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This work is concerned with time-dependent axisymmetric free surface flows of Oldroyd-B fluids for any value
of B, the ratio of solvent to total viscosities. The Oldroyd-B constitutive equation is dealt with by employing a
novel technique to calculate the conformation tensor while an EVSS transformation allows the solution of the
momentum equations coupled with the free surface stress conditions: this avoids numerical instabilities that can
arise when using small values of . The convergence of this new methodology is verified on pipe flow and also
by comparing results from the literature for the time-dependent impacting drop problem. This approach is then

used to predict the time-dependent free surface flow after a viscoelastic drop impacts a solid surface for g values
in the range [0, 1]. The impacting drop problem is investigated for polymer solutions containing a small solvent
contribution (8 — 0) or without any solvent viscosity (f = 0). In addition, a study of the bouncing drop problem
for different values of 5, Weissenberg and Reynolds numbers is undertaken.

1. Introduction

The importance of non-Newtonian free surface flows in industrial
processes has attracted the attention of many scientists. Examples of
such applications include polymer processing in the plastics industry
such as mould filling of complex cavities. Such flows can be modelled
by a system of nonlinear equations, but the presence of (multiple) mov-
ing free surfaces can make their solution challenging. Furthermore, for
a particular polymer, it is not always obvious what the correct constitu-
tive equation should be. One choice that must be made is between dif-
ferential and integral constitutive models, or indeed a mixture of both.
A large number of differential constitutive models have been developed
over the past decades: Upper Convected-Maxwell (UCM) [1], Oldroyd-
B [2], Phan-Thien-Tanner (PTT) [3], Giesekus [4], Extended Pom-Pom
(Pom-Pom) [6,7], among others. On the other hand, integral constitu-
tive models have been developed and studied by Papanastasiou et al.
[8], Kaye [9] and Luo and Mitsoulis [10], amongst others. Integral con-
stitutive equations require more sophisticated approaches to solve the
governing equations numerically and require more computational re-
sources and, possibly for these reasons, there has been a greater focus
on differential constitutive models. In particular, the UCM and Oldroyd-
B models have been extensively studied, employing finite element, finite
volume and finite difference methods (e.g. [11-16,23-30]). Due to their
unbounded elastic normal stresses, these models are arguably the most
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challenging viscoelastic constitutive equations from a numerical point
of view (see e.g. [33,34]).

A decoupling strategy to calculate velocity and pressure has found
favour. For instance, Hirt and Nichols [35] introduced the volume of
fluid (VOF) method in the early 1980s: this has been used to simulate
non-Newtonian flows by many investigators (e.g. [15,32,36-39]). This
method, while easy to implement, suffers from numerical diffusion; to
overcome this drawback several improved versions have been developed
[36,38,40].

Another approach is to represent the free surface by a level set func-
tion which is convected with the fluid flow; its evolution in time is ob-
tained through the solution of a hyperbolic equation. Osher and Sethian
[41] are usually credited with introducing the idea and it has the ca-
pability of capturing multiphase flow phenomena. It has been used to
simulate filament stretching and jet buckling [29,42,43], mould fill-
ing [44] and many other interesting applications (see e.g. [44-49]). A
third approach is the front tracking method: unlike VOF or the level set
method the front tracking method employs massless markers to describe
the fluid interface. In two dimensions the interface between two fluids
is described by a set of points (x;, ;) - the markers - while in three di-
mensions it is represented by a set of quadrilaterals and/or triangles.
The coordinates of the markers are updated at each time step according
to the velocity at the new time step. In two dimensions the interface
is visualized by connecting these points by straight lines (i.e. zero or-
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der splines), while in three dimensions the interface is constructed from
piece-wise linear surfaces described by quadrilaterals or triangles. The
first ideas of this method were presented by Harlow and Welch [50],
who introduced the Marker-and-Cell method in the early 1960s. Since
its introduction, other improved versions have been developed and em-
ployed by many authors to simulate free surface flows of both Newto-
nian and non-Newtonian fluids in two and three dimensions (see, e.g.
[16,50-60]).

In this paper we are concerned with axisymmetric viscoelastic free
surface flows: the Oldroyd-B model is to be solved by an Eulerian finite
difference method. The elastic-viscous-stress-splitting (EVSS) technique,
introduced by Rajagopalan et al. [18] (see also [19-21]), has proved
to be efficient for solving confined flows. The present work employs
this stress splitting technique to solve the governing equations while
the fluid free surface is handled by the front tracking technique specifi-
cally developed by Tomé et al. [16,17] for solving time-dependent free
surface flows. A novel feature of our approach is that the extra-stress
tensor is combined with the conformation tensor: the conformation ten-
sor is then approximated by implicit finite differences in such a way
that the resulting system of equations can be solved exactly. The stress
splitting technique introduces a non-Newtonian tensor that is used on
the free surface stress boundary conditions instead of the polymer stress
tensor. This eliminates numerical instabilities if the flows were highly
elastic and the solvent viscosity ratios f = 'Z’—i = j—? were consequently
small (for g = 0 there is even a singularity). Here, g and 7, denote, re-
spectively, solvent and total viscosities while A;, 4, are the relaxation
and retardation times, respectively.

The application of both the EVSS transformation and the solution of
the conformation tensor have allowed us to simulate free surface flows
with vanishingly small values of the viscosity ratio . This new method-
ology is in part verified by solving fully developed pipe flow and by a
number of mesh refinement studies. The effectiveness of the technique is
then demonstrated by solving the time-dependent impacting drop prob-
lem for very small values of the viscosity ratio f. A comparison with
existing results in the literature is also made. New simulations of both
drop spreading and drop bouncing are then presented and in particu-
lar, the bouncing of a drop is studied for various values of the Reynolds
number, the viscosity ratio and the Weissenberg number.

2. Governing equations

The mass conservation and momentum equations are the basic equa-
tions for incompressible flows and can be written as,

V.v=0, Y]
oav
p[5+v.(vv) = Vp+V-7+pg @

where v is the velocity vector, p is the scalar pressure, g is the gravity
vector, p is the density of the fluid and  is the extra-stress tensor.

We are interested in flows governed by the Oldroyd-B rheological
constitutive equation, that is defined by the following equation

v v 1 T
T4 AT =20 [D +/12D], D= 5[(Vv)+(Vv) ] )

where D is the rate-of-deformation tensor, 4, is the relaxation time, 4, is

the retardation time and 7, is the total viscosity of the fluid. The upper-
v

convected derivative of the stress tensor, denoted by the symbol 7, is

given by

v

T= Z—: +V-(vo) = (V) Tz —z(Vv).

This constitutive equation is usually solved under the rheological split-

ting

T =17p+2pnD, “
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where the second term on the right-hand side accounts for the New-
tonian solvent stress contribution, and the polymer stress tensor zp is
calculated from the UCM equation

Tp+ 1 TVP =2(1- Py D, )
and n, = np + ng is the sum of the solvent (y5) and polymeric (yp) vis-
cosities. The coefficient g = IS = j—z measures the ratio between the sol-
vent and the total viscosity ((;f the] fluid. The Oldroyd-B model can be
derived from the kinetic theory of dilute polymer solutions and note
that when np — 0,4; — 0 (cf. Bird et al. [5])). When g = 0, Eq. (3) re-
duces to the Upper-Convected Maxwell (UCM) model and if § = 1 we have
Newtonian flow since the relaxation time is also zero.

The extra-stress tensor 7 can be shown to be related to the conforma-

tion tensor A of the polymer additives, here represented by the meso-
scopic model of dumb bells, by

r=Z—?(1—ﬁ)(A—I)+2ﬁnOD, ©)

resulting in the time evolution equation

v
A+LA=1 ™

This equivalence is readily seen by substituting Eq. (6) into Eq. (3),
and using the relationship between the relaxation and retardation times:
Iy = BA,.

To solve the momentum equation Eq. (2), we employ the following
transformation, known as EVSS [18] (see also [19-21])

T =S+ 2D, 8)

where S is a non-Newtonian elastic stress tensor. After introducing this
into the momentum equation Eq. (2), we obtain

av 2
p[E+V-(vv)]:—Vp+r10V v+V-S+pg. )
The solutions (v, p, ) can therefore be obtained by solving the continu-
ity Eq. (1) together with the momentum equation Eq. (9) using a pro-
jection method while the conformation tensor A can be calculated by
solving Eq. (7). The extra-stress tensor 7 and the non-Newtonian stress
tensor S are then computed from equations Eqs. (6) and (8), respectively.

However, in the literature, many works (e.g. [12,16,32]) deal-
ing with the Oldroyd-B model make use of the rheological splitting
Eq. (4) which, after being inserted into the momentum equation Eq. (2),
leads to the transformed equation

p[Z—Z+V~(VV)]=—Vp+ﬁ;10V2v+V~rP+pg. (10)

Note that this equation contains the term S, V2v instead of 7,V2v of
Eq. (9).

2.1. Boundary conditions

The boundary conditions can be summarized as follows: on rigid
boundaries the no-slip condition is imposed; on inflows, the velocity
is prescribed while the extra-stress tensor obeys fully developed flow
(details are given in Section 4). On outflows, homogeneous Neumann
conditions are imposed; the free surface boundary conditions are dis-
cussed in the next section.

2.2. Free surface stress conditions

We consider unsteady axisymmetric free surface flows of a viscoelas-
tic fluid flowing into a nonresistant atmosphere and assume negligible
surface tension forces. This is a reasonable assumption since the fluids
we shall consider are both very viscous and highly elastic. Under these
conditions, the appropriate boundary conditions on the free surface of
a viscous fluid are the vanishing of the normal and tangential stresses
which can be stated as (see Batchelor [22])

n’ - (6-n)=0, (11a)
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Fig. 1. (a) Description of a typical cell employed in the mesh, (b)
Representation of fluid free surface (line connecting the particles)
o[o[oJo[o[o]o[o[0 and volume of fluid (yellow area), (c) Type of cells in the domain..
(For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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m’ -(c-n)=0, (11b)

where ¢ = —pl + 7 is the total stress tensor, and, in two-dimensional
axisymmetric flow, n = [n,, n,]7 andm = [n,, —n,]" are the unit vectors,
respectively, normal and tangential to the free surface.

By assuming axisymmetric flows and using cylindrical coordinates,
and inserting the splitting defined by Eq. (4) into the free surface stress
conditions Egs. (11a,b) (for more details see [12,16,32]) gives rise to
the following equations

2
p= R_IZ %n% + (% %—Lf)nrnz + (;—':ni] + rgnf +2tnn, + rj‘fni,
(12a)
Jw ou ou Jw 2 2
Z(E—;>n,nz+<£ ;)(nr—nz)
Re
- 7[(1’;—r;z)n,nz+r;,z(n§—nf)]. (12b)

Equation Eq. (12a) is commonly used to compute the pressure on the
free surface and poses no problem for any value of g while Eq. (12b) be-
comes singular as f approaches zero (UCM model). However, if g is
small, numerical instabilities may appear especially if the flow is highly
elastic or presents large stress gradients. Possibly for this reason, when
using the rheological splitting (4), many investigators (e.g. [12,16,32])
have in the past solved free surface flows of Oldroyd-B fluids employing
B > 1/9 in their calculations. A solution to this problem is developed
next.

By introducing the EVSS transformation, Eq. (8), into the stress con-
ditions Egs. (11a,b), they can be written, in component form, as

— l % 2 Q d_w d_w 2 rr2 zr zz 2
p= Re[arn’+(dz + or )nrnz+ dzn"'] +S8"n + 285" n.n, + S%n;,
(13a)
Jw du Ju | ow
2(— - —)n,nz + (— + —)(nf —nf)
dz  or dz  or (13b)

2
r

= Re[(S” - S )nn_ + S’Z(ni —-n )]

Thus, by using the EVSS transformation we avoid the 1/ multiplier
on the right hand side of Eq. (12b) and thereby the associated numer-
ical instabilities when g is small. In this work we use Egs. (13a) and
(13b) instead of Eqs. (12a) and (12b).

3. Numerical method

The equations presented in Section 2 are solved by the finite differ-
ence method on a staggered grid (Fig. 1a displays the locations of the

Fig. 2. Movement of the free surface (the blue curve) near a solid wall (the
brown line); velocities shown by brown symbols are calculated by the no-slip
condition while those represented by green symbols are computed from the free
surface stress conditions (see Eq. (13b)) and the mass conservation equation. The
velocities corresponding to the black symbols are obtained from the momentum
equations. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 3. Computation of the velocities on the free surface cells (the green veloc-
ities) and illustration of the application of the stress condition Eq. (13b). (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

variables in a cell). The fluid is modelled by a front tracking method
developed by Tomé et al. [17] wherein the fluid surface is described by
a closed linear spline that is defined by markers (see Fig. 1b). To imple-
ment this technique, the cells within the mesh are divided into several
types, as follows (see Fig. 1c):
P> Rigid boundary (B): cells that define the location of rigid contours;
P Inflow boundary (I): cells that model ‘fluid entrances’ (‘inflows’);
P Outflow boundary (O): cells that define ‘fluid exits’ (‘outflows’);
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Fig. 4. Description of the flow domain (a) and computational domain (b).

P Empty cells (E): cells that do not contain fluid (see the white cells
in Fig. 1c);

P Full cells (F): cells that contain fluid and have no contact with
E-cell-faces;

P> Surface cells (S): cells that contain fluid and have at least one face
in contact with an E-cell-face.

3.1. Numerical algorithm

Egs. (1) and (6) to (9), written in cylindrical coordinates, are solved
for the unknowns v(r, z,1) = (u(r, z,1), w(r, z,0)T, p(r, 7, 0, (1, 2, ), A,
z, t) and S(r, 2, t), as follows. These equations are used in dimension-

less form and contain the nondimensional numbers Re = 2 UnU L (Reynolds
0

number), Wi = 4 1% (Weissenberg number) and Fr = LL (Froude num-
g

ber), in which L, U and p,, are typical scales for length, velocity and mass
(via density), respectively (for details see [16]). The calculational cycle
is performed in three steps, as follows:

STEP 1: Calculation of v'*! = v(r, z,1,,,) and p"*!' = p(r, z,1,,,)

The algorithm for calculating v"*! and p"*! embodies some ideas
from the technique presented by Tomé et al. [16]. The pressure field is
uncoupled from the mass (Eq. (1)) and momentum (Eq. (9)) equations
by using the projection method of Chorin [61].

Let 6t be the time step used, 7, =, + 6t, and let v* = v(r, z,1,), " =
7(r, z,t,), D", A" and S" be known at time t,.

A tentative velocity field v"*! is then calculated by the implicit Euler
method applied to the momentum equation by solving

vl %V%”“ =v"+5t{ -V (W)'=Vp'+ V-8 + #g } 14)

This gives rise to a sparse linear system that is efficiently solved by the
conjugate gradient method. It can be shown [62] that this velocity field
contains the correct vorticity at time ¢t but it does not conserve mass in
general. Thus, a potential function y(r, z,1,,) is computed such that

Vzwnﬂ =V .;n+l (15)
while the updated velocity field, v*!, is calculated from

Vn+1 - Vn+1 _ an+] . (16)

Thus the velocity v"*! ensures that mass is conserved while the vorticity
remains unchanged.

In this work, we borrow some ideas from the implicit technique of
Oishi et al. [63] that couples the boundary condition for the pressure on
the free surface, given by Eq. (11a), and the mass conservation equation
Eq. (1). This technique consists of applying the mass conservation equa-
tion together with the pressure condition on the free surface and the
equation for the velocity v**!, Eq. (16), on surface cells. By doing this,
new equations for the potential function y"*! are derived and added
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Fig. 5. Comparison of z%(r) with the analytic solution for pipe flow. Results
obtained with g = 0.1,0.01,0.001.

to the set of equations that originated from the application of the dis-
crete version of the Poisson equation Eq. (15) in F-cells. In surface cells,
these new equations contain terms like ‘:—ZZ which are first order ap-
proximated by finite differences. This results in the total linear system
becoming non-symmetric and therefore it is solved by the bi-conjugate
gradient method.

After obtaining y"*!, the pressure is calculated using

n+l
R Sy an

ot
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Fig. 6. Comparison of w(r) with the analytic solutions for pipe flow. Results
obtained with g = 0.001 on meshes M1, M2 and M3.

STEP 2: Calculation of A"*!
S(r, z,t,,1)

In this step we first compute the conformation tensor A"*!
A(r, z,t,,,) by solving Eq. (7) using finite differences as follows.

On each surface (S ;) and full (F; J) cells, Eq. (7) is implicitly approx-
imated by the equatlon

=A(r, z,1,,1), Tl = 1(r, z, t,+1)and Sl =

An+1 + 5,{ LAnJrl _ (an+l)TAn+l _ An+l(vvn+l)} = A"
Wi

L Y. (yIAn
+5z{Wi1 V(v A)}, (18)

resulting in the following (4 x 4)-linear system for the components of
A"+1:

n+1 R ntl _ o ou ou n+l
I. (AT 46§ AT = 2((S1AT]+ 2 am )

AT 4 61 s {L ~ lo(mn+llArr]n) o(wrtiaryn)
ij ri

0z

Wi

ij

+1
II [A%7+) 4 51 {L Aes]n+1 '/ [Aee]n+1 —
: ij Wi
i+l A99J ) {)(wn+llA99Jn)
067n 1 L _ .
LA ]r'./ +orx {w. ri 0z ’
ij ij
zzn+l L pzzyn+l _ dw n+lp grzn+l 0w \n+ly gzzn+l
(IS +5t*{wl[A i L ),l (A 2(az>” [z 4 =
o L0 mn+l[Az7]n) B {)(wn+l[Azzln) )
[A ] + 6t = {m 7 2z >
ij ij

Wi

V. AR 4 bt {(L
A 5 ru”*l[A"Z]”)
e T or

n+l n+]_ ow r ou n+l1 _
A = (1A + 2pas) ) b =

J

5(wn+l [Arz]n)
0z

ij

19)
By writing this linear system in matrix form, it yields
ap, 0 0 ay || A" F|
0 ap O 0 | A% |1 _| P2 20)
0 0 ay3  ay| A= FY
ay) 0 ay3  ay|A* Fy
where the matrix coefficients are given by
n+1
aj = 1.0+6t(5; —2""0: )
n+1 n+1
= 1L0+61( —295), ayy = -260%—
1 ! Juwnt! Juwnt! (21)
a3 = LO+ 615 —255—), a3y = —=261"5—, ay = —51=—,
n+1 n+1
ay = 10+ 51( + 5 ), a4y = -6,
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_ rrn 1 _ 1 a(run+l[Arr]n) _ a(er»l[Arr]n)
Fi=[AT] + 6t - L ,

r or dz

Pl n+1[4001n Pl n+1 A(%)n
FF[Aee]uat[%_w [A]7) _ ot 4]y

r or oz ’
1 B(ru"“ [Azz]n) _ d(w"H [Azz]n)

r or 0z ’
1 au"1[Am=]m) a(w"“[A’Z]")

r oar Jz

(22)

_ 1
= 147 + 6|k -

F, = [A7]" + 5t[v+, -

The derivatives in Eq. (21) are approximated by second order finite dif-
ferences while the convective terms in Eq. (22) are calculated by em-
ploying the high order upwind method CUBISTA [64]. The solution of
the linear system Eq. (20) is obtained exactly for 2D flow in the rz-plane
and it is found to be

FA_“AF]_&;B

A00n+l — B2 ATzl = apy a3 7
: ! a LA™ M*ﬁ 14~ uiz a4
[Arr]n+] - # [Fl _ 014[Arz]n+1]’ [Azz]n-H - t [F3 _ a34[AVZ]n+1]_
(23)
Thus, the tensor z"+! may now be calculated directly from
1 2
n+1 n+l n+1
= -p)(A™ -I) + =—pD"", 24
= Rewi (A )+ Re” @

and the non-Newtonian stress tensor 8"*! is computed from (after in-
troducing z"*! into Eq. (8))
Sn+1 — ; (1

n+1
Re Wi = p) (A -

STEP 3: Free surface movement

We employ a front tracking method in which the fluid free surface
is made up of a set of markers x,, = {(r. z;)} that define a linear spline
curve where, here, the index k denotes a specific marker. Once the up-
dated velocity v"*! has been calculated, the positions of these markers
are moved to new positions using local velocities v "+ = (i, w,)"™*" that
are calculated by making bilinear interpolation involving the four near-
est cell velocities. For instance, with regard to Fig. 2, the velocity
of the marker xy is calculated using 3-black-squares () and 1-green-
square (M) velocities while the velocity wy, is computed using 1-black-

i _ n+1
I)+Re(ﬁ D™, (25)

circle (@), 2-brown-circles (@) and 1-green-circle (@) velocities. The

new positions of the markers {x } is then found by solving

% = v " (26)
employing a 2nd-order R-K method. In our method, markers are not
permitted to collide with solid walls where both velocities components
at (., z) would vanish. Notwithstanding, they are allowed to be as
close as (1/N)h where N is a given integer and h is the grid spacing. In
this manner, the free surface (represented by the blue curve in Fig. 2)
is assumed to be in contact with a solid wall when a marker is at a
distance of (1/N)h from it. This causes the normal velocity of the marker
to become small (u, ~ 0) while its tangential velocity can be large. The
results presented in this work were obtained with N = 8.

To illustrate how to apply the free surface stress condition given by
Eq. (13b), consider the velocities shown in green color in Fig. 3. The
velocity u, is computed directly from the mass conservation equation
discretized at the centre (i, j) of the S-cell that contains the marker x,
giving

r or 6z

1 [ml/z“z - ri—1/2u4] s
i

0 ri_
=0 which yields u, = { e }u4
Fit1/2

A @

To calculate the velocities u; and wy, we apply both the mass conserva-
tion equation and the free surface stress condition given by Eq. (13b) at
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Fig. 7. Simulation of an impacting drop. (a) 3D view of initial state; (b) Computational domain employed; (c) Reference cell.

the centre (i, j) of the surface cell that has u; and w; on its faces (see
Fig. 3). For this cell, the local normal vector is assumed to be at an an-
gle of —45° between the coordinate axes (see the arrow in Fig. 3) so

n= (\/Ti, —‘/TE). Inserting this normal vector into Eq. (13b) and consid-
ering the mass conservation equation we obtain

du oJw _ Re

___=_Szz_Srr 28
Jdr 0z 2 ( ) @8
10(ru)  ow

- + — =0. 29
r or 0z 29

Now, discretizing these equations at the centre (i, j) of the of the S-cell
yields

U —uz W3 — W Re( 2z rr)
- = —(S¥*%-8" 30
or 6z 2 \Pii T Vi 0)
Pl — Fi gl _
l[,+1/2 1= Fic12 3]+W3 w1=0. 31
r; or oz

Egs. (30) and (31) consist of a (2 x 2)-linear system for the unknowns
u; and w; which has the solution

Fitrici r; s arr
u = [—]u3+0.55rRe[—](Sij —Sl.j), (32)
Ti ¥ rig12 ritrivi ; ’
6z 1
Wy =Ww3+ S [ri+1/2“1 - ri71/2“3]~ (33)
13

For other configurations of free surface cells, the calculation of the ve-
locities (the green velocities) is similar to the cases worked out here. The
work of Tomé et al. [23] presents details on how to define the normal
vector for a general configuration of the free surface.

With this treatment, we have been able to simulate flows having
moving free surfaces interacting with solid walls (see e.g. [17]) without
the necessity of imposing a contact angle.

4, Verification and validation of results

To verify the numerical method described in Section 3, fully de-
veloped pipe flow was simulated and the results are displayed in
Section 4.1. In addition, in Section 4.2, results from simulations of an
unsteady free surface drop impacting on a solid wall are compared with
other numerical results from the literature.

The results presented in this work were obtained using the following
time step size (assuming 6r = 6z):

6t = FACT * 6r? /4, where FACT =0.1.

Because the momentum equation was solved implicitly by the Euler
method, this time step size is more restrictive than the CFL condition
and therefore is enough to guarantee stable solutions for small Reynolds
number flows.

1.8
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1.6 el
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0.9 + OpenFOAM [28]
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(b)
Fig. 8. Simulation of a drop impacting a disk with Re =5, Wi=1and g = 0.1.

(a) Mesh refinement; (b) Comparison with other investigators. Our results were
obtained on mesh M4.

4.1. Steady laminar pipe flow

A pipe of radius R = 1.0 m and length H# = 10R m (see Fig. 4a) com-
prised the computational domain Q = [0, R] x [0, 10R] as illustrated in



C. Viezel, M.F. Tomé and F.T. Pinho et al.

1.8
L70 N e
16t |V AF—/7_ ——— i
— Newtonian
1.5 B=0.99
ol4 -- B=0.95
=) B=0.9
=13 — B=07
= 1.2 — B=05
— B=03
11 — B=01
1 — B=0.02
0.9 B=0.01
— B=0.001
0.8 . B=0.0
0'70 1234567 8 91011121314151617 181920
t(U/dO)
2.5
225+ 1 tTiroe
2 .......
= 1.75 —
= — Newtonian
= 15 B =0.99
o -~ B=095
1.25 B=0.9
— B=07
= — B=05
— B=03
— p=01
075 [Wi=20.0 B =0.01
S B=00
0'50 12345678 91011121314151617181920

«(U/d,)

Fig. 9. Simulation of drop impacting a disk with Re = 5 and variation of g: (a)
Wi =1, (b) Wi = 20.

Fig. 4b. The pipe was empty initially and fluid was injected at the inflow
by imposing the following fully developed profile:
dw _

jodw _
4 dr d

Wi(1 =)y ()= ﬁ

w(r) = (l - r2), u(r) =0,

2

= Re

7, T =" =0. (34)
The input data were: L=R=1m, U =1 ms™!, p = 1000 kg m3, , =
1000 Pass, Ay =1s, 4, =1s, 4, = f4,. Therefore, Re = ”’7& =1 and
0

Wi= 4, % = 1. The values of f used in these simulations are displayed
in Table 1.

By using the meshes presented in Table 2, this problem was simu-
lated until time #(U /L) = 100 on each mesh.
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Table 1
Values of f used in the pipe flow.

g 0.1000 0.0100 0.0010  0.0000

Table 2
Meshes used to simulate pipe flow.

Mesh Mg M1 (10 x 100) M2 (20 x 200) M3 (40 x 400)
S =8,=6, 0.1000 0.0500 0.0250
Cells in the mesh (10 x 100) (20 x 200) (40 x 400)

Table 3
L,-errors between analytic and numerical solutions cal-
culated on meshes M1, M2 and M3.

@ p=01
Mesh Mg Ew(r, 2,) E(z(r, 2,)) E(z%(r, 2,,))
M1 1.6838e-03 5.7013e-03 3.1615e-02
M2 4.2603e-04 1.4370e-03 8.0048e-03
M3 1.0655e-04 3.6005e-04 2.0071e-03
(b) g =0.001
Mesh Mg EW(r, z,,))  E(«"(1, z,))  E(+%(1, 2))
M1 1.6838e-03 5.7008e-03 3.5097e-02
M2 4.2603e-04 1.4364e-03 8.8842e-03
M3 1.0655e-04 3.6005e-04 2.2278e-03
Table 4
Calculated convergence order.

(@ p=01

Meshes used w T 7%

M1-M2 1.9827 1.9882 1.9817

M2-M3 1.9994 1.9968 1.9957

(b) p=10.001

Meshes used ~ w 7% 7%

M1-M2 1.9798 1.9889 1.9821

M2-M3 1.9972 1.9957 1.9957

Fig. 5 displays the numerical solutions obtained for 7*(r, z,,) for
£ =0.1,0.01,0.001 while Fig. 6 shows the solutions for w(r, z,,,) and ™(r,
%) using f = 0.001. These solutions were plotted at the middle of the
pipe at z,, = 5R. For comparisons, the analytic solutions are also plot-
ted. It can be seen that the numerical solutions agree well with the cor-
responding solutions on the different meshes. Moreover, Table 3 shows
that the L,-errors calculated with the norm defined by Eq. (35) decay
as the mesh is refined and Table 4 displays that the calculated conver-
gence order is about two. This is in accordance with the second-order
finite difference approximations employed to solve the equations. The
results obtained with =0 were very similar to those obtained with

Re = 5.0 and Wi =20.0
B =0.01

Fig. 10. Mesh refinement analysis for the case Re =5, Wi =20
and f = 0.01. Meshes used: I, II, III, IV and V defined in Table 7.
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Fig. 11. Simulation of a drop spreading over a disk - Re = 5, § = 0.01 and Wi = 1 and 20, at selected times. Contour plots display the u-velocity. Left column: Wi =1,
right column: Wi = 20.
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Re=5.0and Wi= 1.0
B=0.01

— Velocity - u/U
— Velocity - w/U
14 16 18 20

8 10 12
t(U/d,)
(a)

Fig. 12. Variation of the velocities u(t) and w(t) at the cell(1,10) identified in Fig.
that cell(1,10) became empty of fluid over the time interval [2.78, 4.2].
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Re = 5.0 and Wi = 20.0
B =0.01

— Velocity - w/U
— Velocity - w/U
14 16 18 20

6 2

8 10 1
t(U/d,)
(b)

7c. (a) Wi = 1; (b) Wi = 20. The discontinuity in the velocities is due to the fact

Fig. 13. Numerical simulation of drop re-

bound at selected times for Wi =1, = 0.01
and several values of Re.

o 9

B =0.001 and were not displayed for conciseness.

E()K = \/5KZ [(')AnaL - (')Num.]z’
J

X (6 is the spacing of mesh M in Table 2)

(35)

Note that this summation is across the pipe section at z = 5R.

4.2. Drop impacting: General features

To test the code on a time-dependent problem with a free surface
flow, we simulated the flow of an axisymmetric drop (see Fig. 7a) mod-
elled by an Oldroyd-B fluid. This is an appropriate problem to assess our
numerical algorithm on time-dependent flows possessing large free sur-
face deformations. It also allows us to effect a comparison with solutions
obtained by other numerical techniques.

We considered an initially spherical drop of diameter d, = 2R that
was positioned above a circular disk at a height H (see Fig. 7b). Att = 0,
the drop starts to fall under gravity with initial velocity w(r, z,0) = —-U;
the components of the extra-stress tensor = were initially assigned to be
zero. After the drop hits the disk it is anticipated that it will flow radially
increasing its diameter d(t), but after a short period of time elastic forces
should come into play and the velocities within the drop are expected
to reverse causing it to start contracting with a consequent decrease in
its diameter d(t). We are interested in studying the effects of parameters
Wi and g on variation with time of the drop diameter d(t).

Table 5

Input data (SI units) used in the impacting drop simulation.
dy=2R[m]l H[m]l Ulms™'1  Als] nolPasl  plkgm™>] Fr
0.02 0.04 1.0 0.02 4.0 1000.0 2.2576

As a check on our code, we performed mesh refinement followed by
comparisons with numerical results from other investigators. The pa-
rameters associated with the flow used in these simulations are listed in
Table 5 which give the following dimensionless numbers Re = 5, Wi = 1,
p = 0.1. Simulations were carried out until time #(U/d,) = 10 employ-
ing the meshes defined in Table 6. The results obtained are displayed
in Fig. 8a where it can be seen that the solutions exhibit good mesh
convergence. Moreover, Fig. 8b compares d(t) with the results obtained
by Figueiredo et al. [26], Xu et al. [27] and the OpenFOAM code [28].
It is clear that the time evolution of d(t) obtained by our code agrees
well with the results from the literature and provides us with some con-
fidence that our code is behaving well on this particular unsteady free
surface flow.

4.3. Simulation of impacting drop: Effects of Wi and f

To demonstrate the capability of this technique for solving time-
dependent viscoelastic free surface flows, the input data displayed in
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Fig. 14. Velocity field at selected times for Wi = 1 and 8 = 0.01 and several Reynolds numbers.

Table 6

Meshes employed in the simulations of drop impacting.

Mesh M1 M2

M3 M4 M5

spacing (éx/d,)  0.050000

0.025000

0.016666  0.012500  0.006250

Table 5 and mesh M4 were employed to simulate the impacting drop
problem for a range of values of f and Wi. In particular, the effect of
was extensively investigated in the range O to 1 and the flows near the
two limits were carefully considered.

We started with the case Re =5 and Wi =1 and simulated the im-
pacting drop for

£ =0,0.001,0.01,0.02,0.1,0.3,0.5,0.7,0.9,0.95,0.99. The Newtonian
flow, corresponding to g =1, was also simulated for reference. These
simulations were performed until the nondimensional time (U /d,) =
20.

Fig. 9 a displays the time history of d(t) for each value of g. It is read-
ily seen that the results with g = 0.9,0.95,0.99 are similar, approaching
the results of the Newtonian drop (8 = 1) and showing that after the
drop has impacted the disk, at time ¢ ~ 1.4, it continued to flow radi-
ally, with d(t) increasing monotonically. The results with g = 0.3,0.5,0.7

display a small radial expansion and radial contraction of the drop that
occurred at times t ~ 2.1 and t ~ 3.7, respectively. It is seen that, after
the initial contraction, the drop flowed radially outwards like the New-
tonian drop. For g = 0.001,0.01,0.02,0.1, the behaviour of d(t) is more
noticeable. The increase in polymer concentration within the drop, pro-
portional to 1 — 3, provided greater elasticity to the fluid so that more
of the fluid has a stress build-up and relaxation over a finite time, al-
lowing the drop to expand and contract twice. The magnitude of these
oscillations became more pronounced as the value of  decreased and
for g = 0.001, the diameter d(t) is about the same as that obtained with
the UCM model (8 = 0, see the black dotted curve in Fig. 9a) as we might
have anticipated. The reason the low g fluids exhibit larger diameters
immediatelly after impact is related to the finite time it takes for the re-
sisting shear stresses from the polymer contribution to increase, whereas
they appear instantly in the Newtonian solvent contribution. The simul-
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Fig. 15. First normal stress difference N, = r** — ¢'" for different Reynolds numbers at times t = 1.8,2.2, 3.4. Simulations with g = 0.01 and Wi = 1.

taneous build-up of elastic normal stresses and their change in signs are
responsible for the drop oscillations.

To observe the effect of a high Weissenberg number on
the spread of the drop, simulations using Re =35, Wi=20 and
B =0.01,0.1,0.3,0.5,0.7,0.9,0.95,0.99 were carried out. The evolutions
of the diameter d(t) obtained in these simulations are displayed in
Fig. 9b for each value of g. It is seen that, after the drop has im-
pacted the disk, the values of d(t) corresponding to = 0.3,0.5,0.7.0.9
increased without any contraction, while the results corresponding to
B=0.95,0.99 approached those of Newtonian flow, as expected. How-
ever, for f =0.01,0.1 the diameter d(t) showed large expansions, that
is, d(t) > 2.5d, for f = 0.01 and d(t) > 2d, at p = 0.1. For these two val-
ues of B the expansion of the drop was followed by its contraction to the
value d(1) = 0.044 = 2.2d,, for f = 0.01 and d(¢) ~ 0.04 = 2d,, for f = 0.1.
Oscillations were not present at high Wi flow because the growth of the
normal stresses are responsible for reversing the flow and subsequently
they are dissipated. Those normal stresses also take longer to build-up
and do not increase greatly because of the lower velocity gradients that
appear after the impact.

To establish the validity of these results, we performed a mesh re-
finement analysis for the case Re = 5, Wi = 20 and = 0.01. To demon-
strate the convergence of the axisymmetric code on this flow, we em-
ployed the meshes I, II, III, IV, V that are defined in Table 7 and
simulated the impacting drop from =0 to t =20 on each of these
meshes. The results obtained for the variation of d(t) are displayed in

Fig. 10 where it is seen that the results from mesh I approach to those
of mesh V when the mesh is refined. This demonstrates the conver-
gence of the axisymmetric code on this high Weissenberg number flow
problem.

To better show the large deformations of the drop surface for Re = 5,
B =0.01 and Wi = 1 and 20, Fig. 11 displays a three-dimensional view of
the unsteady flow of the drop spreading over the disk at selected times.
For Wi =1 (see the left column in the 3D visualizations), the drop ini-
tially expanded until t = 2.6 and then contracted up to time t = 3.1 when
an elevation at the centre of the drop can be seen (see the associated 3D
view). Subsequently, the drop again starts to expand, causing a depres-
sion at its centre at t ~ 3.8. After this time the velocities within the
drop are now small so that the drop surface does not show any substan-
tial changes and gravity causes it to flow monotonically. We believe
that these effects are due to elastic forces acting within the drop. These
observations are in agreement with the time trace of the z-component
of the velocity (w) shown in Fig. 12a that displays the velocities at the
cell(1,10) located as shown in Fig. 7c. In particular, we observe that the
w-velocity changes its sign several times, signalling the spreading and
contracting phases.

The results at a higher Wi = 20 are more dramatic. The high Weis-
senberg number means that it takes longer for the resisting polymer
shear stresses to build-up after impact, so the drop was able to spread
much more than at Wi = 1; similarly, retraction took much longer to
occur because the normal stresses take longer to relax to lower values,
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Meshes employed in the simulations of drop impacting with Re = 5, Wi = 20 and

Table 7
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Fig. 16. (a) Variation of N, (t) at the cell(1,1) sketched in Fig. 7c for Wi=1,
p = 0.01 and several Reynolds numbers. (b) Zoom-in of the results in the region
[1, 3] x[-1.25, 1]..

since they depend on smaller velocity gradients. The maximum spread
took place at t = 3.1 (see Fig. 11) where there are noticeable surface
ripples. The thin layer of fluid at the perimeter of the disk would then
appear to be affected by elastic forces causing the fluid to retract and
move towards the centre; then, at t = 5.7, a small jet emerges at the
centre of the drop. After that, a cycle of expansion and contraction con-
tinued, but was quickly attenuated due to viscous and gravity forces
(see frames t = 6.1,7.6,10.0). Subsequently, there was little change in
the shape of the drop as the fluid was almost quiescent (not shown).
These observations are confirmed in Fig. 12b where the time variation
of the velocities at cell(1,10) (identified in Fig. 7c) are displayed. Here
we see that after t = 8, the velocities are very small resulting in little
change in the shape of the surface of the drop.

111 v \Y%
0.0111111 0.0100000 0.0083333
Table 8

VALUES of Re and f employed in the simulation of
bouncing drops.

Wi=1

=001 (fixed Re 025 05 10 20
Re=025(fixed) § 00 001 005 0.1

4.4. Simulation of drop bouncing

In the drop impacting flow, when the amount of solvent is small, or
the flow is highly elastic, the liquid droplet may rebound. This type of
flow has attracted only a few computational rheologists. For instance, Xu
et al. [27,30,31] applied their smoothed particle hydrodynamics (SPH)
code to this problem using the UCM model in the absence of surface
tension forces and were able to capture the drop bouncing.

In order to demonstrate that our numerical approach has the capa-
bility of modelling the drop bouncing phenomenon for the Oldroyd-B
model, we performed several simulations with small values of the pa-
rameter f§ and, in addition we explored the conditions leading to such an
event in the { B —Re— Wi} phase space. The computational domain is

the same as depicted in Fig. 7b. To verify if drop bouncing occurred, the
time-dependence of the distance between the drop and the disk, h(t),
(see Fig. 7b) will be plotted. Thus, when the drop is attached to the
disk, h(t) = 0, while if it rebounds, detaching itself from the disk, then
h(t) will be positive. Eventually, due to the gravitational force, the drop
will start to descend hitting the disk again (h(t) = 0,). It is anticipated
that, depending on the values of 8, Re and Wi, the drop may rebound
several times, or even not at all.

To observe this effect, simulations were initially performed for sev-
eral values of both the Reynolds number and the viscosity ratio given
in Table 8, for a fixed Weissenberg number, Wi = 1 and employing the
mesh M4 defined in Table 6.

The flow conditions can be found in Table 5 with the exception of
no that was adjusted for the particular Reynolds number employed.

Fig. 13 displays a 3D-visualization of the fluid flow obtained with
Wi=1 and g = 0.01 for Re = 0.25,0.5,2.0. 3D animation videos are
provided in Fig. 21 in the Appendix A.

At the time t = 1.8, the three drops have hit the disk and it can be seen
that the Reynolds number has a substantial influence on both the veloc-
ity and shape of the drop. Indeed, for Re = 0.25 and 0.5 the drop experi-
ences a radial contraction (as is clear from the velocity field in Fig. 14),
whereas at higher Re (2.0) the drop still spreads radially with a down-
wards vertical motion (see Fig. 14). These differences become more no-
ticeable at time t = 2.2 when it is seen that the drop with Re = 0.25
has already bounced and is moving upwards against the gravitational
field, whereas at Re = 0.5,2.0, the drops are now undergoing contrac-
tion (i.e. fluid moving towards the centre). Finally, at time t = 3.4, the
drops with Re = 0.25 and 0.5 have rebounded and are moving upwards
against gravity (see the velocity field in Fig. 14), whereas, the drop with
Re = 2.0 is seen to have partially left the ground while remaining par-
tially attached (no rebound) and, is again spreading, as is clear from the
velocity field in Fig. 14. The fact that the drop did not detach itself from
the disk is likely to be due to the inertia force being stronger than the
elastic forces.
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Fig. 17. Visualization of drop rebound at selected times for Re = 0.25, Wi = 1 and several values of f.
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Fig. 18. Heights of bouncing drops for Wi = 1: (a) g = 0.01 and varying Re, (b) Re = 0.25 varying the viscosity ratio f.

To provide additional insight into the phenomenon of the bounc-
ing drop, Fig. 15 displays contours of the first normal stress difference
N, (1) = t%%(t) — " (r) within the drop for Re = 0.25,0.5,2.0 at the times
shown. It is seen that at the time t = 1.8 the three drops are attached to
the disk and have high contour values for N; (). However, at time t = 2.2
the drop with Re = 0.25 has already bounced and its values for Ny (t) are
relatively small. Drops with Re = 0.5 and 2.0 remain attached to the
disk (i.e. do not bounce) and present reasonably high contour values
for N;(t). At time t = 3.4 the drops with Re = 0.25 and 0.5 are bouncing
upwards and giving rise to small contour values of N, (t) while the drop
that has not bounced (Re = 2.0) displays reasonable large contours of
N; () throughout the drop. We point out that when the drops bounce,
the first normal stress difference changes sign from negative to positive
as displayed in Fig. 16a (a zoom in at the instant of time of bouncing is
shown in Fig. 16b) and a region with positive countours of N; (t) builds
up around the detachment point. This region then moves to the centre
of the drop and changes its sign (as can be seen in Fig. 15).

Moreover, we see that at the time of impact at approximately t = 1.3
(see Fig. 16), the value of N; (t) decreases suddenly reaching large neg-
ative values (e.g. N (r) ~ —11.8 for Re = 0.25, N,(r) = —5.5 for Re = 0.5,
N,(®) ~ 2.5 for Re = 1.0and N, (r) ~ —1.5 for Re = 2.0). For instance, for

Re = 0.25, we can see in Fig. 16a that, prior to bouncing, N; (t) changes
sign at t = 2.1, becoming positive and thereafter attaining a peak value
of N; (t) = 2. The occurrence of this peak value was due to the fact that
the drop bounced and maintained an upward flow. Note that cell(1,1)
does become empty over the time interval =~ [2.1,6.5] in which case
all variables are set to zero explaining the discontinuity in Fig. 16a. The
value of N, (t) that was plotted at the centre of cell(1,1) was thus zero
until t & 6.5 when the drop again impacts the disk and N, (t) attains
another negative peak of N| ~ —4.5. During the time interval [2.1, 6.5],
h(t) is positive and the drop is above the disk (see Fig. 18a). After the
drop hits the disk at t ~ 6.5 the process is repeated: at t = 7.5 the value
of N;(t) becomes zero, the drop again bounces and the flow is verti-
cally upwards until t ~# 11.0 and so it continues. This process is re-
peated three times for Re = 0.25, two times for Re = 0.5 and only once
for Re = 1.0. For Re = 2.0 the drop did not bounce as h(t) was always
zero (see Fig. 18a).

Fig. 17 displays the drop for a fixed Re = 0.25 and g = 0.0,0.01,0.1
at selected times. 3D animation videos are provided in Fig. 22 in
the Appendix A. This figure clearly shows that the drop-bouncing is
associated with the polymer contribution to the total stress, with the
UCM droplet exhibiting the greatest bounce. Increasing g, even to the
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QO

Re=10.25 Re=10.5

Re=1.0 Re=20

Fig. 21. Animations varying Re. Supplementary material shows animations of
these flow conditions.

small value of 0.01, has the effect of significantly reducing the height
of the bouncing droplet. When the solvent viscosity contributes 10% to
the total viscosity (f = 0.1) the droplet only bounces a small amount,
but this is more clearly shown in Fig. 18. In Fig. 18, the variation of
h(t) with time is displayed for several cases, at fixed Wi = 1, separately
assessing the effects of Re and of 8, complementing the previous figures.

S O

B=0.0 B=0.01

B=0.05 B=0.1

Fig. 22. Animations varying f. Supplementary material shows animations of
these flow conditions.

It is clear that, the drops with g = 0.0 (UCM model) and g = 0.01 had a
pronounced bounce, in some case bouncing more than once whereas the
drop with g = 0.1 hardly bounced at all. For this particular Re = 0.25 and
Wi = 1, the first two solutions bounced three times with the height of
their bounces decreasing with time as a direct result of potential energy
loss (see Table 9). On the other hand, the drop with Re = 1.0 displayed
similar results, bouncing only once (see Fig. 18a and Table 9).
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Table 9
VALUES of the maximum height h(t) and associated time t,  of
bouncing drops.

Wi=1and g =0.01 Re 0.25 0.5 1.0 2.0

h(t) 0.582  0.361 0.161 0.0
t 4450 4.121 3.116

max

Wi=1 and Re=0.25 B 0 0.01 0.05 0.1

htt) 0934 0582 0.083 0.036
t 5.058 4450 2966  2.737

‘max

Table 10
Weissenberg and Reynolds numbers employed in the simulation of the bouncing
drop.

Variation of Wi Re=0.25 and g = 0.01 FIXED

Wi 0.001, 0.01, 0.02, 0.1, 0.3, 0.5, 0.7, 1.0, 2.0, 3.0, 4.0, 6.0, 8.0

Variation of Re  Wi=1 and g = 0.01 FIXED

Re 0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 3.0

Table 11
Simulation of bouncing drops varying 3, Re and Wi.

Wi=1, FIXED

B 0.0,0.001, 0.005, 0.01
Re 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 3.0

Re = 0.25, FIXED

p 0.0,0.001, 0.005, 0.01
Wi 0.01,0.02,0.1,0.3,0.5, 0.7,1.0, 2.0, 3.0,4.0

4.4.1. Limiting Weissenberg and Reynolds numbers

To examine the effect of the Weissenberg and Reynolds numbers on
the bouncing of droplets, a number of simulations were performed using
the values of Wi and Re displayed in Table 10. In particular, we are
interested in investigating the effects of Wi and Re on the maximum
height of the drop (hy,,,), which takes place after the drops first rebound.
(Note that it may rebound several times as can be seen in the videos
provided in Figs. 21 and 22). We are also interested in determining the
range of Weissenberg and Reynolds numbers for which bouncing occurs.

The values of the maximum heights (h,,,,) obtained in these simu-
lations are plotted in Fig. 19. It can be seen in Fig. 19a that the Weis-
senberg number has a significant influence on the degree of bouncing.
For the values of Re and f employed in these simulations, the drops
rebound if the Weissenberg number lies in the interval [0.02, 8.0]; the
maximum height was attained when Wi = 0.5. The reason that the drop
did not rebound for smaller values of Wi is because in this case the flow
is approaching Newtonian flow and elasticity effects are small; however,
if Wi is sufficiently large (Wi= 8), even though the drop is very elastic,
the elastic stress build-up after hitting the solid surface is too long and
the spreading of the droplet dissipates too much energy in the meantime
and consequently the drop does not rebound.

The results, obtained varying the Reynolds number, are displayed in
Fig. 19b where it is observed that the Reynolds number also strongly af-
fects the bouncing. If Re increases then the maximum height of the drop
starts to decrease and if Re is sufficiently large (Re = 2) then bouncing
does not occur because of excessive inertia. On the other hand, if Re de-
creases then the height of the bounce decreases (at least for the Reynolds
numbers simulated).

To investigate the effect of # on the maximum height of the bounce
when Re and Wi are varied, we performed additional simulations using
the values of 8, Re and Wi displayed in Table 11. Fig. 20a displays the
maximum heights obtained for the values of g and Re simulated. Again
it is seen that when the Reynolds number increases, the maximum height
of the bounce decreases to zero, meaning that the drop ceases to bounce
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at sufficiently large Reynolds number. This is in accordance with the fact
that increasing the inertia causes the drop to spread more radially loos-
ing energy due to the action of viscosity and therefore the drop bounces
less, eventually not bouncing at all. The results obtained with variation
of the Weissenberg number are displayed in Fig. 20b. It is seen that for
small values of Wi the maximum height of the bounce decreases to zero
due to the fact that the drop begins to behave like a Newtonian fluid.
When Wi > 1 the maximum height decreases because the ratio between
the characteristic time of the fluid and the characteristic time of the flow
increases.

The decrease in the value of g, that is as the UCM fluid is approached,
makes the drop more elastic so bouncing is more pronounced.

5. Conclusions

This work presented a novel numerical algorithm for solving time-
dependent free surface flows of Oldroyd-B fluids which is stable for the
whole range of the ratio of solvent to total viscosity. The formulation
employed to solve the governing equations and the free surface stress
conditions made use of an EVSS transformation. This approach removed
the multiplicative factor 1/f from the components of the zero stress
conditions on the free surface, and the inevitable numerical instabilities
that do ensue when the fluid approached the UCM limit.

A crucial feature of the method was how the Oldroyd-B constitutive
equation was solved. The extra-stress tensor was written in terms of the
conformation tensor A which was approximated by implicit finite dif-
ferences resulting in a (4 x 4)-linear system that was solved exactly.
After obtaining the conformation tensor the extra-stress tensor was eas-
ily directly evaluated. The method was verified against fully developed
pipe flow for an Oldroyd-B fluid and convergence results were provided.
The efficacy of this new methodology for unsteady free surface flow was
demonstrated by simulating the impacting drop problem; here mesh re-
finement was performed, with particular focus on vanishingly small val-
ues of viscosity ratio, . The subsequent, more extensive, investigation
using the Oldroyd-B model assessed the effects of the viscosity ratio,
Reynolds number and Weissenberg number on the height of bouncing
droplets. In particular, we found that the solvent contribution, repre-
sented by the value of f, had a substantial influence on the height of
the bouncing drop. How the Reynolds and Weissenberg numbers affect
the height of the bounce was also discussed at length.
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