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An analytical solution is obtained for the flow in a simplified model of the shallow single screw extruder
of polymer melts described by the simplified Phan-Thien—Tanner fluid with linear kernel function. To
arrive at the analytical solution in the rectangular channel, both the effects of the channel curvature
and of the spanwise coordinate are neglected in the flow (shallow channel/extruder) and the fluid prop-
erties are considered to be temperature-independent. The two Couette–Poiseuille flows are coupled via
the nonlinear constitutive equation and the results are presented in dimensionless form as a function
of all relevant dimensionless numbers. The results show that as shear-thinning is enhanced there is a
decrease in the ratio between the strengths of the main and secondary flows and in the dimensionless
pressure rise through the extruder.
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1. Introduction

Pressurization and pumping of highly viscous polymer melts is
a fundamental step in industrial extrusion processes and one de-
vice that is able to perform this task is the screw extruder. This de-
vice is also used in the food and the animal feed processing
industries. In addition to being the single most used geometry
for pumping polymers in industry, the single-screw extruder is
also the building block for more complex screw-type pumping de-
vices. A description of its operation is presented in a variety of clas-
sical books on the subject, with different levels of detail, such as in
Tadmor and Klein [1], Tadmor and Gogos [2], Giles et al. [3] and
Rauwendaal [4]. Clearly, it has been extensively investigated for
a large variety of fluids and addressing also a wide range of oper-
ational conditions.

A screw extruder performs several tasks from the moment the
polymer pellets enter the hopper to the moment the polymer melt
exits through the extruding die with a specific profile geometry,
including melting the polymers, pressurizing and pumping, mixing
the melt and finally pushing the melt through the exit die. To
accomplish these tasks the shape and dimensions of the extruder
vary along it. This refers to variations in the root diameter, helix
pitch and angle, helix orientation (alternating the rotation for mix-
ing purposes) or flight width as one proceeds from the feed section
to the metering section through the transition section.
ll rights reserved.

ho@fe.up.pt (F.T. Pinho).
As schematically shown in Fig. 1, a single-screw extruder essen-
tially consists of a helix wound around a shaft and this screw ro-
tates inside a cylindrical barrel. The helix has an angle h and
pitch Ls (equal to the lead for a screw with a single start) and the
space between the teeth defines a channel through which the poly-
mer flows. Of interest to this work is the metering phase, where the
polymer is in a completely melted state having a high viscosity, the
cross section of the extruder is unchanged and the high tempera-
ture of the melt is essentially kept constant or varies only by a
small amount to avoid such effects as thermal degradation of the
polymer and an excessive reduction in polymer viscosity, which
impacts negatively on post-processing [5]. These are conditions
that are more easily approached when the screw rotates at low
speed. This does not eliminate thermal effects, like viscous dissipa-
tion, but in this work the thermal energy equation is not solved and
since temperature variations are kept to a minimum the fluid prop-
erties are considered to be independent of temperature.

Since the polymer melt has a high viscosity, the centrifugal
forces are negligible in comparison with the viscous and pressure
forces and so a Galilean transformation can be applied. Then, the
fluid dynamic solution in the screw extruder, where the melt flows
between the rotating screw and the stationary outer barrel, is iden-
tical to the solution of a melt flowing between a stationary screw
and a rotating barrel, a transformation, which significantly simpli-
fies the treatment of the problem. Additionally, and since the flow
channel is usually thin in comparison with the radius of the shaft
(shallow-screw), curvature effects are negligible and we can un-
wind the channel from the screw to define the simpler rectangular
shallow straight channel with motion of the upper surface at an
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Nomenclature

Latin symbols
Db diameter of the barrel
Ds diameter of the screw
e flight width
H thickness of the rectangular duct
Ls helix pitch or lead
N rotational speed of the screw [r.p.s.]
p pressure
p,x imposed streamwise pressure gradient
p,z spanwise pressure gradient induced by plate motion
Pzx ratio of pressure gradients, p,z/p,x

Txx, Txy, Tyz and Tzz normalized stresses sxx, sxy, syz and szz, Eq. (14)
T�xx; T�xy; T�yz and T�zz normalized stresses sxx, sxy, syz and szz, Eq.

(23)
Uz spanwise bulk velocity of Newtonian fluid of viscosity g

under the same pressure gradient, �p;zH2=ð12gÞ
Vp velocity of the upper plate of the rectangular duct
Vpx streamwise component of the velocity of the upper

plate of the rectangular duct
Vpz spanwise component of the velocity of the upper plate

of the rectangular duct
w spanwise velocity component
w⁄ normalized spanwise velocity component, w/UN

W width of the rectangular duct
W bulk velocity in the spanwise direction, W ¼ 0
Wi Weissenberg number, kUN/H
Wip Weissenberg number, kVp/H
Wm positive bulk mean velocity in spanwise direction,

Wm ¼
R y@w¼0

0 wdy=H
_W pumping power
_W� pumping power normalized by Newtonian bulk veloc-

ity, Eq. (22)
_W�

m pumping power normalized by steamwise bulk velocity
of PTT fluid, _W�

m ¼ _W� U2
N=U2

m

� �

Txy0
normalized sxy stress at lower channel wall, Eq. (14)

T�xy0
normalized sxy stress at lower channel wall, Eq. (23)

Tyz0
normalized syz stress at lower channel wall, Eq. (14)

T�yz0
normalized syz stress at lower channel wall, Eq. (23)

u streamwise velocity component
u⁄ normalized streamwise velocity, u/UN

Um streamwise bulk velocity of PTT fluid
UN streamwise bulk velocity of Newtonian fluid of viscosity

g under the same pressure gradient, �p;xH2=ð12gÞ
x streamwise coordinate
y transverse coordinate
y⁄ normalized transverse coordinate, y/H
z spanwise coordinate

Greek symbols
df clearance between the tip of the flight and the inner sur-

face of the barrel
e extensional coefficient of the PTT fluid model
g viscosity coefficient of the PTT fluid model
k relaxation time of the PTT fluid model
h helix angle
q fluid density
sxx xx component of the fluid extra stress tensor (stream-

wise normal stress)
sxy xy component of the fluid extra stress tensor (xy shear

stress)
szz zz component of the fluid extra stress tensor (spanwise

normal stress)
szy zy component of the fluid extra stress tensor (zy shear

stress)
x angular speed of the screw
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angle relative to the channel longitudinal direction, as depicted in
Fig. 2.

The solution of the steady fully-developed flow of a Newtonian
viscous fluid in this channel is classical and is the linear sum of two
Couette–Poiseuille flows, one of which is in a rectangular channel,
where the corresponding streamwise velocity depends only on the
transverse and spanwise coordinates, u(y,z). From a general point
of view any combination of Couette and Poiseuille flows is possible
in a variety of applications, but in the context of the pumping ac-
tion of a screw extruder what matters is the case, where the flow
is essentially created by the motion of the plate (rotation of the
screw) and the streamwise pressure gradient is adverse in order
to pressurize the melt prior to its flow through the exit die.
Fig. 1. Basic geometry of a single screw extruder (adapted from Fig. 6.7 of Tadmor
and Gogos [2]).
According to Shah and London [6] the Newtonian flow in a rectan-
gular cross-section duct with four stationary walls was obtained by
Dryden et al. [7] and Marco and Han [8]. An analytical solution for
the Newtonian flow driven by the upper plate in the absence of a
pressure gradient was presented by Theofilis et al. [9], who were
concerned with flow instabilities. The solution of the fully-devel-
oped Couette–Poiseuille flow of a Newtonian fluid in a thin channel
is straight-forward and is often a case presented in textbooks [10].
The two solutions are solved separately and combined linearly to
arrive at the solution for the screw extruder flow given the linear
nature of both the Newtonian fluid constitutive equation and of
the momentum equation for fully-developed flow. The resulting
solution is presented in various reference books [1–5].
Fig. 2. Schematic representation of the flow geometry and coordinate system
(adapted from Fig. 6.9 Tadmor and Gogos [2]).
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According to Li and Hsieh [11], this simplified Newtonian solu-
tion is not an accurate solution for Newtonian flows except in the
limit of very shallow channels (H/Db 6 0.025), as was also demon-
strated by several experimental sets of results [12,13], but never-
theless remains a good first approximation. The discrepancies are
associated with the lack of dependence of the velocity boundary
conditions on the transverse coordinate after the application of
the Galilean transformation. Due consideration of such variation
was taken in the analytical investigation of Li and Hsieh [11] by
studying the flow without such transformation.

Polymer melts are shear-thinning viscoelastic fluids that can be
described by one of many complex constitutive equations such as
the Phan-Thien—Tanner (PTT) model [14] used here, the Giesekus
model [15], the Leonov model [16], the pom–pom model [17] or
others [18] in single and multimode variants. These equations
are complex and preclude a complete analytical solution in the full
geometry, but are to be preferred to describe the rheology of melts
since they also have the capability to predict other features that
the more often used Newtonian and power law models cannot pre-
dict, such as the occurrence of secondary flows in non-circular
channels or normal stress effects, among others. Gradients of nor-
mal stresses in non-circular ducts give rise to secondary flows [19]
and these can actually be quite relevant in some cases as for lam-
inar heat transfer enhancement [20,21]. More recently, Yue et al.
[22] extensively reviewed the subject and proposes a criterion to
identify the direction of the secondary flow based on work carried
out with the Giesekus model. However, due consideration of these
effects requires a numerical solution which is not carried out here.

Flow solutions for these constitutive equations can be obtained
numerically and that can include also other physical phenomena
such as the melting and heat transfer processes. Even though
numerical computations always allow the solution of complex
problems, they lack the generality of an analytical solution, which
is more efficient at guiding the design and developing design con-
cepts for engineering systems provided the underlying simplified
physical conditions are met and are realistically acceptable. Of
course, such an analytical solution often cannot be obtained due
to the complexity of the problem in which case the designer must
rely entirely on numerical solutions aided by experience or based
simply on experience and trial-and-error. In any case, in the future
the use of viscoelastic constitutive equations will become more
common in the design of extruders both for design guidelines as
well as for detailed design and an analytical solution will be helpful
for this purpose.

Since rheological models for viscoelastic polymer melts are
non-linear, analytical solutions are extremely difficult and
researchers have alternatively tried to isolate relevant properties
in an attempt to simplify the physical problem. The single-most
important fluid property is the viscosity and there are solutions
for the flow of shear-thinning power law fluids in a screw extruder.
Poon [23] and more recently Gabriele et al. [24] solved numerically
the equations considering the pressure gradient driven flow of
power-law fluids to depend only on one transverse coordinate. In
spite of this simplification, the simplified governing equations for
the two simpler Couette–Poiseuille flows could not be solved ana-
lytically and a numerical method was required. However, for a par-
ticular condition called the close discharge operation, which is
found in the helical barrel rheometer, Guzmán and Schieber [25]
were able to obtain a closed analytical solution relating extrusion
parameters and rheological properties of power law fluids after a
suitable coordinate transformation.

To our best knowledge there are no analytical solutions for the
flow of polymer melts described by quasi-linear and non-linear
viscoelastic constitutive equations in a single screw extruder. Actu-
ally, and in spite of the more complex mathematical formulation of
the Phan-Thien—Tanner (PTT) model vis-à-vis the power law
model, an analytical solution for the open discharge problem is
possible without the need for any coordinate transformation pro-
vided the linear form of the simplified PTT equation is used and
the flow is assumed to depend only on a single transverse coordi-
nate, as in the shallow single-screw extruder under the classical
approach with the Galilean transformation. The derivation of the
solution of this viscometric skew rectilinear flow for the PTT model
and the corresponding analysis of its flow characteristics are the
objective of this work. This is carried out here in a general frame-
work, so that the results can be of use to any application, including
also the specific situation of pumping in a single screw extruder. To
this end we have also written in the appendix the main equations
of the solution in a more explicit form for extrusion pumping, i.e.,
normalized by the plate velocity, which is proportional to the
screw rotation.

The next section presents the flow geometry and the governing
equations and is followed by the definition of all relevant non-
dimensional quantities and the presentation of the normalized
equations. Then, the solution is presented and results are discussed
prior to a summary of the main conclusions.

2. Flow geometry and governing equations

2.1. Flow geometry

The flow geometry is that of Fig. 2 with a rectangular duct of
thickness H and width W. There is a small clearance df between
the tip of the flight of the screw and the inner surface of the barrel
of diameter Db (Db is shown in Fig. 1), which is of the order of 0.1–
0.3% of Db [2]. This gap is filled with polymer to lubricate and avoid
metal to metal contact, but here this effect is neglected. We con-
sider the general case, where the helix angle h (the angle between
the flight and the plane normal to the axis) can vary, although most
results in Section 3 pertain to the common square-pitched screw,
where the lead Ls equals the screw diameter Ds and h = 17.65�.
The helix angle is related to the lead Ls (the axial distance corre-
sponding to one full turn of the screw) and diameter via Eq. (1)
showing that it varies with the position, i.e., it is larger at the root
of the flight than at its tip.

tan h ¼ Ls

pD
: ð1Þ

The width of the channel W is related to the lead via equation
(2), where e is the flight width.

W ¼ Ls cos h� e: ð2Þ

The coordinate system is also represented in Fig. 2; x is the
streamwise direction, y is the direction along the thickness and z
is the direction along the width.

The motion of the upper plate depends on the angular speed x
of the screw and the radius of the screw tip (rather than the radius
of the barrel [11]) and the decomposition of the velocity into its x
and z components depends also on the helix angle through Eqs. (3)
and (4).

Vp ¼ x
Ds þ 2H

2
¼ pNðDs þ 2HÞ; ð3Þ

Vpx ¼ Vp cos h and Vpz ¼ Vp sin h; ð4Þ

where N is the rotational speed of the screw in [r.p.s]. The motion of
the plate in the x direction together with the imposed streamwise
pressure gradient moves the fluid along the rectangular channel,
whereas the motion of the plate in the z direction affects mixing
in the cross section. The dependence of mixing on this motion
and on the other relevant quantities is a complex issue, which is
not addressed here, but its quantification requires the dynamic
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solution of the skew-symmetric flow obtained here as explained by
Chella and Ottino [26].

2.2. Governing equations

Since we are considering an isothermal flow the equations to be
solved are the continuity equation, the momentum equation and
the rheological constitutive equation. In tensor notation the
momentum equation for incompressible liquids is

r � u ¼ 0; ð5Þ

where u is the velocity vector, the momentum equation is

q
Du
Dt
¼ �rpþ qgþr � s; ð6Þ

where q is the fluid density, p is the pressure, g is the acceleration of
gravity vector, D/Dt is the material derivative and s is the fluid extra
stress tensor. This stress is described by the rheological constitutive
equation, which for the linear form of the simplified Phan-Thien—
Tanner model is given by

f ðtr sÞsþ k s
r
¼ 2gD: ð7Þ

In Eq. (3) k is the relaxation time of the fluid, g is the viscosity
coefficient of the model and s

r
denotes the upper convected deriv-

ative of the stress given by

s
r
¼ Ds

Dt
� s � ru�ruT � s: ð8Þ

The function of the trace in Eq. (7) is the linearized form of the
exponential function (cf. Phan-Thien and Tanner [14]) and is given
by

f ðtrsÞ ¼ 1þ ek
g

trs; ð9Þ

where e is a model coefficient, which is inversely proportional to the
extensional viscosity.

We will consider steady fully-developed flow in both flow
directions (x and z) and that the flow only depends on the trans-
verse coordinate y, i.e., we neglect the effect of the spanwise coor-
dinate as in a shallow channel. This last simplifying assumption is
required since for the PTT model an analytical solution is only pos-
sible if we consider the two fluid velocity components u and w to
depend only on the transverse coordinate. Invoking these condi-
tions the momentum equation, written now in index notation,
becomes

� @p
@x
þ dsxy

dy
¼ 0 and � @p

@z
þ dszy

dy
¼ 0; ð10Þ

and the rheological constitutive equation gives the stress compo-
nents via

1þ ek
g

skk

� �
sxx ¼ 2ksxy

du
dy
;

1þ ek
g

skk

� �
szz ¼ 2kszy

dw
dy

;

1þ ek
g

skk

� �
sxy ¼ g

du
dy
;

1þ ek
g

skk

� �
szy ¼ g

dw
dy

:

ð11a;b; c;dÞ

Note that, whereas the pressure gradient p,x = @p/@x is imposed,
the pressure gradient p,z = @p/@z is set by the condition of null flow
rate in the secondary flow direction, i.e., by Eq. (12)

W ¼ 1
H

Z H

0
wdy ¼ 0; ð12Þ
which needs to be solved in addition to Eqs. (10) and (11) to provide
p,z.

The analytical solution will be made non-dimensional by a suit-
able choice of characteristic length and velocity scales and there
are at least two choices to consider: (1) a set of scales for the gen-
eral solution of the skew-symmetric flow or (2) a set of scales that
is more appropriate for the screw extruder. We opt for the first set
in the main text, but we also provide the second set in the appen-
dix, together with the corresponding solution equations and rules
of transformation. The two sets only differ in the velocity scale,
from which several dimensionless numbers are built, but this is en-
ough to modify significantly the complex mathematical solution. In
both cases the characteristic length scale is H (cf. Fig. 2). For the
general solution the characteristic velocity scale is UN, the stream-
wise bulk velocity for a Newtonian fluid of identical viscosity coef-
ficient g under the same streamwise pressure gradient p,x, which is
given by

UN ¼ �
p;xH2

12g
: ð13Þ

The dimensionless solution depends on the transverse dimension-
less coordinate y/H, the helix angle h, the Weissenberg number
Wi = kUN/H, the PTT model coefficient e and the ratio Vp/UN between
the barrel/plate velocity (Vp) and the characteristic velocity scale.
Stresses will be normalized as in

Tij ¼
sij

6gUN=H
; ð14Þ

and for compactness the ratio of pressure gradients Pzx ¼ p;z
p;x

will be
used.

For the extruder oriented solution presented in Appendix A, the
characteristic velocity is Vp.

3. Analytical solution

Initially, the relevant governing equations are normalized in
accordance to the selected scales. Then, from the rheological con-
stitutive equations, dividing Eq. (11-a) by Eq. (11-c) and dividing
Eq. (11-b) by Eq. (11-d) we find the following two relationships be-
tween the normal and shear stresses

Txx ¼ 12WiT2
xy;

Tzz ¼ 12WiT2
zy:

ð15-a;bÞ

These are used together with the normalized forms of Eqs. (11-
c) and (11-d)

du�

dy�
¼ 6Txy½1þ 6eWiðTxx þ TzzÞ�;

dw�

dy�
¼ 6Tzy½1þ 6eWiðTxx þ TzzÞ�;

ð16-a;bÞ

where u⁄ = u/UN and y⁄ = y/H.
Back-substituting Eqs. (15-a) and (15-b) into Eqs. (16-a) and

(16-b) gives

du�

dy�
¼ 6Txy 1þ 72eWi2 T2

xy þ T2
zy

� �h i
;

dw�

dy�
¼ 6Tzy 1þ 72eWi2 T2

xy þ T2
zy

� �h i
;

ð17-a;bÞ

The momentum equations are also normalized and integrated
once with the stress boundary conditions Txy ¼ Txy0

and Tzy ¼ Tzy0

at y = 0 resulting in the following two expressions for the shear
stress components

Txy ¼ �2
y
H
þ Txy0

;

Tzy ¼ �2
y
H

Pzx þ Tzy0
:

ð18-a;bÞ
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These two stress boundary conditions (Txy0 and Tzy0 Þ are later re-
lated to the known velocity boundary conditions at the top wall
(y⁄ = 1).

Back substituting Eqs. (18-a) and (18-b) into Eqs. (17-a) and
(17-b) leads to a system of two ordinary differential equations,
which were solved by Mathematica v. 5 from Wolfram Research.

After application of the velocity boundary conditions uy = 0 = 0
and wy = 0 = 0 the final solutions for the velocity components are gi-
ven by

u
UN
¼ �6

y
H

48eWi2P2
zx

y
H

� �2
3

y
H
� 2Txy0

h i�

�48eWi2Pzx
y
H

4
y
H
� 3Txy0

h i
Tzy0

þ y
H
� Txy0

h i
1þ 144eWi2 y

H

� �2
�

þ72eWi2 �2
y
H

Txy0
þ T2

xy0
þ T2

zy0

h ii�
;

w
UN
¼ �6

y
H

144eWi2Pzx
y
H

� �3
1þ P2

zx

h i�

�96eWi2 y
H

� �2
2PzxTxy0

þ Tzy0
þ 3P3

zxTzy0

h i
�Tzy0

1þ 72eWi2 T2
xy0
þ T2

zy0

� �h i
þ y

H
144eWi2Txy0

Tzy0
þ Pzx 1þ 72eWi2 T2

xy0
þ 3T2

zy0

� �h ih i�
:

ð19-a;bÞ

Application of the velocity boundary conditions at the top wall
(u/UN = Vp/UN � cosh and w/UN = Vp/UN � sinh at y/H = 1) provides
the wall shear stresses Txy0

and Tzy0
and the condition of null flow

rate in the z-direction ðW ¼ 0Þ quantifies the corresponding pres-
sure gradient (p,z) via its normalized form Pzx. However, these three
quantities are not given as explicit expressions, but must be calcu-
lated numerically from the following set of three nonlinear alge-
braic equations

� 6 48eWi2P2
zxð3� 2Tzy0

Þ � 48eWi2PzxTzy0
ð4� 3Txy0

Þ þ ð1� Txy0
Þ

n
� 1þ 144eWi2 þ 72eWi2 T2

xy0
� 2Txy0

þ T2
zy0

� �h io
¼ Vp

UN
cos h

ð20-aÞ

� 6 144eWi2Pzx 1þ P2
zx

� �
þ 144eWi2Txy0

Tzy0

n
�96eWi2 2PzxTxy0

þ Tzy0
þ 3P2

zxTzy0

� �
�Tzy0

1þ 72eWi2 T2
xy0
þ T2

zy0

� �h i
þPzx 1þ 72eWi2 T2

xy0
þ 3T2

zy0

� �h io
¼ Vp

UN
sin h ð20-bÞ

� 2
5

Pzx 5þ 432eWi2 þ 72eWi2 6P2
zx þ 5Txy0

ðTxy0
� 2Þ

h in o
þ 3Tzy0

þ 72eWi2Tzy0
2þ 6P2

zx þ Txy0
ð3Txy0

� 4Þ
h i

þ 216eWi2T2
zy0
ðTzy0

� 2Þ ¼ 0: ð20-cÞ

For each set of applied conditions, namely H, h, Vp and p,x and
fluid properties k, g and e, all the independent dimensionless num-
bers are calculated and then the system of Eqs. (20) is numerically
solved to obtain the numerical values of Txy0

; Tzy0
and Pzx required

to determine the velocity profiles and other quantities discussed
below. The numerical solution of the system of algebraic Eqs.
(20) was also carried out using Mathematica v5 from Wolfram
Research.

Integration of the streamwise velocity profile provides the bulk
velocity Um given in normalized form as
Um

UN
¼ �2� 864eWi2

5
þ 3Txy0

þ 72
5

eWi2 2P2
zxð5Txy0

� 6Þ
n

� 20PzxðTxy0
� 1ÞTzy0

� 10T2
zy0
þ 15Txy0

2þ ðTxy0
� 2ÞTxy0

þ T2
xy0

h io
:

ð21Þ

The power dissipated per unit area by friction ð _W=ðWLÞÞ is given
in dimensionless form in Eq. (22)

_W� ¼
_W=ðWLÞ
gU2

N=H

¼ 12
Um

UN
þ Vp

UN
cos hð2� Txy0

Þ þ sin hð�2Pzx þ Tzy0
Þ

	 

; ð22Þ

where the first term on the right-hand-side is the contribution from
the streamwise pressure gradient, the second term is associated
with the motion of the plate in the x-direction and the last term
is the contribution from the secondary flow created by the motion
of the plate in the z-direction.

To analyse the pumping action of the extruder (operation under
adverse streamwise pressure gradient) two quantities are of inter-
est, but for convenience this requires the introduction of a different
velocity scale. Indeed, in this context it is important to determine
explicitly the flow rate as a function of the pressure inside the ex-
truder, so the plate velocity Vp is preferred to the use of UN in all
normalizations. Hence, an alternative Weissenberg number is
now defined as Wip = kVp/H, the stresses will be normalized with
Vp as

T�ij ¼
sij

6gVp=H
; ð23Þ

and instead of using the pressure gradient ratio, the pressure gradi-
ents are quantified and made dimensionless as follows: the dimen-
sionless streamwise gradient is given by UN/Vp and the
dimensionless spanwise gradient is quantified as the velocity ratio
Uz/Vp, where Uz ¼ �p;zH

2=ð12gÞ.
The maximum admissible bulk velocity ðUmmax Þ corresponding

to a null value of p,x is the mean velocity of the flow driven exclu-
sively by the motion of the upper plate and is given by
ðUNÞmax
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¼ 1
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4. Results and discussion

In this section we discuss the effects of several quantities upon
the velocity field, the ratio of pressure gradients and the power.
The independent relevant dimensionless quantities are the screw
angle h, the magnitude of nonlinear effects of the PTT model quan-
tified by the combination eWi2 and the ratio Vp/UN between the
plate velocity and the velocity scale of the pressure gradient. It is
important to remember at this stage that the flow in the main
direction (x) is driven by the plate motion as well as by the pres-
sure gradient @p/@x, whereas the motion in the secondary direction
(z) is driven only by the upper plate motion and the corresponding
pressure gradient @p/@z is a consequence of the screw teeth stop-
ping the flow normal to it, thus imposing a null flow rate in the
z-direction.
We start by looking at Fig. 3a) to the variation of the ratio of
pressure gradients �Pzx with eWi2 for a square screw (h = 17.65�),
with Vp/UN as a parameter. For Newtonian and weakly viscoelastic
PTT fluids�Pzx is fairly constant and weakly dependent of eWi2 tak-
ing values of order 0.1 to 1. On further increasing eWi2, �Pzx

changes from a plateau to a region of power law variation of type
�Pzx / 1/eWi2 (at high values of eWi2 there is a linear variation of
�Pzx with eWi2 with slope �1 on a log–log scale). There is here a
very significant decrease of �Pzx, which reaches values of the order
of 10�5. It is important to remember the meaning of UN as the bulk
velocity in the main flow direction (x) for a Newtonian fluid with a
viscosity equal to the zero shear rate viscosity of the PTT fluid un-
der the action of the same pressure gradient. The ratio �Pzx in-
creases with Vp/UN, because the fluid velocities in the secondary
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direction increase by a larger fraction than in the main direction,
since in the latter the flow is also driven by a pressure gradient,
whereas in the former it is only driven by the motion of the plate.
When the pressure gradient is adverse as in the screw extruder
operation, �Pzx< 0 and the plot confirms that the variation of +Pzx

with eWi2 follows the same trend as for a favorable pressure gradi-
ent. Similarly the effect of Vp/UN upon jPzxj is qualitatively similar
regardless of whether the pressure gradient is favorable or adverse.

Similarly, keeping the ratio Vp/UN fixed and varying the angle of
the screw, as in Fig. 3b) increases both the u and w velocity com-
ponents, but proportionally more the component in the secondary
direction (w) than in the main direction (u). What is actually hap-
pening, as will become clearer in subsequent figures, is that for
increasing levels of shear-thinning the flow in the main direction
increases significantly more than in the secondary direction, i.e.
there is a large increase in u, which is driven by both the motion
of the plate as by the main pressure gradient @p/@x, whereas the
flow along z, driven exclusively by the dragging plate, which in-
duces @p/@z, is of the same order of magnitude as for low values
of eWi2.

The above finding is more clearly seen in the plots of Fig. 4.
Here, the ratio between the bulk velocity in the main direction
(Um) and the corresponding Newtonian bulk velocity (UN) is plotted
and we observe several important results: (1) the variation of Um/
UN as a function of eWi2 is essentially independent of both Vp/UN

(cf. Fig. 4-a) and of h (cf. Fig. 4-b) (actually, inspection of Eq. (17)
shows that the independence of Um/UN on both Vp/UN and h, is a
consequence of the dominant influence of eWi2 at large values of
eWi2, and this is corroborated by the zoomed view at the inset of
Fig. 4a); (2) the increase of Um/UN is large resulting in values in ex-
cess of 1000 for eWi2 P 23.2. At the same time the velocities in the
secondary direction are of the order of Vp, which is of the order of
UN. This is seen in both Fig. 5a and b, which plot the positive bulk
mean velocity in the z-direction Wm ¼

R y@w¼0
0 wdy=H

� �
as a
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function of the same non-dimensional numbers as in Fig. 4. These
figures also show that from a qualitative point of view these find-
ings are independent of whether the flow is occurring under a
favorable or an adverse streamwise pressure gradient and the rel-
ative position of the various curves essentially depends on the
magnitude of jVp/UNj.

These effects of shear-thinning, with the consequent large in-
crease of the velocity in the main direction, but not in the second-
ary direction, are also shown in Figs. 6 and 7. Fig. 6a and b plot
transverse profiles of the main velocity component as a function
of screw angle for low shear-thinning (eWi2 = 0.1) and high
shear-thinning (eWi2 = 10) flow conditions, respectively. Since the
profiles were made dimensionless by its own bulk velocity the val-
ues are similar, with maximum velocities of the order of 1.2 of the
bulk velocity and the effect of the screw angle is only visible when
the flow in the secondary direction is not too small, i.e., for
eWi2 = 0.1. Even though the profiles are all similar, small
differences between them are easier to spot for higher values of
Vp/UN and lower values of eWi2.

The corresponding profiles for the secondary velocity compo-
nent (w) are plotted in Fig. 7a and b. These are naturally propor-
tional to the magnitude of jVp/UNj. For Newtonian and weakly
shear-thinning fluids with Vp/UN = 2, say eWi2 = 0.1, the values of
w/Um are of the order of 0.1 comparing to values of u/Um of the or-
der of 1, but for strongly shear-thinning fluids the values of w/Um

are now of the order of 0.001, i.e., one hundred times lower. In
agreement with this finding, note also that the wall velocity at y/
H = 1, corresponding to the velocity of the moving plate, has
dropped: it is of the order of 0.25 Um, but it is so small in Fig. 6b
that it looks as though it is null. These values decrease by a factor
of about 20 for the profiles pertaining to Vp/UN = �0.1 due to lower
wall velocity.

Alternatively, we can plot the same velocity profiles of Figs. 6
and 7 normalized instead by the Newtonian reference velocity,
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which is always of the same order of magnitude of the moving
plate velocity. These profiles are shown in Figs. 8 and 9 for u/UN

and w/UN, respectively, all other parameters taking on the same
values as in previous figures. In this representation, the secondary
velocity profiles are now almost unchanged with eWi2 and we ob-
serve the large increase in the main velocity associated with shear-
thinning that allows for much higher streamwise velocities for the
same main pressure gradient. The effect of screw angle becomes
clearer in the profiles of w, showing that higher angles are always
associated with larger velocities in the secondary direction. The
profiles for Vp/UN = �0.1 are again about 20 times smaller than
those for Vp/UN = 2 and in addition they have the opposite sign be-
cause with the adverse pressure gradient UN is now negative.

From these results it is clear that to create fluid rotation inside
the channel with viscoelastic shear-thinning fluids it will be neces-
sary to increase the velocity of the moving plate, which in practical
terms is equivalent to an increase in the rotational speed of the
screw. However, it can be difficult to achieve values of Wm/Um of
the same order of those found for Newtonian and weakly
shear-thinning fluids. As shown in Fig. 10 for eWi2 = 10, the ratio
Wm/Um increases slightly less than linearly with Vp/UN so that for
Vp/UN = 200, Wm/Um reaches a mere 0.02 for a fixed value of
eWi2 = 10 and a screw angle of 17.65� (corresponding to the square
screw). In practical terms this is not such a severe limitation be-
cause such a high value of eWi2 may not be reached due to other
effects as the appearance of flow instabilities at the die exit [27],
which impose a limit to the throughput.

The variation of power with shear-thinning, with Vp/UN as a
parameter, is exhibited in Fig. 11. For Newtonian and weakly
shear-thinning fluids the normalized dissipated power of Eq. (22)
is independent of eWi2 but increases with Vp/UN by a factor of
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around 2.6 when this parameter increases 10 times, from 0.5 to 5.
Then, as eWi2 grows above 1 the normalized power becomes inde-
pendent of Vp/UN, while increasing exponentially with eWi2 (this
corresponds to a linear variation on the log-log scale of Fig. 11).
These large values of _W� are due to the normalization by the char-
acteristic velocity of the pressure gradient, UN, which is much
smaller than the streamwise bulk velocity at large values of eWi2

(it is only identical at eWi2 = 0). By renormalizing the power with

Um, leading to _W�
m � _W� U2

N=U2
m

� �
, the opposite effect is observed

as shown in Fig. 12. As eWi2 increases the fluid becomes more
shear-thinning and the apparent viscosity decreases so that the
same flow rate is imposed by a smaller pressure gradient, therefore
the power dissipated per unit flow rate decreases. Finally, Fig. 13
shows the characteristic curve for a pumping square screw in
dimensionless form with eWi2 as a parameter. The normalized
pressure rise for a given flow rate is seen to decrease, because of
the reduction in viscosity associated with shear-thinning.

5. Final remarks

We obtained an analytical solution for the isothermal flow of vis-
coelastic fluids in a single-screw extruder under the simplified classi-
cal conditions of a shallow stationary two-dimensional screw and a
moving barrel, thus defining two Couette–Poiseuille flows, one of
which is characterized by a null flow rate. Both elementary flows were
considered to depend only on the transverse coordinate, i.e., the ef-
fects of the spanwise coordinate were neglected to allow a simple ana-
lytical solution as is typical in shallow extruders. The viscoelastic
model is the simplified Phan-Thien—Tanner constitutive equation
with the linear kernel function of the trace of the stress tensor. The
nonlinear nature of this constitutive equation couples both Cou-
ette–Poiseuille flows and invalidates the superposition principle.

The results show that for eWi2 6 0.01, i.e., for weakly elastic flow
conditions, the flow is little affected by the non-Newtonian charac-
teristics and the Newtonian solution is essentially recovered and
that for eWi2 P 0.1 the pressure gradient ratio varies in inverse
proportion to eWi2 in a log-law scale, essentially because the
streamwise flow becomes progressively more affected by the
shear-thinning of the viscosity, whereas the secondary flow imposed
by the moving barrel remains very much unchanged. Hence, the
streamwise flow rate increases strongly with eWi2 while the second-
ary flow just rearranges. This can be partially offset by increasing the
angle of the helix. The characteristic curve of the pumping screw ex-
truder is also presented in dimensionless form showing the reduc-
tion of the pressure rise associated with an increase in eWi2.

Future work may possibly consider the variation of the bound-
ary condition at the flight with the channel thickness, which re-
quires the treatment of this flow with stationary barrel and a
moving screw.
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Appendix A

As explained at the end of Section 3, for the purpose of analyz-
ing the pumping by the screw extruder it is more convenient to
normalize the derived solution using as a velocity scale the plate
velocity Vp instead of the velocity scale UN. The main equations
of the derived solution are written below with this new normaliza-
tion and the rules of transformation between the normalization
with UN and with Vp are given in Eq. (A.1).

T�xy0
¼ Txy0

UN

Vp
; T�zy0

¼ Tzy0

UN

Vp
; Wip ¼Wi

Vp

UN
and

Pzx ¼
Uz

UN
: ðA:1Þ

Now, the relationships between the normal and shear stresses
are

T�xx ¼ 12WipT�
2

xy;

T�zz ¼ 12WipT�
2

zy ;
ðA:2-a;bÞ
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and the profiles of shear stress across the channel are given by

T�xy ¼ �2
y
H

UN

Vp
þ T�xy0

;

T�zy ¼ �2
y
H

Uz

Vp
þ T�zy0

:

ðA:3-a;bÞ

The profiles of the velocity components are given by Eq. (A.4-
a,b).
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As for the solution in the main text, these profiles depend on the
velocity boundary conditions at the top wall (u/Vp = cosh and
w/Vp = sinh at y/H = 1), which provide the wall shear stresses T�xy0

and T�zy0
and on the condition of null flow rate in the z-direction

ðW ¼ 0Þ to quantify the corresponding pressure gradient (p,z) via
its dimensionless form Uz/Vp. These three quantities are calculated
numerically from the following set of three nonlinear algebraic
equations
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The streamwise bulk velocity is given by Eq. (A.6)
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and the power dissipated by friction per unit area is now given by
Eq. (A.7)
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