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a b s t r a c t 

This work is concerned with time-dependent axisymmetric free surface flows of Oldroyd-B fluids for any value 

of 𝜷, the ratio of solvent to total viscosities. The Oldroyd-B constitutive equation is dealt with by employing a 

novel technique to calculate the conformation tensor while an EVSS transformation allows the solution of the 

momentum equations coupled with the free surface stress conditions: this avoids numerical instabilities that can 

arise when using small values of 𝜷. The convergence of this new methodology is verified on pipe flow and also 

by comparing results from the literature for the time-dependent impacting drop problem. This approach is then 

used to predict the time-dependent free surface flow after a viscoelastic drop impacts a solid surface for 𝜷 values 

in the range [0, 1]. The impacting drop problem is investigated for polymer solutions containing a small solvent 

contribution ( 𝜷 → 0 ) or without any solvent viscosity ( 𝜷 = 𝟎 ). In addition, a study of the bouncing drop problem 

for different values of 𝜷, Weissenberg and Reynolds numbers is undertaken. 
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. Introduction 

The importance of non-Newtonian free surface flows in industrial

rocesses has attracted the attention of many scientists. Examples of

uch applications include polymer processing in the plastics industry

uch as mould filling of complex cavities. Such flows can be modelled

y a system of nonlinear equations, but the presence of (multiple) mov-

ng free surfaces can make their solution challenging. Furthermore, for

 particular polymer, it is not always obvious what the correct constitu-

ive equation should be. One choice that must be made is between dif-

erential and integral constitutive models, or indeed a mixture of both.

 large number of differential constitutive models have been developed

ver the past decades: Upper Convected-Maxwell ( UCM ) [1] , Oldroyd-

 [2] , Phan-Thien-Tanner (PTT) [3] , Giesekus [4] , Extended Pom-Pom

Pom-Pom) [6,7] , among others. On the other hand, integral constitu-

ive models have been developed and studied by Papanastasiou et al.

8] , Kaye [9] and Luo and Mitsoulis [10] , amongst others. Integral con-

titutive equations require more sophisticated approaches to solve the

overning equations numerically and require more computational re-

ources and, possibly for these reasons, there has been a greater focus

n differential constitutive models. In particular, the UCM and Oldroyd-

 models have been extensively studied, employing finite element, finite

olume and finite difference methods (e.g. [11–16,23–30] ). Due to their

nbounded elastic normal stresses, these models are arguably the most
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hallenging viscoelastic constitutive equations from a numerical point

f view (see e.g. [33,34] ). 

A decoupling strategy to calculate velocity and pressure has found

avour. For instance, Hirt and Nichols [35] introduced the volume of

uid (VOF) method in the early 1980s: this has been used to simulate

on-Newtonian flows by many investigators (e.g. [15,32,36–39] ). This

ethod, while easy to implement, suffers from numerical diffusion; to

vercome this drawback several improved versions have been developed

36,38,40] . 

Another approach is to represent the free surface by a level set func-

ion which is convected with the fluid flow; its evolution in time is ob-

ained through the solution of a hyperbolic equation. Osher and Sethian

41] are usually credited with introducing the idea and it has the ca-

ability of capturing multiphase flow phenomena. It has been used to

imulate filament stretching and jet buckling [29,42,43] , mould fill-

ng [44] and many other interesting applications (see e.g. [44–49] ). A

hird approach is the front tracking method: unlike VOF or the level set

ethod the front tracking method employs massless markers to describe

he fluid interface. In two dimensions the interface between two fluids

s described by a set of points ( x i , y i ) - the markers - while in three di-

ensions it is represented by a set of quadrilaterals and/or triangles.

he coordinates of the markers are updated at each time step according

o the velocity at the new time step. In two dimensions the interface

s visualized by connecting these points by straight lines (i.e. zero or-
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𝐧  
er splines), while in three dimensions the interface is constructed from

iece-wise linear surfaces described by quadrilaterals or triangles. The

rst ideas of this method were presented by Harlow and Welch [50] ,

ho introduced the Marker-and-Cell method in the early 1960s. Since

ts introduction, other improved versions have been developed and em-

loyed by many authors to simulate free surface flows of both Newto-

ian and non-Newtonian fluids in two and three dimensions (see, e.g.

16,50–60] ). 

In this paper we are concerned with axisymmetric viscoelastic free

urface flows: the Oldroyd-B model is to be solved by an Eulerian finite

ifference method. The elastic-viscous-stress-splitting (EVSS) technique,

ntroduced by Rajagopalan et al. [18] (see also [19–21] ), has proved

o be efficient for solving confined flows. The present work employs

his stress splitting technique to solve the governing equations while

he fluid free surface is handled by the front tracking technique specifi-

ally developed by Tomé et al. [16,17] for solving time-dependent free

urface flows. A novel feature of our approach is that the extra-stress

ensor is combined with the conformation tensor: the conformation ten-

or is then approximated by implicit finite differences in such a way

hat the resulting system of equations can be solved exactly. The stress

plitting technique introduces a non-Newtonian tensor that is used on

he free surface stress boundary conditions instead of the polymer stress

ensor. This eliminates numerical instabilities if the flows were highly

lastic and the solvent viscosity ratios 𝜷 = 

𝜂𝑆 
𝜂0 

= 

𝜆2 
𝜆1 

were consequently

mall (for 𝜷 = 𝟎 there is even a singularity). Here, 𝜂S and 𝜂0 denote, re-

pectively, solvent and total viscosities while 𝜆1 , 𝜆2 are the relaxation

nd retardation times, respectively. 

The application of both the EVSS transformation and the solution of

he conformation tensor have allowed us to simulate free surface flows

ith vanishingly small values of the viscosity ratio 𝜷. This new method-

logy is in part verified by solving fully developed pipe flow and by a

umber of mesh refinement studies. The effectiveness of the technique is

hen demonstrated by solving the time-dependent impacting drop prob-

em for very small values of the viscosity ratio 𝜷. A comparison with

xisting results in the literature is also made. New simulations of both

rop spreading and drop bouncing are then presented and in particu-

ar, the bouncing of a drop is studied for various values of the Reynolds

umber, the viscosity ratio and the Weissenberg number. 

. Governing equations 

The mass conservation and momentum equations are the basic equa-

ions for incompressible flows and can be written as, 

 ⋅ 𝐯 = 0 , (1)[
𝜕𝐯 
𝜕𝑡 

+ ∇ ⋅ ( 𝐯𝐯 ) 
]
= −∇ 𝑝 + ∇ ⋅ 𝝉 + 𝜌𝐠 , (2)

here v is the velocity vector, p is the scalar pressure, g is the gravity

ector, 𝜌 is the density of the fluid and 𝝉 is the extra-stress tensor. 

We are interested in flows governed by the Oldroyd-B rheological

onstitutive equation, that is defined by the following equation 

+ 𝜆1 
∇ 
𝝉 = 2 𝜂0 

[ 
𝐃 + 𝜆2 

∇ 
𝐃 

] 
, 𝐃 = 

1 
2 

[
(∇ 𝐯 ) + (∇ 𝐯 ) 𝑇 

]
(3)

here D is the rate-of-deformation tensor, 𝜆1 is the relaxation time, 𝜆2 is

he retardation time and 𝜂0 is the total viscosity of the fluid. The upper-

onvected derivative of the stress tensor, denoted by the symbol 
▽
𝝉 , is

iven by 

▿
= 

𝜕 𝝉

𝜕𝑡 
+ ∇ ⋅ ( 𝐯 𝝉) − 

(
∇ 𝐯 

)
𝑇 𝝉 − 𝝉

(
∇ 𝐯 

)
. 

his constitutive equation is usually solved under the rheological split-

ing 

= 𝝉 + 2 𝜷𝜂 𝐃 , (4)
𝑃 0 
where the second term on the right-hand side accounts for the New-

onian solvent stress contribution, and the polymer stress tensor 𝝉P is

alculated from the UCM equation 

𝑃 + 𝜆1 
∇ 
𝝉𝑃 = 2(1 − 𝜷) 𝜂0 𝐃 , (5)

and 𝜂0 = 𝜂𝑃 + 𝜂𝑆 is the sum of the solvent ( 𝜂S ) and polymeric ( 𝜂P ) vis-

osities. The coefficient 𝜷 = 

𝜂𝑆 
𝜂0 

= 

𝜆2 
𝜆1 

measures the ratio between the sol-

ent and the total viscosity of the fluid. The Oldroyd-B model can be

erived from the kinetic theory of dilute polymer solutions and note

hat when 𝜂𝑃 → 0 , 𝜆1 → 0 (cf. Bird et al. [5] )). When 𝜷 = 0 , Eq. (3) re-

uces to the Upper-Convected Maxwell ( UCM ) model and if 𝜷 = 𝟏 we have

ewtonian flow since the relaxation time is also zero. 

The extra-stress tensor 𝝉 can be shown to be related to the conforma-

ion tensor A of the polymer additives, here represented by the meso-

copic model of dumb bells, by 

= 

𝜂0 
𝜆1 

(
1 − 𝜷

)(
𝐀 − 𝐈 

)
+ 2 𝜷𝜂0 𝐃 , (6)

resulting in the time evolution equation 

(7) 

his equivalence is readily seen by substituting Eq. (6) into Eq. (3) ,

nd using the relationship between the relaxation and retardation times:

2 = 𝜷𝜆1 . 

To solve the momentum equation Eq. (2) , we employ the following

ransformation, known as EVSS [18] (see also [19–21] ) 

(8) 

here S is a non-Newtonian elastic stress tensor. After introducing this

nto the momentum equation Eq. (2) , we obtain 

(9) 

he solutions ( v , p , 𝝉) can therefore be obtained by solving the continu-

ty Eq. (1) together with the momentum equation Eq. (9) using a pro-

ection method while the conformation tensor A can be calculated by

olving Eq. (7) . The extra-stress tensor 𝝉 and the non-Newtonian stress

ensor S are then computed from equations Eqs. (6) and (8) , respectively.

However, in the literature, many works (e.g. [12,16,32] ) deal-

ng with the Oldroyd-B model make use of the rheological splitting

q. (4) which, after being inserted into the momentum equation Eq. (2) ,

eads to the transformed equation [
𝜕𝐯 
𝜕𝑡 

+ ∇ ⋅ ( 𝐯𝐯 ) 
]
= −∇ 𝑝 + 𝜷 𝜂0 ∇ 

2 𝐯 + ∇ ⋅ 𝝉𝑃 + 𝜌𝐠 . (10)

Note that this equation contains the term 𝜷𝜂0 ∇ 

2 v instead of 𝜂0 ∇ 

2 v of

q. (9) . 

.1. Boundary conditions 

The boundary conditions can be summarized as follows: on rigid

oundaries the no-slip condition is imposed; on inflows, the velocity

s prescribed while the extra-stress tensor obeys fully developed flow

details are given in Section 4 ). On outflows, homogeneous Neumann

onditions are imposed; the free surface boundary conditions are dis-

ussed in the next section. 

.2. Free surface stress conditions 

We consider unsteady axisymmetric free surface flows of a viscoelas-

ic fluid flowing into a nonresistant atmosphere and assume negligible

urface tension forces. This is a reasonable assumption since the fluids

e shall consider are both very viscous and highly elastic. Under these

onditions, the appropriate boundary conditions on the free surface of

 viscous fluid are the vanishing of the normal and tangential stresses

hich can be stated as (see Batchelor [22] ) 

 

𝑇 ⋅ ( 𝝈 ⋅ 𝐧 ) = 0 , (11a)
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Fig. 1. (a) Description of a typical cell employed in the mesh, (b) 

Representation of fluid free surface (line connecting the particles) 

and volume of fluid (yellow area), (c) Type of cells in the domain.. 

(For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

𝐦  

w  

a  

r

 

a  

c  

t

𝑝

2

 

f  

c  

s  

e  

u  

h  

𝜷  

n

 

d

 

o  

i  

(

3

 

e  

Fig. 2. Movement of the free surface (the blue curve) near a solid wall (the 

brown line); velocities shown by brown symbols are calculated by the no-slip 

condition while those represented by green symbols are computed from the free 

surface stress conditions (see Eq. (13b) ) and the mass conservation equation. The 

velocities corresponding to the black symbols are obtained from the momentum 

equations. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 3. Computation of the velocities on the free surface cells (the green veloc- 

ities) and illustration of the application of the stress condition Eq. (13b) . (For 

interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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𝑇 ⋅ ( 𝝈 ⋅ 𝐧 ) = 0 , (11b)

here 𝝈 = − 𝑝 𝐈 + 𝝉 is the total stress tensor, and, in two-dimensional

xisymmetric flow, 𝐧 = [ 𝑛 𝑟 , 𝑛 𝑧 ] 𝑇 and 𝐦 = [ 𝑛 𝑧 , − 𝑛 𝑟 ] 𝑇 are the unit vectors,

espectively, normal and tangential to the free surface. 

By assuming axisymmetric flows and using cylindrical coordinates,

nd inserting the splitting defined by Eq. (4) into the free surface stress

onditions Eqs. (11a,b) (for more details see [12,16,32] ) gives rise to

he following equations 

 = 

2 𝜷
𝐑𝐞 

[
𝜕𝑢 

𝜕𝑟 
𝑛 2 𝑟 + 

(
𝜕𝑢 

𝜕𝑧 
+ 

𝜕𝑤 

𝜕𝑟 

)
𝑛 𝑟 𝑛 𝑧 + 

𝜕𝑤 

𝜕𝑧 
𝑛 2 𝑧 

]
+ 𝝉𝑟𝑟 

𝑃 
𝑛 2 𝑟 + 2 𝝉𝑧𝑟 

𝑃 
𝑛 𝑟 𝑛 𝑧 + 𝝉𝑧𝑧 

𝑃 
𝑛 2 𝑧 , 

(12a) 

 

(
𝜕𝑤 

𝜕𝑧 
− 

𝜕𝑢 

𝜕𝑟 

)
𝑛 𝑟 𝑛 𝑧 + 

(
𝜕𝑢 

𝜕𝑧 
+ 

𝜕𝑤 

𝜕𝑟 

)(
𝑛 2 𝑟 − 𝑛 2 𝑧 

)
= 

𝐑𝐞 
𝜷

[(
𝝉𝑟𝑟 
𝑃 
− 𝝉𝑧𝑧 

𝑃 

)
𝑛 𝑟 𝑛 𝑧 + 𝝉𝑟𝑧 

𝑃 

(
𝑛 2 𝑧 − 𝑛 2 𝑟 

)]
. (12b) 

Equation Eq. (12a) is commonly used to compute the pressure on the

ree surface and poses no problem for any value of 𝜷 while Eq. (12b) be-

omes singular as 𝜷 approaches zero ( UCM model). However, if 𝜷 is

mall, numerical instabilities may appear especially if the flow is highly

lastic or presents large stress gradients. Possibly for this reason, when

sing the rheological splitting (4) , many investigators (e.g. [12,16,32] )

ave in the past solved free surface flows of Oldroyd-B fluids employing

≥ 1/9 in their calculations. A solution to this problem is developed

ext. 

By introducing the EVSS transformation, Eq. (8) , into the stress con-

itions Eqs. ( 11a ,b), they can be written, in component form, as 

(13a) 

(13b) 

Thus, by using the EVSS transformation we avoid the 1/ 𝜷 multiplier

n the right hand side of Eq. (12b) and thereby the associated numer-

cal instabilities when 𝜷 is small. In this work we use Eqs. (13a) and

13b) instead of Eqs. (12a) and (12b) . 

. Numerical method 

The equations presented in Section 2 are solved by the finite differ-

nce method on a staggered grid ( Fig. 1 a displays the locations of the
ariables in a cell). The fluid is modelled by a front tracking method

eveloped by Tomé et al. [17] wherein the fluid surface is described by

 closed linear spline that is defined by markers (see Fig. 1 b). To imple-

ent this technique, the cells within the mesh are divided into several

ypes, as follows (see Fig. 1 c): 

▶ Rigid boundary ( B ): cells that define the location of rigid contours;

▶ Inflow boundary ( I ): cells that model ‘fluid entrances’ (‘inflows’);

▶ Outflow boundary ( O ): cells that define ‘fluid exits’ (‘outflows’); 
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Fig. 4. Description of the flow domain (a) and computational domain (b). 
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Fig. 5. Comparison of 𝜏zz ( r ) with the analytic solution for pipe flow. Results 

obtained with 𝜷 = 𝟎 . 𝟏 , 𝟎 . 𝟎𝟏 , 𝟎 . 𝟎𝟎𝟏 . 

t  

c  

t  
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▶ Empty cells ( E ): cells that do not contain fluid (see the white cells

n Fig. 1 c); 

▶ Full cells ( F ): cells that contain fluid and have no contact with

 -cell-faces; 

▶ Surface cells ( S ): cells that contain fluid and have at least one face

n contact with an E -cell-face. 

.1. Numerical algorithm 

Eqs. (1) and (6) to (9) , written in cylindrical coordinates, are solved

or the unknowns 𝐯 ( 𝑟, 𝑧, 𝑡 ) = 

(
𝑢 ( 𝑟, 𝑧, 𝑡 ) , 𝑤 ( 𝑟, 𝑧, 𝑡 ) 

)
𝑇 , p ( r, z, t ), 𝝉( r, z, t ), A ( r,

, t ) and S ( r, z, t ), as follows. These equations are used in dimension-

ess form and contain the nondimensional numbers 𝐑𝐞 = 

𝜌0 𝑈 𝐿 
𝜂0 

( Reynolds

umber), 𝐖𝐢 = 𝜆1 
𝑈 

𝐿 
( Weissenberg number) and 𝐹 𝑟 = 

𝑈 √
𝐿𝑔 

( Froude num-

er), in which L, U and 𝜌0 are typical scales for length, velocity and mass

via density), respectively (for details see [16] ). The calculational cycle

s performed in three steps, as follows: 

STEP 1: Calculation of 𝐯 𝑛 +1 = 𝐯 ( 𝑟, 𝑧, 𝑡 𝑛 +1 ) and 𝑝 𝑛 +1 = 𝑝 ( 𝑟, 𝑧, 𝑡 𝑛 +1 ) 
The algorithm for calculating 𝐯 𝑛 +1 and 𝑝 𝑛 +1 embodies some ideas

rom the technique presented by Tomé et al. [16] . The pressure field is

ncoupled from the mass ( Eq. (1) ) and momentum ( Eq. (9) ) equations

y using the projection method of Chorin [61] . 

Let 𝛿t be the time step used, 𝑡 𝑛 +1 = 𝑡 𝑛 + 𝛿𝑡, and let 𝐯 𝑛 = 𝐯 ( 𝑟, 𝑧, 𝑡 𝑛 ) , 𝝉𝑛 =
( 𝑟, 𝑧, 𝑡 𝑛 ) , D 

n , A 

n and S n be known at time t n . 

A tentative velocity field ̃𝐯 𝑛 +1 is then calculated by the implicit Euler

ethod applied to the momentum equation by solving 

(14)

his gives rise to a sparse linear system that is efficiently solved by the

onjugate gradient method. It can be shown [62] that this velocity field

ontains the correct vorticity at time t but it does not conserve mass in

eneral. Thus, a potential function 𝜓( 𝑟, 𝑧, 𝑡 𝑛 +1 ) is computed such that 

 

2 𝜓 

𝑛 +1 = ∇ ⋅ 𝐯 𝑛 +1 (15)

hile the updated velocity field, 𝐯 𝑛 +1 , is calculated from 

 

𝑛 +1 = ̃𝐯 𝑛 +1 − ∇ 𝜓 

𝑛 +1 . (16)

hus the velocity 𝐯 𝑛 +1 ensures that mass is conserved while the vorticity

emains unchanged. 

In this work, we borrow some ideas from the implicit technique of

ishi et al. [63] that couples the boundary condition for the pressure on

he free surface, given by Eq. (11a) , and the mass conservation equation

q. (1) . This technique consists of applying the mass conservation equa-

ion together with the pressure condition on the free surface and the

quation for the velocity 𝐯 𝑛 +1 , Eq. (16) , on surface cells. By doing this,

ew equations for the potential function 𝜓 

𝑛 +1 are derived and added
o the set of equations that originated from the application of the dis-

rete version of the Poisson equation Eq. (15) in F-cells. In surface cells,

hese new equations contain terms like 𝜕 2 

𝜕 𝑟𝜕 𝑧 
which are first order ap-

roximated by finite differences. This results in the total linear system

ecoming non-symmetric and therefore it is solved by the bi-conjugate

radient method. 

After obtaining 𝜓 

𝑛 +1 , the pressure is calculated using 

 

𝑛 +1 = 𝑝 𝑛 + 

𝜓 

𝑛 +1 
. (17)
𝛿𝑡 
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Fig. 6. Comparison of w ( r ) with the analytic solutions for pipe flow. Results 

obtained with 𝜷 = 𝟎 . 𝟎𝟎𝟏 on meshes M1, M2 and M3. 
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TEP 2: Calculation of 𝐀 

𝑛 +1 = 𝐀 ( 𝑟, 𝑧, 𝑡 𝑛 +1 ) , 𝝉𝑛 +1 = 𝝉( 𝑟, 𝑧, 𝑡 𝑛 +1 ) and 𝐒 𝑛 +1 =
 ( 𝑟, 𝑧, 𝑡 𝑛 +1 ) 

In this step we first compute the conformation tensor 𝐀 

𝑛 +1 =
 ( 𝑟, 𝑧, 𝑡 𝑛 +1 ) by solving Eq. (7) using finite differences as follows. 

On each surface ( S i,j ) and full ( F i,j ) cells, Eq. (7) is implicitly approx-

mated by the equation 

 

𝑛 +1 + 𝛿𝑡 

{ 

1 
𝐖𝐢 

𝐀 

𝑛 +1 − (∇ 𝐯 𝑛 +1 ) 𝑇 𝐀 

𝑛 +1 − 𝐀 

𝑛 +1 (∇ 𝐯 𝑛 +1 ) 
} 

= 𝐀 

𝑛 

+ 𝛿𝑡 

{ 

1 
𝐖𝐢 

𝐈 − ∇ ⋅ ( 𝐯 𝑛 +1 𝐀 

𝑛 ) 

} 

, (18) 

esulting in the following (4 × 4)-linear system for the components of

 

𝑛 +1 : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐼. [ 𝐴 𝑟𝑟 ] 𝑛 +1 
𝑖,𝑗 

+ 𝛿𝑡 ∗ 

{ 

1 
𝐖𝐢 [ 𝐴 

𝑟𝑟 ] 𝑛 +1 
𝑖,𝑗 

− 2 
(

𝜕𝑢 

𝜕𝑟 
[ 𝐴 𝑟𝑟 ] + 𝜕𝑢 

𝜕𝑧 
[ 𝐴 𝑟𝑧 ] 

)
𝑛 +1 
𝑖,𝑗 

} 

= 

[ 𝐴 𝑟𝑟 ] 𝑛 
𝑖,𝑗 

+ 𝛿𝑡 ∗ 

{ 

1 
𝐖𝐢 − 

1 
𝑟 𝑖 

𝜕 
(
𝑟𝑢 𝑛 +1 [ 𝐴 𝑟𝑟 ] 𝑛 

)
𝜕𝑟 

|||||𝑖,𝑗 − 𝜕 
(
𝑤 𝑛 +1 [ 𝐴 𝑟𝑟 ] 𝑛 

)
𝜕𝑧 

|||||𝑖,𝑗 
} 

; 

𝐼 𝐼 . [ 𝐴 𝜃𝜃] 𝑛 +1 
𝑖,𝑗 

+ 𝛿𝑡 ∗ 

{ 

1 
𝐖𝐢 [ 𝐴 

𝜃𝜃] 𝑛 +1 
𝑖,𝑗 

− 2 
𝑢 𝑛 +1 
𝑖,𝑗 

𝑟 𝑖 
[ 𝐴 𝜃𝜃] 𝑛 +1 

𝑖,𝑗 

} 

= 

[ 𝐴 𝜃𝜃] 𝑛 
𝑖,𝑗 

+ 𝛿𝑡 ∗ 

{ 

1 
𝐖𝐢 − 

1 
𝑟 𝑖 

𝜕 
(
𝑟𝑢 𝑛 +1 [ 𝐴 𝜃𝜃 ] 𝑛 

)
𝜕𝑟 

|||||𝑖,𝑗 − 𝜕 
(
𝑤 𝑛 +1 [ 𝐴 𝜃𝜃 ] 𝑛 

)
𝜕𝑧 

|||||𝑖,𝑗 
} 

; 

𝐼 𝐼 𝐼 . [ 𝐴 𝑧𝑧 ] 𝑛 +1 
𝑖,𝑗 

+ 𝛿𝑡 ∗ 

{ 

1 
𝐖𝐢 [ 𝐴 

𝑧𝑧 ] 𝑛 +1 
𝑖,𝑗 

− 2 
(

𝜕𝑤 

𝜕𝑟 

)
𝑛 +1 
𝑖,𝑗 

[ 𝐴 𝑟𝑧 ] 𝑛 +1 
𝑖,𝑗 

− 2 
(

𝜕𝑤 

𝜕𝑧 

)
𝑛 +1 
𝑖,𝑗 

[ 𝐴 𝑧𝑧 ] 𝑛 +1 
𝑖,𝑗 

} 

= 

[ 𝐴 𝑧𝑧 ] 𝑛 
𝑖,𝑗 

+ 𝛿𝑡 ∗ 

{ 

1 
𝐖𝐢 − 

1 
𝑟 𝑖 

𝜕 
(
𝑟𝑢 𝑛 +1 [ 𝐴 𝑧𝑧 ] 𝑛 

)
𝜕𝑟 

|||||𝑖,𝑗 − 𝜕 
(
𝑤 𝑛 +1 [ 𝐴 𝑧𝑧 ] 𝑛 

)
𝜕𝑧 

|||||𝑖,𝑗 
} 

; 

𝐼𝑉 . [ 𝐴 𝑟𝑧 ] 𝑛 +1 
𝑖,𝑗 

+ 𝛿𝑡 ∗ 

{ (
1 
𝐖𝐢 + 

( 𝑢 

𝑟 

)
𝑛 +1 
𝑖,𝑗 

)
[ 𝐴 𝑟𝑧 ] 𝑛 +1 

𝑖,𝑗 
− 
(

𝜕𝑤 

𝜕𝑟 
[ 𝐴 𝑟𝑟 ] + 𝜕𝑢 

𝜕𝑧 
[ 𝐴 𝑧𝑧 ] 

)
𝑛 +1 
𝑖,𝑗 

} 

= 

[ 𝐴 𝑟𝑧 ] 𝑛 
𝑖,𝑗 

+ 𝛿𝑡 ∗ 

{ 

− 1 
𝑟 𝑖 

𝜕 
(
𝑟𝑢 𝑛 +1 [ 𝐴 𝑟𝑧 ] 𝑛 

)
𝜕𝑟 

|||||𝑖,𝑗 − 𝜕 
(
𝑤 𝑛 +1 [ 𝐴 𝑟𝑧 ] 𝑛 

)
𝜕𝑧 

|||||𝑖,𝑗 
} 

. 

(19) 

By writing this linear system in matrix form, it yields 

 

 

 

 

 

 

𝑎 11 0 0 𝑎 14 
0 𝑎 22 0 0 
0 0 𝑎 33 𝑎 34 
𝑎 41 0 𝑎 43 𝑎 44 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝐴 

𝑟𝑟 

𝐴 

𝜃𝜃

𝐴 

𝑧𝑧 

𝐴 

𝑟𝑧 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
𝑛 +1 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝐹 1 
𝐹 2 
𝐹 3 
𝐹 4 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (20) 

here the matrix coefficients are given by 

 

 

 

 

 

 

 

 

 

𝑎 11 = 1 . 0 + 𝛿𝑡 
( 1 
𝐖𝐢 − 2 𝜕𝑢 

𝑛 +1 

𝜕𝑟 

)
, 

𝑎 22 = 1 . 0 + 𝛿𝑡 
( 1 
𝐖𝐢 − 2 𝑢 

𝑛 +1 

𝑟 

)
, 𝑎 14 = −2 𝛿𝑡 𝜕𝑢 

𝑛 +1 

𝜕𝑧 
, 

𝑎 33 = 1 . 0 + 𝛿𝑡 
( 1 
𝐖𝐢 − 2 𝜕𝑤 

𝑛 +1 

𝜕𝑧 

)
, 𝑎 34 = −2 𝛿𝑡 𝜕𝑤 

𝑛 +1 

𝜕𝑟 
, 𝑎 41 = − 𝛿𝑡 

𝜕𝑤 𝑛 +1 

𝜕𝑟 
, 

𝑎 44 = 1 . 0 + 𝛿𝑡 
( 1 
𝐖𝐢 + 

𝑢 𝑛 +1 

𝑟 

)
, 𝑎 43 = − 𝛿𝑡 

𝜕𝑢 𝑛 +1 

𝜕𝑧 
, 

(21) 
t  
 

 

 

 

 

 

 

 

 

 

 

𝐹 1 = [ 𝐴 

𝑟𝑟 ] 𝑛 + 𝛿𝑡 
[

1 
𝐖𝐢 − 

1 
𝑟 

𝜕( 𝑟𝑢 𝑛 +1 [ 𝐴 𝑟𝑟 ] 𝑛 ) 
𝜕𝑟 

− 

𝜕( 𝑤 𝑛 +1 [ 𝐴 𝑟𝑟 ] 𝑛 ) 
𝜕𝑧 

]
, 

𝐹 2 = 

[
𝐴 

𝜃𝜃
]
𝑛 + 𝛿𝑡 

[ 
1 
𝐖𝐢 − 

1 
𝑟 

𝜕( 𝑟𝑢 𝑛 +1 
[
𝐴 𝜃𝜃

]
𝑛 ) 

𝜕𝑟 
− 

𝜕( 𝑤 𝑛 +1 
[
𝐴 𝜃𝜃

]
𝑛 ) 

𝜕𝑧 

] 
, 

𝐹 3 = [ 𝐴 

𝑧𝑧 ] 𝑛 + 𝛿𝑡 
[

1 
𝐖𝐢 − 

1 
𝑟 

𝜕( 𝑟𝑢 𝑛 +1 [ 𝐴 𝑧𝑧 ] 𝑛 ) 
𝜕𝑟 

− 

𝜕( 𝑤 𝑛 +1 [ 𝐴 𝑧𝑧 ] 𝑛 ) 
𝜕𝑧 

]
, 

𝐹 4 = [ 𝐴 

𝑟𝑧 ] 𝑛 + 𝛿𝑡 
[

1 
𝐖𝐢 − 

1 
𝑟 

𝜕( 𝑟𝑢 𝑛 +1 [ 𝐴 𝑟𝑧 ] 𝑛 ) 
𝜕𝑟 

− 

𝜕( 𝑤 𝑛 +1 [ 𝐴 𝑟𝑧 ] 𝑛 ) 
𝜕𝑧 

]
. 

(22) 

he derivatives in Eq. (21) are approximated by second order finite dif-

erences while the convective terms in Eq. (22) are calculated by em-

loying the high order upwind method CUBISTA [64] . The solution of

he linear system Eq. (20) is obtained exactly for 2D flow in the rz -plane

nd it is found to be 

 

 

 

 

 

[ 𝐴 

𝜃𝜃] 𝑛 +1 = 

𝐹 2 
𝑎 22 

, [ 𝐴 

𝑟𝑧 ] 𝑛 +1 = 

𝐹 4 − 
𝑎 41 
𝑎 11 

𝐹 1 − 
𝑎 43 
𝑎 33 

𝐹 3 

𝑎 44 − 
𝑎 41 
𝑎 11 

𝑎 14 − 
𝑎 43 
𝑎 33 

𝑎 34 
, 

[ 𝐴 

𝑟𝑟 ] 𝑛 +1 = 

1 
𝑎 11 

[
𝐹 1 − 𝑎 14 [ 𝐴 

𝑟𝑧 ] 𝑛 +1 
]
, [ 𝐴 

𝑧𝑧 ] 𝑛 +1 = 

1 
𝑎 33 

[
𝐹 3 − 𝑎 34 [ 𝐴 

𝑟𝑧 ] 𝑛 +1 
]
. 

(23) 

hus, the tensor 𝝉𝑛 +1 may now be calculated directly from 

𝑛 +1 = 

1 
𝐑𝐞 𝐖𝐢 

(
1 − 𝜷

)(
𝐀 

𝑛 +1 − 𝐈 
)
+ 

2 
𝐑𝐞 

𝜷 𝐃 

𝑛 +1 , (24) 

and the non-Newtonian stress tensor 𝐒 𝑛 +1 is computed from (after in-

roducing 𝝉𝑛 +1 into Eq. (8) ) 

 

𝑛 +1 = 

1 
𝐑𝐞 𝐖𝐢 

(
1 − 𝜷

)(
𝐀 

𝑛 +1 − 𝐈 
)
+ 

2 
𝐑𝐞 

( 𝜷 − 1) 𝐃 

𝑛 +1 . (25) 

STEP 3: Free surface movement 

We employ a front tracking method in which the fluid free surface

s made up of a set of markers 𝐱 𝐤 = {( 𝑟 𝑘 , 𝑧 𝑘 )} that define a linear spline

urve where, here, the index k denotes a specific marker. Once the up-

ated velocity 𝐯 𝑛 +1 has been calculated, the positions of these markers

re moved to new positions using local velocities 𝐯 𝐤 𝑛 +1 = ( 𝑢 𝑘 , 𝑤 𝑘 ) 𝑛 +1 that

re calculated by making bilinear interpolation involving the four near-

st cell velocities. For instance, with regard to Fig. 2 , the velocity u k 
f the marker x k is calculated using 3-black-squares ( ■) and 1-green-

quare ( ) velocities while the velocity w k is computed using 1-black-

ircle ( ●), 2-brown-circles ( ) and 1-green-circle ( ) velocities. The

ew positions of the markers { x k } is then found by solving 

𝑑 𝐱 𝐤 
𝑑𝑡 

= 𝐯 𝐤 𝑛 +1 , (26) 

mploying a 2nd-order R-K method. In our method, markers are not

ermitted to collide with solid walls where both velocities components

t ( r k , z k ) would vanish. Notwithstanding, they are allowed to be as

lose as (1/ N ) h where N is a given integer and h is the grid spacing. In

his manner, the free surface (represented by the blue curve in Fig. 2 )

s assumed to be in contact with a solid wall when a marker is at a

istance of (1/ N ) h from it. This causes the normal velocity of the marker

o become small ( u n ≈ 0) while its tangential velocity can be large. The

esults presented in this work were obtained with 𝑁 = 8 . 
To illustrate how to apply the free surface stress condition given by

q. (13b) , consider the velocities shown in green color in Fig. 3 . The

elocity u 2 is computed directly from the mass conservation equation

iscretized at the centre ( i, j ) of the S -cell that contains the marker x k ,

iving 

1 
𝑟 𝑖 

[ 
𝑟 𝑖 +1∕2 𝐮 𝟐 − 𝑟 𝑖 −1∕2 𝐮 𝟒 

𝛿𝑟 

] 
+ 

𝐰 𝟐 − 𝟎 
𝛿𝑧 

= 0 which yields 𝐮 𝟐 = 

{ 

𝑟 𝑖 −1∕2 

𝑟 𝑖 +1∕2 

} 

𝐮 𝟒 

− 

{ 

𝑟 𝑖 

𝑟 𝑖 +1∕2 

} (
𝛿𝑟 

𝛿𝑧 

)
𝐰 𝟐 . (27) 

o calculate the velocities u 1 and w 1 , we apply both the mass conserva-

ion equation and the free surface stress condition given by Eq. (13b) at
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Fig. 7. Simulation of an impacting drop. (a) 3D view of initial state; (b) Computational domain employed; (c) Reference cell. 
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Fig. 8. Simulation of a drop impacting a disk with 𝐑𝐞 = 𝟓 , 𝐖𝐢 = 𝟏 and 𝜷 = 𝟎 . 𝟏 . 
(a) Mesh refinement; (b) Comparison with other investigators. Our results were 

obtained on mesh M4. 

4

 

p  
he centre ( i, j ) of the surface cell that has u 1 and w 1 on its faces (see

ig. 3 ). For this cell, the local normal vector is assumed to be at an an-

le of −45 0 between the coordinate axes (see the arrow in Fig. 3 ) so

 = ( 
√
2 
2 , − 

√
2 
2 ) . Inserting this normal vector into Eq. (13b) and consid-

ring the mass conservation equation we obtain 

𝜕𝑢 

𝜕𝑟 
− 

𝜕𝑤 

𝜕𝑧 
= 

𝐑𝐞 
2 
( 𝑆 𝑧𝑧 − 𝑆 𝑟𝑟 ) (28)

1 
𝑟 

𝜕( 𝑟𝑢 ) 
𝜕𝑟 

+ 

𝜕𝑤 

𝜕𝑧 
= 0 . (29)

ow, discretizing these equations at the centre ( i, j ) of the of the S -cell

ields 

𝐮 𝟏 − 𝐮 𝟑 
𝛿𝑟 

− 

𝐰 𝟑 − 𝐰 𝟏 
𝛿𝑧 

= 

𝐑𝐞 
2 

(
𝑆 𝑧𝑧 𝑖,𝑗 − 𝑆 𝑟𝑟 𝑖,𝑗 

)
(30)

1 
𝑟 𝑖 

[ 𝑟 𝑖 +1∕2 𝐮 𝟏 − 𝑟 𝑖 −1∕2 𝐮 𝟑 
𝛿𝑟 

]
+ 

𝐰 𝟑 − 𝐰 𝟏 
𝛿𝑧 

= 0 . (31)

qs. (30) and (31) consist of a (2 × 2)-linear system for the unknowns

 1 and w 1 which has the solution 

 𝟏 = 

[ 𝑟 𝑖 + 𝑟 𝑖 −1∕2 

𝑟 𝑖 + 𝑟 𝑖 +1∕2 

]
𝐮 𝟑 + 0 . 5 𝛿𝑟 𝐑𝐞 

[ 𝑟 𝑖 

𝑟 𝑖 + 𝑟 𝑖 +1∕2 

](
𝑆 𝑧𝑧 𝑖,𝑗 − 𝑆 𝑟𝑟 𝑖,𝑗 

)
, (32)

 𝟏 = 𝐰 𝟑 + 

𝛿𝑧 

𝛿𝑟 

1 
𝑟 𝑖 

[
𝑟 𝑖 +1∕2 𝐮 𝟏 − 𝑟 𝑖 −1∕2 𝐮 𝟑 

]
. (33)

or other configurations of free surface cells, the calculation of the ve-

ocities (the green velocities) is similar to the cases worked out here. The

ork of Tomé et al. [23] presents details on how to define the normal

ector for a general configuration of the free surface. 

With this treatment, we have been able to simulate flows having

oving free surfaces interacting with solid walls (see e.g. [17] ) without

he necessity of imposing a contact angle. 

. Verification and validation of results 

To verify the numerical method described in Section 3 , fully de-

eloped pipe flow was simulated and the results are displayed in

ection 4.1 . In addition, in Section 4.2 , results from simulations of an

nsteady free surface drop impacting on a solid wall are compared with

ther numerical results from the literature. 

The results presented in this work were obtained using the following

ime step size (assuming 𝛿𝑟 = 𝛿𝑧 ): 

𝛿𝑡 = 𝐹 𝐴𝐶𝑇 ∗ 𝛿𝑟 2 ∕4 , where 𝐹 𝐴𝐶𝑇 = 0 . 1 . 
Because the momentum equation was solved implicitly by the Euler

ethod, this time step size is more restrictive than the CFL condition

nd therefore is enough to guarantee stable solutions for small Reynolds

umber flows. 
.1. Steady laminar pipe flow 

A pipe of radius 𝑅 = 1 . 0 m and length 𝐻 = 10 𝑅 m (see Fig. 4 a) com-

rised the computational domain Ω = [0 , 𝑅 ] × [0 , 10 𝑅 ] as illustrated in
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Fig. 9. Simulation of drop impacting a disk with 𝐑𝐞 = 𝟓 and variation of 𝜷: (a) 

𝐖𝐢 = 𝟏 , (b) 𝐖𝐢 = 𝟐𝟎 . 
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Table 1 

Values of 𝜷 used in the pipe flow. 

𝜷 0.1000 0.0100 0.0010 0.0000 

Table 2 

Meshes used to simulate pipe flow. 

Mesh M K M1 (10 × 100) M2 (20 × 200) M3 (40 × 400) 

𝛿𝐾 = 𝛿𝑟 = 𝛿𝑧 0.1000 0.0500 0.0250 

Cells in the mesh (10 × 100) (20 × 200) (40 × 400) 

Table 3 

L 2 -errors between analytic and numerical solutions cal- 

culated on meshes M1, M2 and M3. 

(a) 𝜷 = 𝟎 . 𝟏 

Mesh M K E ( w ( r, z m )) E ( 𝜏rz ( r, z m )) E ( 𝜏zz ( r, z m )) 

M1 1.6838e-03 5.7013e-03 3.1615e-02 

M2 4.2603e-04 1.4370e-03 8.0048e-03 

M3 1.0655e-04 3.6005e-04 2.0071e-03 

(b) 𝜷 = 𝟎 . 𝟎𝟎𝟏 

Mesh M K E ( w ( r, z m )) E ( 𝜏rz ( r, z m )) E ( 𝜏zz ( r, z m )) 

M1 1.6838e-03 5.7008e-03 3.5097e-02 

M2 4.2603e-04 1.4364e-03 8.8842e-03 

M3 1.0655e-04 3.6005e-04 2.2278e-03 

Table 4 

Calculated convergence order. 

(a) 𝜷 = 𝟎 . 𝟏 

Meshes used w 𝜏rz 𝜏zz 

M1 - M2 1.9827 1.9882 1.9817 

M2 - M3 1.9994 1.9968 1.9957 

(b) 𝜷 = 𝟎 . 𝟎𝟎𝟏 

Meshes used w 𝜏rz 𝜏zz 

M1 - M2 1.9798 1.9889 1.9821 

M2 - M3 1.9972 1.9957 1.9957 
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ig. 4 b. The pipe was empty initially and fluid was injected at the inflow

y imposing the following fully developed profile: 

 ( 𝑟 ) = 

(
1 − 𝑟 2 

)
, 𝑢 ( 𝑟 ) = 0 , 𝛾̇ = 

𝑑𝑤 

𝑑𝑟 
= −2 𝑟, 

𝑧𝑧 ( 𝑟 ) = 

2 
𝐑𝐞 

𝐖𝐢 
(
1 − 𝜷

)
𝛾̇2 , 𝜏𝑟𝑧 ( 𝑟 ) = 

1 
𝐑𝐞 

𝛾̇ , 𝜏𝑟𝑟 ( 𝑟 ) = 𝜏𝜃𝜃( 𝑟 ) = 0 . (34) 

The input data were: 𝐿 = 𝑅 = 1 m, 𝑈 = 1 ms −1 , 𝜌 = 1000 kg m 

−3 , 𝜂0 =
000 Pa.s, 𝜆1 = 1 s, 𝜆1 = 1 s, 𝜆2 = 𝜷𝜆1 . Therefore, 𝐑𝐞 = 

𝜌 𝑈 𝐿 

𝜂0 
= 1 and

𝐢 = 𝜆1 
𝑈 

𝐿 
= 1 . The values of 𝜷 used in these simulations are displayed

n Table 1 . 

By using the meshes presented in Table 2 , this problem was simu-

ated until time 𝑡 ( 𝑈∕ 𝐿 ) = 100 on each mesh. 
Fig. 5 displays the numerical solutions obtained for 𝜏zz ( r, z m 

) for

= 𝟎 . 𝟏 , 𝟎 . 𝟎𝟏 , 𝟎 . 𝟎𝟎𝟏 while Fig. 6 shows the solutions for w ( r, z m 

) and 𝜏rz ( r,

 m 

) using 𝜷 = 𝟎 . 𝟎𝟎𝟏 . These solutions were plotted at the middle of the

ipe at 𝑧 𝑚 = 5 𝑅 . For comparisons, the analytic solutions are also plot-

ed. It can be seen that the numerical solutions agree well with the cor-

esponding solutions on the different meshes. Moreover, Table 3 shows

hat the L 2 -errors calculated with the norm defined by Eq. (35) decay

s the mesh is refined and Table 4 displays that the calculated conver-

ence order is about two. This is in accordance with the second-order

nite difference approximations employed to solve the equations. The

esults obtained with 𝜷 = 𝟎 were very similar to those obtained with
Fig. 10. Mesh refinement analysis for the case 𝐑𝐞 = 𝟓 , 𝐖𝐢 = 𝟐𝟎 
and 𝜷 = 𝟎 . 𝟎𝟏 . Meshes used: I, II, III, IV and V defined in Table 7 . 
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Fig. 11. Simulation of a drop spreading over a disk - 𝐑𝐞 = 𝟓 , 𝜷 = 𝟎 . 𝟎𝟏 and 𝐖𝐢 = 𝟏 and 20 , at selected times. Contour plots display the u -velocity. Left column: 𝐖𝐢 = 𝟏 , 
right column: 𝐖𝐢 = 𝟐𝟎 . 
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Fig. 12. Variation of the velocities u ( t ) and w ( t ) at the cell(1,10) identified in Fig. 7 c. (a) 𝐖𝐢 = 𝟏 ; (b) 𝐖𝐢 = 𝟐𝟎 . The discontinuity in the velocities is due to the fact 

that cell(1,10) became empty of fluid over the time interval [2.78, 4.2] . 

Fig. 13. Numerical simulation of drop re- 

bound at selected times for 𝐖𝐢 = 𝟏 , 𝜷 = 𝟎 . 𝟎𝟏 
and several values of Re . 
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Table 5 

Input data (SI units) used in the impacting drop simulation. 

𝑑 0 = 2 𝑅 [ m ] H [ m ] U [ 𝑚𝑠 −1 ] 𝜆1 [ s ] 𝜂0 [ Pa.s ] 𝜌 [ 𝑘𝑔 𝑚 −3 ] Fr 

0.02 0.04 1.0 0.02 4.0 1000.0 2.2576 
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4

 

d  
= 𝟎 . 𝟎𝟎𝟏 and were not displayed for conciseness. 

( ⋅) 𝐾 = 

√ 

𝛿𝐾 
∑
𝑗 

[
( ⋅) Anal . − ( ⋅) Num . 

]
2 , 

× ( 𝛿𝐾 is the spacing of mesh 𝐌 𝐊 in Table 2 ) (35) 

Note that this summation is across the pipe section at 𝑧 = 5 𝑅 . 

.2. Drop impacting: General features 

To test the code on a time-dependent problem with a free surface

ow, we simulated the flow of an axisymmetric drop (see Fig. 7 a) mod-

lled by an Oldroyd-B fluid. This is an appropriate problem to assess our

umerical algorithm on time-dependent flows possessing large free sur-

ace deformations. It also allows us to effect a comparison with solutions

btained by other numerical techniques. 

We considered an initially spherical drop of diameter 𝑑 0 = 2 𝑅 that

as positioned above a circular disk at a height H (see Fig. 7 b). At 𝐭 = 𝟎 ,
he drop starts to fall under gravity with initial velocity 𝑤 ( 𝑟, 𝑧, 0) = − 𝑈 ;

he components of the extra-stress tensor 𝝉 were initially assigned to be

ero. After the drop hits the disk it is anticipated that it will flow radially

ncreasing its diameter d ( t ), but after a short period of time elastic forces

hould come into play and the velocities within the drop are expected

o reverse causing it to start contracting with a consequent decrease in

ts diameter d ( t ). We are interested in studying the effects of parameters

𝐢 and 𝜷 on variation with time of the drop diameter d ( t ). 
As a check on our code, we performed mesh refinement followed by

omparisons with numerical results from other investigators. The pa-

ameters associated with the flow used in these simulations are listed in

able 5 which give the following dimensionless numbers 𝐑𝐞 = 𝟓 , 𝐖𝐢 = 𝟏 ,
= 𝟎 . 𝟏 . Simulations were carried out until time 𝑡 ( 𝑈∕ 𝑑 0 ) = 10 employ-

ng the meshes defined in Table 6 . The results obtained are displayed

n Fig. 8 a where it can be seen that the solutions exhibit good mesh

onvergence. Moreover, Fig. 8 b compares d ( t ) with the results obtained

y Figueiredo et al. [26] , Xu et al. [27] and the OpenFOAM code [28] .

t is clear that the time evolution of d ( t ) obtained by our code agrees

ell with the results from the literature and provides us with some con-

dence that our code is behaving well on this particular unsteady free

urface flow. 

.3. Simulation of impacting drop: Effects of 𝐖𝐢 and 𝛽

To demonstrate the capability of this technique for solving time-

ependent viscoelastic free surface flows, the input data displayed in
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Fig. 14. Velocity field at selected times for 𝐖𝐢 = 𝟏 and 𝜷 = 𝟎 . 𝟎𝟏 and several Reynolds numbers. 

Table 6 

Meshes employed in the simulations of drop impacting. 

Mesh M1 M2 M3 M4 M5 

spacing ( 𝛿K / d 0 ) 0.050000 0.025000 0.016666 0.012500 0.006250 
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able 5 and mesh M4 were employed to simulate the impacting drop

roblem for a range of values of 𝜷 and 𝐖𝐢 . In particular, the effect of 𝜷

as extensively investigated in the range 0 to 1 and the flows near the

wo limits were carefully considered. 

We started with the case 𝐑𝐞 = 𝟓 and 𝐖𝐢 = 𝟏 and simulated the im-

acting drop for 

𝜷 = 𝟎 , 𝟎 . 𝟎𝟎𝟏 , 𝟎 . 𝟎𝟏 , 𝟎 . 𝟎𝟐 , 𝟎 . 𝟏 , 𝟎 . 𝟑 , 𝟎 . 𝟓 , 𝟎 . 𝟕 , 𝟎 . 𝟗 , 𝟎 . 𝟗𝟓 , 𝟎 . 𝟗𝟗 . The Newtonian

ow, corresponding to 𝜷 = 𝟏 , was also simulated for reference. These

imulations were performed until the nondimensional time 𝑡 ( 𝑈∕ 𝑑 0 ) =
0 . 

Fig. 9 a displays the time history of d ( t ) for each value of 𝜷. It is read-

ly seen that the results with 𝜷 = 𝟎 . 𝟗 , 𝟎 . 𝟗𝟓 , 𝟎 . 𝟗𝟗 are similar, approaching

he results of the Newtonian drop ( 𝜷 = 𝟏 ) and showing that after the

rop has impacted the disk, at time t ≈ 1.4, it continued to flow radi-

lly, with d ( t ) increasing monotonically. The results with 𝜷 = 𝟎 . 𝟑 , 𝟎 . 𝟓 , 𝟎 . 𝟕
isplay a small radial expansion and radial contraction of the drop that

ccurred at times t ≈ 2.1 and t ≈ 3.7, respectively. It is seen that, after

he initial contraction, the drop flowed radially outwards like the New-

onian drop. For 𝜷 = 𝟎 . 𝟎𝟎𝟏 , 𝟎 . 𝟎𝟏 , 𝟎 . 𝟎𝟐 , 𝟎 . 𝟏 , the behaviour of d ( t ) is more

oticeable. The increase in polymer concentration within the drop, pro-

ortional to 1 − 𝜷, provided greater elasticity to the fluid so that more

f the fluid has a stress build-up and relaxation over a finite time, al-

owing the drop to expand and contract twice. The magnitude of these

scillations became more pronounced as the value of 𝜷 decreased and

or 𝜷 = 𝟎 . 𝟎𝟎𝟏 , the diameter d ( t ) is about the same as that obtained with

he UCM model ( 𝜷 = 𝟎 , see the black dotted curve in Fig. 9 a) as we might

ave anticipated. The reason the low 𝜷 fluids exhibit larger diameters

mmediatelly after impact is related to the finite time it takes for the re-

isting shear stresses from the polymer contribution to increase, whereas

hey appear instantly in the Newtonian solvent contribution. The simul-
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Fig. 15. First normal stress difference 𝑁 1 = 𝜏𝑧𝑧 − 𝜏𝑟𝑟 for different Reynolds numbers at times 𝐭 = 𝟏 . 𝟖 , 𝟐 . 𝟐 , 𝟑 . 𝟒 . Simulations with 𝜷 = 𝟎 . 𝟎𝟏 and 𝐖𝐢 = 𝟏 . 
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aneous build-up of elastic normal stresses and their change in signs are

esponsible for the drop oscillations. 

To observe the effect of a high Weissenberg number on

he spread of the drop, simulations using 𝐑𝐞 = 𝟓 , 𝐖𝐢 = 𝟐𝟎 and

= 𝟎 . 𝟎𝟏 , 𝟎 . 𝟏 , 𝟎 . 𝟑 , 𝟎 . 𝟓 , 𝟎 . 𝟕 , 𝟎 . 𝟗 , 𝟎 . 𝟗𝟓 , 𝟎 . 𝟗𝟗 were carried out. The evolutions

f the diameter d ( t ) obtained in these simulations are displayed in

ig. 9 b for each value of 𝜷. It is seen that, after the drop has im-

acted the disk, the values of d ( t ) corresponding to 𝜷 = 𝟎 . 𝟑 , 𝟎 . 𝟓 , 𝟎 . 𝟕 , 𝟎 . 𝟗
ncreased without any contraction, while the results corresponding to

= 𝟎 . 𝟗𝟓 , 𝟎 . 𝟗𝟗 approached those of Newtonian flow, as expected. How-

ver, for 𝜷 = 𝟎 . 𝟎𝟏 , 𝟎 . 𝟏 the diameter d ( t ) showed large expansions, that

s, d ( t ) > 2.5 d 0 for 𝜷 = 0 . 01 and d ( t ) > 2 d 0 at 𝜷 = 𝟎 . 𝟏 . For these two val-

es of 𝜷 the expansion of the drop was followed by its contraction to the

alue 𝑑( 𝑡 ) ≈ 0 . 044 = 2 . 2 𝑑 0 for 𝜷 = 0 . 01 and 𝑑( 𝑡 ) ≈ 0 . 04 = 2 𝑑 0 for 𝜷 = 𝟎 . 𝟏 .
scillations were not present at high Wi flow because the growth of the

ormal stresses are responsible for reversing the flow and subsequently

hey are dissipated. Those normal stresses also take longer to build-up

nd do not increase greatly because of the lower velocity gradients that

ppear after the impact. 

To establish the validity of these results, we performed a mesh re-

nement analysis for the case 𝐑𝐞 = 𝟓 , 𝐖𝐢 = 𝟐𝟎 and 𝜷= 𝟎 . 𝟎𝟏 . To demon-

trate the convergence of the axisymmetric code on this flow, we em-

loyed the meshes I, II, III, IV, V that are defined in Table 7 and

imulated the impacting drop from 𝑡 = 0 to 𝑡 = 20 on each of these

eshes. The results obtained for the variation of d ( t ) are displayed in
ig. 10 where it is seen that the results from mesh I approach to those

f mesh V when the mesh is refined. This demonstrates the conver-

ence of the axisymmetric code on this high Weissenberg number flow

roblem. 

To better show the large deformations of the drop surface for 𝐑𝐞 = 𝟓 ,
= 𝟎 . 𝟎𝟏 and 𝐖𝐢 = 𝟏 and 20 , Fig. 11 displays a three-dimensional view of

he unsteady flow of the drop spreading over the disk at selected times.

or 𝐖𝐢 = 𝟏 (see the left column in the 3D visualizations), the drop ini-

ially expanded until 𝐭 = 𝟐 . 𝟔 and then contracted up to time 𝐭 = 𝟑 . 𝟏 when

n elevation at the centre of the drop can be seen (see the associated 3D

iew). Subsequently, the drop again starts to expand, causing a depres-

ion at its centre at t ≈ 3.8 . After this time the velocities within the

rop are now small so that the drop surface does not show any substan-

ial changes and gravity causes it to flow monotonically. We believe

hat these effects are due to elastic forces acting within the drop. These

bservations are in agreement with the time trace of the z -component

f the velocity ( w ) shown in Fig. 12 a that displays the velocities at the

ell(1,10) located as shown in Fig. 7 c. In particular, we observe that the

 -velocity changes its sign several times, signalling the spreading and

ontracting phases. 

The results at a higher 𝐖𝐢 = 𝟐𝟎 are more dramatic. The high Weis-

enberg number means that it takes longer for the resisting polymer

hear stresses to build-up after impact, so the drop was able to spread

uch more than at 𝐖𝐢 = 𝟏 ; similarly, retraction took much longer to

ccur because the normal stresses take longer to relax to lower values,
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Table 7 

Meshes employed in the simulations of drop impacting with 𝐑𝐞 = 𝟓 , 𝐖𝐢 = 𝟐𝟎 and 

𝜷 = 0 . 01 . 

Mesh spacing I II III IV V 

( 𝑑𝑟 = 𝑑𝑧 )∕ 𝑑 0 0.0166666 0.025000 0.0111111 0.0100000 0.0083333 

Fig. 16. (a) Variation of N 1 ( t ) at the cell(1,1) sketched in Fig. 7 c for 𝐖𝐢 = 𝟏 , 
𝜷 = 𝟎 . 𝟎𝟏 and several Reynolds numbers. (b) Zoom-in of the results in the region 

[1 , 3] × [−1 . 25 , 1] . . 
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Table 8 

VALUES of Re and 𝜷 employed in the simulation of 

bouncing drops. 

𝐖𝐢 = 𝟏 

𝜷 = 0 . 01 ( fixed ) Re 0 .25 0 .5 1 .0 2 .0 

𝐑𝐞 = 𝟎 . 𝟐𝟓 ( fixed ) 𝜷 0.0 0.01 0.05 0.1 
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ince they depend on smaller velocity gradients. The maximum spread

ook place at 𝐭 = 𝟑 . 𝟏 (see Fig. 11 ) where there are noticeable surface

ipples. The thin layer of fluid at the perimeter of the disk would then

ppear to be affected by elastic forces causing the fluid to retract and

ove towards the centre; then, at 𝐭 = 𝟓 . 𝟕 , a small jet emerges at the

entre of the drop. After that, a cycle of expansion and contraction con-

inued, but was quickly attenuated due to viscous and gravity forces

see frames 𝐭 = 𝟔 . 𝟏 , 𝟕 . 𝟔 , 𝟏𝟎 . 𝟎 ). Subsequently, there was little change in

he shape of the drop as the fluid was almost quiescent (not shown).

hese observations are confirmed in Fig. 12 b where the time variation

f the velocities at cell(1,10) (identified in Fig. 7 c) are displayed. Here

e see that after 𝐭 = 𝟖 , the velocities are very small resulting in little

hange in the shape of the surface of the drop. 
.4. Simulation of drop bouncing 

In the drop impacting flow, when the amount of solvent is small, or

he flow is highly elastic, the liquid droplet may rebound. This type of

ow has attracted only a few computational rheologists. For instance, Xu

t al. [27,30,31] applied their smoothed particle hydrodynamics (SPH)

ode to this problem using the UCM model in the absence of surface

ension forces and were able to capture the drop bouncing. 

In order to demonstrate that our numerical approach has the capa-

ility of modelling the drop bouncing phenomenon for the Oldroyd-B

odel, we performed several simulations with small values of the pa-

ameter 𝜷 and, in addition we explored the conditions leading to such an

vent in the 
{ 

𝜷 − 𝐑𝐞 − 𝐖𝐢 
} 

phase space. The computational domain is

he same as depicted in Fig. 7 b. To verify if drop bouncing occurred, the

ime-dependence of the distance between the drop and the disk, 𝐡 ( 𝐭) ,
see Fig. 7 b) will be plotted. Thus, when the drop is attached to the

isk, 𝐡 ( 𝐭) = 𝟎 , while if it rebounds, detaching itself from the disk, then

 ( 𝐭) will be positive. Eventually, due to the gravitational force, the drop

ill start to descend hitting the disk again ( 𝐡 ( 𝐭) = 𝟎 , ). It is anticipated

hat, depending on the values of 𝜷, Re and Wi , the drop may rebound

everal times, or even not at all. 

To observe this effect, simulations were initially performed for sev-

ral values of both the Reynolds number and the viscosity ratio given

n Table 8 , for a fixed Weissenberg number, 𝐖𝐢 = 𝟏 and employing the

esh M4 defined in Table 6 . 

The flow conditions can be found in Table 5 with the exception of

0 that was adjusted for the particular Reynolds number employed. 

Fig. 13 displays a 3D-visualization of the fluid flow obtained with

𝐢 = 𝟏 and 𝜷 = 𝟎 . 𝟎𝟏 for 𝐑𝐞 = 𝟎 . 𝟐𝟓 , 𝟎 . 𝟓 , 𝟐 . 𝟎 . 3D animation videos are

rovided in Fig. 21 in the Appendix A. 

At the time 𝐭 = 𝟏 . 𝟖 , the three drops have hit the disk and it can be seen

hat the Reynolds number has a substantial influence on both the veloc-

ty and shape of the drop. Indeed, for 𝐑𝐞 = 𝟎 . 𝟐𝟓 and 0.5 the drop experi-

nces a radial contraction (as is clear from the velocity field in Fig. 14 ),

hereas at higher Re ( 2.0 ) the drop still spreads radially with a down-

ards vertical motion (see Fig. 14 ). These differences become more no-

iceable at time 𝐭 = 𝟐 . 𝟐 when it is seen that the drop with 𝐑𝐞 = 𝟎 . 𝟐𝟓
as already bounced and is moving upwards against the gravitational

eld, whereas at 𝐑𝐞 = 𝟎 . 𝟓 , 𝟐 . 𝟎 , the drops are now undergoing contrac-

ion (i.e. fluid moving towards the centre). Finally, at time 𝐭 = 𝟑 . 𝟒 , the

rops with 𝐑𝐞 = 𝟎 . 𝟐𝟓 and 0.5 have rebounded and are moving upwards

gainst gravity (see the velocity field in Fig. 14 ), whereas, the drop with

𝐞 = 𝟐 . 𝟎 is seen to have partially left the ground while remaining par-

ially attached (no rebound) and, is again spreading, as is clear from the

elocity field in Fig. 14 . The fact that the drop did not detach itself from

he disk is likely to be due to the inertia force being stronger than the

lastic forces. 
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Fig. 17. Visualization of drop rebound at selected times for 𝐑𝐞 = 𝟎 . 𝟐𝟓 , 𝐖𝐢 = 𝟏 and several values of 𝜷. 

Fig. 18. Heights of bouncing drops for 𝐖𝐢 = 𝟏 : (a) 𝜷 = 𝟎 . 𝟎𝟏 and varying Re , (b) 𝐑𝐞 = 𝟎 . 𝟐𝟓 varying the viscosity ratio 𝜷. 
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To provide additional insight into the phenomenon of the bounc-

ng drop, Fig. 15 displays contours of the first normal stress difference

 1 ( 𝑡 ) = 𝜏𝑧𝑧 ( 𝑡 ) − 𝜏𝑟𝑟 ( 𝑡 ) within the drop for 𝐑𝐞 = 𝟎 . 𝟐𝟓 , 𝟎 . 𝟓 , 𝟐 . 𝟎 at the times

hown. It is seen that at the time 𝐭 = 𝟏 . 𝟖 the three drops are attached to

he disk and have high contour values for N 1 ( t ). However, at time 𝐭 = 𝟐 . 𝟐
he drop with 𝐑𝐞 = 𝟎 . 𝟐𝟓 has already bounced and its values for N 1 ( t ) are

elatively small. Drops with 𝐑𝐞 = 𝟎 . 𝟓 and 2.0 remain attached to the

isk (i.e. do not bounce) and present reasonably high contour values

or N 1 ( t ). At time 𝐭 = 𝟑 . 𝟒 the drops with 𝐑𝐞 = 𝟎 . 𝟐𝟓 and 0.5 are bouncing

pwards and giving rise to small contour values of N 1 ( t ) while the drop

hat has not bounced ( 𝐑𝐞 = 𝟐 . 𝟎 ) displays reasonable large contours of

 1 ( t ) throughout the drop. We point out that when the drops bounce,

he first normal stress difference changes sign from negative to positive

s displayed in Fig. 16 a (a zoom in at the instant of time of bouncing is

hown in Fig. 16 b) and a region with positive countours of N 1 ( t ) builds

p around the detachment point. This region then moves to the centre

f the drop and changes its sign (as can be seen in Fig. 15 ). 

Moreover, we see that at the time of impact at approximately 𝐭 = 𝟏 . 𝟑
see Fig. 16 ), the value of N 1 ( t ) decreases suddenly reaching large neg-

tive values (e.g. 𝑁 1 ( 𝑡 ) ≈ −11 . 8 for 𝐑𝐞 = 𝟎 . 𝟐𝟓 , 𝑁 1 ( 𝑡 ) ≈ −5 . 5 for 𝐑𝐞 = 𝟎 . 𝟓 ,
 ( 𝑡 ) ≈ −2 . 5 for 𝐑𝐞 = 𝟏 . 𝟎 and 𝑁 ( 𝑡 ) ≈ −1 . 5 for 𝐑𝐞 = 𝟐 . 𝟎 ). For instance, for
1 1 
𝐞 = 𝟎 . 𝟐𝟓 , we can see in Fig. 16 a that, prior to bouncing, N 1 ( t ) changes

ign at t ≈ 2.1 , becoming positive and thereafter attaining a peak value

f N 1 ( t ) ≈ 2. The occurrence of this peak value was due to the fact that

he drop bounced and maintained an upward flow. Note that cell(1,1)

oes become empty over the time interval ≈ [2.1, 6.5] in which case

ll variables are set to zero explaining the discontinuity in Fig. 16 a. The

alue of N 1 ( t ) that was plotted at the centre of cell(1,1) was thus zero

ntil t ≈ 6.5 when the drop again impacts the disk and N 1 ( t ) attains

nother negative peak of 𝑁 1 ≈ −4 . 5 . During the time interval [2.1, 6.5],

(t) is positive and the drop is above the disk (see Fig. 18 a). After the

rop hits the disk at t ≈ 6.5 the process is repeated: at t ≈ 7.5 the value

f N 1 ( t ) becomes zero, the drop again bounces and the flow is verti-

ally upwards until t ≈ 11.0 and so it continues. This process is re-

eated three times for 𝐑𝐞 = 𝟎 . 𝟐𝟓 , two times for 𝐑𝐞 = 𝟎 . 𝟓 and only once

or 𝐑𝐞 = 𝟏 . 𝟎 . For 𝐑𝐞 = 𝟐 . 𝟎 the drop did not bounce as 𝒉 ( 𝒕 ) was always

ero (see Fig. 18 a). 

Fig. 17 displays the drop for a fixed 𝐑𝐞 = 𝟎 . 𝟐𝟓 and 𝜷 = 𝟎 . 𝟎 , 𝟎 . 𝟎𝟏 , 𝟎 . 𝟏
t selected times. 3D animation videos are provided in Fig. 22 in

he Appendix A . This figure clearly shows that the drop-bouncing is

ssociated with the polymer contribution to the total stress, with the

CM droplet exhibiting the greatest bounce. Increasing 𝜷, even to the
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Fig. 19. Variation of the maximum height of 𝐡 ( 𝐭) as function of Weissenberg and Reynolds numbers. 

Fig. 20. Variation of the maximum height of 𝐡 ( 𝐭) as function of Reynolds and Weissenberg numbers. a) 𝐖𝐢 = 𝟏 fixed, varying 𝜷 and Re , b) 𝐑𝐞 = 𝟎 . 𝟐𝟓 fixed, varying 

𝜷 and 𝐖𝐢 = 𝟏 . 

Fig. 21. Animations varying Re . Supplementary material shows animations of 

these flow conditions. 

s  

o  

t  

b  

h  

a  

Fig. 22. Animations varying 𝜷. Supplementary material shows animations of 

these flow conditions. 
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𝐖  
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l  
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mall value of 0.01, has the effect of significantly reducing the height

f the bouncing droplet. When the solvent viscosity contributes 10% to

he total viscosity ( 𝜷 = 𝟎 . 𝟏 ) the droplet only bounces a small amount,

ut this is more clearly shown in Fig. 18 . In Fig. 18 , the variation of

(t) with time is displayed for several cases, at fixed 𝐖𝐢 = 𝟏 , separately

ssessing the effects of Re and of 𝜷, complementing the previous figures.
t is clear that, the drops with 𝜷 = 𝟎 . 𝟎 ( UCM model) and 𝜷 = 𝟎 . 𝟎𝟏 had a

ronounced bounce, in some case bouncing more than once whereas the

rop with 𝜷 = 𝟎 . 𝟏 hardly bounced at all. For this particular 𝐑𝐞 = 𝟎 . 𝟐𝟓 and

𝐢 = 𝟏 , the first two solutions bounced three times with the height of

heir bounces decreasing with time as a direct result of potential energy

oss (see Table 9 ). On the other hand, the drop with 𝐑𝐞 = 𝟏 . 𝟎 displayed

imilar results, bouncing only once (see Fig. 18 a and Table 9 ). 
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Table 9 

VALUES of the maximum height 𝐡 ( 𝐭) and associated time 𝐭 𝐦𝐚𝐱 of 

bouncing drops. 

𝐖𝐢 = 𝟏 and 𝜷 = 𝟎 . 𝟎𝟏 Re 0.25 0.5 1.0 2.0 

𝐡 ( 𝐭) 0.582 0.361 0.161 0.0 

𝐭 𝐦𝐚𝐱 4.450 4.121 3.116 

𝐖𝐢 = 𝟏 and 𝐑𝐞 = 𝟎 . 𝟐𝟓 𝜷 𝟎 𝟎 . 𝟎𝟏 𝟎 . 𝟎𝟓 𝟎 . 𝟏 

𝐡 ( 𝐭) 0.934 0.582 0.083 0.036 

𝐭 𝐦𝐚𝐱 5.058 4.450 2.966 2.737 

Table 10 

Weissenberg and Reynolds numbers employed in the simulation of the bouncing 

drop. 

Variation of Wi 𝐑𝐞 = 𝟎 . 𝟐𝟓 and 𝜷 = 𝟎 . 𝟎𝟏 FIXED 

𝐖𝐢 0.001, 0.01, 0.02, 0.1, 0.3, 0.5, 0.7, 1.0, 2.0, 3.0, 4.0, 6.0, 8.0 

Variation of 𝐑𝐞 𝐖𝐢 = 𝟏 and 𝜷 = 𝟎 . 𝟎𝟏 FIXED 

𝐑𝐞 0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 3.0 

Table 11 

Simulation of bouncing drops varying 𝜷, Re and Wi . 

𝐖𝐢 = 𝟏 , FIXED 

𝜷 𝟎 . 𝟎 , 𝟎 . 𝟎𝟎𝟏 , 𝟎 . 𝟎𝟎𝟓 , 𝟎 . 𝟎𝟏 
Re 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 3.0 

𝑅𝑒 = 0 . 25 , FIXED 

𝜷 𝟎 . 𝟎 , 𝟎 . 𝟎𝟎𝟏 , 𝟎 . 𝟎𝟎𝟓 , 𝟎 . 𝟎𝟏 
Wi 0.01, 0.02, 0.1, 0.3, 0.5, 0.7, 1.0, 2.0, 3.0, 4.0 
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.4.1. Limiting Weissenberg and Reynolds numbers 

To examine the effect of the Weissenberg and Reynolds numbers on

he bouncing of droplets, a number of simulations were performed using

he values of Wi and Re displayed in Table 10 . In particular, we are

nterested in investigating the effects of Wi and Re on the maximum

eight of the drop ( 𝐡 𝐦𝐚𝐱 ), which takes place after the drops first rebound.

Note that it may rebound several times as can be seen in the videos

rovided in Figs. 21 and 22 ). We are also interested in determining the

ange of Weissenberg and Reynolds numbers for which bouncing occurs.

The values of the maximum heights ( 𝐡 𝐦𝐚𝐱 ) obtained in these simu-

ations are plotted in Fig. 19 . It can be seen in Fig. 19 a that the Weis-

enberg number has a significant influence on the degree of bouncing.

or the values of Re and 𝜷 employed in these simulations, the drops

ebound if the Weissenberg number lies in the interval [0.02, 8.0]; the

aximum height was attained when 𝐖𝐢 = 𝟎 . 𝟓 . The reason that the drop

id not rebound for smaller values of Wi is because in this case the flow

s approaching Newtonian flow and elasticity effects are small; however,

f Wi is sufficiently large ( 𝐖𝐢 = 𝟖 ), even though the drop is very elastic,

he elastic stress build-up after hitting the solid surface is too long and

he spreading of the droplet dissipates too much energy in the meantime

nd consequently the drop does not rebound. 

The results, obtained varying the Reynolds number, are displayed in

ig. 19 b where it is observed that the Reynolds number also strongly af-

ects the bouncing. If Re increases then the maximum height of the drop

tarts to decrease and if Re is sufficiently large ( 𝐑𝐞 = 𝟐 ) then bouncing

oes not occur because of excessive inertia. On the other hand, if Re de-

reases then the height of the bounce decreases (at least for the Reynolds

umbers simulated). 

To investigate the effect of 𝜷 on the maximum height of the bounce

hen Re and Wi are varied, we performed additional simulations using

he values of 𝜷, Re and Wi displayed in Table 11 . Fig. 20 a displays the

aximum heights obtained for the values of 𝜷 and Re simulated. Again

t is seen that when the Reynolds number increases, the maximum height

f the bounce decreases to zero, meaning that the drop ceases to bounce
t sufficiently large Reynolds number. This is in accordance with the fact

hat increasing the inertia causes the drop to spread more radially loos-

ng energy due to the action of viscosity and therefore the drop bounces

ess, eventually not bouncing at all. The results obtained with variation

f the Weissenberg number are displayed in Fig. 20 b. It is seen that for

mall values of Wi the maximum height of the bounce decreases to zero

ue to the fact that the drop begins to behave like a Newtonian fluid.

hen Wi > 1 the maximum height decreases because the ratio between

he characteristic time of the fluid and the characteristic time of the flow

ncreases. 

The decrease in the value of 𝜷, that is as the UCM fluid is approached,

akes the drop more elastic so bouncing is more pronounced. 

. Conclusions 

This work presented a novel numerical algorithm for solving time-

ependent free surface flows of Oldroyd-B fluids which is stable for the

hole range of the ratio of solvent to total viscosity. The formulation

mployed to solve the governing equations and the free surface stress

onditions made use of an EVSS transformation. This approach removed

he multiplicative factor 𝟏∕ 𝜷 from the components of the zero stress

onditions on the free surface, and the inevitable numerical instabilities

hat do ensue when the fluid approached the UCM limit. 

A crucial feature of the method was how the Oldroyd-B constitutive

quation was solved. The extra-stress tensor was written in terms of the

onformation tensor A which was approximated by implicit finite dif-

erences resulting in a (4 × 4)-linear system that was solved exactly.

fter obtaining the conformation tensor the extra-stress tensor was eas-

ly directly evaluated. The method was verified against fully developed

ipe flow for an Oldroyd-B fluid and convergence results were provided.

he efficacy of this new methodology for unsteady free surface flow was

emonstrated by simulating the impacting drop problem; here mesh re-

nement was performed, with particular focus on vanishingly small val-

es of viscosity ratio, 𝜷. The subsequent, more extensive, investigation

sing the Oldroyd-B model assessed the effects of the viscosity ratio,

eynolds number and Weissenberg number on the height of bouncing

roplets. In particular, we found that the solvent contribution, repre-

ented by the value of 𝜷, had a substantial influence on the height of

he bouncing drop. How the Reynolds and Weissenberg numbers affect

he height of the bounce was also discussed at length. 
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