
S

D
a

b

c

a

A
R
R
A

K
S
W
U
W
S

1

o
a
o
b
m
s
fl
o
fl

u
m
m
f
A
a
l
p
t

D
T

0
d

J. Non-Newtonian Fluid Mech. 157 (2009) 66–78

Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journa l homepage: www.e lsev ier .com/ locate / jnnfm

tokes’ second problem with wall suction or blowing for UCM fluids

.O.A. Cruza, F.T. Pinhob,c,∗

Departamento de Engenharia Mecânica, Universidade Federal do Pará- UFPa, Campus Universitário do Guamá, 66075-900 Belém, Pará, Brazil
Centro de Estudos de Fenómenos de Transporte, FEUP, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
Universidade do Minho, Largo do Paço, 4704-553 Braga, Portugal

r t i c l e i n f o

rticle history:
eceived 9 May 2008
eceived in revised form 29 August 2008
ccepted 19 September 2008

a b s t r a c t

An analytical solution is derived for the time-dependent flow of an infinite pool of fluid described by the
viscoelastic upper convected Maxwell (UCM) model driven by an oscillating porous plate in the presence
of cross flow. Whereas for a Newtonian fluid there is a solution regardless of the amount of suction or
eywords:
tokes’ second problem
all suction

CM fluids
all injection

blowing, for viscoelastic fluids the solution breaks down under certain conditions. When the suction
velocity exceeds the elastic shear wave speed there is no solution. For sub-critical blowing through the
plate the stream-wise velocity profiles are periodic, but when the blowing speed exceeds the elastic shear
wave speed non-periodic chaotic-like waves appear under certain conditions, which are characterized.
The flow characteristics are properly scaled by the reciprocal square root of the Reynolds number with
and without cross flow. Generally speaking, the flow properties are controlled by the cross flow and by
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. Introduction

The time-dependent flow of viscoelastic fluids caused by the
scillation of a flat plate is of considerable interest both industrially
s well as a test case to assess the performance of numerical meth-
ds for the computation of transient flows. Indeed, as demonstrated
y Oliveira [1], the performance of time discretization numerical
ethods needs to be assessed not only against time-dependent

olutions, such as the start-up of flows, but also against unsteady
ows of unlimited duration in order to better assess the accuracy
f the methods and the accumulation of errors over time. Periodic
ows are useful in this respect.

A fundamental viscoelastic model of differential type is the
pper convected Maxwell fluid (UCM), which models the poly-
er contribution of some types of Boger fluids [2] and polymer
elts of constant viscosity. The solution of Stokes’ second problem

or this fluid has been addressed recently by Hayat et al. [3] and
ksel et al. [4], using Fourier series. These works also include other

nalytical solutions for the same fluids, namely: the Stokes prob-
em for bounded flows, periodic Poiseuille flows due to oscillating
ressure gradient as well as the start-up Poiseuille flow. Actually,
he start-up Poiseuille flow for the Oldroyd-B fluid was derived by

∗ Corresponding author at: Centro de Estudos de Fenómenos de Transporte,
EMEGI, FEUP, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
el.: +351 225081597; fax: +351 225082153/1440.
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igh Deborah numbers, respectively.
© 2008 Elsevier B.V. All rights reserved.

aters and King [5] for a pipe and by Mochimaru [6] for the flow
etween parallel plates. Regarding the plate bounded by an infi-
ite body of fluid, Tanner [7] worked on Stokes’ first problem for
ldroyd-B fluids and showed that for UCM fluids the shear wave
ropagated away from the plate at a constant speed c =

√
�/��,

here �, � and � represent the viscosity coefficient, the density
nd relaxation time of the fluid, respectively. The solutions of Hayat
t al. [3] and Aksel et al. [4] for Stokes’ second problem include
lso the start-up from rest of the periodic oscillating flow, an issue
hich seems to have been pioneered by Erdogan [8] for Newtonian
uids.

Given the non-linear nature of the viscoelastic constitutive
quation for the Oldroyd-B fluid and the non-linear nature of the
dditional term of the momentum equation, the solution of Stokes’
econd problem with suction/blowing through a porous wall is
ot simply the linear combination of the two simpler solutions,
lthough the non-linearity in the momentum equation is elimi-
ated by consideration of a constant suction/blowing velocity. As

ar as we are aware of, the solution of this more complex flow is
ot available in the literature for viscoelastic fluids and this paper
resents the theoretical solution for the flow resulting from the
ombination of a sinusoidal tangential oscillation of a wall with
onstant flow suction/blowing normal to the wall.
The paper is organized as follows. Section 2 presents the gov-
rning equations and the corresponding boundary and initial
onditions. The derivation of the analytical solution is explained
n Section 3 and the paper discusses some interesting results in
ection 4, prior to the closure of this paper.

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:doac@ufpa.br
mailto:fpinho@fe.up.pt
dx.doi.org/10.1016/j.jnnfm.2008.09.006
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. Governing equations and boundary conditions

The flow under consideration is created by a plate perpendicu-
ar to the y-axis, oscillating in the x-direction and the fluid is in
he region y ≥ 0. The plate is porous and the suction/blowing is
haracterized by a constant time-independent velocity vw (vw > 0
or blowing; vw < 0 for suction). The equations will be presented
n normalized form for which the following scales are used: the
haracteristic velocity is the amplitude of the velocity oscilla-
ion of the plate (U0); the characteristic length is U0/ω, where

is the frequency of oscillation of the plate, time is normalized
s ωt and the stresses are normalized by �pω, where �p stands
or the polymer viscosity coefficient. The normalization of the
quations gives rise to some well known non-dimensional num-
ers, such as the Reynolds (Re) and Deborah (De) numbers, which
re defined as Re = �U2

0 /ω�p and De = �ω, respectively, with �
eing the relaxation time of the polymer. Other non-dimensional
uantities help understand the flow physics and are introduced
ext.

The propagation of shear waves in elastic fluids at rest takes
lace at a well defined velocity c =

√
�p/��, therefore leading to

he definition of an elastic Mach number (M), the ratio of the char-
cteristic velocity to the wave speed. It is easy to demonstrate
hat this leads to M = √

Re × De. Another non-dimensional param-
ter that helps understand the dynamics of viscoelastic flows is
he elasticity number (E), which has several interpretations (see
hapter 7 in Joseph [9]). E is defined as the ratio between the Deb-
rah and Reynolds numbers (E = De/Re) and is usually viewed as
he ratio of elastic to viscous forces, but given the choice of scales
dopted, here it is more accurate to interpret it as the ratio between
lastic to inertial forces. Also, instead of the more classical alterna-
ive interpretation as the square of the ratio of two lengths over a
elaxation time period, namely the diffusion length and the length
raveled by shear waves, here E should be interpreted as the square
f the ratio between an elastic length scale and the amplitude
ength of the oscillation, with the former defined on the basis of
he relaxation time and the latter using the period of oscillation.
inally, sometimes it will also be useful to work with an injec-
ion Mach number (Mw ≡ vw

√
Re × De) instead of the normalized

uction/injection velocity vw , as will become apparent in the pre-
entation of results. The relevance of Mw is clear as it naturally arises
rom the equations.

The normalised momentum equation for this unsteady flow is

∂u

∂t
+ vw

∂u

∂y
= 1

Re

∂�xy,p

∂y
(1)

ith the polymer shear stress (�yx = �xy) given by the UCM differen-
ial constitutive equation having a relaxation time � and a viscosity
oefficient �p, as mentioned above.

For an UCM fluid, the polymer extra stress tensor is written in
ndex notation and in non-dimensional form as in Eq. (2):

ij,p + De

(
∂�ij,p

∂t
+ uk

∂�ij,p

∂xk
− �jk,p

∂ui

∂xk
− �ik,p

∂uj

∂xk

)
= ∂ui

∂xj
+ ∂uj

∂xk

(2)

Eq. (2) simplifies to the following set, where for convenience the
ubscript p has been dropped.(

∂�xy ∂�xy ∂u
)

∂u

e

∂t
+ vw

∂y
−

∂y
�yy + �xy =

∂y
(3-a)

e

(
∂�yy

∂t
+ vw

∂�yy

∂y

)
+ �yy = 0 (3-b)

t
t
g
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e

(
∂�xx

∂t
+ vw

∂�xx

∂y
− 2

∂u

∂y
�xy

)
+ �xx = 0 (3-c)

This is further simplified by considering that �yy = 0 (cf.
ppendix A). The equations to be solved are subject to the following
oundary and initial conditions:

t y = 0, u(0, t) = eit (4-a)

t y = ∞, u(∞, t) = 0 (4-b)

t t < 0, u(y, t) = 0 (4-c)

. Analytical solution

The second assumption made here is that u = u(�), �xx = �xx(�)
nd �xy = �xy(�), where � = At + By, and Eqs. (1), (2), (3-a) and (3-c)
ecome Eqs. (5-a)–(5-c).

A + vwB)
du

d�
= B

Re

d�xy

d�
(5-a)

e (A + vwB)
d�xy

d�
+ �xy = B

du

d�
(5-b)

e
[

(A + vwB)
d�xx

d�
− 2B

du

d�
�xy

]
+ �xx = 0 (5-c)

Using Eq. (5-b) to eliminate du/d� in Eq. (5-a) and rearranging
rovides the following differential equation for �xy:

De (A + vwB) − B2

Re (A + vwB)

]
d�xy

d�
+ �xy = 0 (6)

Defining 1/˛ = A + vwB and making 1/z = De(A + vwB) −
B2/Re(A + vwB)) = (De/˛ − ˛B2/Re), the integration of Eq. (6)
rovides the shear stress distribution of Eq. (7), where c1 is to be
etermined later from a boundary condition.

xy = e−z�+c1 (7)

This shear stress and its derivative are back-substituted into Eq.
5-a), which provide the velocity derivative (du/d�) and the velocity
istribution after integration, as follows:

du

d�
= B

Re (A + vwB)
(−z) e−z�+c1 → u = B

Re (A + vwB)
e−z�+c1 + c2

= B˛

Re
e−z�+c1 (8)

here c2 = 0 on account of the boundary condition u(∞, t) = 0.
To obtain a differential equation on the normal stress �xx, du/d�

rom Eq. (8) and �xy from Eq. (7) are substituted into Eq. (5-c) and
earranged to give

De

˛

d�xx

d�
+ �xx = −2z

De B2˛

Re
e−2z�+2c1 (9)

ultiplying by e(˛/De)� gives

d
d�

(
e(˛/De)��xx

)
= −2z

B2˛2

Re
e�(−2z+˛/De)+2c1 (10)

nd integrating provides the following normal stress distribution:

xx = 	 e−2z�+2c1 + c3 e−(˛/De)� with 	 = −2z
DeB2˛2

Re (˛ − 2z De)
(11)
The first term on the right-hand side of Eq. (11) is 	�2
xy, whereas

he second term must vanish when t → ∞. In the absence of suc-
ion/blowing, this particular boundary condition helps to define the
eneral quantities A and B introduced early in this section.
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At the wall the general velocity profile of Eq. (8) only has a real
omponent and it must be consistent with the no-slip condition.
ence, at y = 0 this equality gives

B

Re (A + vwB)
ec1 e−zAt = eit (12)

rom which two results are obtained: (1) the constant of integration
1

1 = ln
[

Re (A + vwB)
B

]
(13)

nd (2) the equality −zA = i

zA = i → −A

De (A + vwB) −
(

B2/Re (A + vwB)
) = i. (14)

This is an algebraic second-order equation on B, that can be
olved to give two possible solutions for B.

= Avw Re (i − 2De) + mAi
√

Re
√

v2
wRe + 4 (i − De)

2
(
v2

w De Re − 1
) with

= ±1 (15-a)

It is clear that there is a singularity when v2
w De Re = 1 (this cor-

esponds to Mw = ±1). For this particular viscoelastic case, Eq. (14)
urns out to be linear on B and its solution is

= −A (1 − i De) (1 + i2 De)

v∗
w

(
1 + i4De2

) (15-b)

here vw = v∗
w = ±1/

√
De Re or, alternatively using the

ther set of non-dimensional numbers (M, E, Mw), B =
−AM

(
1 − iM

√
E
)(

1 + i2M
√

E
))

/
(

M∗
w

(
1 + i4M2E

))
and

w = M∗
w = ±1. The asterisk is used to denote the critical value.

Given the definition of � and that the velocity must vanish as
→ ∞, it is necessary for the real part of the exponential appearing

n the velocity profile (Eq. (8)) to be negative −(zB)real < 0. Given the
xpressions above, and after some laborious mathematics carried
ut with MATHEMATICA v5 from Wolfram Research, the real and
maginary parts of –zB are given by Eqs. (16-a) and (16-b), respec-
ively. This is for the general case where v∗2

w De Re /= 1 (or Mw /= ± 1).

−zB)real =
{

vw Re a1 + √
Re ϕ1/4 [a2 + a3 + a4]

}
(
v2

w Re De − 1
)

[a5 + a6 + a7]
(16-a)

−zB)imag =
−i

√
Re

{
m

(
1 + v2

w Re De
)

a8+vw
√

Re (a9 + a10 + a11)
}

(
v2

w Re De − 1
)

(a5 + a6 + a7)
(16-b)

here

= v4
w Re2 − 8v2

w Re De + 16
(

1 + De2
)

= Arg
[
v2

w Re − 4De + 4i
]

= arctan

(
4

v2
w Re − 4De

)

ith functions a1 to a11 given below.

1 = −8 + v2
w Re

(
v2

w Re + 4De − 2
√

ϕ
)

2 = −2mv2
w Re

(
v2

w Re + √
ϕ
)

cos

(
�

2

)

3 = −v3
w Re3/2ϕ1/4 cos �

d
c
a
i
v
s
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4 = −
(

1 + v2
w Re De

)

×
[

m
(
v2

w Re−4De + √
ϕ
)

+ 2vw

√
Reϕ1/4 cos

(
�

2

)]
sin

(
�

2

)

5 = v4
w Re2 + 8 + 16De2 + 2v2

w Re
√

ϕ

6 = 2mvw

√
Re

(
v2

w Re + 4De + √
ϕ
)

ϕ1/4 cos

(
�

2

)

7 =
(
v2

w Re + 4De
)√

ϕ cos �

8 =
(

3v2
w Re + 4De + √

ϕ
)

ϕ1/4 cos

(
�

2

)

9 =
(

1 + v2
w Re De

)(
v2

w Re + 4De + 2
√

ϕ
)

10 =
(

1 + v2
w Re De

)√
ϕ cos �

11 = 4De ϕ1/4

[
2mvw

√
Re sin

(
�

2

)
+ ϕ1/4 sin �

]

For the specific case of v∗2
w De Re = 1 (or Mw = M∗

w = ±1), the
olutions of (−zB)real and (−zB)imag are given by

−zB)real =
√

EM2

M∗
w

(
1 + 4EM2

) (16-c)

−zB)imag =
M

(
1 + 2EM2

)
M∗

w

(
1 + 4EM2

) (16-d)

It is now possible to back-substitute some of the above equations
o obtain the final expressions for the velocity and stress fields. For
he velocity, the final equation takes the form

= e−z� → u = e−z(At+By) → u = e(−zB)realy ei[t+(−zB)imagy] (17)

here ei[t+(−zB)imagy] = cos
[
(−zB)imagy + t

]
and (−zB)real and

−zB)imag are given by Eqs. (16-a) and (16-b) for Mw /= 1 and by
qs. (16-c) and (16-d) for Mw = 1, respectively.

The condition (−zB)real < 0 clarifies which of the two possible
olutions of Eq. (15-a) exists. Only the solution for m = −1 obeys
his condition for Newtonian flows and UCM flows with suction.
or UCM flows with blowing m = −1 always provides a physically
ealistic solution, but for Mw > 1 the m = +1 solution is also phys-
cally possible leading to negative values of (−zB)real. In this case,
he velocity profile of Eq. (17) must be substituted by a linear com-
ination of the two solutions, a matter to be discussed in Section
.4.

The stress field results from substituting the velocity field solu-
ion into Eqs. (7) and (11) for the xy and xx components, respectively.
he corresponding expressions are given in Appendix B.

. Results and discussion

Some results of the previous section are discussed in detail here
o investigate the role of the various relevant independent non-
imensional numbers. It starts with the revisit of the Newtonian

ase and of the viscoelastic solution in the absence of cross flow
fter which the new results of this work are presented. First, the
nvestigation of the viscoelastic flow with suction for low and large
iscoelastic Mach numbers for which there is a limit when the
uction velocity equals the elastic wave speed (Mw = −1). This is
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ollowed by results with blowing through the porous plate, which
oes not suffer from the same limitation, but leads to a richer
et of solutions including chaotic-like behavior under some con-
itions.

To help analyze and interpret the results two important quan-
ities are defined: yc is the normalized peak-to-peak distance of
wo consecutive oscillations and yp is the normalized penetration
epth, measuring the penetration of the oscillating wave. This is
he distance from the plate to the location where the maximum
mplitude of oscillation has been reduced to 1% of the amplitude of
scillation of the plate, so it is equivalent to a boundary layer thick-
ess. These quantities are given by Eqs. (18) and (19), respectively.

c = 2�

(−zB)imag
(18)

p = − ln (0.01)
(−zB)real

= 4.6
(−zB)real

(19)

With the characteristic time (tc = 2�/ω) of the plate oscillation
he velocity of penetration of the wave (Vp) can also be determined
s the ratio between the peak-to-peak distance and the character-
stic time scale, as given by Eq. (20).

p = yc

tc
→ Vp = U0

(−zB)imag
(20)

.1. Newtonian flow with a porous oscillating wall

Fig. 1 presents velocity profiles for Newtonian fluids to assess
he combined effects of transverse velocity and Reynolds number
n the absence of elasticity. These include the situation with no cross
ow of Stokes [10] and Lord Rayleigh [11]. All the profiles shown
ere and henceforth correspond to the moment when the oscillat-

ng plate is at the maximum amplitude of oscillation. Fig. 1a is for
uction, whereas Fig. 1b concerns blowing. For small suction veloci-
ies (|vw| ≤ 0.01) the profiles of stream-wise velocity are unaffected
y suction. As suction strengthens the penetration depth decreases,
he stream-wise velocity profiles approach the plate and the ampli-
ude of fluid oscillation away from the plate is also reduced. This
ecrease of the amplitude of oscillation is due to the development of

arger stream-wise shear stresses when suction brings the oscillat-
ng layers of fluid close to each other and to the plate, increasing the
elocity gradients. However, the peak-to-peak distance yc increases
nd consequently the ratio yp/yc decreases faster than the penetra-
ion depth as can be seen on the left-half of Fig. 2a. Note that suction
elocities are negative and blowing velocities are positive.

For weak injection, the stream-wise velocity profiles are also
dentical to the profile for an impermeable wall. As the blowing
elocity is raised, the penetration depth increases, fluid is pushed
way from the wall and the amplitude of the oscillations of the
uid layers away from the wall also increase, i.e., blowing has the
pposite effect of suction. This is also clear from inspection of the
ight-half of Fig. 2a, where both the peak-to-peak distance and the
atio yp/yc increase with blowing velocity, showing the opposite
rends to those depicted on the left-side of the graph pertaining to
uction.

To understand the effect of Reynolds number on the plot of u/U0
ersus yω/U0 one is reminded that an increase in Reynolds number
equires an increase in the amplitude of the oscillation, a decrease
n its frequency or both (not to mention viscosity), i.e., the ordinate
f the plot, yω/U0, decreases and the waves become compressed

owards the plate, leading to higher shear rates and in spite of the
eduction in the amplitude of the waves away from the wall.

At Re = 1 the effect of the oscillating plate penetrates visibly to
s much as y = 8, but for suction this is significantly reduced on
ncreasing the Reynolds number (at Re = 10 the fluid is almost at

p
s
i

f

ig. 1. Influence of Reynolds number and velocity through the porous wall on the
rofiles for Newtonian fluids: (a) Suction with Re = 1 and Re = 10; (b) Injection with
e = 1.

est at y = 3, cf. Fig. 1a), i.e., the penetration depth decreases on
nverse proportion to Re. With blowing the opposite is true with the
enetration depth increasing with cross flow velocity (cf. Fig. 2a).
he variation of yp with Reynolds number is non-linear due to the
ffect of the cross flow velocity. This variation is by a factor of 3
t vw = 0 rising to a factor of 10 as the cross flow velocity tends to
nfinity, regardless of whether there is suction or blowing.

In contrast to yp and yp/yc the variation of the peak-to-peak
istance with vw plotted in Fig. 2b has a non-monotonic behav-

or and depends only on the magnitude of the cross flow velocity.
t is symmetric with the minimum value attained for the imper-

eable wall. At large cross flow velocities yc becomes independent
f the Reynolds number. For suction yc is always larger than the
enetration depth, so only a single cycle, or part of it is actually

een in Fig. 1. At both vw = 0 and infinite suction yp/yc becomes
ndependent of the Reynolds number.

The Reynolds number effect with blowing is similar to the effect
or suction, but for conciseness no further plot is shown for this
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Fig. 2. Variation of normalized penetration depth (yp) and of yp/yc with cross flow
v
d
i
t
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v
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F
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d
e
l
n
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c
o
c
for M = 3.2 at Re = 10 in spite of the ordinate difference). Inspection
of Fig. 4, where penetration-depth related quantities yp

√
Re and

yp/yc are plotted as a function of Deborah number, as for Newto-
nian fluids, shows that both quantities are independent of Reynolds
elocity for Newtonian fluids (red and circles (Re = 1), blue (Re = 10)): (a) penetration
epth (yp) (full lines) and of yp/yc (dashed lines); (b) peak-to-peak distance (yc). (For

nterpretation of the references to color in this figure legend, the reader is referred
o the web version of the article.)

ase. The shear stress profiles are in agreement with the corre-
ponding velocity profiles of Fig. 1 as far as the effects of Re and
w are concerned, taking into account that they are proportional
o the velocity gradient, and again they are not shown here for
onciseness.

.2. Viscoelastic flow with an impermeable oscillating wall

The second reference case pertains to flow of viscoelastic fluids
ithout cross flow, the solution of which can be found elsewhere

3,4]. Representative stream-wise velocity profiles at Reynolds
umbers of 1 and 10, and showing the effects of Deborah num-

er, are plotted in Fig. 3. For De ≤ 0.01, cases here corresponding to
	 1, there are hardly detectable differences relative to the New-

onian profiles. On increasing the Deborah number, or elastic Mach
umber, two different characteristics become obvious. First, the
hape of the velocity profile progressively evolves from that of a

F
b
R
i

ig. 3. Influence of Reynolds and Deborah numbers on the velocity profiles in the
bsence of suction/injection at Re = 1 and 10.

iffused wave at low elastic Mach numbers towards a less damp-
ned wave (elastic wave) containing more and more visible cycles at
arge Mach numbers (or large Deborah numbers). At low Reynolds
umbers, as for Re = 1 in Fig. 3, it looks as though this change of
ehavior is associated with the transition from sub-critical to super-
ritical flow (M = 1 defining the critical condition), but inspection
f data for Re = 10 shows that the elastic Mach number is not the
ritical parameter (the curve for M = 1 at Re = 1 looks like the curve
ig. 4. Variation of characteristic length scales yp
√

Re and yp/yc with Deborah num-
er in the absence of suction: red lines and circles Re = 1; blue lines and triangles
e = 10. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of the article.)
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umber in the absence of cross flow, and only depend on the Debo-
ah number. The dependence of yp/yc on De is non-linear only at low
e and becomes linear at De ≥ 1. The dependence on the Reynolds
umber is identical to that seen for Newtonian fluids as it should be
ecause the momentum equation is linear in the absence of cross
ow (as well as at constant cross flow velocity). It follows from
imensional analysis (PI theorem) that u/U0 is a function of y/

√
t


rom which the
√

Re dependence issues.
On increasing De, the amplitude of the oscillating wave is also

rogressively less dampened on moving away from the plate and
onsequently the penetration depth of the wave increases. Simul-
aneously, the shear wave speed and the peak-to-peak distance (yc)
f the traveling wave decrease with De and more and more cycles
ecome visible in Fig. 3.

This is consistent with the definition of the shear wave speed in
fluid at rest c =

√
�/ (��) = U0/M = U0/

√
Re De, which decreases

s the Mach or Deborah numbers rise. The fluid velocity is normal-
zed by the amplitude of the velocity oscillation at the plate, so
ny change in this amplitude should not affect the plotted veloc-
ty, other factors being equal. The waves become more persistent
nd the wave propagation speed decreases on account of elasticity
nd this is well seen in the increase of yp

√
Re with De shown in

ig. 4. However, in contrast to the impact of cross flow of the previ-
us sub-section, the Deborah number does not change the impact
f Reynolds number in a non-linear manner. The plot of yp

√
Re

ersus De in Fig. 4 collapses the penetration data pertaining to dif-
erent Reynolds numbers. The same happens with the peak-to-peak
istance and that explains the Reynolds number independence of
p/yc.

.3. Viscoelastic flow with suction through the porous oscillating
all

As for Newtonian fluids, the solutions to this case require m = −1
n Eq. (15-a), whereas m = +1 implies physically unrealistic solu-
ions.

The two plots of Fig. 5 are for a constant Reynolds number of
and Deborah numbers of 0.01 and 1, respectively. Within each

lot the suction velocity is varied, but no solution is ever obtained
hen the suction velocity exceeds the wave speed, i.e. for

∣∣Mw

∣∣ > 1.
hen the suction velocity equals the wave speed (Mw = −1) only

he fluid particles attached to the plate move in the stream-wise
irection and elsewhere the stream-wise velocity is zero (but not
he normal velocity v = vw).

Fig. 5a pertains to subcritical Mach numbers (M < 1) and Fig. 5b
s for M = 1. The effects of Deborah number are those expected
rom the findings of the previous section, but now combined with
uction effects. Accordingly, the stream-wise velocity profiles are
ampened very quickly on moving away from the wall and the
tream-wise velocity vanishes essentially after one full period of
scillation. For M = 1 (higher De), the amplitude of the oscillation is
tronger and at y = 10 the oscillation is weak, but still visible. The
eduction in the rate of decrease of the amplitude of oscillation with
uction due to increases in fluid elasticity is especially well shown
n comparisons between Fig. 5a and Fig. 5b. In Fig. 5b more than
ne cycle is visible because the waves are less dissipative than in
ig. 5a.

The plot of Fig. 6 pertains to a higher Reynolds number of 10 and
Deborah number of 10 corresponding to a hypercritical elastic

ach number (M > 5). The wave behavior is now largely dominated

y fluid elasticity rather than by viscous effects with several cycles
n evidence especially when suction is weak. For conciseness, pro-
les at lower Deborah numbers and Re = 10 are not shown since
hey are similar to those of Fig. 5, even though they are closer to

s
F
t
t
s

ig. 5. Effect of suction velocity through the porous plate on the velocity profiles for
e = 1: (a) De = 0.01 (M = 0.1 and E = 0.01); (b) De = 1 (M = 1 and E = 1).

he wall on account of the Reynolds number effect. As for Re = 1,
w = −1 marks the limit of physical solutions.

The variations of the penetration depth and ratio yp/yc with the
lastic suction Mach number are plotted for Re = 1 and Re = 10 in
ig. 7a and b, respectively, as a function of Deborah and Reynolds
umbers. Their variations with Mw are non-linear at low Deborah
umber and tending to linear as the Deborah number increases and
he flow becomes dominated by elasticity. As for viscoelastic flow in
he absence of cross flow, Fig. 7a and b confirms that the penetration
epth and the peak-to-peak distance continue to scale with 1/

√
Re

ven in the presence of combined effects of elasticity and suc-
ion as it should be from the linearity of the momentum equation
nd dimensional analysis arguments. For conciseness only yp

√
Re is

lotted in Fig. 7a. The change of wave behavior from liquid-like to

olid-like is well shown in the variations of yp/yc with De plotted in
ig. 7b. At low Deborah numbers, as for Newtonian fluids, the peak-
o-peak distance is larger than the penetration depth (yp/yc < 1), but
his ratio increases significantly with De leading to yp/yc > 1, corre-
ponding to more visible cycles as seen in Fig. 6. As De increases the
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ig. 6. Effect of suction velocity through the porous plate on the velocity profiles for
ypercritical elastic Mach numbers (Re = 10 and De = 10 (M = 10 and E = 1)).

ow characteristics also become progressively independent of the
mount of suction. At Mw = −1 it is clear that yp/(yc × De) attains
constant value of 14.64. So, even though the analytical solution

s somewhat complex, this complex viscoelastic flow still follows
imple scaling laws.

.4. Viscoelastic flow with blowing through the porous oscillating
all

In contrast to suction, with injection through the porous plate
he physical solutions are not limited to sub-critical elastic Mach
umbers (Mw < 1) and three distinct flow regimes are observed as

nvestigated below.
For sub-critical conditions there is still a single physically cor-

ect solution, which corresponds to m = −1 in Eq. (15-a). The m = +1
olution violates the boundary condition (4-b), which imposes that
nly negative values of (−zB)real are valid. In these cases the velocity
rofiles plotted are still given by Eq. (17).

However, for super-critical conditions m = +1 also implies
−zB)real < 0 and the profiles plotted now correspond to the lin-
ar combination of the two possible solutions of Eq. (21) (m = ±1)
ogether with the boundary condition (4-a). This is so because a
inear combination of the two solutions is also a solution and this
s carried out introducing parameter c3.

= c3 e−z�+ + (1 − c3)e−z�− (21)

Here, to investigate the relevance of the m = −1 and m = +1 con-
ributions the coefficient c3 is assumed to be 0.5 to equally consider
he influence of each solution to u.

At hypercritical conditions, and even though there are still two
nalytical solutions, the solution for m = −1 dominates the flow as
ill be shown in Section 4.4.2.

.4.1. Sub-critical elastic injection Mach number flow
Fig. 8a and b shows transverse profiles of the stream-wise veloc-
ty for Reynolds numbers of 1–10 at various Deborah numbers,
ll cases pertaining to sub-critical injection elastic Mach numbers
Mw < +1). The effect of blowing is opposite to that seen in the
revious sub-section for suction. The penetration depth of the oscil-

ations, its wavelength and amplitude increase with Mw , while wave

e
t
t
M
p

ig. 7. Variation of characteristic lengths with suction elastic Mach number as a
unction of Deborah and Reynolds numbers: (a) yp

√
Re; (b) yp/yc.

ampening becomes less pronounced with more complete cycles
isible. This effect is especially strong when Mw approaches the
ritical value of +1.

The comparisons between the plots of Fig. 8a–c shows complex
on-monotonic effects of Deborah and viscoelastic injection Mach
umbers, which are summarized in the penetration depth plots of
ig. 9. As previously seen with suction and without cross-flow, the
se of

√
Re collapses data as far as Reynolds number effects are

oncerned. At low Deborah numbers (say, De = 0.01), the cross flow
trongly enhances the amplitude of the oscillations in a non-linear
ay and strongly reduces the dampening effects of viscous shear

tresses by pushing fluid away from the wall and consequently low-
ring the shear rates, thus making more cycles visible. On increasing

he Deborah number the cross flow still enhances the amplitude of
he oscillations, but by a lesser amount and the variations with

w become more linear (cf. Fig. 9). The amplitude of the velocity
rofiles at Mw ≈ 0.5 for De = 0.1 are not as large as for De = 0.01 in



D.O.A. Cruz, F.T. Pinho / J. Non-Newtonian Fluid Mech. 157 (2009) 66–78 73

F
v
y

F
a

e
a
p
i
l
h
t
c

F
f
a
a

ig. 9. Variation of characteristic lengths as a function of Deborah number and the
iscoelastic injection Mach number under the sub-critical injection conditions: (a)
p
√

Re; (b) yp/yc.

ig. 8a and b. So, at low Deborah numbers the flow characteristics
re essentially dominated by the injection (Mw).

Further increasing the Deborah number to 1 and 10, makes
lasticity dominate the flow and the variations of the flow char-
cteristics with Mw weaken. In particular, the variations of the
enetration depth and the peak-to-peak distance in Fig. 9 become

dentical, leading to constant yp/yc that are independent of Mw at

arge De. At very low values of Mw the velocity profiles at high De
ave more cycles than at lower De (cf. Fig. 8b and c), because of
he more solid-like nature of the waves, but on increasing Mw the
hanges are small (cf. Fig. 8c).

ig. 8. Effect of injection velocity through the porous plate on the velocity profiles
or sub-critical injection elastic Mach numbers (Mw < 1): (a) Re = 1, De = 0.01 (M = 0.1
nd E = 0.01) and De = 0.1 (M = 0.32 and E = 0.1); (b) Re = 10, De = 0.1 (M = 1 and E = 0.01)
nd De = 1 (M = 3.2 and E = 0.1); (c) Re = 10, De = 10 (M = 10 and E = 1).
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It is this large effect of Mw at low De and the small effect of Mw

t high De that results in the non-monotonic variations observed
nder sub-critical conditions well illustrated in Fig. 9. This com-
lex behavior already contrasts with the monotonic variations seen
hen the cross-flow originates from suction at the porous plate.
evertheless, the sub-critical flow with blowing is well-behaved in

he sense that the solution of Eq. (15-a) is unique with m = −1.

.4.2. Critical and super-critical elastic injection Mach numbers
Fig. 10a and b presents transverse profiles of stream-wise veloc-

ty for critical (Mw = 1) and supercritical (Mw > 1) elastic injection
ach numbers corresponding to the same Reynolds and Deborah

umbers of Fig. 8a–c. These velocity profiles represent Eq. (21) and
orrespond now to the sum of the two possible solutions for m = ±1,
ut first we look at the variations of the penetration depth (y±

p
√

Re)
nd peak-to-peak distance (y±

p /y±
c ) with Mw as a function of De and

e and using log-log coordinates. For m = −1, data from the sub-
ritical Mw region is included. Starting with m = −1 we observed
hat log (y−

p
√

Re) and log (y−
p /y−

c ) tended to constant values when
w → 0 (a minus superscript indicates m = −1), whereas when Mw

rew beyond 1 the log–log variations were linear with equal slopes
nd separations suggesting that in this region y−

p
√

Re and y−
p /y−

c

cale uniquely with Mw/
√

De, as shown in Fig. 11a and b.
For m = +1, (log

(
y+

p
√

Re
)

) grows linearly at large log (Mw) also
ith equal slopes and separations, but now at equal values of Mw,
igher values of y+

p
√

Re correspond to higher values of De in clear
ontrast to the behavior for m = −1. This indicates that at large Mw,
+
p
√

Re now scales uniquely with Mw
√

De, as shown in Fig. 11c,
ather than with Mw/

√
De as was the case for m = −1. Indeed, look-

ng at the limiting behaviors of y+
p and y−

p for Mw → +∞ give
he results of Eq. (22), which are consistent with the plots. These
quations also explain the three times larger slope of y−

p
√

Re ver-
us Mw/

√
De of Fig. 11a in relation to the slope of y+

p
√

Re versus

w
√

De in Fig. 11c at large Deborah numbers. At even larger values
f Mw/

√
De the slope difference would be by a factor of 4.

lim y+
p

w→+∞
∝ Mw

√
De√

Re
(22-a)

lim y−
p

w→+∞
∝ M3

w

De3/2
√

Re
+ M4

w

4De (1 + De)
√

Re
(22-b)

owever, the curves for De = 10 in Fig. 11c only seem to comply with
hese findings at very large values of Mw and show an intermediate
ehavior at lower Mw. The reasons for this will be explained shortly.

The behavior of log
(

y+
p /y+

c

)
contrasts with all others and in par-

icular with that of log
(

y−
p /y−

c

)
in Fig. 11b in the sense that y+

p /y+
c

s almost constant for each value of De and consequently it does not
cale with Mw

√
De. Instead, the correct scaling is

(
y+

p /y+
c

)
/De ver-

us Mw as shown in Fig. 11d. This figure shows again the existence of
large deviation in the behavior of the De = 10 curve, which already
ffects the curve at De = 1, but to a lesser extent. Indeed, plotting
y+

p /y+
c

)
/De in the range 1 ≤ De ≤ 10 in Fig. 11d as long dashes,( + +)
hows a progressive variation of yp /yc /De in this range, which
xplains the apparent discrepancy of the De = 10 data in Fig. 11c.
o understand this phenomenon the asymptotic behavior of y+

p
as derived when De grows to infinity but Mw is kept constant (or

w → 0 at constant Re). The result is given in Eq. (23) and confirms

ig. 10. Effect of injection velocity through the porous plate on the velocity profiles
or critical and supercritical injection elastic Mach numbers (Mw ≥ 1): (a) Re = 1,
e = 0.01 (M = 0.1 and E = 0.01) and De = 0.1 (M = 0.32 and E = 0.1); (b) Re = 10, De = 0.1

M = 1 and E = 0.01) and De = 1 (M = 3.2 and E = 0.1); (c) Re = 10, De = 10 (M = 10 and
= 1).
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ig. 11. Variation of characteristic lengths for critical and super-critical injection cond
d) y+

p /y+
c versus Mw .

hat when both De and Mw are large, y+
p
√

Re varies with Mw
√

De. At
ntermediate values the fast variations are the outcome of the large
owers of De and Mw.

lim y+
p

e→+∞
∝

√
De

(
32De4 Mw + 16De2 M3

w + M5
w

)
√

Re
(

4De2 + M2
w

)(
4De2 + 4De2 Mw + M2

w

) (23)

The variations of the stream-wise velocity profiles with Mw , De
nd Re of Fig. 10a–c have similarities to those seen in the sub-critical
egime, where the two different behaviors at low and high De were
dentified and are easy to interpret by looking also at Fig. 11a. When
e is very low and injection dominates flow characteristics, an

ncrease in Mw increases the amplitude of oscillations, with con-
omitant variations in its wavelength. As the Deborah number is
ncreased, but still in the region of Fig. 11a where the log

(
y−

p
√

Re
)

( √ )

ersus log Mw/ De is not yet a straight line, the amplitude of
scillations is lower at the same value of Mw than at lower De. Now
he effect of Mw has been reversed, because elastic effects start to
ake control of flow characteristics and the amplitude of oscillations
tart decreasing with an increase in Mw . In this intermediate region

s

s
(
w

: (a) yp Re versus Mw/ De; (b) yp /yc versus Mw/ De; (c) yp Re versus Mw × De;

here log
(

y−
p
√

Re
)

versus log
(

Mw/
√

De
)

is non-linear, a chaotic-
ike behavior starts to be observed for some cases provided Mw > 1,
s will be discussed.

In Fig. 10a an unusual behavior of the velocity profiles in the near
all region is already perceptible and this represents the beginning
f the chaotic-like behavior discussed in the next section. Here,
his is caused by the appearance of the second component of the
olution (for m = +1), which is only perceptible in the near plate
egion, because at this stage it is over-damped and it vanishes very
uickly.

The variation of the velocity profiles for Re = 10 in Fig. 10b and c
ith De and Mw and their relation with those of Fig. 10a for Re = 1

ollows the above arguments and are not discussed further.

.4.3. Solution duplicity and spatial chaotic behavior at

uper-critical elastic blowing Mach numbers

For Mw > 1 there are always two possible values of B corre-
ponding to m = ±1 and consequently two values for (−zB)real and
−zB)imag each. Note also that Eq. (15-a) is not valid for Mw = ±1, in
hich case the solution for B is given by Eq. (15-b). Therefore, from
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qs. (17) and (21), the velocity profile is given by

= c3 e(−zR)+
real

y cos
[
(−zB)+

imagy + t
]

+ (1 − c3) e(−zR)−
real

y cos
[
(−zB)−

imagy + t
]

(24)

here parameter c3 can take any numerical value. As explained
bove we consider here c3 = 0.5 to provide equal contributions from
oth solutions to u.

Since (−zB)+
real /= (−zB)−

real, the two contributions to the solution
ampen differently and with (−zB)+

imag /= (−zB)−
imag their shift fac-

ors are also different, i.e., they have different “spatial frequencies”
f oscillation. Hence, we observe a spatial rather than a temporal
ind of chaos whenever the two (−zB)imag are not rational multiples

nd this is called here spatial chaos.

In Fig. 10c some of the velocity profiles plotted do not exhibit
well-defined periodic shape, but show such spatial chaotic-like
ehavior. When Mw > 1, non-periodic stream-wise velocity pro-
les are found for certain combinations of Reynolds and Deborah

ig. 12. Effect of injection velocity through the porous plate on the stability of the
elocity profiles for super-critical injection elastic Mach numbers (Mw ≥ 1) at Re = 1
nd De = 10 (M = 3.2 and E = 10): (a) 1 < Mw ≤ 5; (b) 5 < Mw ≤ 20.
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umbers, as shown in the plots of Fig. 12 for Re = 1. All cases pertain
o De = 10 and in the range 1 < Mw ≤ 5 the velocity profiles exhibit
on-regular oscillations, whereas in the range 5 < Mw ≤ 20 only
he profiles for the lower values of Mw (5 < Mw ≤ 10) are irregular:
he profiles for Mw = 15 and 20 do not exhibit the irregularities.
o, this behavior occurs only at large Deborah numbers, but is lim-
ted to an intermediate range of supercritical injection elastic Mach
umbers, which in Fig. 11 corresponds to the regions before the

og–log straight lines where Mw > 1. In these regions both solu-
ions are attenuated in a similar way whereas at smaller or larger
alues of Mw, one of the solution components dominates resulting
n an almost periodic solution and in both cases the dominating
olution is that for m = −1. The different growth factors of y−

p and y+
p

ith Mw in Eqs. (22-a) and (22-b) confirm that the chaotic behavior
ill disappear when the two solutions become too different, with

ne predominating over the other, thus reducing their mutual inter-
erence. A similar behavior occurs at a higher Reynolds number of
0, but plots are not shown for conciseness.

. Conclusions

An analytical solution is derived for the flow of UCM fluids over
n oscillating porous plate in an infinite medium and both the
uction and blowing cases are investigated separately. Generally
peaking, at low Deborah numbers the cross flow controls the flow
roperties, whereas at high Deborah numbers the flow character-

stics become independent of the magnitude of the cross flow in
ach flow regime. More specifically, there are important differences
etween the suction and blowing cases, as below.

When there is suction through the plate the existence of a solu-
ion is limited to cases where the suction velocity does not exceed
he elastic wave speed, in contrast to the Newtonian flows for
hich there is always a solution. At low Deborah numbers the
ows are similar to those for Newtonian fluids, where the waves are
uickly dampened by viscous stresses. As the flow Deborah number
ncreases the waves evolve from diffused waves towards more per-
istent solid-like waves with more cycles visible. The penetration
epth increases and the wave peak-to-peak distance decreases. The
uction solution corresponds to m = −1.

When there is blowing through the plate there are two sets of
olutions. For weak blowing, i.e. when the injection velocities are
maller than the elastic wave speed, the solution is unique and
eriodic and corresponds to m = −1, with the effects of injection
elocity opposite to those of the suction velocity. When the blow-
ng velocity exceeds the elastic wave speed the uniqueness of the
olution ceases and the velocity profile is now a linear combination
f two solutions (m = ±1). Their attenuation rates as well as their
hift angles are different and under low super-critical conditions
ne of the solutions dampens very quickly (m = +1) and the com-
ounded solution remains periodic except very close to the plate.
t large super-critical conditions, the attenuation rates are of simi-

ar magnitude and when the shift angles are not rational multiples
here is spatial chaotic-like behavior. At even larger super-critical
onditions the m = −1 solution again predominates and no spatial
haotic-like behavior is seen again in the compounded solution.

As far as inertia effects are concerned, the penetration depth
nd the peak-to-peak distance of the waves continue to scale with
/
√

Re regardless of the cross flow type and magnitude, as for New-
onian fluids. This is a consequence of the linearity of the momen-
um equation and is easily shown from dimensional analysis. For

ery large injection Mach numbers the injection flow characteris-
ics scale with the square root of the Deborah number, but in this
espect the scaling laws are different for each of the two solutions.
o, even though the analytical solution is somewhat complex, there
re simple scaling laws for this complex viscoelastic flow.
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The increased penetration depth of the oscillations is consis-
ent with findings in turbulent flow of viscoelastic fluids where the
amping effect of walls in reducing turbulence is seen to have a

onger range of action than for Newtonian fluids. Therefore, this
nalytical solution can inspire the development of Van Driest type
f damping functions for turbulence models of drag reducing flu-
ds.
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ppendix A. Demonstration that �yy = 0

Assuming that this solution depends on �, with � = At + By, Eq.
3-b) leads to �yy = ce−ϕ˛/De, where c is a constant of integration.
nserting this result into Eq. (3-a) and using ∂u/∂y from Eq. (1) the
ifferential equation for �xy becomes

1
z

− B2˛ De

Re
ce−˛�/De

)
d�xy

d�
+ �xy = 0 (I1)

he solution of which is given by Eq. (I4) with c’ as another constant
f integration.

xy = ec′(
e˛�/DeRe − B2 De cz˛

)−De z/˛
(I2)

This solution immediately implies that the profile of stream-
ise velocity will be given by

= B˛

Re
ec′(

e˛�/DeRe − B2De cZ˛
)−De Z/˛

(I3)

The initial condition (4-a) requires that a time-independent
erm should not exist in Eq. (I3), and this implies that c = 0 and
onsequently �yy = 0.

ppendix B. Expressions for the stress field

The shear stress is given by

�xy

)
real

= e(−zB)realy

˛

×
[

Revw (a12 − a13) − 2m
√

Reϕ1/4 cos

(
�

2

)
a14 − a15

]

(I4-a)

�xy

)
imag

= e(−zB)realy

˛

[
a16 + sin

(
t + y(−zB)imag

)
(−a17 + a18)

]
(I4-b)

here functions a12 to a18 take the form

12 =
(

4De + Re v2
w + √

ϕ
)

cos
(

t + y(−zB)imag

)

13 = 2
(

De Re v2
w − 1

)
sin

(
t + y(−zB)imag

)

14 = sin (−zB)imag + Re v2
w

(
cos

(
t + y(−zB)imag

)
( ))
−De sin t + y(−zB)imag

15 = 2m
√

Re
(

1 + De Re v2
w

)
ϕ1/4 cos

(
t + y(−zB)imag

)
sin

(
�

2

) a

a
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16 =
√

Re
(

2
(

De Re v2
w − 1

)
cos

(
t + y(−zB)imag

)

×
(

mϕ1/4 cos

(
�

2

)
−

√
Re vw

))

17 =
√

Re vw

(
4De + Re v2

w + √
ϕ
)

18 = 2mϕ1/4

(
Re v2

w cos

(
�

2

)
+

(
1 + Re De v2

w

)
sin

(
�

2

))

The normal stress �xx is described by

�xx)real = −e(−zB)realy
[
sin

(
t + y(−zB)imag

)
	2

+ cos
(

t + y(−zB)imag

)
	1

]
(I5-a)

�xx)imag = −e(−zB)realy
[
cos

(
t + y(−zB)imag

)
	2

+ sin
(

t + y(−zB)imag

)
	1

]
(I5-b)

here

1 = 2De Re2 (a19 + a20 + a21 + a22)
a23 + a24 + a25

2 = 4De Re2 (a26 + a27 + a28 + a29)
a30 + a31 + a32

ith

19 =
[
B2

i − B2
r − De Re + 2vw

(
B3

i + 2B2
i Br + BiB

2
r − 2B3

r

− (Bi + Br) De Re)]

20 = v2
w

[
3B4

i + 8B3
i Br + 6B2

i B2
r + 8BiBr

(
B2

r − De Re
)

− 5B4
r

]

21 = 2v3
w

[
2Bi

∥∥B
∥∥2 (

B2
i + 2BiBr + 3B2

r

)
+ De Re (Bi + Br)

×
(∥∥B

∥∥2 − 4BiBr

)]

22 = v4
w

[∥∥B
∥∥4

(Bi + Br) (3Bi + 5Br) + De Re
(

B4
i − 6B2

i B2
r + B4

r

)]

+ 2v5
w

∥∥B
∥∥6

(Bi + 2Br) + v6
w

∥∥B
∥∥8

23 = v4
wB8

i + 2v2
wB6

i [1 + 2vwBr (1 + vwBr)]

+
[
De Re + B2

r (1 + vwBr)2
]2

24 = 2B2
i

[
−De Re + Br (1 + vwBr)

(
Br + 3vwB3

r − 6De Re vw

+ 4v2
wB3

r + 2v3
wB4

r

)]

[ ( )]
26 = BiBr + vw

[
BiBr (Bi + 4Br) + B3

r + De Re (Br − Bi)
]

27 = 2BiBr

[
B2

i Br + BiB
2
r + 2B3

r + De Re (Br − Bi)
]
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[9] D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids, Springer Verlag, Berlin,
1990, Vol. 84 of Applied Mathematical Sciences Series.

[10] G.G. Stokes, On the effect of the internal friction of fluids on the motion of
8 D.O.A. Cruz, F.T. Pinho / J. Non-Ne

28 = v2
w + v3

w

[
2Br

∥∥B
∥∥2 (

B2
i + 2BiBr + 3B2

r

)
+ De Re (Br − Bi)

×
(

4BiBr +
∥∥B

∥∥)]

29 = v4
wBr

[∥∥B
∥∥4

(Bi + 4Br) − 2De Re Bi

(
B2

i − B2
r

)]
+ v5

wBr

∥∥B
∥∥6

n the above expressions Br is the real part of B (cf. Eq. (15)), Bi is the
maginary part and the norm of B is denoted ||B||. They are given by

|B|| =
√

B2
i

+ B2
r
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