 1 − 𝛽 = 0.20, 𝐿 = 100, 𝑥∕𝑑 = 110; (d) and

h) 𝑅𝑒 = 1500, 𝑊 𝑖 = 0.0001, 1 − 𝛽 = 0.20, 𝐿 = 100, 𝑥∕𝑑 = 110.
.1. Planar wake

The balance equation for the trace 𝐶𝑖𝑖 at the highly-stretching
nearly-isotropic regime is

𝐷𝑒𝛿
𝑓 (𝑐𝑛𝑛 + 3)𝑐𝑙𝑙

𝑈∞
𝛥𝑈

𝑑𝑐𝑘𝑘
𝑑𝑥

{

𝑔𝑖𝑖

}

−

𝐷𝑒
𝑓 (𝑐𝑛𝑛 + 3)

𝑈∞
𝛥𝑈𝛿

𝑑𝛿2

𝑑𝑥

{

1
2
𝑑𝑔𝑖𝑖
𝑑𝜉

𝜉
}

− 𝐷𝑒𝛿
𝑓 (𝑐𝑛𝑛 + 3)𝑐𝑙𝑙

𝑑𝑐𝑘𝑘
𝑑𝑥

×
{

𝑔𝑖𝑖𝜓
}

−
𝐷𝑒𝑐xx

𝑓 (𝑐𝑛𝑛 + 3)𝑐𝑙𝑙𝛿
𝑑𝛿2

𝑑𝑥

{

𝑔xx𝜓 +
𝑑𝜓
𝑑𝜉

𝜉𝑔xx

}

+
𝐷𝑒𝑐yy

𝑓 (𝑐𝑛𝑛 + 3)𝑐𝑖𝑖𝛿
𝑑𝛿2

𝑑𝑥

{

𝑔yy𝜓 +
𝑑𝜓
𝑑𝜉

𝜉𝑔yy

}

−
𝐷𝑒𝑐xy

𝑓 (𝑐𝑛𝑛 + 3)𝑐𝑙𝑙𝛿2

(

𝑑𝛿2

𝑑𝑥

)2{3
2
𝑔xy𝜉𝜓 + 1

2
𝑔xy𝜉

2 𝑑𝜓
𝑑𝜉

}

+
2𝐷𝑒𝑐xy

𝑓 (𝑐𝑛𝑛 + 3)𝑐𝑙𝑙

{

𝑔xy
𝑑𝜓
𝑑𝜉

}

=
𝛽𝐷𝑒2𝑅𝑒𝜃

(1 − 𝛽)23∕2𝑓 (𝑐𝑛𝑛 + 3)2𝑐𝑙𝑙
𝐴

5
4
𝛿2
𝐴

1
4
𝛥𝑈

{

𝑁𝑖𝑖

}

−
{

𝜎𝑖𝑖

}

,

(B.1)

nd for the shear component 𝐶xy we have

𝐷𝑒𝛿
𝑓 (𝑐𝑛𝑛 + 3)𝑐xy

𝑈∞
𝛥𝑈

𝑑𝑐xy

𝑑𝑥

{

𝑔xy

}

− 𝐷𝑒
𝑓 (𝑐𝑛𝑛 + 3)

(

𝑈∞
𝛥𝑈𝛿

)

𝑑𝛿2

𝑑𝑥

×
{

1
2
𝑑𝑔xy

𝑑𝜉
𝜉
}

− 𝐷𝑒𝛿
𝑓 (𝑐𝑛𝑛 + 3)𝑐xy

𝑑𝑐xy

𝑑𝑥

{

𝑔xy𝜓
}

−
𝐷𝑒𝑐xx

2

(

𝑑𝛿2
)2{ 3 𝑔xx𝜉𝜓 + 1 𝑔xx𝜉

2 𝑑𝜓
}

18

𝑓 (𝑐𝑛𝑛 + 3)𝑐xy𝛿 𝑑𝑥 4 4 𝑑𝜉
− 𝐷𝑒
𝑓 (𝑐𝑛𝑛 + 3)𝑐xy𝛿2

(

𝑑𝛿2

𝑑𝑥

)2{ 3
4
𝜉𝜓 + 1

4
𝜉2
𝑑𝜓
𝑑𝜉

}

− 𝐷𝑒
𝑓 (𝑐𝑛𝑛 + 3)𝑐xy

{

𝑑𝜓
𝑑𝜉

}

−
𝐷𝑒𝑐yy

𝑓 (𝑐𝑛𝑛 + 3)𝑐xy

{

𝑔yy
𝑑𝜓
𝑑𝜉

}

=
{

𝑁xy

}

−
{

𝜎xy

}

.

(B.2)

For thin shear layers at very high 𝑅𝑒 the spreading rate normalized
by the local half-width [𝑑𝛿2∕𝑑𝑥]∕𝛿 is small and so the 4th and 5th terms
on the l.h.s. of (B.2) are negligible in comparison with the 7th and 6th
terms, respectively. The 6th term is also much smaller than the 7th,
because 𝑐yy(𝑥) ≫ 1 at the highly stretched regime. For small velocity
deficit wakes, 𝛥𝑈∕𝑈∞ ≪ 1 and so the 3rd term is much smaller than the
first. For long chain polymers at the highly-stretched nearly-isotropic
regime we have 𝑐xx ∼ 𝑐yy ∼ 𝑐zz ∼ 𝑐𝑙𝑙∕3 ≫ 1, the local Deborah number
𝐷𝑒(𝑥) has order unity and 1∕𝑓 (𝑐𝑙𝑙 +3) is small. Using this and assuming
a general power law that decays in 𝑥 for 𝑐xy(𝑥), in order to evaluate
𝑑𝑐xy(𝑥)∕𝑑𝑥, and the scaling laws for 𝛿(𝑥) and 𝛥𝑈 (𝑥), one finds that
the first term on the l.h.s. is much smaller than the dominant terms
of order unit, because 𝑥 is large at the far field. Using the momentum
integral constraint to evaluate the 2nd term and considering again that
the spreading rate parameter is small for thin shear layers the 2nd term
is found to be also much smaller than unity. Therefore, the only terms
left are those on the last line of Eq. (B.2) and the simplified Eq. (28) is
obtained.

If similar arguments are applied to Eq. (B.1) for the trace 𝐶𝑖𝑖, the
simplified Eq. (29) is obtained from (B.1) when we use the similarity
condition of the 𝐶xy equation, 𝐷𝑒𝑐yy∕[𝑓 (𝑐𝑛𝑛+3)𝑐xy] ∼ 1, to estimate the
order of 𝑐xy(𝑥) in terms of the remaining quantities, and also that for
dilute polymer solutions 𝛽∕(1−𝛽) is large and the inlet Reynolds number
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𝑅𝑒𝜃 is large. The equations for each normal component of 𝐶𝑖𝑗 (𝑥, 𝑦) can
be analysed in the same manner, leading to similar results.

We now consider the polymers at the nearly-coiled sub-regimes. Us-
ing the self-similarity transformations developed for the nearly-coiled
regimes we obtain
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(

𝑑𝛿2

𝑑𝑥

)2{3
4
𝑔xx𝜉𝜓 + 1

4
𝑔xx𝜉

2 𝑑𝜓
𝑑𝜉

}

−

𝐷𝑒 𝛿
𝑐yy

𝑑𝑐xy

𝑑𝑥

{

𝑔xy𝜓
}

− 𝐷𝑒
𝑐yy

1
𝛿2

(

𝑑𝛿2

𝑑𝑥

)2{3
4
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for 𝐶xy,

𝐷𝑒
𝑈∞
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(B.4)

or 𝐶xx,
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or 𝐶yy and finally

𝐷𝑒
𝑈∞
𝛥𝑈

𝛿
𝑐zz

𝑑𝑐zz
𝑑𝑥

{

𝑔zz

}

−𝐷𝑒
(

𝑈∞
𝛥𝑈𝛿

)

𝑑𝛿2

𝑑𝑥

{

1
2
𝑑𝑔zz
𝑑𝜉

𝜉
}

−𝐷𝑒 𝛿
𝑐zz

𝑑𝑐zz
𝑑𝑥

{

𝑔zz𝜓
}

=
𝛽𝐷𝑒2𝑅𝑒𝜃𝐴

5∕4
𝛿2
𝐴1∕4
𝛥𝑈

3
√

8𝑐zz

{

𝑁zz

}

−
{

𝜎zz

}

,

(B.6)

for 𝐶zz. The analysis is very similar to that of the highly-stretched
egime, but at the nearly-coiled nearly-isotropic regime we have 𝑐xx(𝑥)
𝑐yy(𝑥) ∼ 𝑐zz(𝑥) ∼ 𝑐𝑙𝑙(𝑥)∕3 ≪ 1 and the local Deborah number 𝐷𝑒(𝑥) is

ow. The treatment of the 𝐶xy and 𝐶zz equations is then straightforward,
but the 𝐶xx and 𝐶yy equations require a closer examination. Under the
limiting case in consideration they reduce to

± 𝐷𝑒
𝑐xx,yy𝛿

𝑑𝛿2

𝑑𝑥

{

𝜓 + 𝜉
𝑑𝜓
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}
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3
√
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{
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}

=
{

𝜎xx,yy

}
(B.7)

Performing some algebraic manipulations on Eq. (B.7), and using the
scaling law for 𝛥𝑈 (𝑥), Eq. (B.7) can be written as

± 𝐷𝑒
𝑐xx,yy𝛿

𝑑𝛿2

𝑑𝑥

{

𝜓 + 𝜉
𝑑𝜓
𝑑𝜉

}

+

𝐷𝑒
𝑐 𝛿

𝑑𝛿2

𝑑𝑥

( 𝛽𝑊 𝑖𝜃𝑅𝑒𝜃𝐴
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𝐴−1∕4
𝛥𝑈

√
√
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𝑁xx,yy

}

=
{

𝜎xx,yy

}

.
(B.8)
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xx,yy 3 8 (𝑥 − 𝑥0)∕𝜃
q. (B.8) contains the simplified balance equations of the nearly-coiled
early-isotropic sub-regime and nearly-coiled final region of decay as
articular cases. To show that, we analyse the term inside parenthesis.
t regions where

𝑥 − 𝑥0
𝜃

≪
( 𝛽𝑊 𝑖𝜃𝑅𝑒𝜃𝐴

1∕4
𝛿2
𝐴−1∕4
𝛥𝑈

3
√

8

)2
(B.9)

the term inside parenthesis is much larger than one, so the first term
on the l.h.s. of Eq. (B.8) is negligibly small in comparison to the
second, and the balance equation of the nearly-coiled nearly-isotropic
sub-regime is recovered. For more distant regions where

𝑥 − 𝑥0
𝜃

≫
( 𝛽𝑊 𝑖𝜃𝑅𝑒𝜃𝐴

1∕4
𝛿2
𝐴−1∕4
𝛥𝑈

3
√

8

)2
, (B.10)

the term inside parenthesis in Eq. (B.8) is much smaller than one, the
second term on the l.h.s. of Eq. (B.8) is negligibly small in comparison
to the first, and the balance equation of the nearly-coiled final region
of decay is recovered.

B.2. Planar jet

As mentioned at Section 6 the asymptotic analysis of the turbulent
planar jet equations is similar to that of the planar wake, so we only
show the self-similarity equations without giving many details. At the
highly-stretched nearly-coiled regime the equation for the trace 𝐶𝑖𝑖 is

𝐷𝑒𝛿
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(

𝑑𝛿
𝑑𝑥

)2

×
{

𝑔xy ∫

𝜉

0

[

3
2
𝜓 + 6𝜉

𝑑𝜓
𝑑𝜉

+ 2𝜉2
𝑑2𝜓
𝑑𝜉2

]

𝑑𝜉
}

=
𝛽𝐷𝑒2𝑅𝑒𝛿

(1 − 𝛽)𝑓 (𝑐𝑛𝑛 + 3)2𝑐𝑙𝑙

(

𝑑𝛿
𝑑𝑥

)
3
2
{

𝑁𝑖𝑖

}

−
{

𝜎𝑖𝑖

}

,

(B.11)

while for the shear component 𝐶xy we have.

𝐴𝛿𝐷𝑒𝛿
𝑓 (𝑐𝑖𝑖 + 3)𝑐xy

𝑑𝑐xy

𝑑𝑥

{

𝜓𝑔xy

}

−
𝐴𝛿𝐷𝑒

𝑓 (𝑐𝑖𝑖 + 3)
𝑑𝛿
𝑑𝑥

×
{𝑑𝑔xy

𝑑𝜉 ∫

𝜉

0

𝜓
2
𝑑𝜉

}

+
𝐴𝛿𝐷𝑒𝑐xx

𝑓 (𝑐𝑖𝑖 + 3)𝑐xy

(

𝑑𝛿
𝑑𝑥

)2

×
{

𝑔xx ∫

𝜉

0

[

3
4
𝜓 + 3𝜉

𝑑𝜓
𝑑𝜉

+ 𝜉2
𝑑2𝜓
𝑑𝜉2

]

𝑑𝜉
}

+
𝐴𝛿𝐷𝑒

𝑓 (𝑐𝑖𝑖 + 3)𝑐xy

(

𝑑𝛿
𝑑𝑥

)2{

∫

𝜉

0

[

3
4
𝜓 + 3𝜉

𝑑𝜓
𝑑𝜉

+ 𝜉2
𝑑2𝜓
𝑑𝜉2

]

𝑑𝜉
}

−
𝐴𝛿𝐷𝑒

𝑓 (𝑐𝑖𝑖 + 3)𝑐xy

{

𝑑𝜓
𝑑𝜉

}

−
𝐴𝛿𝐷𝑒𝑐yy

𝑓 (𝑐𝑖𝑖 + 3)𝑐xy

{

𝑔yy
𝑑𝜓
𝑑𝜉

}

=
{

𝑁xy

}

− 𝐴𝛿

{

𝜎xy

}

.

(B.12)

As for the planar wake configuration, these equations also reduce to the
simplified Eqs. (20) and (21), but for the planar jet the small parameter
is the constant spreading rate 𝐴𝛿 = 𝑑𝛿∕𝑑𝑥. For the shear component,
the relaxation term can also be neglected which leads to an equation

similar to Eq. (20) but without the relaxation term.
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With the self-similarity transformations developed for the nearly-
coiled regimes the self-similarity equations are

𝐷𝑒 𝛿
𝑐yy

𝑑𝑐xy

𝑑𝑥

{

𝜓𝑔xy

}

+ 𝐷𝑒
𝑐yy

𝑐xy
𝑑𝛿
𝑑𝑥

{

−
𝑑𝑔xy

𝑑𝜉 ∫

𝜉

0

𝜓
2
𝑑𝜉

}

+𝐷𝑒
{

−𝑔yy
𝑑𝜓
𝑑𝜉

}

+ 𝐷𝑒
𝑐yy

{

−
𝑑𝜓
𝑑𝜉

}

+ 𝐷𝑒
𝑐yy

𝑐xx

(

𝑑𝛿
𝑑𝑥

)2

×
{

𝑔xx ∫

𝜉

0

[

3
4
𝜓 + 3𝜉

𝑑𝜓
𝑑𝜉

+ 𝜉2
𝑑2𝜓
𝑑𝜉2

]

𝑑𝜉
}

+𝐷𝑒
𝑐yy

(

𝑑𝛿
𝑑𝑥

)2{

∫

𝜉

0

[

3
4
𝜓 + 3𝜉

𝑑𝜓
𝑑𝜉

+ 𝜉2
𝑑2𝜓
𝑑𝜉2

]

𝑑𝜉
}

= 𝑑𝛿
𝑑𝑥

{

𝑁xy

}

−
𝑐xy

𝑐yy

{

𝜎xy

}

,

(B.13)

or the 𝐶xy component,

𝐷𝑒 𝛿
𝑐xx

𝑑𝑐xx
𝑑𝑥

{

𝜓𝑔xx

}

+ 𝐷𝑒
𝑐xx

𝑑𝛿
𝑑𝑥

{

𝜓 + 2𝜉
𝑑𝜓
𝑑𝜉

}

+𝐷𝑒 𝑑𝛿
𝑑𝑥

{

−
𝑑𝑔xx
𝑑𝜉 ∫

𝜉

0

𝜓
2
𝑑𝜉 + 𝑔xx𝜓 + 2𝑔xx𝜉

𝑑𝜓
𝑑𝜉

}

+

𝐷𝑒
𝑐xx

𝑐xy

{

−2𝑔xy
𝑑𝜓
𝑑𝜉

}

=
𝛽𝐷𝑒2𝑅𝑒𝛿𝐴

3∕2
𝛿

3𝑐xx

{

𝑁xx

}

−
{

𝜎xx

}

,

(B.14)

or 𝐶xx,

𝐷𝑒 𝛿
𝑐yy

𝑑𝑐yy

𝑑𝑥

{

𝜓𝑔yy

}

− 𝐷𝑒
𝑐yy

𝑑𝛿
𝑑𝑥

{

𝜓 + 2𝜉
𝑑𝜓
𝑑𝜉

}

+𝐷𝑒 𝑑𝛿
𝑑𝑥

{

−
𝑑𝑔yy

𝑑𝜉 ∫

𝜉

0

𝜓
2
𝑑𝜉 − 𝑔yy𝜓 − 2𝑔yy𝜉

𝑑𝜓
𝑑𝜉

}

𝐷𝑒
𝑐yy

𝑐xy

(

𝑑𝛿
𝑑𝑥

)2{

𝑔xy ∫

𝜉

0

[

3
2
𝜓 + 6𝜉

𝑑𝜓
𝑑𝜉

+ 2𝜉2
𝑑2𝜓
𝑑𝜉2

]

𝑑𝜉
}

=
𝛽𝐷𝑒2𝑅𝑒𝛿𝐴

3∕2
𝛿

3𝑐yy

{

𝑁yy

}

−
{

𝜎yy

}

,

(B.15)

or 𝐶yy and

𝐷𝑒 𝛿
𝑐zz

𝑑𝑐zz
𝑑𝑥

{

𝜓𝑔zz

}

−𝐷𝑒 𝑑𝛿
𝑑𝑥

{

𝑑𝑔zz
𝑑𝜉 ∫

𝜉

0

𝜓
2
𝑑𝜉

}

=
𝛽𝐷𝑒2𝑅𝑒𝛿𝐴

3∕2
𝛿

3𝑐zz

{

𝑁zz

}

−
{

𝜎zz

}

,

(B.16)

or 𝐶zz. At the asymptotic limit of the nearly-coiled regimes the equa-
ions for 𝐶xx and 𝐶yy reduce to

∓ 𝐷𝑒
𝑐xx,yy

𝑑𝛿
𝑑𝑥

{

𝜓 + 2𝜉
𝑑𝜓
𝑑𝜉

}

𝛽𝐷𝑒2𝑅𝑒𝛿𝐴
3∕2
𝛿

𝑐xx,yy

{

𝑁xx,yy

}

=
{

𝜎xx,yy

}

,

(B.17)

hich can be written as

∓ 𝐷𝑒
𝑐xx,yy

𝑑𝛿
𝑑𝑥

{

𝜓 + 2𝜉
𝑑𝜓
𝑑𝜉

}

+ 𝐷𝑒
𝑐xx,yy

𝑑𝛿
𝑑𝑥

( 𝛽𝑊 𝑖𝑅𝑒𝐴−1
𝑈𝑐
𝐴1∕2
𝛿

(𝑥 − 𝑥0)∕ℎ

){

𝑁xx,yy

}

=
{

𝜎xx,yy

}

,

(B.18)

after using the definitions of 𝐷𝑒(𝑥), 𝑅𝑒𝛿(𝑥) and the scaling laws for 𝛿(𝑥)
and 𝑈𝑐 (𝑥). For the regions where
𝑥 − 𝑥0
ℎ

≪ 𝛽𝑊 𝑖𝑅𝑒𝐴−1
𝑈𝑐
𝐴1∕2
𝛿 , (B.19)

he term inside parenthesis in Eq. (B.18) is much larger than one and
he first term on the l.h.s. of the same equation is much smaller than
he second, and the equation reduces to the simplified balance equation
f the nearly-coiled nearly-isotropic regime. For more distant regions
here
𝑥 − 𝑥0 ≫ 𝛽𝑊 𝑖𝑅𝑒𝐴−1𝐴1∕2, (B.20)
20

ℎ 𝑈𝑐 𝛿 𝓁
he term inside parenthesis in Eq. (B.18) is much smaller than one and
he second term on the l.h.s. of Eq. (B.18) is much smaller than the
irst term, and the equation reduces to the simplified balance equation
f the nearly-coiled final region of decay.

ppendix C. Domain of validity

Here we discuss the domain of validity of the different scaling laws
n terms of the non-dimensional characteristic length scales 𝓁𝑐𝑖𝑗 ,1, 𝓁𝑐𝑖𝑗 ,2

and 𝓁𝑐𝑖𝑗 ,3 as shown in Fig. 26, where we use 𝑑 and ℎ to normalize
these length scales, for wakes and jets, respectively. As demonstrated
below, these characteristic length scales depend on the component
of the conformation tensor under analysis. We start with 𝓁𝑐𝑖𝑗 ,3 and
𝓁𝑐𝑖𝑗 ,2 because analytical formulas can be derived for them. A numerical
procedure is indicated for the calculation of 𝓁𝑐𝑖𝑗 ,1 at the end of this
appendix.

The upper boundaries 𝓁𝑐xx ,3 and 𝓁𝑐yy ,3 demarcating the transition be-
tween the nearly-coiled nearly-isotropic and nearly-coiled final region
of decay sub-regimes for the 𝐶xx and 𝐶yy components, respectively, are
the most straightforward to obtain. The transition is when the validity
of the condition given by the inequalities (B.9), for wakes, and (B.19),
for jets, ceases. The results obtained for the planar wake are given by

𝓁𝑐xx ,3 = 𝓁𝑐yy ,3 = 𝛾1(𝛽𝑊 𝑖𝜃𝑅𝑒𝜃)2. (C.1)

nd for the planar jet they are

𝑐xx ,3 = 𝓁𝑐yy ,3 = 𝛾1𝛽𝑊 𝑖𝑅𝑒. (C.2)

he 𝛾𝑖 coefficients were introduced so that we can write the equa-
ions with a more compact notation that emphasizes the functional
ependences on the more important parameters: 𝛽, 𝑊 𝑖 and 𝑅𝑒. Their
efinitions and calculated values are given at Table C.2. Some 𝛾𝑖 have
non-unitary order of magnitude, so they need to be kept in the

ormulation.
Notice that for components 𝐶zz and 𝐶xy and trace 𝐶𝑖𝑖 the simplified

governing equations and the resulting scaling laws are the same at the
nearly-coiled nearly-isotropic sub-regime and final region of decay, so
that 𝓁𝑐zz ,3 = 𝓁𝑐xy ,3 = 𝓁𝑐𝑖𝑖 ,3 → ∞.

The non-dimensional length scales 𝓁𝑐𝑖𝑗 ,2 marking the transition be-
ween the highly-stretched and nearly-coiled sub-regimes are obtained
y imposing that each negligible term of the 𝐶𝑖𝑗 equation at the nearly-

coiled nearly-isotropic regime is much smaller than the dominant terms
of the equation. For example, in Eq. (B.14) it was found that the
advection term of order 𝐷𝑒(𝛿∕𝑐xx)𝑑𝑐xx∕𝑑𝑥 is much smaller than the
dominant terms of order unity, i.e. |𝐷𝑒(𝛿∕𝑐xx)𝑑𝑐xx∕𝑑𝑥|≪ 1. Substitution
f the scaling laws for 𝐷𝑒(𝑥), 𝛿(𝑥) and 𝑐xx(𝑥) at the nearly-coiled nearly-
sotropic regime gives (5∕2)𝑊 𝑖𝐴−1∕2

𝑈𝑐
[(𝑥 − 𝑥0)∕ℎ]−3∕2 ≪ 1, which can

e re-written as (𝑥 − 𝑥0)∕ℎ ≫ 𝑊 𝑖2∕3[(5∕2)2∕3𝐴−1∕3
𝑈𝑐

] so that 𝓁𝑐𝑖𝑗 ,2 =

𝑖2∕3[(5∕2)2∕3𝐴−1∕3
𝑈𝑐

]. Doing similarly to another negligible term of the
ame equation gives 𝓁𝑐𝑖𝑗 ,2 = 𝛾3𝛽−2𝑅𝑒−2. This procedure is carried out
or all components of 𝐶𝑖𝑗 and its trace, leading to the following results

for a planar jet

𝓁𝑐xx ,2 = max{𝛾2𝑊 𝑖2∕3, 𝛾3𝛽
−2𝑅𝑒−2}, (C.3)

𝑐yy ,2 = max{𝛾2𝑊 𝑖2∕3, 𝛾4𝛽
−2𝑅𝑒−2}, (C.4)

𝓁𝑐zz ,2 = 𝛾2𝑊 𝑖2∕3, (C.5)

𝑐xy ,2 = max{(3∕5)2∕3𝛾2𝑊 𝑖2∕3, 𝛾5𝛽𝑊 𝑖𝑅𝑒}, (C.6)

𝑐𝑖𝑖 ,2 = max{𝛾2𝑊 𝑖2∕3, 𝛾3𝛽
−2𝑅𝑒−2}. (C.7)

The results for the planar wake are

= max{𝛾 𝑊 𝑖2∕3, 2𝑊 𝑖 }, (C.8)
𝑐xx ,2 2 𝜃 𝜃
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Table C.2
Definitions and calculated values for the 𝛾𝑖 coefficients appearing in the expressions for the characteristic distances 𝓁𝑐𝑖𝑗 ,2 and 𝓁𝑐𝑖𝑗 ,3.

Coefficients 𝛾1 𝛾2 𝛾3 𝛾4 𝛾5

Definition (wakes)
(𝐴1∕4

𝛿2 𝐴
−1∕4
𝛥𝑈

3
√

8

)2 22∕3

𝐴1∕3
𝛥𝑈

𝐴−1∕4
𝛥𝑈 𝐴2

𝑐yy

𝐴9∕4
𝛿2 𝐴𝑐xy

𝐴9∕8
𝛿2 𝐴

1∕2
𝑐xy

𝐴3∕8
𝛥𝑈 𝐴𝑐yy

𝐴15∕4
𝛿2 𝐴𝑐xy

𝐴1∕4
𝛥𝑈 𝐴2

𝑐yy

Numerical value (wakes) 0.007 2.5 12.7 0.54 0.003

Definition (jets)
𝐴1∕2
𝛿

𝐴𝑈𝑐

(5∕2)2∕3

𝐴1∕3
𝑈𝑐

𝐴𝑈𝑐𝐴
5
𝑐xx

𝐴5
𝛿𝐴3

𝑐xy

𝐴𝑈𝑐𝐴
5
𝑐yy

𝐴𝛿𝐴3
𝑐xy

𝐴5∕2
𝛿 𝐴3∕2

𝑐xy

𝐴𝑈𝑐𝐴
5∕2
𝑐yy

Numerical value (jets) 1.8 3.3 5.7 × 105 25 0.003
f
b
T

w
s
E

{

{

m

w

w

𝐶

a
f

𝐾

𝓁𝑐yy ,2 = max{𝛾2𝑊 𝑖2∕3𝜃 , 2𝑊 𝑖𝜃 , 𝛾3𝛽
−1𝑅𝑒−1𝜃 }, (C.9)

𝓁𝑐zz ,2 = max{𝛾2𝑊 𝑖2∕3𝜃 , 2𝑊 𝑖𝜃}, (C.10)

𝑐xy ,2 = max{𝛾2𝑊 𝑖2∕3,𝜃 ∕22∕3, 𝑊 𝑖𝜃 ,

𝛾4𝑊 𝑖𝜃(𝛽𝑅𝑒𝜃)1∕2, 𝛾5𝛽𝑊 𝑖𝜃𝑅𝑒𝜃},
(C.11)

𝓁𝑐𝑖𝑖 ,2 = max{𝛾1𝑊 𝑖2∕3𝜃 , 2𝑊 𝑖𝜃}. (C.12)

For both jets and wakes a 𝑊 𝑖2∕3 scaling appears for 𝓁𝑐𝑖𝑗 ,2, whereas
a 𝑊 𝑖 or 𝑊 𝑖2𝜃 scaling, for jets or wakes, appears for 𝓁𝑐xx ,3 and 𝓁𝑐yy ,3.

he influence of the inlet Reynolds number and 𝛽 also appears in the
nequalities. Considering that 𝑅𝑒 is much larger than 𝑊 𝑖 and also that
𝑒 is sufficiently large, the 𝓁𝑐xy ,2 formula indicates a linear variation
ith 𝑅𝑒 for both jets and wakes. 𝓁𝑐xx ,3 and 𝓁𝑐yy ,3 also vary linearly
ith 𝑅𝑒 for jets, but exhibit a quadratic 𝑅𝑒2𝜃 growth for wakes. These

onclusions are true for the asymptotic limit 𝑅𝑒 → ∞, but when 𝑅𝑒 is
ot sufficiently high the terms involving e.g. 𝛾3𝛽−2𝑅𝑒−2, for the 𝓁𝑐xx ,2 of
ets, might actually dominate because the coefficient 𝛾3 ∼ 105 is large.

To calculate 𝓁𝑐𝑖𝑗 ,1 we have to consider the scaling laws and cor-
esponding self-similarity equations at the highly-stretched nearly-
sotropic regime of polymer deformation. If we follow a procedure
nalogous to that described above for the calculation of 𝓁𝑐𝑖𝑗 ,2 but
dapted to the highly-stretched nearly-isotropic regime, we obtain the
quations for each 𝓁𝑐𝑖𝑗 ,1 length scale. Since the scaling laws at the
ighly-stretched regime are more complex than those of the nearly-
oiled regime, the resulting equations for 𝓁𝑐𝑖𝑗 ,1 are non-linear, and can
nly be solved numerically. Even though these numerical solutions can
e useful, for example, to evaluate composite expansions, they do not
ead to further insights in terms of the flow physics and thus will not
e presented here for brevity.

ppendix D. Derivation of the transverse profiles of the normal-
zed conformation tensor 𝒈𝒊𝒋(𝝃)

.1. Planar wake

The adopted intermittency model assumes a velocity jump over an
nfinitely thin turbulent interface whose position with respect to the
low centreline has a Gaussian distribution with mean 𝜇 × 𝛿(𝑥) and
tandard deviation 𝜎×𝛿(𝑥). A convolution integral leads to the formula
or the mean profile [34]

̄ = 𝛾𝑠𝑢𝑡𝑢𝑟𝑏 + (1 − 𝛾𝑠)𝑢𝑝𝑜𝑡, (D.1)

here 𝑢𝑡𝑢𝑟𝑏(𝑥, 𝑦) = 𝑈∞ − 𝛥𝑈 (𝑥)�̃�(𝜉) is the mean velocity obtained from
ixing length theory without any intermittency correction, 𝑢𝑝𝑜𝑡 = 𝑈∞ is

he potential velocity and the intermittency factor follows a self-similar
ownstream development described by [34,39,40]

𝑠(𝜉) =
1 [1 − erf

( 𝜉 − 𝜇
√

)]

. (D.2)
21

2 2𝜎
The turbulent planar wake profile �̃�(𝜉) (the tilde indicates the
unction without the intermittency correction) was obtained originally
y Schlichting (1930) [3] and later by Görtler (1942) [4] and others.
he formula adopted here is also derived at Pope (2000) [8]:

�̃�(𝜉) = exp(−𝛼𝜉2) (D.3)

here 𝛼 = ln 2. Combining (D.3) with the intermittency model de-
cribed above, 𝜓(𝜉) is obtained, and substitution of the result into
qs. (37) and (41) leads to

𝑔xy(𝜉) = −𝜒𝑐xy exp(−𝛼𝜉2)×

𝛼𝜉
[

1 − erf
(

𝜉 − 𝜇
√

2𝜎

)]

+
exp

[−(𝜉−𝜇)2

2𝜎2
]

√

2𝜋𝜎

}

,
(D.4)

𝑔xx(𝜉) = 𝜒𝑐xx exp(−𝛼𝜉2)×
[

1
2
− 𝛼𝜉2

][

1 − erf
(

𝜉 − 𝜇
√

2𝜎

)]

− 𝜉
exp

[−(𝜉−𝜇)2

2𝜎2
]

√

2𝜋𝜎

}

,
(D.5)

𝑔yy(𝜉) = −𝑔xx(𝜉). (D.6)

The model parameters 𝜒𝑐𝑖𝑗 are calculated by taking the maximum
value of the functions that appear on each side of the corresponding
𝑔𝑖𝑗 (𝜉) equations, isolating 𝜒𝑐𝑖𝑗 and using the limit value of the function
(max[𝑔𝑖𝑗 (𝜉)] = 1). For example, for the shear component we have

𝜒𝑐xy = max|𝑔xy(𝜉)|∕

ax
|

|

|

|

exp(−𝛼𝜉2)
{

𝛼𝜉
[

1 − erf
(

𝜉 − 𝜇
√

2𝜎

)]

+
exp

[−(𝜉−𝜇)2

2𝜎2
]

√

2𝜋𝜎

}

|

|

|

|

(D.7)

here max|𝑔xy(𝜉)| = 1.
After a linearization (explained below), the balance equation for 𝜅

ritten with similarity variables (𝐾 = 𝜅∕𝑢′2) is

𝑑2𝐾
𝑑𝜉2

+ 𝐵1
𝑑𝐾
𝑑𝜉

+ 𝐶1𝐾 = 𝐷1

(

𝑑𝜓
𝑑𝜉

)2
, (D.8)

with boundary conditions given by

𝐾(𝜉 = 0) = 𝐾0, 𝐾(𝜉 → ∞) = 0, (D.9)

where we have introduced some non-dimensional, constant coefficients
to simplify the notation. The equation coefficients are given by

𝐵1 =

√

2𝐴𝜎𝐴
1∕4
𝛥𝑈 𝐴

1∕4
𝛿2

2𝜈𝑡
, 𝐷1 =

−2𝐴𝜎
𝐴1∕2
𝛥𝑈 𝐴

1∕2
𝛿2

, (D.10)

1 =

√

2𝐴𝜎𝐴
1∕4
𝛥𝑈 𝐴

1∕4
𝛿2

− 𝐴𝜀𝐴𝜎
√

𝐾0

𝜈𝑡
. (D.11)

The ordinary differential equation (ODE) for 𝐾(𝜉) is actually non-linear
nd we arrived at Eq. (D.8) after a linearization of the ODE using the
ollowing approximation
3∕2 =

√

𝐾𝐾 ≈
√

𝐾0𝐾. (D.12)

Therefore, Eq. (D.8) is a second order inhomogeneous ODE with con-
stant coefficients whose general solution can be obtained from the
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method of variation of parameters. The solution depends on the sign
of the discriminant of the equation, 𝛥, which is

𝛥 = 𝐵2
1 − 4𝐶1. (D.13)

Since 𝛥 is always positive, the general solution of the ODE for the wake
is

𝐾(𝜉) = 𝐶1 exp
{

−
𝜉
2
(𝐵1 +

√

𝛥)
}

+

2̃ exp
{

−
𝜉
2
(𝐵1 −

√

𝛥)
}

+
𝐷1
4

exp{−2𝛼𝜉2}

+
𝐷1

√

𝜋∕2

32
√

𝛼𝛥
[16𝛼 + (𝐵1 +

√

𝛥)2]×

exp
{

−16𝛼𝜉(𝐵1 +
√

𝛥) + (𝐵1 +
√

𝛥)2

32𝛼

}

×erf
{

−8𝛼𝜉 + 𝐵1 +
√

𝛥

4
√

2𝛼

}

+
𝐷1

√

𝜋∕2

32
√

𝛼𝛥
[16𝛼 + (𝐵1 −

√

𝛥)2]×

exp
{

−16𝛼𝜉(𝐵1 −
√

𝛥) + (𝐵1 −
√

𝛥)2

32𝛼

}

×erf
{

8𝛼𝜉 − 𝐵1 +
√

𝛥

4
√

2𝛼

}

,

(D.14)

here the integration constants 𝐶1 and 𝐶2 are specified by the bound-
ry conditions and are given by

2̃ = −
𝐷1

√

𝜋∕2

32
√

𝛼𝛥
[16𝛼 + (𝐵1 −

√

𝛥)2]exp
{

(𝐵1 −
√

𝛥)2

32𝛼

}

(D.15)

and

𝐶1 = 𝐾0 −
𝐷1
4

−
𝐷1

√

𝜋∕2

32
√

𝛼𝛥
[16𝛼 + (𝐵1 +

√

𝛥)2]×

exp
{

(𝐵1 +
√

𝛥)2

32𝛼

}

erf
{

𝐵1 +
√

𝛥

4
√

2𝛼

}

−
𝐷1

√

𝜋∕2

32
√

𝛼𝛥
[16𝛼 + (𝐵1 −

√

𝛥)2]exp
{

(𝐵1 −
√

𝛥)2

32𝛼

}

×

(

erf
{

−𝐵1 +
√

𝛥

4
√

2𝛼

}

− 1
)

.

(D.16)

When we normalize 𝜅 and 𝐶𝑖𝑖 − 𝛿𝑖𝑖 in Eq. (62) and substitute the
scaling laws for 𝑐𝑖𝑖(𝑥) and 𝑢′(𝑥) the rheological parameters that appear
in the equation cancel out and we obtain the following relation

𝑔𝑖𝑖(𝜉) = 𝜒𝑐𝑖𝑖𝐾(𝜉)3∕2 (D.17)

where model parameters, such as 𝐴𝑆𝐷𝑅, 𝐴𝜀, 𝐴𝑐𝑖𝑖 and so on, have
been absorbed into a single constant coefficient 𝜒𝑐𝑖𝑖 , whose value is
calculated as described before for the other 𝜒𝑐𝑖𝑗 constants. At the final
region of decay we have 𝑔xx(𝜉) = −𝑔yy(𝜉), and so the component 𝑔zz(𝜉)
can be obtained directly from the trace 𝑔𝑖𝑖(𝜉) i.e.

𝑔zz(𝜉) = 𝑔𝑖𝑖(𝜉). (D.18)

D.2. Planar jet

The intermittency model used for jets is the same as that described
for wakes but 𝑢𝑡𝑢𝑟𝑏(𝑥, 𝑦) = 𝑈𝑐 (𝑥)�̃�(𝜉) and 𝑢𝑝𝑜𝑡 = 𝑈∞ = 0 for a jet without
co-flow. Tollmien (1926) [2] was the first to obtain a solution for �̃�(𝜉)
in a turbulent planar jet, but here we adopt the solution of Görtler
(1942) [4], which uses the closure assumption of Eq. (57) and is given
by

�̃�(𝜉) = sech2(𝛼𝜉) (D.19)
22
Fig. E.30. Streamwise evolution of normalized 𝑐𝑖𝑗 (𝑥) compared to the theory for
turbulent wakes at the nearly-coiled nearly-isotropic regime: (a) shear component, (b)
trace. For each panel, we compute the mean conformation tensor using two different
approaches, the classical arithmetic averaging adopted in the core of the manuscript,
and the log-Euclidean averaging of Hamenduddin and Zaki (2019) [18]. The DNS
parameters are 𝑅𝑒 = 3000, 𝑊 𝑖 = 0.15, 1 − 𝛽 = 0.20 and 𝐿 = 100.

with 𝛼 = ln[(1 +
√

2)2]∕2. Combining the above equation with the
adopted intermittency model we obtain 𝜓(𝜉), and substitution of the
esult into Eqs. (37) and (55) leads to the solutions for the normalized
onformation tensor components:

𝑔xy(𝜉) = −𝜒𝑐xy sech2(𝛼𝜉)×

{

tgh(𝛼𝜉)
[

1 − erf
(

𝜉 − 𝜇
√

2𝜎

)]

+
exp

[−(𝜉−𝜇)2

2𝜎2
]

√

2𝜋𝜎

}

,
(D.20)

𝑔xx(𝜉) = 𝜒𝑐xx sech2(𝛼𝜉)×
[

1
2
− 2𝜉tgh(𝛼𝜉)

][

1 − erf
(

𝜉 − 𝜇
√

2𝜎

)]

− 2𝜉
exp

[−(𝜉−𝜇)2

2𝜎2
]

√

2𝜋𝜎

}

,
(D.21)

nd again Eq. (D.6) for 𝑔yy(𝜉).
The linearized differential equation of 𝐾(𝜉) for the turbulent planar

et is

𝜈𝑡𝐴
3
2
𝛿

𝐴𝜎
𝑑2𝐾
𝑑𝜉2

+ (
𝐴2
𝛿
2 ∫

𝜉

0
𝜓𝑑𝜉)𝑑𝐾

𝑑𝜉
+

(𝐴2𝜓 − 𝐴𝜀𝐴
3
2
√

𝐾0)𝐾 = −𝜈𝑡𝐴
1
2

(

𝑑𝜓
)2
,

(D.22)
𝛿 𝛿 𝛿 𝑑𝜉
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Fig. E.31. Streamwise evolution of normalized 𝑐𝑖𝑖(𝑥) compared to the theory for
urbulent wakes at the highly-stretched nearly-isotropic regime. The mean conformation
ensor is computed using two different approaches, the classical arithmetic averaging
dopted in the core of the manuscript, and the log-Euclidean averaging of Hameduddin
nd Zaki (2019) [18]. The DNS parameters are 𝑅𝑒 = 2000, 𝑊 𝑖 = 3, 1 − 𝛽 = 0.02 and
= 200.

Fig. E.32. Streamwise evolution of normalized 𝑐xy(𝑥) compared to the theory for
turbulent wakes at the highly-stretched nearly-isotropic regime. The mean conformation
tensor is computed using two different approaches, the classical arithmetic averaging
adopted in the core of the manuscript, and the log-Euclidean averaging of Hameduddin
and Zaki (2019) [18]. The DNS parameters are 𝑅𝑒 = 2000, 𝑊 𝑖 = 3, 1 − 𝛽 = 0.02 and
𝐿 = 200.

For the jet we were unable to obtain a closed form analytical solution
of the ODE, so a numerical solution was presented instead. Subsequen-
tially, inserting this numerical solution into Eqs. (D.17) and (D.18)
gives the final solutions for 𝑔𝑖𝑖(𝜉) and 𝑔zz(𝜉).

Appendix E. Arithmetic and log-Euclidean averages of the confor-
mation tensor

Recently, Hameduddin et al. (2018) [17] and Hameduddin and Zaki
(2019) [18] proposed new ways to calculate the mean conformation
tensor and its fluctuations that are alternatives to the classical Reynolds
decomposition and averaging, namely the log-Euclidean and geometric
23
means. They argue that their approach is more consistent from both
mathematical and physical viewpoints. The log-Euclidean and geomet-
ric means behave similarly but the former is more computationally
efficient. Here we demonstrate that our new scaling laws derived in
the core of the manuscript are also able to describe the evolution of the
mean conformation tensor when the log-Euclidean mean is adopted. For
brevity, we only show the results from two cases, at highly-stretched
and nearly-coiled regimes.

The log-Euclidean mean involves the matrix logarithm and matrix
exponential, and is defined by

⟨𝑪⟩log = exp(⟨ln𝑪⟩arithmetic), (E.1)

here ⟨⟩arithmetic indicates the classical arithmetic mean (an over-bar
as used in the core of the manuscript).

The trace and shear component of the mean conformation tensor
f turbulent wakes, normalized according to our theory, are shown in
ig. E.30 for the nearly-coiled nearly-isotropic regime, and Figs. E.31
nd E.32 for the highly-stretched nearly-isotropic regime. In each fig-
re, two methods were used to calculate the mean conformation tensor,
he log-Euclidean and arithmetic means. Our analytical scaling laws are
lso displayed for comparison, and show very good agreement with the
NS data also when the log-Euclidean mean is adopted.
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