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a b s t r a c t 

The lid-driven cavity flow is a well-known benchmark problem for the validation of new numerical meth- 

ods and techniques. In experimental and numerical studies with viscoelastic fluids in such lid-driven 

flows, purely-elastic instabilities have been shown to appear even at very low Reynolds numbers. A 

finite-volume viscoelastic code, using the log-conformation formulation, is used in this work to probe 

the effect of viscoelasticity on the appearance of such instabilities in two-dimensional lid-driven cavities 

for a wide range of aspect ratios (0.125 ≤ � = height/length ≤ 4.0), at different Deborah numbers under 

creeping-flow conditions and to understand the effects of regularization of the lid velocity. The effect of 

the viscoelasticity on the steady-state results and on the critical conditions for the onset of the elastic 

instabilities are described and compared to experimental results. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

The fluid motion in a box induced by the translation of one wall

the so-called “lid-driven cavity flow” – is a classic problem in

uid mechanics [1] . The geometry is shown schematically in Fig. 1

nd conventionally comprises a two-dimensional rectangular box

f height H and width L of which the top (horizontal) wall – the

lid” – translates horizontally at a velocity U (for single phase flu-

ds flowing isothermally the exact choice of moving wall is unim-

ortant). For Newtonian fluids in rectangular boxes, the problem

s governed by two dimensionless parameters: the Reynolds num-

er Re ( ≡ρUH / η) and the aspect ratio � ( ≡H / L ), where ρ is the

uid density and η is the dynamic viscosity. For very low Reynolds

umbers – creeping-flow conditions, where Re → 0 – and low as-

ect ratios ( � < 1.6 [2] ) a main recirculating region of fluid motion

s induced which, due to the linearity of the Navier–Stokes equa-

ions under Stokes flow conditions, is symmetric about the vertical

ine x / L = 0.5, as shown in Fig. 1 . In addition to this main recir-

ulation, smaller Moffatt [3] or corner eddies are also induced at

he bottom corners (labelled “C” and “D” in Fig. 1 ): in fact at the

ottom corners there is an infinite series of these vortices of di-

inishing size and strength as the corner is approached [3] . The
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rimary corner eddies grow in size with increasing aspect ratio

nd, at a critical aspect ratio of about 1.629 [2] , merge to form

 secondary main cell albeit of much smaller intensity than the

rimary main cell (Ref. [1] gives a stream function decay ratio

f 1/357 for these main cells). For higher aspect ratios this pro-

ess repeats and additional main cells are created. Thus for “high”

spect ratios, essentially � > 1.6, the main fluid motion near the

ranslating wall (the main cell) is essentially unaffected by the as-

ect ratio. For a fixed aspect ratio – the majority of studies use

= 1 – increasing the Reynolds number firstly breaks the fore–

ft symmetry about the vertical line x / L = 0.5 and then simula-

ions reveal increasing complexity [1,4] . Since experiments show

5] that above a critical Reynolds number of around 500 the flow 

ecomes three-dimensional and then time-dependent ( Re ≈ 825),

e will not discuss these high Re steady two-dimensional simula-

ions further here. Given the geometrical simplicity, combined with

he rich observable fluid dynamics, the lid-driven cavity became a

enchmark problem in the (Newtonian) fluid mechanics commu-

ity for the development and validation of numerical schemes and

iscretization techniques [1,4,6,7] . 

For viscoelastic fluids the literature is understandably less dense

ut, at least under creeping-flow conditions, much has been re-

ealed by the limited number of studies to date. Fluid viscoelastic-

ty introduces two additional non-dimensional parameters to the

roblem: the Deborah number ( De ) which is defined as the ratio

f the fluid’s relaxation time ( λ) to a characteristic residence time
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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Table 1 

Previous numerical studies concerned with lid-driven cavity flow of constant viscosity viscoelastic fluids. 

Reference Aspect ratios Constitutive equation Wi Regularization Notes 

Grillet et al. [16] 0 .5, 1.0, 3.0 FENE-CR, L 2 = 25, 100, 400 ≤0.24 Leakage at corners A and B FE 

Fattal and Kupferman [18] 1 .0 Oldroyd-B, β = 0 .5 1.0, 2.0, 3.0 and 5.0 u ( x ) = 16 Ux 2 (1 − x ) 2 FD, Log conformation 

technique 

Pan et al. [19] 1 .0 Oldroyd-B, β = 0 .5 0.5, 1.0 u ( x ) = 16 Ux 2 (1 −x ) 2 FE, Log conformation 

technique 

Yapici et al. [24] 1 .0 Oldroyd-B, β = 0 .3 ≤1.0 No FV, First-order upwind 

Habla et al. [20] 1 .0 Oldroyd-B, β = 0 .5 0 to 2 u ( x,z ) = 128[1 + tanh8 

(t −1/2)] x 2 (1 −x ) 2 

z 2 (1 −z 2 ) 

FV, 3D, Log 

conformation 

technique, CUBISTA 

Comminal et al. [21] 1 .0 Oldroyd-B, β = 0 .5 0.25 to 10 u ( x ) = 16 Ux 2 (1 −x ) 2 FD/FV, Log- 

conformation, stream 

function 

Martins et al. [22] 1 .0 Oldroyd-B, β = 0 .5 0.5, 1.0, 2.0 u ( x ) = 16 Ux 2 (1 −x ) 2 FD, Kernel-conformation 

technique 

Dalal et al. [23] 1 .0 Oldroyd-B, β = 0 .5 1.0 u ( x ) = 16 Ux 2 (1 −x ) 2 FD, Symmetric square 

root 

FE: finite-element method; FD: finite-difference method; FV: finite-volume method. 

H

L

A B

C Dx

y

Fig. 1. Schematic of lid-driven cavity (including representative streamlines for 

creeping Newtonian flow). 
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of the flow (which can be estimated as L / U ) and the Weissenberg

number ( Wi ) which is defined as the ratio of elastic ( ∝ ληU 

2 / H 

2 )

to viscous stresses ( ∝ ηU / H ). Therefore De = λU / L and Wi = λU / H .

Thus only in the unitary aspect ratio case are the two defini-

tions identical: otherwise they are related through the aspect ratio

( De = �Wi ). Experimentally, the papers of Pakdel and co-workers

[8–10] detailed the creeping flow of two constant-viscosity elas-

tic liquids (known as Boger fluids [11] ) – dilute solutions of a

high molecular weight polyisobutylene polymer in a viscous poly-

butene oil – through a series of cavities of different aspect ratios

(0.25 ≤ � ≤ 4.0). Pakdel et al. [9] initially characterized the flow

field at low wall velocities where the base flow remained steady

and approximately two-dimensional: viscoelasticity was seen to

break the fore–aft symmetry observed in Newtonian creeping flow

and the eye of the recirculation region moved progressively further

to the upper left quadrant (i.e. towards corner A of Fig. 1 ) of the

cavities (incidentally, the fore-aft symmetry breaking due to iner-

tia moves the eye towards corner B). At higher wall velocities, it

was found [8,10,12] that the flow no longer remains steady but be-

comes time dependent. As inertia effects are vanishingly small in

these highly-viscous Boger fluid flows, Pakdel and McKinley [10]

associated this breakdown of the flow to a purely-elastic flow in-

stability. The effect of cavity aspect ratio on this critical condition

was found experimentally to occur at an approximately constant

Deborah number (or, equivalently, 1/ Wi scaling linearly with aspect

ratio �). Pakdel and McKinley [8] were able to explain this depen-

dence on aspect ratio via a coupling between elasticity and stream-

line curvature and proposed a dimensionless criterion (now often

referred to as the “Pakdel–McKinley” criterion [13–15] ) to capture
his dependence on aspect ratio for both the lid driven cavity [8]

nd for a range of other flows [12] . 

Grillet et al. [16] used a finite element technique to compute

he effect of fluid elasticity on the flow kinematics and stress dis-

ribution in lid driven cavity flow, with a view to better under-

tand the appearance of purely elastic instabilities in recirculating

ows. In an effort to mimic the experiments and reduce, or cir-

umvent, the numerical problems associated with the presence of

 corner between a moving wall and a static one, the corner singu-

arities were treated by incorporating a controlled amount of leak-

ge. The results captured the experimentally observed upstream

hift of the primary recirculation vortex and, concerning elastic in-

tabilities, a dual instability mechanism was proposed, depending

n aspect ratio (see also [17] ). For shallow aspect ratios, the down-

tream stress boundary layer is advected to the region of curva-

ure at the bottom of the cavity resulting in a constant critical

eissenberg number; in deep cavities, the upstream stress bound-

ry layer is advected to the region of curvature near the down-

tream corner (B in Fig. 1 ), resulting in a constant critical Deborah

umber. 

Much as has been done for Newtonian fluids [6] , a number

f studies have used the lid-driven cavity set-up to numerically

est novel approaches or benchmark codes for viscoelastic fluids.

hese include Fattal and Kupferman [18] , who first proposed the

og-conformation approach, and Pan et al. [19] , Habla et al. [20] ,

omminal et al. [21] , and Martins et al. [22] , who later used that

pproach under the original or a modified form. Recently Dalal

t al. [23] analysed the flow of shear-thinning viscoelastic flu-

ds in rectangular lid-driven cavities, but also used the Oldroyd-

 model for validation of the code. All these authors have ap-

lied a 4th order polynomial velocity regularization (what we will

efer to later in Section 3 as “R1”) to simulate the Oldroyd-B

ow in 2D lid-driven cavities (Ref. [20] has tackled the 3D flow).

n Table 1 we provide an overview of these previous numerical

tudies including the constant-viscosity viscoelastic model used

primarily Oldroyd-B with solvent-to-total viscosity ratio β = 0.5),

he numerical and regularization methods used and the Weis-

enberg number reached. An exception was Yapici et al. [24] who

olved the Oldroyd-B model for 0 ≤ Wi ≤ 1 with a finite-volume

ethod, using the first-order upwind approximation for the vis-

oelastic stress fluxes in the rheological equation, and without re-

ourse to the log-conformation approach. In marked contrast to all

ther studies with constant-viscosity viscoelastic models, includ-

ng the present one, Yapici et al. [24] claim to be able to sim-

late viscoelastic lid-driven cavity flow without recourse to wall

egularization. 
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a  
Not surprisingly, there are a number of other studies with dif-

erent types of non-Newtonian fluids, e.g. concerned with vis-

oplastic fluids where the interest is to identify the un-yielded

entral region (Mitsoulis and Zisis [25] , Zhang [26] , amongst oth-

rs), and we shall use their results, in the Newtonian limit, as a

asis for comparison. 

In this work we re-visit the lid-driven cavity flow of viscoelastic

uids and investigate in detail how the choice of velocity regular-

zation affects the viscoelastic simulations and the critical condi-

ions under which the purely-elastic instability occurs. 

. Governing equations and numerical method 

We are concerned with the isothermal, incompressible flow of

 viscoelastic fluid flow, and hence the equations we need to solve

re those of conservation of mass 

 · u = 0 , (1)

nd of momentum 

∂u 

∂t 
+ ρu · ∇u = −∇p + ∇ · τ, (2)

ogether with an appropriate constitutive equation for the extra-

tress tensor, τ . In the current study we use both the upper-

onvected Maxwell (UCM) and Oldroyd-B models [27] 

= τs + τp , (3.1) 

s = ηs 

(∇u + ∇ u 

T 
)
, (3.2) 

p + λ

(
∂ τp 

∂t 
+ u · ∇ τp 

)
= ηp 

(∇u + ∇ u 

T 
)

+ λ
(
τp · ∇u 

+ ∇ u 

T · τp 

)
, (3.3) 

here λ is the fluid relaxation time, ηs and ηp are the solvent

nd polymer viscosities respectively, both of which are constant in

hese models (for the UCM model the solvent contribution is re-

oved, ηs = 0). 

In order to increase the stability of the numerical method, we

sed the log-conformation procedure [28] , in which we solve for

= log (A ) , 

∂�

∂t 
+ 

(
u · ∇ 

)
� − ( R� − �R ) − 2 E = 

1 

λ

(
e −� − I 

)
(4) 

here A is the conformation tensor, which can be related to the

xtra-stress tensor as A = 

λ
ηp 

τp + I , E and R are the traceless exten-

ional component and the pure rotational component of the veloc-

ty gradient tensor, ( ∇ u 

T ) ij = ( ∂ u i / ∂ x j ) , and I is the identity ma-

rix [28,29] . 

An implicit finite-volume method was used to solve the

overning equations. The method is based on a time-marching

ressure-correction algorithm formulated with the collocated vari-

ble arrangement as originally described in Oliveira et al. [30] with

ubsequent improvements documented in Alves et al. [31] . The

nterested reader is referred to Afonso et al. [29] for more details

nd the corresponding numerical implementation and we only

ive a succinct overview here to avoid unnecessary repetition. The

overning equations are transformed first to a generalized (usually

on-orthogonal) coordinate system but the Cartesian velocity and

tress components are retained. The equations are subsequently

ntegrated in space over control volumes (cells with volume V P )

orming the computational mesh, and in time over a time step

 δt ), so that sets of linearized algebraic equations are obtained,

aving the general form: 

 p φp = 

∑ 

F 

a F φF + S φ, (5) 
o be solved for the velocity components and for the logarithm

f the conformation tensor. In these equations a F are coefficients

ccounting for advection and diffusion in the momentum equa-

ion and advection for the logarithm of the conformation tensor

quations. The source term S φ is made up of all contributions

hat are not included in the terms with coefficients. The sub-

cript P denotes the cell under consideration and subscript F its

orresponding neighbouring cells. The central coefficient of the

omentum equation, a P , is given by 

 P = 

ρV P 

δt 
+ 

∑ 

F 

a F , (6) 

hile for the log-conformation tensor equation is given by 

 

θ
p = 

λV p 

δt 
+ 

∑ 

F 

a θF (7) 

here a θ
F 

contains only the convective fluxes multiplied by λ/ ρ . 

After assembling all coefficients and source terms, the linear

ets of Eq. ( 5 ) are solved initially for the logarithm of the confor-

ation tensor and subsequently for the Cartesian velocity compo-

ents. In general, these newly-computed velocity components do

ot satisfy continuity and therefore need to be corrected by an ad-

ustment of the pressure differences which drive them. This ad-

ustment is accomplished by means of a pressure-correction field

btained from a Poisson pressure equation according to the SIM-

LEC algorithm [32] to obtain a velocity field satisfying continuity.

o discretize the convective fluxes, the method uses the CUBISTA

igh-resolution scheme, especially designed for differential consti-

utive equations [31] . In the current study our interest is restricted

o creeping-flow conditions (i.e. Re → 0) in which case the advec-

ion term of the momentum equation (i.e. the second term on the

eft side of Eq. (2) ) is neglected. For the time-step discretization

n implicit first-order Euler method was used, since we are pri-

arily interested in the steady-state solution. We note that when

teady-state conditions are achieved, the transient term used in the

omentum equation (∂ u /∂ t) for time marching vanishes, and we

ecover the Stokes flow equation for creeping flow. 

. Geometry, computational meshes and boundary conditions 

The lid-driven cavity is shown schematically in Fig. 1 . To inves-

igate the role of aspect ratio ( � = H / L ) we have modelled eight

ifferent geometries ( � = 0.125, 0.25, 0.5, 1.0, 1.5, 2.0, 3.0 and 4.0):

hus “tall” enclosures correspond to aspect ratios greater than one

nd squat (or “shallow”) enclosures to aspect ratios less than one.

or each aspect ratio three consistently refined meshes have been

sed to enable the estimation of the numerical uncertainty of the

esults: for the square cavity additionally, a fourth finer mesh is

sed. For each geometry the central core of the cavity is covered

ith a uniform mesh which is progressively refined outside of this

ore region in both x and y directions so that the minimum cell

ize occurs in the four corners of the geometry. By construction,

ach mesh is symmetric about both the vertical and horizontal

entrelines. Each mesh has an odd number of cells in both direc-

ions so that the variables are calculated exactly along the centre-

ines. The refinement procedure consists of halving the size of cells

n both directions (and reducing the cell expansion/contraction fac-

ors accordingly) thus the total number of cells increases by es-

entially a factor of four between two meshes (to ensure an odd

umber of cells in each mesh the increase is not exactly a factor

f four). The main characteristics of the meshes used for each as-

ect ratio are given in Table 2 , including the total number of cells

NC) and the minimum cell spacing which occurs at the corners

 �x min / L and �y min / L ). 

The boundary conditions applied to the three stationary walls

re no slip and impermeability (i.e. u = v = 0, where u and v are
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Table 2 

Main characteristics of the computational meshes (NC = number of cells). 

Aspect ratio, � = H / L M1 M2 M3 M4 

�x min / L = �y min / L NC �x min / L = �y min / L NC �x min / L = �y min / L NC �x min / L = �y min / L NC 

0 .125 0 .0012 4125 0 .0 0 06 16779 0 .0 0 03 67,671 

0 .25 0 .0012 6765 0 .0 0 06 27307 0 .0 0 03 108,405 

0 .5 0 .0025 3403 0 .0012 13695 0 .0 0 06 54,285 

1 .0 0 .005 1681 0 .0024 6889 0 .0012 27,225 0 .0 0 06 108241 

1 .5 0 .005 2255 0 .0024 9213 0 .0012 36,795 

2 .0 0 .005 2747 0 .0024 11039 0 .0012 43,725 

3 .0 0 .005 3731 0 .0024 15189 0 .0012 60,225 

4 .0 0 .005 4797 0 .0024 19339 0 .0012 76,725 
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the Cartesian components of the velocity vector). For the moving

wall, as discussed in the Introduction, the unregularized (R0) lid-

velocity distribution viz. 

R0 : u (x ) = U, (8)

gives major numerical issues at the corners for viscoelastic fluids,

due to the localized infinite acceleration applied to the fluid.

The local extensional rate d u/ d x is infinite, theoretically, and

the classical viscoelastic models here considered develop infinite

stresses. Even though the numerical approximation introduces

some degree of local smoothing, the method is unable to cope

with the local stress peaks developed at the corners and fails to

give a converged iterative solution. Hence, using this unregularized

profile (which we shall refer to as “R0” henceforth) we could

obtain converged solutions only in the case of low Weissenberg

numbers (i.e. essentially Newtonian fluids only; for Wi > 0.02 there

are already noticeable oscillations of the computed strength of the

main recirculation). We note that this is in marked contrast with

the results of Yapici et al. [24] who obtained results up to Wi = 1.0

for an unregularized profile. One common way of regularizing the

lid-velocity is to use a polynomial function 

R1 : u (x ) = 16 U (x/L ) 2 (1 − x/L ) 2 (9)

such that both the velocity and the velocity gradient vanish at

the corners [19,20] . The use of such a regularization significantly

reduces the strength of the main recirculation region within the

cavity ( | ψ min | decreases in the Newtonian � = 1 case by about

16% for example [33] ) and so to better mimic the unregularized

idealized problem we also investigated the use of two weaker

forms of regularization such that the velocity is uniform over the

middle 60% of the moving wall 

R2 : 

{ 

u (x ) = [1 / ( 0 . 2 

2 0 . 8 

2 )] U (x/L ) 2 (1 − x/L ) 2 0 ≤ x/L ≤ 0 . 2 

u (x ) = U 0 . 2 < x/L < 0 . 8 

u (x ) = [1 / ( 0 . 2 

2 0 . 8 

2 )] U (x/L ) 2 (1 − x/L ) 2 0 . 8 ≤ x/L ≤ 1 

,

(10)

and over 80% of its length 

R3 : 

{ 

u (x ) = [1 / ( 0 . 1 

2 0 . 9 

2 )] U (x/L ) 2 (1 − x/L ) 2 0 ≤ x/L ≤ 0 . 1 

u (x ) = U 0 . 1 < x/L < 0 . 9 

u (x ) = [1 / ( 0 . 1 

2 0 . 9 

2 )] U (x/L ) 2 (1 − x/L ) 2 0 . 9 ≤ x/L ≤ 1 

.

(11)

Note that the velocity and velocity gradient also vanish at the

corners for regularizations R2 and R3. However, although the ve-

locity profile is continuous, the velocity gradient is not continu-

ous at the points of change between the polynomial and the con-

stant velocity profile, for R2 and R3. The different wall velocity

profiles (i.e. R0, R1, R2 and R3), normalized using the peak ve-

locity U , are shown in Fig. 2 . It is this peak velocity that is used

as a characteristic velocity scale in our Deborah and Weissenberg

number definitions. The average lid velocity (i.e. U = 

∫ L 
u dx/L ) for
0 
ach regularization is 0.533 U (R1), 0.751 U (R2) and 0.870 U (R3).

inally it is important to highlight that these regularized veloc-

ty profiles introduce a natural modification to the estimate of a

haracteristic acceleration/deceleration time of the flow. For R1,

he velocity increases from zero to U over a distance ( L ∗) of 0.5 L ,

or R2 this decreases to 0.2 L and for R3 to 0.1 L . Using the aver-

ge velocity over distance L ∗, U 

∗
m 

= 

∫ L ∗
0 u dx / L ∗, a modified Debo-

ah number D e ∗ = λU 

∗
m 

/ L ∗ can be determined such that De ∗
R1 

=
 . 067 D e R1 , De ∗R2 = 1.885 De R2 and De ∗R3 = 3.523 De R3 . It is worth

oting that although theoretically De ∗R0 → ∞ , meaning that ob-

aining a steady-state solution should not be possible, numerically

e ∗ depends on the mesh resolution (since the velocity jumps from

ero to U over a finite distance δx ). For example for mesh M4,

= 1, De R0 = 0.01 corresponds to a De ∗R0 = 16.7. Interestingly, the

umerical difficulties, first seen as oscillations in the convergence

rend of the residuals, appear once De ∗ ≈O(1). 

. Comparison with literature results and numerical accuracy 

The numerical investigation of eight aspect ratios – using three

ifferent lid-velocity regularizations – for viscoelastic fluids over a

ange of Deborah (or Weissenberg) numbers, even in the limit of

reeping flow, results in a large data set (approximately 600 sim-

lations). Therefore, in this section only some representative data,

hich highlight typical levels of uncertainty, are presented. 

Comparison of our data for Newtonian fluids with results in the

iterature (the square cavity case, R0), presented in Table 3 , shows

xcellent agreement. The minimum stream function value (i.e. the

olumetric rate per unit depth of flow induced in the main recircu-

ation region) agrees with values in the literature to within 0.05%.

he minimum u velocity along x / L = 0.5 also agrees to literature

esults within 0.05%. There is a mild discrepancy ( ∼1%) with the
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Table 3 

Comparison of current results with literature values for Newtonian fluids, for creep- 

ing flow, Re → 0. Unregularized lid (R0), � = 1: minimum values of u computed along 

x / L = 0.5; maximum values of v computed along y / H = 0.5; minimum values of the 

stream function and the corresponding coordinates x min / L , y min / H of the centre of the 

recirculation. 

Reference u min / U v max / U min / UL x min / L , y min / H 

Botella and Peyret [6] −0 .10 0 076 

Grillet et al. [16] −0 .099931 0 .50 0 0, 0.7643 

Mitsoulis and Zisis [25] −0 .0995 0 .50 0 0, 0.7625 

Sahin and Owens [4] −0 .207754 0 .186273 −0 .10 0 054 0 .50 0 0, 0.7626 

Yapici et al. [24] −0 .207738 0 .184427 −0 .10 0 072 0 .50 0 0, 0.7651 

Zhang [26] −0 .0996 0 .50 0 0, 0.7645 

Habla et al. [20] ( ∗) 3D 0 .500, 0.763 ( ∗) 

Current study M4 −0 .207719 0 .184425 −0 .10 0 063 0 .50 0 0, 0.7647 

Extrapolated −0 .207762 0 .184 4 49 −0 .10 0 074 0 .50 0 0, 0.7644 

Table 4 

Comparison of current results with literature values for viscoelastic fluids, Oldroyd-B model, 

β = 0.5, regularization R1, � = 1, Re = 0. 

Reference De MAX(ln( τ xx/( η0 U / L ))) min / UL x min / L , y min / H 

at x = 0.5) 

Pan et al. [19] 0 .5 ≈5.5 −0 .070 0 056 0 .469, 0.798 

Current work M3 0 .5 5.34 −0 .0697524 0 .464, 0.797 

Current work M4 0 .5 5.51 −0 .0697717 0 .466, 0.800 

Current work extr. 0 .5 5.57 −0 .0697781 0 .467, 0.801 

Pan et al. [19] 1 .0 ≈8.6 −0 .0638341 0 .439, 0.816 

Current work M3 1 .0 7.22 −0 .0618784 0 .433, 0.821 

Current work M4 1 .0 7.80 −0 .0619160 0 .434, 0.816 

Current work extr. 1 .0 7.99 −0 .0619285 0 .434, 0.814 

Dalal et al. [23] ( Re = 1.0) 1 .0 – −0 .06141 0 .432, 0.818 
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Table 5 

Effect of mesh refinement on: minimum values of u computed along x / L = 

0.5; maximum values of v computed along y / H = 0.5; minimum values of the 

stream function for � = 1. 

Reg u min / U v max / U min / UL 

Newtonian M1 R0 −0 .205678 0 .183351 −9 .93048 ×10 −2 

M2 R0 −0 .207204 0 .184001 −9 .98509 ×10 −2 

M3 R0 −0 .207589 0 .184353 −1 .0 0 028 ×10 −1 

M4 R0 −0 .207719 0 .184425 −1 .0 0 063 ×10 −1 

Extrapolated −0 .207762 0 .184 4 49 −1 .0 0 074 ×10 −1 

Newtonian M1 R3 −0 .205654 0 .183584 −9 .93471 ×10 −2 

M2 R3 −0 .207129 0 .184158 −9 .98783 ×10 −2 

M3 R3 −0 .207494 0 .184496 −1 .0 0 051 ×10 −1 

M4 R3 −0 .207621 0 .184566 −1 .0 0 084 ×10 −1 

Extrapolated −0 .207663 0 .184589 −1 .0 0 095 ×10 −1 

UCM De = 0.1 M1 R3 −0 .198595 0 .176940 −9 .67456 ×10 −2 

M2 R3 −0 .20 0 029 0 .177549 −9 .72368 ×10 −2 

M3 R3 −0 .200508 0 .177916 −9 .73744 ×10 −2 

M4 R3 −0 .200609 0 .177995 −9 .74221 ×10 −2 

Extrapolated −0 .200643 0 .178021 −9 .74380 ×10 −2 

Newtonian M1 R1 −0 .167654 0 .146202 −8 .31277 ×10 −2 

M2 R1 −0 .16 86 82 0 .146625 −8 .35121 ×10 −2 

M3 R1 −0 .168842 0 .146698 −8 .36359 ×10 −2 

M4 R1 −0 .168885 0 .146725 −8 .36574 ×10 −2 

Extrapolated −0 .168899 0 .146735 −8 .36646 ×10 −2 

UCM De = 0.4 M1 R1 −0 .116698 0 .104745 −5 .96625 ×10 −2 

M2 R1 −0 .117251 0 .105013 −5 .99104 ×10 −2 

M3 R1 −0 .117398 0 .105118 −5 .99880 ×10 −2 

M4 R1 −0 .117412 0 .105109 −5 .99925 ×10 −2 

Extrapolated −0 .117417 0 .105106 −5 .99940 ×10 −2 

i  

v  

a  

i  

s  

�  
esults of Sahin and Owens [4] in the minimum value of v com-

uted along y / H = 0.5, but this may be a consequence of their

leaky” boundary conditions near the corners. The agreement of

his quantity with the results of Yapici et al. [24] is, as for the other

uantities, better than 0.1%. 

Comparison of our data for viscoelastic fluids, in this case

or the Oldroyd-B model with a solvent-to-total viscosity ratio

 β = ηs /( ηs + ηp )) of 0.5 and De = 0.5 and 1.0 (square cavity case

1), shown in Table 4 , indicates that, at De = 0.5, our results are

n good agreement with Pan et al. [19] . At higher levels of elas-

icity, De = 1.0, the large normal stresses reveal a greater degree

f sensitivity and non-negligible differences between results in

oth our finest two meshes and, also, in comparison with the

ata of Pan et al. [19] . The effects of mesh density on the accu-

acy of the numerical results are shown in Tables 5–7 for � = 1,

.125 and 4, respectively. Overall, the difference between the re-

ults on the finest mesh and the extrapolated values – obtained

sing Richardson’s technique [34] – are less than 0.2% for these

uantities. 

. Creeping Newtonian flow 

The streamline patterns for Newtonian flow – wall regulariza-

ion R3 and mesh M3 – are shown in Fig. 3 for low aspect ratio

 � < 1, Fig. 3 (a)) and high aspect ratio ( � ≥ 1 Fig. 3 (b)). As dis-

ussed in the Introduction (and in [2] ), for high aspect ratios the

treamlines essentially collapse in the top region of the cavities

nd the maximum absolute value of the stream function – the

ariation of which with aspect ratio is shown in Fig. 4 – becomes

ndependent of aspect ratio for � ≥ 1. For small aspect ratios the

cenario is more complex although the asymptotic limit when

→ 0 does allow analytical expressions for the maximum stream

unction, velocity and stress components to be derived (presented
n Appendix A ). Under these assumptions the maximum absolute

alue of stream function is expected to vary linearly with the

spect ratio as 
| ψ min | 

UL = 

4 
27 �, and this linear relationship is also

ncluded in Fig. 4 . Excellent agreement between this analytical

olution and computations can be seen with aspect ratios up to

= 0.5, especially for the unregularized and weakly regularized
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Table 6 

Effect of mesh refinement on: minimum values of u computed along x / L = 

0.5; maximum values of v computed along y / H = 0.5; minimum values of 

the stream function for � = 0.125. 

Reg u min / U v max / U min / UL 

Newtonian M1 R0 −0 .329378 0 .235738 −1 .85513 ×10 −2 

M2 R0 −0 .332881 0 .236461 −1 .85523 ×10 −2 

M3 R0 −0 .333262 0 .236633 −1 .85587 ×10 −2 

Extrapolated −0 .333389 0 .236690 −1 .85609 ×10 −2 

Newtonian M1 R3 −0 .329378 0 .156131 −1 .85462 ×10 −2 

M2 R3 −0 .332880 0 .155828 −1 .85455 ×10 −2 

M3 R3 −0 .333262 0 .155765 −1 .85512 ×10 −2 

Extrapolated −0 .333390 0 .155744 −1 .85531 ×10 −2 

UCM De = 0.100 

M1 R3 −0 .329859 0 .127401 −1 .87031 ×10 −2 

M2 R3 −0 .333510 0 .126345 −1 .87056 ×10 −2 

M3 R3 −0 .333959 0 .126117 −1 .87112 ×10 −2 

Extrapolated −0 .334109 0 .126040 −1 .87131 ×10 −2 

Newtonian M1 R1 −0 .325547 0 .047138 −1 .83536 ×10 −2 

M2 R1 −0 .329202 0 .047014 −1 .83572 ×10 −2 

M3 R1 −0 .329548 0 .046985 −1 .83584 ×10 −2 

Extrapolated −0 .329663 0 .046976 −1 .83589 ×10 −2 

UCM De = 0.360 

M1 R1 −0 .255973 0 .045105 −1 .48218 ×10 −2 

M2 R1 −0 .256215 0 .044898 −1 .48783 ×10 −2 

M3 R1 −0 .256886 0 .044921 −1 .4 894 8 ×10 −2 

Extrapolated −0 .257110 0 .044929 −1 .490 0 0 ×10 −2 

Table 7 

Effect of mesh refinement on: minimum values of u computed along x / L = 0.5; 

maximum values of v computed along y / H = 0.5; minimum values of the stream 

function for � = 4. 

Reg u min / U v max / U min / UL 

Newtonian M1 R0 −0 .192048 3 .80498 ×10 −4 −9 .98683 ×10 −2 

M2 R0 −0 .194012 3 .82099 ×10 −4 −1 .00644 ×10 −1 

M3 R0 −0 .194708 3 .82390 ×10 −4 −1 .00817 ×10 −1 

Extrapolated −0 .194940 3 .82487 ×10 −4 −1 .00874 ×10 −1 

Newtonian M1 R3 −0 .191946 3 .81280 ×10 −4 −9 .99168 ×10 −2 

M2 R3 −0 .193858 3 .82780 ×10 −4 −1 .00673 ×10 −1 

M3 R3 −0 .194552 3 .83055 ×10 −4 −1 .00843 ×10 −1 

Extrapolated −0 .194782 3 .83147 ×10 −4 −1 .0 090 0 ×10 −1 

UCM De = 0.12 M1 R3 −0 .183001 3 .61449 ×10 −4 −9 .59420 ×10 −2 

M2 R3 −0 .184866 3 .62997 ×10 −4 −9 .68424 ×10 −2 

M3 R3 −0 .185434 3 .63281 ×10 −4 −9 .69867 ×10 −2 

Extrapolated −0 .185623 3 .63375 ×10 −4 −9 .70348 ×10 −2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Streamlines for Newtonian fluid flow using lid velocity regularization R3 

and mesh M3 (a) small aspect ratios ( � < 1) (and zoomed region near the down- 

stream corner) (b) large aspect ratios ( � ≥ 1) (and zoomed region near downstream 

corner). 

Fig. 4. Variation of the absolute value of the minimum normalized stream func- 

tion with aspect ratio for Newtonian fluid flow (regularizations R0, R1, R2 and R3) 

including the analytical solution for the small aspect ratio limit. 
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wall velocities (R0 and R3). In addition, the intersection between

that linear variation and the value | ψ min | /UL = 0 . 1 at high aspect

ratio shows that the “tall” cavities start at � ≈ 0.7. 

The effects of wall regularization are subtle, yet important. In

the square cavity case, � = 1, regularizing using the standard poly-

nomial function [18,19] (R1 in our nomenclature) reduces quanti-

tatively the strength of the main recirculation, by about 16%, (in

agreement with previous studies [33] ) but the qualitative effect on

the streamlines ( Fig. 5 ) appears to be minor except close to corners

A and B, as might be expected. At the lower aspect ratios, however,

there are significant qualitative differences between the streamline

patterns and the unregularized streamlines are essentially straight

over the middle 75% of the cavity. Changing the regularization such

that it better approximates the unregularized case, e.g. R3, essen-

tially increases the vortex strength back to its unregularized value

(see Table 5 for example) and better captures the streamline pat-

terns (although close to the corners A and B differences are still

apparent – Fig. 5 ). To better illustrate these effects, in Fig. 6 we

plot contours of the flow type classifier. The flow-type parameter

ξ is used to classify the flow locally, and here we use the crite-

rion proposed by Lee et al. [35] , ξ ≡ | D |−| �| 
| D | + | �| , where | D | and | �|

represent the magnitudes of the rate of deformation tensor and
orticity tensor, | D | = 

√ 

1 
2 ( D : D ) and | �| = 

√ 

1 
2 ( � : �T ) . As such,

= 1 corresponds to pure extensional flow, ξ = 0 corresponds to

ure shear flow and ξ = −1 corresponds to solid-body rotation

ow. 

As seen in Fig. 6 , the regularization of the lid velocity signifi-

antly affects the flow close to the lid ends. Without regularization

R0), the flow close to the wall is mainly shear dominated.

owever, the wall regularization induces a strong component

f extensional flow close to corners A and B due to the ac-

eleration and deceleration of the fluid at these corners. As

his acceleration region decreases (R1 → R2 → R3) the region of

xtensional-dominated flow also decreases and approaches the

true” lid-driven cavity flow field (R0). 

Given the basic modification to the flow field induced by the

egularization classically used for viscoelastic fluids [18,19] , care

ust be taken when comparing regularized simulation results with

xperimental results [9,10,17] . This issue is probably why Grillet

t al. [16] implemented a “leaky” boundary condition at corners

 and B. In contrast here we attempt to tackle this problem via

odification of the classical regularization (R1). 
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Fig. 5. Effect of lid velocity regularization (R0, R1, R3) on the computed streamlines 

for aspect ratios � = 0.25, 1, 2 and 4, using mesh M3. 

Fig. 6. Flow type parameter for different lid velocity regularizations for � = 1 and 

creeping flow of Newtonian fluids. 

Fig. 7. Effect of elasticity on streamlines using lid velocity regularization R3 and 

mesh M3 (a) � = 0.125 (b) � = 0.25, (c) � = 0.50, and (d) � = 1.00. 
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. Viscoelastic flow 

.1. Steady-state flow field 

The addition of fluid elasticity induces changes to the flow

attern in the lid-driven cavity, and, in particular, a breaking of

ore-aft symmetry relative to the x / L = 0.5 line. Fig. 7 presents

he computed streamlines for Newtonian and viscoelastic fluid

ow for different aspect ratios, � = 0.125, 0.25, 0.5 and 1. For

he viscoelastic fluid flow, the cases illustrated are close to the

ighest De where steady flow is observed with regularization R3

 De = 0.15). For the Newtonian fluid the flow field is symmetric, as

t must be in creeping flow, due to the linearity of the Stokes flow.

The large normal stresses that are generated for the viscoelastic

uid as De increases are advected in the downstream direction

eading to an increase of the flow resistance, and to compensate for

his effect the eye of the recirculation region progressively shifts in

he upwind direction – towards corner A as illustrated in Fig. 1 –

reaking the symmetry observed for Newtonian fluids. This effect

s in excellent agreement with experimental observations for Boger

uids [9] . The increase of the normal stresses with increasing De ,

nd concomitant higher flow resistance, induces a decrease in the

trength of the main recirculating flow (the flow closest to the lid),

.e. a reduction of | ψ min | as illustrated in Fig. 8 for different aspect

atios as a function of De (for three lid velocity regularizations).

his effect is akin to the vortex suppression by elasticity seen

n many other flow situations, for example in sudden expansion
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Fig. 8. Variation of absolute value of minimum dimensionless stream function with 

De for various aspect ratios ( � = 0.125, 0.25, 0.50, 1.0 0, 2.0 0, 4.0 0, with Mesh M3) 

and lid velocity regularization (R1, R2 and R3). 
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Fig. 9. Critical conditions for the onset of purely-elastic instability for different lid 

velocity regularizations computed on mesh M3: (a) 1/ Wi cr and De cr versus aspect 

ratio; (b) 1/ Wi ∗cr and De ∗cr versus aspect ratio. 
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geometries, and entails the coupling of elastic hoop stresses and

curved streamlines (as discussed below in Section 6.2 ). For the

lower aspect ratio cases and the regularizations (R2 and R3) closer

to the unregularized situation (R0), the streamlines in a large

region about the central section of the cavity are straight, with

curvature confined to a small region near the lateral walls (see e.g.

Fig. 5 top), so the mechanism of the vortex suppression should

be less effective. Indeed, we find in Fig. 8 a slight initial increase,

although small (about 1–2%) of the vortex intensity with elasticity

for the cases of � = 0.125 and 0.25 with regularizations R2 and R3,

which we interpret as resulting from straighter streamlines. 

Similarly to the Newtonian fluid flow case, the intensity of re-

circulating fluid increases with aspect ratio up to � = 1, before

saturating, and further increases of � have a negligible effect on

| ψ min | as shown by the data collapse for � ≥ 1. The additional re-

circulation zones that are formed as � increases, e.g. shown for a

Newtonian fluid in Fig. 5 , are significantly weaker, having a negli-

gible effect on | ψ min | . With the regularization R1 (black symbols),

since the lid-velocity profile is smoother and has a lower average

velocity relative to the R3 regularization, the maximum value of

the stream function magnitude is also lower and higher Deborah

numbers can be achieved prior to the onset of a purely-elastic in-

stability, which we discuss next. 

6.2. Onset and scaling of a purely-elastic instability 

The critical conditions for the onset of a purely-elastic insta-

bility are presented in Fig. 9 , both in terms of a critical recipro-

cal Weissenberg number (1/ Wi cr ) and a Deborah number ( De cr ) as

a function of aspect ratio, using three different lid regularizations

(R1–R3), computed using mesh M3. The critical condition is identi-

fied when a steady-state solution can no longer be obtained: thus

the purely-elastic instability, in all cases examined here, gives rise

to a time varying flow in agreement with experimental observa-

tions [10] . We confirmed that this critical condition is independent

of the time-step used in the time-marching algorithm. 

For a given level of wall regularization, the flow instabilities

for different aspect ratios occur approximately at a constant Debo-

rah number, e.g. for R1 the values are within De = 0.625 ± 0.050.

Consequently, 1/ Wi cr varies linearly with aspect ratio, with

1/ Wi cr = 1.60 � for regularization R1. As the regularization is weak-

ened, and the forcing better approximates the “true” unregular-

ized case i.e. R1 → R2 → R3, the critical De (or Wi ) decreases sig-
ificantly from 0.63 (R1) to 0.33 (R2) to 0.18 (R3). Thus the pre-

ise regularization used can decrease the critical De to about one

hird. The use of an average wall velocity ( U = 

∫ L 
0 u dx /L ), instead

f the peak velocity U , reduces these differences in critical value

lightly (to about half). The use of a more appropriate characteris-

ic time, based on the distance over which the lid velocity grows,

o define De ∗ and Wi ∗ as described in Section 3 , is much better

ble to collapse the critical conditions as shown in Fig. 9 (b). For

he two weakest forms of regularization (R2 and R3) this practi-

ally collapses the critical values. If this scaling is representative

f the controlling dynamics it would imply that the unregularized

id is unstable for vanishingly small elasticities (given the infinite

cceleration, or zero acceleration time, for a fluid element to go

rom rest to velocity U, or equivalently De ∗→ ∞ ), but as shown in

ection 3 , numerically De ∗ is finite since the mesh elements do not

ave zero length. 

Fig. 10 (a) presents the contours of the Pakdel–McKinley

riterion M crit = 

√ 

( λu/ � ) ( τ11 / η0 ˙ γ ) [8,12] , (where τ11 is the

ensile stress in the local streamwise direction, ˙ γ is the lo-

al shear rate and � is the local streamline radius of curva-

ure), for � = 0.25, 0.5, 1, 2 and 4 for the highest steady De .

he maximum values of M crit are of the same order as ob-

erved in previous studies, between 3 and 4 [12] , namely 3.6

 � = 0.25), 3.9 ( � = 0.5), 3.5 ( � = 1, 2 and 4). These critical M values

re located near the downstream corner, where large normal

tresses generated on approaching corner B are advected into a

egion of high streamline curvature. 

Finally, contours of the flow type parameter are presented in

ig. 10 (b), close to the highest stable De for which the flow re-

ains steady for � = 0.125 and 1, for both regularizations R1 and

3. For � = 1, the flow is mainly rotational close to the main vor-

ex centre, shear dominated close to the lid and highly extensional

ear the top corners in a direction at 45 º and in the lower part of

he cavity, albeit here the deformation rates and hence stresses are
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Fig. 10. Nature of instability shown by contours of: (a) M parameter at critical De, 

for regularization R1; (b) Flow type parameter ξ at critical De for � = 0.125 and 

1.0, regularizations R1 and R3. 
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lways modest. For � = 0.125, the flow is mainly shear dominated

lose to the lid and bottom wall and highly extensional close to

he corners and along a thin strand at y / H ≈ 1/3. 

. Conclusions 

Viscoelastic creeping flow in a lid-driven cavity was analysed

umerically using a finite-volume numerical methodology in

ombination with the log-conformation technique. The effects of

spect ratio, strength of elasticity via the Deborah/Weissenberg

umbers and, in contrast to previous studies, the effect of regu-

arization type for the lid velocity were investigated. As discussed

n the introduction and as observed in previous studies for New-

onian fluids, the streamlines essentially collapse and the stream

unction becomes independent of aspect ratio, for � ≥ 1. For low

spect ratios, the maximum value of the stream function magni-

ude agrees with the analytical solution for a simple parallel-flow

pproximation. 

The effect of elasticity on the steady flow characteristics was

lucidated, including the experimentally-observed shift of the main

ortex centre in the direction of the upstream corner (A) and the

reaking of fore-aft symmetry with increasing elasticity. Increasing

he elasticity was also found to reduce the flow strength induced

y the lid. The critical conditions for the onset of purely-elastic

ow instabilities were characterized by plotting 1/ Wi cr (and De cr )

s a function of aspect ratio. The value of the Pakdel–McKinley cri-

erion [12] at the critical conditions was similar to previous stud-

es, between 3 and 4. In accordance with the experimental results

f Pakdel and McKinley [8,10,12] , we find a linear scaling of re-

iprocal Weissenberg number with aspect ratio, corresponding to

 constant Deborah number, the numerical value of which is de-

endent on the wall regularization used. By introducing a modi-

ed Deborah number, based on an average acceleration time for

he flow adjacent to the lid to accelerate from u = 0 to u = U , a

easonable collapse for the various � is achieved. The flow-type

arameter was also computed to characterize the different regions
f the lid-driven cavity flow. Further studies are required to inves-

igate more closely the generated time-dependent flows. 
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ppendix A. Parallel-flow analysis in the small aspect ratio 

imit 

For small aspect ratio cavities (i.e. L � H ) the flow far away

rom the end walls and close to the vertical centreplane ( x / L ≈ 0.5)

hould be well approximated by a fully developed Couette–

oiseuille flow (i.e. v = 0, d p /d y = 0, d p /d x = constant). For the

reeping-flow situation considered here the Navier–Stokes equa-

ions thus simplify to 

 = −dp 

dx 
+ η0 

(
∂ 2 u 

∂ x 2 
+ 

∂ 2 u 

∂ y 2 

)
. (A1) 

Eq. (A1) is valid for both Newtonian and UCM/Oldroyd-B flu-

ds due to the constant viscosity of both models and therefore the

ssumption of a pure-shear flow. In addition, a simple scaling ar-

ument can be used to estimate the relative order of magnitude of

he two viscous terms 

∂ 2 u 

∂ x 2 
≈ U 

L 2 
∂ 2 u 

∂ y 2 
≈ U 

H 

2 
, (A2) 

n the small aspect ratio limit L � H and therefore 

∂ 2 u 

∂ y 2 
� ∂ 2 u 

∂ x 2 
. (A3) 

Solving Eq. (A1) subject to the boundary conditions y = 0, u = 0

nd y = H , u = U gives the velocity distribution u ( y ) in terms of

 constant (proportional to the constant pressure gradient in the

treamwise direction) 

 ( y ) = C 
(
y 2 − yH 

)
+ 

Uy 

H 

. (A4)

Realizing that the total volumetric flow rate must be equal to

ero under these conditions (i.e. 
∫ H 

0 u (y ) dy = 0 ) enables us to de-

ermine the velocity profile as 

 ( y ) = 

3 U 

H 

2 

(
y 2 − yH 

)
+ 

Uy 

H 

. (A5) 

The minimum value of the stream function (defined as

 = d ψ / dy ) will occur at a y location where u = 0 and this occurs

t y = 2 H /3. Thus the minimum stream function will be 

 min = − 4 

27 

UH. (A6) 

The stream function can be normalized using UL and introduc-

ng the aspect ratio ( � = H / L ) gives 

ψ min 

UL 
= − 4 

27 

�. (A7) 
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We can also use the velocity distribution to estimate the maxi-

mum dimensionless shear stress on the lid ( = η0 ( d u /d y) ( y = H ) ) 

τxy L 

η0 U 

= 

4 

�
, (A8)

and also the maximum dimensionless axial normal stress 

τxx L 

η0 U 

= 

32 W i 

�
(1 − β) . (A9)
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