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An analytical solution is derived for the time-dependent flow of an infinite pool of fluid described by the
viscoelastic upper convected Maxwell (UCM) model driven by an oscillating porous plate in the presence
of cross flow. Whereas for a Newtonian fluid there is a solution regardless of the amount of suction or
blowing, for viscoelastic fluids the solution breaks down under certain conditions. When the suction
velocity exceeds the elastic shear wave speed there is no solution. For sub-critical blowing through the
plate the stream-wise velocity profiles are periodic, but when the blowing speed exceeds the elastic shear
wave speed non-periodic chaotic-like waves appear under certain conditions, which are characterized.
The flow characteristics are properly scaled by the reciprocal square root of the Reynolds number with
and without cross flow. Generally speaking, the flow properties are controlled by the cross flow and by
the fluid elasticity at low and high Deborah numbers, respectively.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The time-dependent flow of viscoelastic fluids caused by the
oscillation of a flat plate is of considerable interest both industrially
as well as a test case to assess the performance of numerical meth-
ods for the computation of transient flows. Indeed, as demonstrated
by Oliveira [1], the performance of time discretization numerical
methods needs to be assessed not only against time-dependent
solutions, such as the start-up of flows, but also against unsteady
flows of unlimited duration in order to better assess the accuracy
of the methods and the accumulation of errors over time. Periodic
flows are useful in this respect.

A fundamental viscoelastic model of differential type is the
upper convected Maxwell fluid (UCM), which models the poly-
mer contribution of some types of Boger fluids [2] and polymer
melts of constant viscosity. The solution of Stokes’ second problem
for this fluid has been addressed recently by Hayat et al. [3] and
Aksel et al. [4], using Fourier series. These works also include other
analytical solutions for the same fluids, namely: the Stokes prob-
lem for bounded flows, periodic Poiseuille flows due to oscillating
pressure gradient as well as the start-up Poiseuille flow. Actually,
the start-up Poiseuille flow for the Oldroyd-B fluid was derived by
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Wiaters and King [5] for a pipe and by Mochimaru [6] for the flow
between parallel plates. Regarding the plate bounded by an infi-
nite body of fluid, Tanner [7] worked on Stokes’ first problem for
Oldroyd-B fluids and showed that for UCM fluids the shear wave
propagated away from the plate at a constant speed ¢ = /n/pA,
where 7, p and X represent the viscosity coefficient, the density
and relaxation time of the fluid, respectively. The solutions of Hayat
et al. [3] and Aksel et al. [4] for Stokes’ second problem include
also the start-up from rest of the periodic oscillating flow, an issue
which seems to have been pioneered by Erdogan [8] for Newtonian
fluids.

Given the non-linear nature of the viscoelastic constitutive
equation for the Oldroyd-B fluid and the non-linear nature of the
additional term of the momentum equation, the solution of Stokes’
second problem with suction/blowing through a porous wall is
not simply the linear combination of the two simpler solutions,
although the non-linearity in the momentum equation is elimi-
nated by consideration of a constant suction/blowing velocity. As
far as we are aware of, the solution of this more complex flow is
not available in the literature for viscoelastic fluids and this paper
presents the theoretical solution for the flow resulting from the
combination of a sinusoidal tangential oscillation of a wall with
constant flow suction/blowing normal to the wall.

The paper is organized as follows. Section 2 presents the gov-
erning equations and the corresponding boundary and initial
conditions. The derivation of the analytical solution is explained
in Section 3 and the paper discusses some interesting results in
Section 4, prior to the closure of this paper.
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2. Governing equations and boundary conditions

The flow under consideration is created by a plate perpendicu-
lar to the y-axis, oscillating in the x-direction and the fluid is in
the region y > 0. The plate is porous and the suction/blowing is
characterized by a constant time-independent velocity v, (vy > 0
for blowing; vy < 0 for suction). The equations will be presented
in normalized form for which the following scales are used: the
characteristic velocity is the amplitude of the velocity oscilla-
tion of the plate (Uy); the characteristic length is Uy/w, where
w is the frequency of oscillation of the plate, time is normalized
as ot and the stresses are normalized by npw, where 7, stands
for the polymer viscosity coefficient. The normalization of the
equations gives rise to some well known non-dimensional num-
bers, such as the Reynolds (Re) and Deborah (De) numbers, which
are defined as Re:pug/wnp and De=\w, respectively, with A
being the relaxation time of the polymer. Other non-dimensional
quantities help understand the flow physics and are introduced
next.

The propagation of shear waves in elastic fluids at rest takes
place at a well defined velocity ¢ = /np/pA, therefore leading to
the definition of an elastic Mach number (M), the ratio of the char-
acteristic velocity to the wave speed. It is easy to demonstrate
that this leads to M = +/Re x De. Another non-dimensional param-
eter that helps understand the dynamics of viscoelastic flows is
the elasticity number (E), which has several interpretations (see
chapter 7 in Joseph [9]). E is defined as the ratio between the Deb-
orah and Reynolds numbers (E=De/Re) and is usually viewed as
the ratio of elastic to viscous forces, but given the choice of scales
adopted, here it is more accurate to interpret it as the ratio between
elastic to inertial forces. Also, instead of the more classical alterna-
tive interpretation as the square of the ratio of two lengths over a
relaxation time period, namely the diffusion length and the length
traveled by shear waves, here E should be interpreted as the square
of the ratio between an elastic length scale and the amplitude
length of the oscillation, with the former defined on the basis of
the relaxation time and the latter using the period of oscillation.
Finally, sometimes it will also be useful to work with an injec-
tion Mach number (M, = vy+/Re x De) instead of the normalized
suction/injection velocity vy, as will become apparent in the pre-
sentation of results. The relevance of M is clear as it naturally arises
from the equations.

The normalised momentum equation for this unsteady flow is

ou du 1 9typ
a T TRe ay

(1)

with the polymer shear stress (7yx = Txy) given by the UCM differen-
tial constitutive equation having a relaxation time A and a viscosity
coefficient 7, as mentioned above.

For an UCM fluid, the polymer extra stress tensor is written in
index notation and in non-dimensional form as in Eq. (2):

0T 0T ou; ou; ou; Oy
tijp"‘De U,p+ kj_fjkpil_fikpij =t
' ot oXy P 0x, P 0x), ox; - Oxg

(2)

Eq. (2) simplifies to the following set, where for convenience the
subscript p has been dropped.
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This is further simplified by considering that ty,=0 (cf.
Appendix A). The equations to be solved are subject to the following
boundary and initial conditions:

At y=0, u(0,t)=el (4-a)
At y=o00, u(oo,t)=0 (4-b)
At t<0, u(y,t)=0 (4-c)

3. Analytical solution

The second assumption made here is that u=u(¢@), Txx = Txx(®)
and txy = Txy(¢), where ¢=At+By, and Egs. (1), (2), (3-a) and (3-c)
become Egs. (5-a)-(5-c).

du _ B dny

(A+vwB) b~ Re do (5-a)
dTyy du

De (A + vwB) w + Txy = B@ (5-b)

De [(A +uwB) %’ZX - 2B%rxy] FTw =0 (5-c)

Using Eq. (5-b) to eliminate du/d¢ in Eq. (5-a) and rearranging
provides the following differential equation for Txy:
B2 ] dry

De (A + UWB) —

ReAtvwB) | dp T =0 ®)

Defining 1/ =A+wvwB and making 1/z= De(A+ vwB)—
(B%/Re(A + vyB)) = (De/a — aB2|Re), the integration of Eq. (6)
provides the shear stress distribution of Eq. (7), where c; is to be
determined later from a boundary condition.

Ty = e 720 (7)

This shear stress and its derivative are back-substituted into Eq.
(5-a), which provide the velocity derivative (du/d¢) and the velocity
distribution after integration, as follows:

du B B

=~ ° —z¢p+cq — P ozt
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where c; =0 on account of the boundary condition u(oo, t)=0.
To obtain a differential equation on the normal stress Txy, du/d¢
from Eq. (8) and txy from Eq. (7) are substituted into Eq. (5-c) and

rearranged to give
De dtxx _ 2ZDeBzoz o~ 2204261 )

@ dp T T Re

Multiplying by e(®/Pe)¢ gives

9 (gamerr,) B2 paziaperiac (10)
do¢ xx Re
and integrating provides the following normal stress distribution:
DeB?a?
_ —2z¢+2¢q —(a/De)¢p : - _
x=1¢ +c3e with I” ZziRe (@ —22De)

(11)

The first term on the right-hand side of Eq. (11) is Frfy. whereas
the second term must vanish when t — oc. In the absence of suc-
tion/blowing, this particular boundary condition helps to define the

general quantities A and B introduced early in this section.
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At the wall the general velocity profile of Eq. (8) only has a real
component and it must be consistent with the no-slip condition.
Hence, at y =0 this equality gives

B —zAt

C1 — pit
Re(A+va)e e e (12)

from which two results are obtained: (1) the constant of integration
1

¢ =In [w} (13)
B

and (2) the equality —zA=i

—ZA=i— A =1 (14)

De (A +vwB) — (B2[Re (A + vwB))

This is an algebraic second-order equation on B, that can be
solved to give two possible solutions for B.

B Avy, Re (i — 2De) + mAivRe+/v%Re + 4(i — De) with

2 (v DeRe—1)

m=4=+1 (15-a)

It is clear that there is a singularity when v2, De Re = 1 (this cor-
responds to My, = +1). For this particular viscoelastic case, Eq. (14)
turns out to be linear on B and its solution is

_ —A(1-iDe)(1+i2De)

B vy (1 + i4De?)

(15-b)

where vy =1}, =+1/v/DeRe or, alternatively using the
other set of non-dimensional numbers (M, E, My), B=
(=AM (1 —iMVE) (1+i2MVE)) / (M3, (1 +i4M2E)) and
My = M;, = £1. The asterisk is used to denote the critical value.
Given the definition of ¢ and that the velocity must vanish as
y — oo, it is necessary for the real part of the exponential appearing
in the velocity profile (Eq. (8)) to be negative —(zB),q, < 0. Given the
expressions above, and after some laborious mathematics carried
out with MATHEMATICA v5 from Wolfram Research, the real and
imaginary parts of -zB are given by Eqs. (16-a) and (16-b), respec-
tively. This is for the general case where 1/;,2 DeRe + 1(orM,, # +1).

{vw Rea; + VRep/4[ay + a3 + a4]}

(—ZB)real = (16-a)
real (v ReDe — 1) [as + ag + a7]
(28) —ivRe {m (1 + v, Re De) ag+vw+/Re (ag + aio + a11)}
—zB). =
imag (v% ReDe — 1) (as + ag + a7)
(16-b)
where

¢ =vj, Re? — 81}, Re De + 16 (1 + De?)

; 4
0 = Arg |13, Re — 4De + 4i| = arctan | —————
vg, Re — 4De

with functions a; to a;; given below.

ay = -8+ v}, Re (13, Re + 4De — 2./)

ay = —2mv}, Re (v}, Re + /@) cos (g)

az = —v3, Re3/2¢'/4 cos 6

ag = — (1 + v}, ReDe)

x| m (v}, Re—4De + /) + 2vwv/Reg!/* cos <g>] sin (g)
as = v}, Re? + 8 + 16De? + 2v2, Re /@
as = 2mvw/Re (v}, Re + 4De + /@) ¢'/* cos (g)
a; = (v‘z,v Re +4De) J@ cos 0
ag = (3v3, Re +4De + /@) ¢'/* cos <§)

ag = (1+ v}, ReDe) (v}, Re + 4De + 2./)

aio = (1+ v}, ReDe) /@ cos 0

ay = 4De /4 {vawx/ﬁ sin (g) + ¢4 sin 9}
For the specific case of vivz DeRe =1 (or My = M}, = £1), the
solutions of (—zB)rea1 and (—zB)imag are given by

VEM?

M;, (1 +4EM?2) (16)

(_ZB)real =

M (1 +251v12)

M;, (1 +4EM2) (16-d)

(_ZB)imag =

Itis now possible to back-substitute some of the above equations
to obtain the final expressions for the velocity and stress fields. For
the velocity, the final equation takes the form

U=e2 _ y— e HAHBY) _ 4 — o(=ZB)realy ei[tJr(*ZB)imagy] (17)

where ell+(-?masY] = cos [(~2zB)magy +t] and (—zB)rea and
(—=2B)imag are given by Egs. (16-a) and (16-b) for My # 1 and by
Egs. (16-c) and (16-d) for M, = 1, respectively.

The condition (—zB)e, <0 clarifies which of the two possible
solutions of Eq. (15-a) exists. Only the solution for m=—1 obeys
this condition for Newtonian flows and UCM flows with suction.
For UCM flows with blowing m=—1 always provides a physically
realistic solution, but for My, > 1 the m=+1 solution is also phys-
ically possible leading to negative values of (—zB),c,. In this case,
the velocity profile of Eq. (17) must be substituted by a linear com-
bination of the two solutions, a matter to be discussed in Section
4.4,

The stress field results from substituting the velocity field solu-
tioninto Egs.(7)and (11) for the xy and xx components, respectively.
The corresponding expressions are given in Appendix B.

4. Results and discussion

Some results of the previous section are discussed in detail here
to investigate the role of the various relevant independent non-
dimensional numbers. It starts with the revisit of the Newtonian
case and of the viscoelastic solution in the absence of cross flow
after which the new results of this work are presented. First, the
investigation of the viscoelastic flow with suction for low and large
viscoelastic Mach numbers for which there is a limit when the
suction velocity equals the elastic wave speed (M, = —1). This is
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followed by results with blowing through the porous plate, which
does not suffer from the same limitation, but leads to a richer
set of solutions including chaotic-like behavior under some con-
ditions.

To help analyze and interpret the results two important quan-
tities are defined: y. is the normalized peak-to-peak distance of
two consecutive oscillations and yp is the normalized penetration
depth, measuring the penetration of the oscillating wave. This is
the distance from the plate to the location where the maximum
amplitude of oscillation has been reduced to 1% of the amplitude of
oscillation of the plate, so it is equivalent to a boundary layer thick-
ness. These quantities are given by Egs. (18) and (19), respectively.

2
S 18
Y 2By (%)
—1n(0.01) 4.6
= = 19
o (_ZB)real (_ZB)real ( )

With the characteristic time (t. = 27/w) of the plate oscillation
the velocity of penetration of the wave (V},) can also be determined
as the ratio between the peak-to-peak distance and the character-
istic time scale, as given by Eq. (20).

Uo

(_ZB)imag (20)

Vp:E—>Vp:

4.1. Newtonian flow with a porous oscillating wall

Fig. 1 presents velocity profiles for Newtonian fluids to assess
the combined effects of transverse velocity and Reynolds number
in the absence of elasticity. These include the situation with no cross
flow of Stokes [10] and Lord Rayleigh [11]. All the profiles shown
here and henceforth correspond to the moment when the oscillat-
ing plate is at the maximum amplitude of oscillation. Fig. 1a is for
suction, whereas Fig. 1b concerns blowing. For small suction veloci-
ties (Juw| < 0.01) the profiles of stream-wise velocity are unaffected
by suction. As suction strengthens the penetration depth decreases,
the stream-wise velocity profiles approach the plate and the ampli-
tude of fluid oscillation away from the plate is also reduced. This
decrease of the amplitude of oscillation is due to the development of
larger stream-wise shear stresses when suction brings the oscillat-
ing layers of fluid close to each other and to the plate, increasing the
velocity gradients. However, the peak-to-peak distance y. increases
and consequently the ratio yp/y. decreases faster than the penetra-
tion depth as can be seen on the left-half of Fig. 2a. Note that suction
velocities are negative and blowing velocities are positive.

For weak injection, the stream-wise velocity profiles are also
identical to the profile for an impermeable wall. As the blowing
velocity is raised, the penetration depth increases, fluid is pushed
away from the wall and the amplitude of the oscillations of the
fluid layers away from the wall also increase, i.e., blowing has the
opposite effect of suction. This is also clear from inspection of the
right-half of Fig. 2a, where both the peak-to-peak distance and the
ratio yp/y. increase with blowing velocity, showing the opposite
trends to those depicted on the left-side of the graph pertaining to
suction.

To understand the effect of Reynolds number on the plot of u/Uy
versus yw/Ug one is reminded that an increase in Reynolds number
requires an increase in the amplitude of the oscillation, a decrease
in its frequency or both (not to mention viscosity), i.e., the ordinate
of the plot, yw/Up, decreases and the waves become compressed
towards the plate, leading to higher shear rates and in spite of the
reduction in the amplitude of the waves away from the wall.

At Re=1 the effect of the oscillating plate penetrates visibly to
as much as y=8, but for suction this is significantly reduced on
increasing the Reynolds number (at Re=10 the fluid is almost at

8
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Fig. 1. Influence of Reynolds number and velocity through the porous wall on the
profiles for Newtonian fluids: (a) Suction with Re=1 and Re=10; (b) Injection with
Re=1.

rest at y=3, cf. Fig. 1a), i.e., the penetration depth decreases on
inverse proportion to Re. With blowing the opposite is true with the
penetration depth increasing with cross flow velocity (cf. Fig. 2a).
The variation of y, with Reynolds number is non-linear due to the
effect of the cross flow velocity. This variation is by a factor of 3
at vy, = 0 rising to a factor of 10 as the cross flow velocity tends to
infinity, regardless of whether there is suction or blowing.

In contrast to yp and yp/y. the variation of the peak-to-peak
distance with vy, plotted in Fig. 2b has a non-monotonic behav-
ior and depends only on the magnitude of the cross flow velocity.
It is symmetric with the minimum value attained for the imper-
meable wall. At large cross flow velocities y. becomes independent
of the Reynolds number. For suction y. is always larger than the
penetration depth, so only a single cycle, or part of it is actually
seen in Fig. 1. At both vy, = 0 and infinite suction yp/y. becomes
independent of the Reynolds number.

The Reynolds number effect with blowing is similar to the effect
for suction, but for conciseness no further plot is shown for this
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W

Fig. 2. Variation of normalized penetration depth (y,) and of y,/y. with cross flow
velocity for Newtonian fluids (red and circles (Re=1), blue (Re=10)): (a) penetration
depth (y,) (full lines) and of yp [y, (dashed lines); (b) peak-to-peak distance (y.). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of the article.)

case. The shear stress profiles are in agreement with the corre-
sponding velocity profiles of Fig. 1 as far as the effects of Re and
vy are concerned, taking into account that they are proportional
to the velocity gradient, and again they are not shown here for
conciseness.

4.2. Viscoelastic flow with an impermeable oscillating wall

The second reference case pertains to flow of viscoelastic fluids
without cross flow, the solution of which can be found elsewhere
[3,4]. Representative stream-wise velocity profiles at Reynolds
numbers of 1 and 10, and showing the effects of Deborah num-
ber, are plotted in Fig. 3. For De < 0.01, cases here corresponding to
M « 1, there are hardly detectable differences relative to the New-
tonian profiles. On increasing the Deborah number, or elastic Mach
number, two different characteristics become obvious. First, the
shape of the velocity profile progressively evolves from that of a

20 T
De M E
=0 0 0
—0.01 0.1 0.01
Re=1 | —a—01 03201
——| 1 1
15 —vy—5 225 .
—— 10 3210
g | — 1 32 01
Re=10 | ~777" 0 10 1
=10 | E
5L £ -
0

Fig. 3. Influence of Reynolds and Deborah numbers on the velocity profiles in the
absence of suction/injection at Re=1 and 10.

diffused wave at low elastic Mach numbers towards a less damp-
ened wave (elastic wave) containing more and more visible cycles at
large Mach numbers (or large Deborah numbers). At low Reynolds
numbers, as for Re=1 in Fig. 3, it looks as though this change of
behavioris associated with the transition from sub-critical to super-
critical flow (M =1 defining the critical condition), but inspection
of data for Re=10 shows that the elastic Mach number is not the
critical parameter (the curve for M=1 at Re=1 looks like the curve
for M=3.2 at Re=10 in spite of the ordinate difference). Inspection
of Fig. 4, where penetration-depth related quantities y,+/Re and
Yplyc are plotted as a function of Deborah number, as for Newto-
nian fluids, shows that both quantities are independent of Reynolds

v YRe

0
0 2 4 6 8 10

De

Fig. 4. Variation of characteristic length scales y,+/Re and yp/y. with Deborah num-
ber in the absence of suction: red lines and circles Re=1; blue lines and triangles
Re =10. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of the article.)
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number in the absence of cross flow, and only depend on the Debo-
rah number. The dependence of yp [y on De is non-linear only at low
De and becomes linear at De > 1. The dependence on the Reynolds
number is identical to that seen for Newtonian fluids as it should be
because the momentum equation is linear in the absence of cross
flow (as well as at constant cross flow velocity). It follows from
dimensional analysis (PI theorem) that u/Uy is a function of y//tv
from which the v/Re dependence issues.

On increasing De, the amplitude of the oscillating wave is also
progressively less dampened on moving away from the plate and
consequently the penetration depth of the wave increases. Simul-
taneously, the shear wave speed and the peak-to-peak distance (y.)
of the traveling wave decrease with De and more and more cycles
become visible in Fig. 3.

This is consistent with the definition of the shear wave speed in
afluidatrestc = \/1n/(pA) = Up/M = Up/~/Re De, which decreases
as the Mach or Deborah numbers rise. The fluid velocity is normal-
ized by the amplitude of the velocity oscillation at the plate, so
any change in this amplitude should not affect the plotted veloc-
ity, other factors being equal. The waves become more persistent
and the wave propagation speed decreases on account of elasticity
and this is well seen in the increase of y,+/Re with De shown in
Fig. 4. However, in contrast to the impact of cross flow of the previ-
ous sub-section, the Deborah number does not change the impact
of Reynolds number in a non-linear manner. The plot of y,+/Re
versus De in Fig. 4 collapses the penetration data pertaining to dif-
ferent Reynolds numbers. The same happens with the peak-to-peak
distance and that explains the Reynolds number independence of

Yplye.

4.3. Viscoelastic flow with suction through the porous oscillating
wall

As for Newtonian fluids, the solutions to this case require m=—1
in Eq. (15-a), whereas m=+1 implies physically unrealistic solu-
tions.

The two plots of Fig. 5 are for a constant Reynolds number of
1 and Deborah numbers of 0.01 and 1, respectively. Within each
plot the suction velocity is varied, but no solution is ever obtained
when the suction velocity exceeds the wave speed, i.e. for My | > 1.
When the suction velocity equals the wave speed (M,, = —1) only
the fluid particles attached to the plate move in the stream-wise
direction and elsewhere the stream-wise velocity is zero (but not
the normal velocity v = vy ).

Fig. 5a pertains to subcritical Mach numbers (M < 1) and Fig. 5b
is for M=1. The effects of Deborah number are those expected
from the findings of the previous section, but now combined with
suction effects. Accordingly, the stream-wise velocity profiles are
dampened very quickly on moving away from the wall and the
stream-wise velocity vanishes essentially after one full period of
oscillation. For M=1 (higher De), the amplitude of the oscillation is
stronger and at y =10 the oscillation is weak, but still visible. The
reduction in the rate of decrease of the amplitude of oscillation with
suction due to increases in fluid elasticity is especially well shown
in comparisons between Fig. 5a and Fig. 5b. In Fig. 5b more than
one cycle is visible because the waves are less dissipative than in
Fig. 5a.

The plot of Fig. 6 pertains to a higher Reynolds number of 10 and
a Deborah number of 10 corresponding to a hypercritical elastic
Mach number (M > 5). The wave behavior is now largely dominated
by fluid elasticity rather than by viscous effects with several cycles
in evidence especially when suction is weak. For conciseness, pro-
files at lower Deborah numbers and Re=10 are not shown since
they are similar to those of Fig. 5, even though they are closer to
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Fig. 5. Effect of suction velocity through the porous plate on the velocity profiles for
Re=1:(a)De=0.01 (M=0.1 and E=0.01); (b) De=1(M=1and E=1).

the wall on account of the Reynolds number effect. As for Re=1,
M, = —1 marks the limit of physical solutions.

The variations of the penetration depth and ratio yp [y with the
elastic suction Mach number are plotted for Re=1 and Re=10 in
Fig. 7a and b, respectively, as a function of Deborah and Reynolds
numbers. Their variations with M,, are non-linear at low Deborah
number and tending to linear as the Deborah number increases and
the flow becomes dominated by elasticity. As for viscoelastic flow in
the absence of cross flow, Fig. 7a and b confirms that the penetration
depth and the peak-to-peak distance continue to scale with 1/+/Re
even in the presence of combined effects of elasticity and suc-
tion as it should be from the linearity of the momentum equation
and dimensional analysis arguments. For conciseness only yp+/Re is
plotted in Fig. 7a. The change of wave behavior from liquid-like to
solid-like is well shown in the variations of y,/y. with De plotted in
Fig. 7b. At low Deborah numbers, as for Newtonian fluids, the peak-
to-peak distance is larger than the penetration depth (yp/yc < 1), but
this ratio increases significantly with De leading to yp [y > 1, corre-
sponding to more visible cycles as seen in Fig. 6. As De increases the
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Fig. 6. Effect of suction velocity through the porous plate on the velocity profiles for
hypercritical elastic Mach numbers (Re=10 and De=10 (M =10 and E=1)).

flow characteristics also become progressively independent of the
amount of suction. At My, =—1 it is clear that yp/(yc x De) attains
a constant value of 14.64. So, even though the analytical solution
is somewhat complex, this complex viscoelastic flow still follows
simple scaling laws.

4.4. Viscoelastic flow with blowing through the porous oscillating
wall

In contrast to suction, with injection through the porous plate
the physical solutions are not limited to sub-critical elastic Mach
numbers (M, < 1) and three distinct flow regimes are observed as
investigated below.

For sub-critical conditions there is still a single physically cor-
rect solution, which corresponds to m=—1 in Eq. (15-a). The m=+1
solution violates the boundary condition (4-b), which imposes that
only negative values of (—zB),¢, are valid. In these cases the velocity
profiles plotted are still given by Eq. (17).

However, for super-critical conditions m=+1 also implies
(—=zB)ea1 <0 and the profiles plotted now correspond to the lin-
ear combination of the two possible solutions of Eq. (21) (m=+1)
together with the boundary condition (4-a). This is so because a
linear combination of the two solutions is also a solution and this
is carried out introducing parameter c3.

U=c3e @ 1 (1-c3)e?- (21)

Here, to investigate the relevance of the m=—-1 and m=+1 con-
tributions the coefficient c3 is assumed to be 0.5 to equally consider
the influence of each solution to u.

At hypercritical conditions, and even though there are still two
analytical solutions, the solution for m=—1 dominates the flow as
will be shown in Section 4.4.2.

4.4.1. Sub-critical elastic injection Mach number flow

Fig. 8a and b shows transverse profiles of the stream-wise veloc-
ity for Reynolds numbers of 1-10 at various Deborah numbers,
all cases pertaining to sub-critical injection elastic Mach numbers
(Mw < +1). The effect of blowing is opposite to that seen in the
previous sub-section for suction. The penetration depth of the oscil-
lations, its wavelength and amplitude increase with M,,, while wave
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Fig. 7. Variation of characteristic lengths with suction elastic Mach number as a
function of Deborah and Reynolds numbers: (a) ypvRe; (b) yp/yec.

dampening becomes less pronounced with more complete cycles
visible. This effect is especially strong when M,, approaches the
critical value of +1.

The comparisons between the plots of Fig. 8a-c shows complex
non-monotonic effects of Deborah and viscoelastic injection Mach
numbers, which are summarized in the penetration depth plots of
Fig. 9. As previously seen with suction and without cross-flow, the
use of +/Re collapses data as far as Reynolds number effects are
concerned. At low Deborah numbers (say, De=0.01), the cross flow
strongly enhances the amplitude of the oscillations in a non-linear
way and strongly reduces the dampening effects of viscous shear
stresses by pushing fluid away from the wall and consequently low-
ering the shear rates, thus making more cycles visible. On increasing
the Deborah number the cross flow still enhances the amplitude of
the oscillations, but by a lesser amount and the variations with
M,, become more linear (cf. Fig. 9). The amplitude of the velocity
profiles at My, ~ 0.5 for De=0.1 are not as large as for De=0.01 in
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Yp*/ﬁi (b) yplye.

Fig. 8a and b. So, at low Deborah numbers the flow characteristics
are essentially dominated by the injection (M, ).

Further increasing the Deborah number to 1 and 10, makes
elasticity dominate the flow and the variations of the flow char-

acteristics with M,, weaken. In particular, the variations of the
penetration depth and the peak-to-peak distance in Fig. 9 become
identical, leading to constant yp/y. that are independent of M, at
large De. At very low values of M,, the velocity profiles at high De

have more cycles than at lower De (cf. Fig. 8b and c), because of
the more solid-like nature of the waves, but on increasing M,, the

changes are small (cf. Fig. 8c).

Fig. 8. Effect of injection velocity through the porous plate on the velocity profiles
for sub-critical injection elastic Mach numbers (M, < 1): (a)Re=1,De=0.01(M=0.1
andE=0.01)and De=0.1(M=0.32and E=0.1); (b)Re=10,De=0.1 (M=1and E=0.01)
and De=1(M=3.2 and E=0.1); (c) Re=10,De=10 (M=10and E=1).
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J It is this large effect of M,, at low De and the small effect of M,,

140+ L at high De that results in the non-monotonic variations observed
under sub-critical conditions well illustrated in Fig. 9. This com-
120 | plex behavior already contrasts with the monotonic variations seen
L when the cross-flow originates from suction at the porous plate.
0 Nevertheless, the sub-critical flow with blowing is well-behaved in
100 - —:— ﬁ 1%016 the sense that the solution of Eq. (15-a) is unique with m=—1.
***** +2 +6.32
30 e - f-‘lio jﬁl?g 4.4.2. Critical and super-critical elastic injection Mach numbers
23 t21.0

Fig. 10a and b presents transverse profiles of stream-wise veloc-
ity for critical (My, = 1) and supercritical (M, > 1) elastic injection
1 Mach numbers corresponding to the same Reynolds and Deborah
numbers of Fig. 8a-c. These velocity profiles represent Eq. (21) and
correspond now to the sum of the two possible solutions for m=+1,
but first we look at the variations of the penetration depth (yﬁJR?)
and peak-to-peak distance (y§ /y£) with M,, as a function of De and
Re and using log-log coordinates. For m=—1, data from the sub-
critical My, region is included. Starting with m=—1 we observed
that log (ygx/ﬁ) and log (yp, /yc ) tended to constant values when
-1 -0.5 0 0.5 1 M, — 0 (a minus superscript indicates m=—1), whereas when My,

u grew beyond 1 the log-log variations were linear with equal slopes

T and separations suggesting that in this region y;,«/ITe and y, /y¢
Re= 10 scale uniquely with My, /+/De, as shown in Fig. 11a and b.

For m=+1, (log (yfg«/}@)) grows linearly at large log (My,) also

501 < pe 1 with equal slopes and separations, but now at equal values of My,

T higher values ofy;\/ﬁ correspond to higher values of De in clear

60

S contrast to the behavior for m=—1. This indicates that at large M,,,
40 o y . y5~/Re now scales uniquely with My+/De, as shown in Fig. 11c,

e O - De oM rather than with My, /+/De as was the case for m=—1. Indeed, look-
01 ing at the limiting behaviors of yg and y, for My — +oo give
+0.32 +1 the results of Eq. (22), which are consistent with the plots. These
P L [ s equations also explain the three times larger slope of y, vRe ver-
T 16 410 sus My, /+/De of Fig. 11a in relation to the slope of y}+Re versus
My ~/De in Fig. 11¢ at large Deborah numbers. At even larger values
of My, /~/De the slope difference would be by a factor of 4.

My~/De
vRe

20+

limyy o

My —+00

(22-a)

............

e s M3 Mg

0 : = = limy;
05 0 05 | Yp &
u My — +00

(22-b)

w
+
De3/2\/Re = 4De(1 + De)+/Re

However, the curves for De =10 in Fig. 11c only seem to comply with
Re=10, De=10 these findings at very large values of M,, and show an intermediate
behavior at lower My,. The reasons for this will be explained shortly.

The behavior of log (y;; / y;’) contrasts with all others and in par-

= ticular with that of log (v /yc ) in Fig. 11b in the sense that y; /y{
— & - 402 +2 is almost constant for each value of De and consequently it does not
e e S scale with My,+/De. Instead, the correct scaling is (y3 /y{) /De ver-
sus My, as shown in Fig. 11d. This figure shows again the existence of
alarge deviation in the behavior of the De = 10 curve, which already
. affects the curve at De=1, but to a lesser extent. Indeed, plotting

(y;/yi) /De in the range 1<De<10 in Fig. 11d as long dashes,

15+

=10 -

shows a progressive variation of (yg/yzr) /De in this range, which
explains the apparent discrepancy of the De=10 data in Fig. 11c.
To understand this phenomenon the asymptotic behavior of y;
was derived when De grows to infinity but M, is kept constant (or
vw — 0 at constant Re). The result is given in Eq. (23) and confirms

Fig. 10. Effect of injection velocity through the porous plate on the velocity profiles
for critical and supercritical injection elastic Mach numbers (M,, > 1): (a) Re=1,
De=0.01 (M=0.1 and E=0.01) and De=0.1 (M=0.32 and E=0.1); (b) Re=10, De=0.1
(M=1 and E=0.01) and De=1 (M=3.2 and E=0.1); (c) Re=10, De=10 (M=10 and
E=1).
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that when both De and M,, are large, yg\/Re varies with My,+/De. At
intermediate values the fast variations are the outcome of the large
powers of De and My,.

vDe (32De* My + 16De? M3, + M3, )

VRe (4De? + M3,) (4De? + 4De? My, + M3, ) (23)

limy} o
De—+oo0
The variations of the stream-wise velocity profiles with M,,, De
and Re of Fig. 10a-c have similarities to those seen in the sub-critical
regime, where the two different behaviors at low and high De were
identified and are easy to interpret by looking also at Fig. 11a. When
De is very low and injection dominates flow characteristics, an
increase in M,, increases the amplitude of oscillations, with con-
comitant variations in its wavelength. As the Deborah number is
increased, but still in the region of Fig. 11a where the log (yE\/I@)

versus log (Mw/\/ﬁ) is not yet a straight line, the amplitude of
oscillations is lower at the same value of M,, than at lower De. Now
the effect of My, has been reversed, because elastic effects start to
take control of flow characteristics and the amplitude of oscillations
start decreasing with an increase in My,. In this intermediate region

where log (yg«/ﬁ) versus log (MW/\/E) is non-linear, a chaotic-
like behavior starts to be observed for some cases provided My, > 1,
as will be discussed.

In Fig. 10a an unusual behavior of the velocity profiles in the near
wall region is already perceptible and this represents the beginning
of the chaotic-like behavior discussed in the next section. Here,
this is caused by the appearance of the second component of the
solution (for m=+1), which is only perceptible in the near plate
region, because at this stage it is over-damped and it vanishes very
quickly.

The variation of the velocity profiles for Re=10 in Fig. 10b and ¢
with De and M,, and their relation with those of Fig. 10a for Re=1
follows the above arguments and are not discussed further.

4.4.3. Solution duplicity and spatial chaotic behavior at
super-critical elastic blowing Mach numbers

For My, > 1 there are always two possible values of B corre-
sponding to m=+1 and consequently two values for (—zB)e; and
(—=2B)imag €ach. Note also that Eq. (15-a) is not valid for My, = £1, in
which case the solution for B is given by Eq. (15-b). Therefore, from
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Egs. (17) and (21), the velocity profile is given by
u=c3 e(sz):ealy cos [( 7zB)§nagy + f]

+ (‘1 —C3 ) e(_ZR)r;‘raly CcoSs [( —ZB)i;l]agy —+ f] (24)

where parameter c3 can take any numerical value. As explained
above we consider here c3 =0.5 to provide equal contributions from
both solutions to u.
Since (—ZB);real # (—2B),.,» the two contributions to the solution
dampen differently and with (_ZB):;nag # (=2B)imag their shift fac-
tors are also different, i.e., they have different “spatial frequencies”
of oscillation. Hence, we observe a spatial rather than a temporal
kind of chaos whenever the two (—zB)imag are not rational multiples
and this is called here spatial chaos.

In Fig. 10c some of the velocity profiles plotted do not exhibit
a well-defined periodic shape, but show such spatial chaotic-like
behavior. When M,, > 1, non-periodic stream-wise velocity pro-
files are found for certain combinations of Reynolds and Deborah

40
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Fig. 12. Effect of injection velocity through the porous plate on the stability of the
velocity profiles for super-critical injection elastic Mach numbers (M,, > 1) atRe=1
and De=10 (M=3.2 and E=10): (a) 1 < M,, <5; (b)5 < My, < 20.

numbers, as shown in the plots of Fig. 12 for Re = 1. All cases pertain
to De=10 and in the range 1 < M,, < 5 the velocity profiles exhibit
non-regular oscillations, whereas in the range 5 < My, < 20 only
the profiles for the lower values of My, (5 < My, < 10) are irregular:
the profiles for My, = 15 and 20 do not exhibit the irregularities.
So, this behavior occurs only at large Deborah numbers, but is lim-
ited to an intermediate range of supercritical injection elastic Mach
numbers, which in Fig. 11 corresponds to the regions before the
log-log straight lines where M, > 1. In these regions both solu-
tions are attenuated in a similar way whereas at smaller or larger
values of My, one of the solution components dominates resulting
in an almost periodic solution and in both cases the dominating
solution is that for m=—1. The different growth factors of y; and y};
with My, in Egs. (22-a) and (22-b) confirm that the chaotic behavior
will disappear when the two solutions become too different, with
one predominating over the other, thus reducing their mutual inter-
ference. A similar behavior occurs at a higher Reynolds number of
10, but plots are not shown for conciseness.

5. Conclusions

An analytical solution is derived for the flow of UCM fluids over
an oscillating porous plate in an infinite medium and both the
suction and blowing cases are investigated separately. Generally
speaking, at low Deborah numbers the cross flow controls the flow
properties, whereas at high Deborah numbers the flow character-
istics become independent of the magnitude of the cross flow in
each flow regime. More specifically, there are important differences
between the suction and blowing cases, as below.

When there is suction through the plate the existence of a solu-
tion is limited to cases where the suction velocity does not exceed
the elastic wave speed, in contrast to the Newtonian flows for
which there is always a solution. At low Deborah numbers the
flows are similar to those for Newtonian fluids, where the waves are
quickly dampened by viscous stresses. As the flow Deborah number
increases the waves evolve from diffused waves towards more per-
sistent solid-like waves with more cycles visible. The penetration
depthincreases and the wave peak-to-peak distance decreases. The
suction solution corresponds to m=—1.

When there is blowing through the plate there are two sets of
solutions. For weak blowing, i.e. when the injection velocities are
smaller than the elastic wave speed, the solution is unique and
periodic and corresponds to m=—1, with the effects of injection
velocity opposite to those of the suction velocity. When the blow-
ing velocity exceeds the elastic wave speed the uniqueness of the
solution ceases and the velocity profile is now a linear combination
of two solutions (m=+1). Their attenuation rates as well as their
shift angles are different and under low super-critical conditions
one of the solutions dampens very quickly (m=+1) and the com-
pounded solution remains periodic except very close to the plate.
At large super-critical conditions, the attenuation rates are of simi-
lar magnitude and when the shift angles are not rational multiples
there is spatial chaotic-like behavior. At even larger super-critical
conditions the m=—1 solution again predominates and no spatial
chaotic-like behavior is seen again in the compounded solution.

As far as inertia effects are concerned, the penetration depth
and the peak-to-peak distance of the waves continue to scale with
1/+/Re regardless of the cross flow type and magnitude, as for New-
tonian fluids. This is a consequence of the linearity of the momen-
tum equation and is easily shown from dimensional analysis. For
very large injection Mach numbers the injection flow characteris-
tics scale with the square root of the Deborah number, but in this
respect the scaling laws are different for each of the two solutions.
So, even though the analytical solution is somewhat complex, there
are simple scaling laws for this complex viscoelastic flow.
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The increased penetration depth of the oscillations is consis-
tent with findings in turbulent flow of viscoelastic fluids where the
damping effect of walls in reducing turbulence is seen to have a
longer range of action than for Newtonian fluids. Therefore, this
analytical solution can inspire the development of Van Driest type
of damping functions for turbulence models of drag reducing flu-
ids.
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Appendix A. Demonstration that 7y, =0

Assuming that this solution depends on ¢, with ¢ =At+By, Eq.
(3-b) leads to tyy =ce~#*/P¢, where c is a constant of integration.
Inserting this result into Eq. (3-a) and using du/dy from Eq. (1) the
differential equation for 7.y becomes
( 1 B2aDe

c

z Re

_ dryy
e "‘4’/5"3) qp Tw=0 (1)
the solution of which is given by Eq. (I4) with ¢’ as another constant
of integration.

ezla

Ty = € (e*?IP°Re — B? De czar) P (12)

This solution immediately implies that the profile of stream-
wise velocity will be given by

)—DeZ/oz

Ba ¢ ( ,ap|De 2
= — Re — B“De cZ I
u= e (e e e cZow (13)

The initial condition (4-a) requires that a time-independent
term should not exist in Eq. (I3), and this implies that c=0 and
consequently 7y, =0.

Appendix B. Expressions for the stress field

The shear stress is given by

e(_ZB)realy
(rxy)real =T o
1/4 0
x | Revw (arz — a13) — 2mv/Reg'/* cos 5 | a1a —ais
(14-a)
e(=2B)realy .
(rxy)imag = T [alG +sin (t +y(*ZB)imag) (76117 +ag ):I

(14-b)
where functions aj; to a;g take the form

a12 = (4De + Re v, + ) €5 (£ + Y(~2B)imag)
ay3 =2 (DeRevZ, — 1) sin (¢ + Y(~2B)imag)

A14 = SIN(—2B)jmaq + Re V3, (COS (£ +Y(~2B)imag )

—De sin (t +}’(—ZB)imag))

a15 = 2mv/Re (1+ DeRe v}, ) ¢'/* cos (t +Y(~zB)imag) sin (g)

a6 = VRe (2 (DeRe V2 - 1) cos (t +}’(—7-B)imag)

x (mwl/“ cos (g) - «/I@vw>)

a17 = vRevy (4De + Re vy, + /@)

a3 = 2me'/* (Reva, cos (g) + (1 + ReDew,) sin <§)>

The normal stress Ty is described by

(TXX)real = —el=healy [Sin (t +y(_ZB)imag) I3

+ cos (t +y(sz)imag) Fl] (I15-a)
(TXX)irnag — _e(—ZB)realy [COS (t _;’_y(_zB)imag) FZ

+ sin (£ + Y(~2B)imag) 1] (15-b)

where

2DeRe? (ayg + Az + a1 + azy)

F] =
az3 + 04 + a5

_ 4De Re? (az6 + a7 + ag + axg)
asp +dsy +dasz

I,

with
19 = B} — B} — DeRe + 2y, (B} + 2B?B; + B;B} — 2B}
— (B; + Br) DeRe)]

ao = v}, [3B} + 8B?B; + 6B?B} + 8B;B: (B? — DeRe) — 5B}]
ay = 2v3, {2&”3”2 (B? + 2B;Br + 3BZ) + DeRe (B; + By)

x (HBHZ —4B,vBr)}

ay =12 {||B|\4(Bi +Br)(3Bi + 5B;) + DeRe (B — 6B7B? +B$)]
+20%||B||° (B; +2B:) + 5, ||B||°

az3 = VB + 20,BS [1 + 2vB; (1 + vwBy)]

2
+ [DeRe + BY(1 + vwB; )]

ay4 = 2B? [_De Re + By (1 +vyBy) (Br + 3vwB? — 6DeRe vy,
+4v,BY + 203, B} |

ags = B} [1+2vw (2B + 5vwB} + DeRevy + 6V5,B? + 3v;,B}) |

a6 = BiBr + vw [BiBr (B; +4Br) + B} + DeRe (B — B;)]

a7 = 2B;By [B?Br + B;B} + 2B} + DeRe (B — B;)|
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ag = V2, + 13, [ZBTHBHZ (B? +2B;B: + 3BZ) + DeRe (B; — B;)

« (an+ 8])]

ayg = Vi, By [HBH“(B,. +4B;) — 2DeReB; (B? —B?)} +v§VBrHBH6

In the above expressions B; is the real part of B (cf. Eq. (15)), B; is the
imaginary part and the norm of B is denoted ||B]||. They are given by

|IBI| = /B2 + B?
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