
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

J. Non-Newtonian Fluid Mech. 163 (2009) 35–44

Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journa l homepage: www.e lsev ier .com/ locate / jnnfm

The effect of expansion ratio for creeping expansion flows of UCM fluids

R.J. Poole a, F.T. Pinho b,∗, M.A. Alves c, P.J. Oliveira d

a Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH, United Kingdom
b Departamento de Engenharia Mecânica, CEFT, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
c Departamento de Engenharia Química, CEFT, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
d Departamento de Engenharia Electromecânica, Unidade Materiais Têxteis e Papeleiros, Universidade da Beira Interior, 6201-001 Covilhã, Portugal

a r t i c l e i n f o

Article history:
Received 4 February 2009
Received in revised form 19 May 2009
Accepted 15 June 2009

Keywords:
Planar sudden expansion
UCM
Creeping flow
Expansion ratio effects

a b s t r a c t

A systematic numerical investigation on creeping flows in planar sudden expansions of viscoelastic fluids
obeying the upper-convected Maxwell model is carried out to assess the combined effects of viscoelas-
ticity, through the Deborah number, and expansion ratio (ER), which was varied between 1.25 and 32.
At large expansion ratios (ER ≥ 4) the flow becomes dominated by the downstream duct size and appro-
priately normalized quantities tend to be independent of ER. The recirculation size and strength become
decreasing functions of De, whereas the Couette correction (the normalized entry pressure drop due to
the presence of the expansion) increases. At small ER (ER ≤ 3), however, no simple scaling laws are found
and there is a complex interaction between De and ER leading to non-monotonic variations, with an
initial decrease in the recirculation length at low Deborah numbers, followed by an enhancement as De
increases.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Sudden expansion flows have been the topic of many investi-
gations for Newtonian fluids, in particular under turbulent-flow
conditions, where the flow is simultaneously geometrically simple
and dynamically complex with shear and extensional flow regions
in combination with all the mechanisms of turbulent production,
dissipation and diffusion [1]. Most of these Newtonian turbulent
works are concerned with the corresponding axisymmetric geom-
etry [2,3] given their easier construction and inherent symmetry.
Limited results for viscoelastic fluids in turbulent flow have also
been reported in both planar [4] and axisymmetric geometries
[5–7].

Investigations under laminar flow conditions have also been
conducted especially aimed at exploring the asymmetric flow
characteristics in two-dimensional or three-dimensional channels
[8–10]. This has obviously motivated the corresponding research
with non-Newtonian fluids [11–14], but there are also works aimed
at simply determining pressure-loss coefficients for engineering
purposes [15]. However, these non-Newtonian investigations, as
well as others reviewed by Poole et al. [16], are under conditions
of non-negligible inertia.

In this work we want to tackle planar expansion flows under
conditions of vanishing inertia typical of polymer processing opera-
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tions. In their two-dimensional numerical investigation on creeping
flows in a 1:3 plane sudden expansion (expansion ratio, ER = D/d = 3,
where D and d are the large and small half-channel widths) for
upper-convected Maxwell (UCM) and Oldroyd-B (Old-B) fluids,
using refined meshes and higher-order discretization schemes,
Poole et al. [16] found that fluid elasticity reduced the length of the
recirculation (XR) by less than 20% relative to the corresponding
Newtonian flow. Simultaneously, the strength of these recircula-
tions as measured by the recirculating flow rate was reduced by 60%.
These findings were in contrast to the results of previous research,
which predicted the elimination of the recirculation region as vis-
coelastic normal stresses increased with Deborah number [17,18].
The results of Poole et al. [16] for the Phan-Thien—Tanner (PTT)
model were even more dramatic, because after an initial decrease
in XR at low Deborah numbers, XR increased for De > 15, while the
recirculation intensity stabilized to about 35% of the correspond-
ing Newtonian value. Whereas these simulations relied on refined
meshes and high-resolution differencing schemes, the early predic-
tions of [17] were carried out on very coarse meshes, while [18] used
coarse meshes together with a first-order interpolation scheme for
advection.

Those simulations of Poole et al. [16] were for a single, fixed
expansion ratio ER = 3 and also reported the onset of a “lip vortex”
in the upstream channel, near the singularity (re-entrant corner),
for the UCM and Old-B fluids and the corresponding “converging
streamlines” phenomenon. The authors attributed these converg-
ing streamlines to the increase in XR, outweighing at higher Deborah
number the competing effect of the normal stresses, which pre-
cluded the continuous decrease in the recirculation length with
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De. Clearly, the sudden expansion flow is more complex than ini-
tially thought on account of its geometric singularity, which is also
responsible for convergence difficulties in more complex flows con-
taining sudden expansions as found by Afonso and Pinho [19].

The present investigation is a follow-up to the work of Poole et
al. [16] to further explore and understand the flow dynamics of UCM
fluids in plane sudden expansions and in particular with an assess-
ment of the effects of expansion ratio, which is here varied between
1.25 and 32. Although such high expansion ratios are rare in actual
processing operations involving polymers there is the need, from a
fundamental point of view, to understand the vortex evolution for
a wide range of geometrical and flow conditions. In this work we
find that the behavior reported previously regarding the attenua-
tion of vortex activity by viscoelasticity is in fact not unique [16]
being only typical of moderate to large (ER > 2) expansion ratios.
For expansion ratios below 3 the variation of XR with De is non-
monotonic, showing first a decrease followed by an increase in XR,
with the minimum XR condition taking place at Deborah numbers
well below 1. This more extensive characterization of viscoelastic
flows and the information and data provided by the present study,
in particular the vortex size and intensity as a function of De num-
ber (that is, flow rate) and the pressure drop due to the expansion
may be useful for the practical design of processing equipment in
addition to their use for benchmarking purposes. In addition the
contraction–expansion geometry is a well-known benchmark and
studying the expansion in isolation may help in the understanding
of this problem for example in illuminating the contribution of the
expansion in the overall enhanced pressure drop.

In the remaining of this paper we briefly present the governing
equations and the numerical method (Section 2), then in Section 3
the geometries and computational meshes are described and the
results are presented and discussed in Section 4, prior to closure.

2. Governing equations and numerical method

The flow under investigation is laminar and the fluid is
assumed incompressible leading to the following mass conserva-
tion equation and momentum transport equation (creeping flow),
respectively:

∇ · u = 0, (1)

−∇p+ ∇ · � = 0. (2)

Here, u is the velocity vector, p is the pressure and � is the extra
stress tensor described by Eq. (3), the rheological constitutive equa-
tion for the UCM model [20], where � and � are the relaxation time
and viscosity coefficient, respectively

�

[
∂�
∂t

+ ∇ · u� − � · ∇u − ∇uT · �

]
+ � = �(∇u + ∇uT). (3)

These equations, and the corresponding results of simulations, can
be made non-dimensional through the introduction of appropri-
ate reference length (L) and velocity (U) scales, and the Deborah
number (De =�U/L) in Eq. (3), which are defined in the next section.

The finite-volume numerical method used to solve Eqs. (1)–(3)
is the same used by Poole et al. [16] and has been described in
detail elsewhere [21], so only a very brief outline is given here. The
numerical method is based on a time-marching version of the SIM-
PLEC pressure correction algorithm formulated with the collocated
variable arrangement. The governing equations are integrated in
space over each of the computational cells of the mesh, and in time
over a time step, to form sets of linearised algebraic equations.
The discretization of the governing equations is based on central
differences for diffusion terms and for convective terms the interpo-
lating scheme employed is CUBISTA [22], a high-resolution scheme
especially devised for convective terms in constitutive equations,

Fig. 1. Schematic representation of the expansion geometry.

which is formally of third order accuracy in uniform meshes. The
steady solutions were obtained by time-marching the equations
using the implicit Euler method, an unconditionally stable first-
order scheme. This method does not affect the accuracy of the
results of the steady solutions.

3. Geometry, computational meshes and numerical
accuracy

A schematic of the expansion geometry is shown in Fig. 1.
The inlet channel of half-width d is kept constant regardless of
the expansion ratio. The half-width of the expansion channel is
D and the expansion ratio is defined as ER = D/d. At the inlet fully
developed velocity and stress profiles were imposed as boundary
conditions and the inlet channel length was 20 times the inlet half-
width. Neumann boundary conditions were imposed to velocities,
stresses and the pressure gradient at the outflow and the out-
let channel length was long (L2 = 100d) to eliminate any possible
interference of the outlet in the expansion region flow kinematics.
Imposition of zero streamwise gradients of the extra stress is con-
sistent with the first-order derivative constitutive equations here
employed for which there is no need to give any outlet boundary
condition. The transportive property of the CUBISTA scheme and the
Neumann conditions effectively disconnect the inner grid points
from the stresses existing at the outlet plane, thus preserving the
physics inherent to the constitutive equations.

Only half of the domain was mapped given the symmetry of
the flow. This is a reasonable modeling assumption, because flow
asymmetries for viscoelastic fluids in these geometries have been
observed by Oliveira [12] to take place only at Reynolds num-
bers larger than 1, whereas here we are simulating creeping flows.
Indeed, calculations mapping the whole domain, not reported here,
confirmed the essential symmetry of the flow.

For consistency with the literature, the non-dimensional Deb-
orah (De) number is defined on the basis of the upstream channel
characteristics and given by De =�UB/d, where UB is the mean inlet
velocity, also called bulk velocity, in the upstream channel. This
is consistent with taking the upstream mean velocity and half-
width as characteristic velocity (U ≡ UB) and length (L ≡ d) scales,
respectively.

For some geometries computations were carried out in two
meshes the finer of which has a degree of fineness of the order of
mesh M3 in Poole et al. [16], but with a number of cells intermedi-
ate to their meshes M2 and M3. The meshes used are non-uniform
to allow local refinement, as in [16], with increased concentration
of cells around the protruding corner of the expansion geome-
try, and their characteristics are listed in Table 1, giving the total
number of cells, the number of degrees of freedom (DOF), the
maximum rate of cell size variation (fx =�xi/�xi−1) and the small-
est cell spacing. Results of calculations allowed the assessment
of numerical accuracy as listed in Table 2. The numerical uncer-
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Table 1
Characteristics of the computational meshes.

NC DOF (�x)min/d fx,max

ER = 1.25
M1 17,500 105,000 0.0025 1.0846
M2 70,000 420,000 0.00125 1.0414

ER = 1.5
M1 14,500 87,000 0.0025 1.076
M2 58,000 348,000 0.00125 1.0373

ER = 2
M1 14,500 87,000 0.005 1.076
M2 58,000 348,000 0.0025 1.0373

ER = 4
M1 15,000 90,000 0.01 1.072
M2 60,000 360,000 0.005 1.0354

ER = 8
M1 21,500 129,000 0.01 1.0673
M2 86,000 516,000 0.005 1.0331

ER = 16
M1 21,500 129,000 0.01 1.0673
M2 86,000 516,000 0.005 1.0331

ER = 32
M1 21,500 129,000 0.01 1.070
M2 86,000 516,000 0.005 1.0344

tainties of the computations with mesh M2, used to perform all
subsequent computations in this work, are listed in Table 2 except
for ER = 3 where data from [16] was used. The uncertainty in xR
is less than 0.1% for Newtonian fluids, but for the UCM fluid it
increases with Deborah number and the worst case is obtained
at the highest Deborah number of 1 at ER = 1.5, but not exceeding
0.6%. The uncertainty is determined in relation to the extrapolated
value (x∗

R) calculated with Richardson’s extrapolation technique
(x∗

R = (2pxR2 − xR1)/(2p − 1) where xR1 and xR2 are the values of xR
on meshes M1 and M2, respectively) assuming that the order of
convergence is p = 2 (this order is based on similar computations of
Poole et al. [16] for ER = 3 using three meshes). Thus, the uncertainty
in xR is e(xR) = |xR2 − x∗

R|/x∗
R × 100%. As an example of calculation, at

De = 1 and ER = 4 the recirculation size XR = xR/d obtained on meshes
M1 and M2 were: XR1 = 1.2339 and XR2 = 1.2303; Richardson extrap-
olation gives X∗

R = (4XR2 − XR1)/3 = 1.2291 and the uncertainty on
mesh M2 is thus e(XR) = 100 × |X∗

R − XR2|/X∗
R = 0.10%. Estimates for

the uncertainty of C give values below 0.1% while the uncertainties
of�R may reach higher values (above 1%, rising to about 10% at low
ER).

4. Results and discussion

Results are presented here for the recirculation length, recircu-
lation intensity (�R, the normalized stream function), velocity and
stress profiles at various locations and the Couette correction. The
recirculation intensity is the total flow rate inside the corner eddies
in excess of the inlet channel flow rate and normalized by the inlet
flow rate. It is calculated from integration of the stream function
using its definition: u =∂ /∂y ⇒ j+1 = j + uj�yj; the maximum
value of in the flow domain is max, the inlet value is inl (equal
to the imposed flow rate per unit depth), and the definition of recir-
culation intensity is thus �R = ( max − inl)/ inl =�max − 1. The
Couette correction represents the pressure drop across the expan-
sion after subtracting the fully developed pressure difference (i.e.,
the extra pressure drop) assuming the flow is fully developed in the
whole of each channel and normalized as

C ≡ �p−�pfd

2�w
, (4)

Table 2
Extrapolated data for xR/D, �R and C as a function of ER and De.

De xR/D Percent
error

�R × 103 Percent
error

C Percent
error

(a) ER = 1.25
0 0.1443 0.002 0.1415 0.21 0.07612 0.055
0.1 0.1429 0.07 0.1348 0.91 0.1186 0.045
0.2 0.1414 0.08 0.1253 1.0 0.1588 0.045
0.3 0.1412 0.08 0.1191 0.85 0.1981 0.055
0.4 0.1422 0.08 0.1170 1.4 0.2369 0.051
0.6 0.1463 0.06 0.1217 6.4 0.3137 0.0091

(b) ER = 1.5
0 0.2199 0.02 0.3395 0.31 0.1573 0.030
0.1 0.2175 0.07 0.3216 0.62 0.2139 0.032
0.2 0.2138 0.10 0.2975 1.3 0.2660 0.032
0.3 0.2113 0.09 0.2776 1.0 0.3157 0.031
0.4 0.2108 0.10 0.2692 1.7 0.3639 0.025
0.5 0.2118 0.09 0.2666 1.9 0.4114 0.013
0.6 0.2141 0.11 0.2731 4.1 0.4583 0.0093
0.8 0.2211 0.30 0.3034 12 0.5508 0.051
1.0 0.2298 0.58 0.3098 16 0.6429 0.059

(c) ER = 2
0 0.2957 0.01 0.6487 0.37 0.2588 0.015
0.1 0.2928 0.04 0.6224 1.2 0.3240 0.018
0.2 0.2865 0.05 0.5653 1.4 0.3824 0.018
0.4 0.2746 0.01 0.4665 0.71 0.4881 0.013
0.6 0.2695 0.05 0.4309 1.6 0.5861 0.016
0.8 0.2697 0.13 0.4395 4.8 0.6792 0.066
1.0 0.2746 0.16 0.4858 12 0.7705 0.081

(d) ER = 3a

0 0.3531 0.08 0.9967 0.17 0.3412 0.18
0.2 0.3449 0.44 0.8758 0.4682
0.4 0.3286 0.43 0.7022 0.5761
0.6 0.3142 0.61 0.5742 0.6746
0.8 0.3002 0.09 0.4874 0.41 0.7668 0.27
1.0 0.2937 0.28 0.4514 0.8555

(e) ER = 4
0 0.3750 0.04 1.1756 0.059 0.3738 0.040
0.2 0.3681 0.04 1.0791 0.72 0.5033 0.036
0.4 0.3534 0.04 0.8813 0.062 0.6107 0.021
0.6 0.3364 0.02 0.7035 0.43 0.7073 0.00094
0.8 0.3208 0.05 0.5706 0.66 0.7968 0.060
1.0 0.3073 0.10 0.4754 1.3 0.8809 0.13

(f) ER = 8
0 0.4006 0.004 1.4498 0.22 0.4052 0.034
0.2 0.3972 0.001 1.3886 0.30 0.5350 0.030
0.4 0.3896 0.03 1.2616 0.51 0.6425 0.017
0.6 0.3804 0.02 1.1117 0.035 0.7389 0.0059
0.8 0.3703 0.05 0.9702 0.45 0.8280 0.062
1.0 0.3601 0.08 0.8456 0.82 0.9114 0.12

(g) ER = 16
0 0.40976 0.02 1.5850 0.27 0.4133 0.035
0.2 0.40813 0.02 1.5532 0.32 0.5431 0.031
0.4 0.40463 0.0008 1.4784 0.11 0.6505 0.018
0.6 0.40012 0.002 1.3946 0.13 0.7469 0.0035
0.8 0.39523 0.02 1.3059 0.17 0.8359 0.061
1.0 0.39045 0.03 1.2274 0.088 0.9195 0.12

(h) ER = 32
0 0.41369 0.02 1.6506 0.13 0.4153 0.036
0.2 0.41288 0.02 1.6320 0.051 0.5451 0.031
0.4 0.41146 0.04 1.5956 0.068 0.6526 0.018
0.6 0.40891 0.02 1.5508 0.10 0.7489 0.0049
0.8 0.40651 0.01 1.5021 0.080 0.8381 0.057
1.0 0.40456 0.03 1.4529 0.12 0.9216 0.12

xR/D and C – extrapolation by Richardson’s technique for second order of accuracy;
�R – extrapolation by Richardson’s technique for first order of accuracy.

a Includes data from [16].
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Fig. 2. Variation of the recirculation length with expansion ratio for Newtonian
fluids: (a) xR/d for 0 ≤ ER − 1 ≤ 31 (inset for 0 ≤ ER − 1 ≤ 3; (©) from [23,24]); (b)
xR/D.

where �w is the wall shear stress of the fluid in the fully developed
inlet channel flow (�w ≡ 3�UB/d). In addition, streamline plots and
contour plots of the stress fields are shown to help visualize the
flow dynamics. At the end we discuss the issue of convergence and
its relation to the maximum Deborah number where steady flow
is predicted. Only creeping flow (i.e., Re → 0) is considered in this
work.

4.1. Newtonian fluid

The variation of the recirculation length (xR) with expansion
ratio (ER) for Newtonian fluids is plotted in Fig. 2 together with
the correlation:

xR

D
= 1.01(ER − 1)1.1

1 + 2.42(ER − 1)1.1
. (5)

This correlation fits the predictions nicely, with an average error
of 0.4% and a maximum error of 0.9% for ER = 4. When normaliz-
ing with the upstream half-width, this variation is linear for ER ≥ 4,
as shown by the asymptotic behavior of the fitting in Fig. 2(a) for

Fig. 3. Streamline plots for Newtonian fluids: (a) normalization with downstream
quantities (ER = 8, 16 and 32); (b) normalization with upstream quantities (ER = 1.25,
1.5, 2 and 32). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of the article.)

large values of ER (xR/d ∼ 0.417ER), and it is non linear for very small
recirculation lengths as shown in the inset. Data from the literature
for Newtonian creeping flow is scarce and we could only find infor-
mation in Hung and Macagno [23,24] for ER = 2, who provided the
values XR = xR/d = 0.58 and 0.54, respectively, plotted in the inset.
However, because the Newtonian creeping flows are linear and
reversible contraction flow data must be identical, representative
data from the literature [25] is also included for comparison. The
linear variation of XR = xR/d at large ER expresses a dependence of
xR almost exclusively on the size of the outlet channel, whereas the
behavior at low ER must convey the disappearance of the recircu-
lation as ER decreases to zero (in a planar channel). This behavior
is better seen in the plot of Fig. 2(b), where xR is now plotted nor-
malized with D. It is clear here that for expansion ratios in excess
of 8 the flow dynamics essentially depends on the step size (or on
the outlet channel width). The ER = 4 case is intermediate between
the high and low ER. A linear extrapolation of the large ER behav-
ior to ER = 1 results in a finite size of the recirculation, but as ER
decreases towards one the separation should vanish because the
fluid has always some capacity to negotiate the corner against a
vanishing small adverse pressure gradient, as is well shown in the
figure and by the recommended fitting.

The difference between low and high expansion ratio behavior
is also apparent in the streamline plots of Fig. 3. In Fig. 3(a) we
compare streamline plots for different large expansion ratios where
we have scaled the dimensions of the geometries in order to match
the outlet channel widths. It is clear that the streamlines at large ER
essentially collapse in the outlet channel, thus justifying the plateau
observed in Fig. 2(b). In Fig. 3(b) the inlet channels have the same
width and we see a fast reduction in the recirculation streamlines as
ER decreases. In creeping flow of viscoelastic fluids through sudden
contractions, Alves et al. [25] and Oliveira et al. [26] also reported
the existence of different controlling variables in the dynamics of
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Fig. 4. Variation of recirculation intensity and Couette correction with expansion
ratio for Newtonian fluids.

the recirculation at low and high contraction ratios, respectively for
planar and axisymmetric geometries.

The corresponding variations of the recirculation intensity and
of the Couette correction are plotted in Fig. 4. The variation of �R
with ER − 1 shows a plateau at large expansion ratios in agreement
with the plot of xR/D in Fig. 2(b), thus confirming that the vortex
is essentially controlled by the step size except at small expan-
sion ratios, where the inlet channel also has some influence. When
ER − 1 decreases toward zero �R also vanishes, and the following
correlation is valid for the whole range of ER with an average dis-
crepancy of 2% and the correct asymptotic behaviors at low and
high ER − 1:

�R = (ER − 1)4/3

1 + 0.6(ER − 1)4/3
. (6)

Regarding the pressure losses for Newtonian creeping flow mea-
sured by the Couette correction (C) the trend is similar to that for
the vortex intensity as illustrated by the dashed lines in Fig. 4. The
Couette correction levels off at about 0.416 at large expansion ratios
(cf. Fig. 4) and should obviously tend to zero as the expansion tends
to a straight channel, because it represents the extra loss due exclu-
sively to the expansion. The following correlation is valid for the
whole range of expansion ratios and the average difference with
the Couette correction data is 1.9%:

C = 0.31(ER − 1)√
1 + 0.56(ER − 1)2

. (7)

Eqs. (5)–(7) are recommended for the calculation of eddy size,
eddy intensity and Couette correction in Newtonian creeping flow
through planar expansions of varying expansion ratio. At high
expansion ratios (ER 
 4), physical reasoning suggests a simple
dependence of those parameters with (ER − 1) and in this case the
following correlations are an approximation of the previous formu-
lae which fit well this upper ER-range: xR/d = 0.417(ER − 1) + 0.263;
�R = 1.71 − 1.97/(ER − 1); C = 0.416 − 0.059/(ER − 1).

4.2. Viscoelastic flow

The flow characteristics of viscoelastic fluids are more complex
as they combine the high versus low expansion ratio properties
with specific elastic effects which also differ at high and low ER. To

Fig. 5. Variation of the recirculation length xR/D with expansion ratio and Deborah
number for UCM fluids: (�) mesh M1; (×) mesh M2; (solid line) extrapolated data.

best visualize all these effects xR/D is plotted in Fig. 5 as a function of
De for the whole range of ER studied, with this parameter spanning
both the low and high ER range.

There are several distinguishing features in Fig. 5. At large expan-
sion ratios (ER ≥ 4) xR/D is a decreasing function of De, whereas at
low values of ER (ER < 3) there is a non-monotonic variation with
xR/D initially decreasing with De followed by an increase. The sensi-
tivity of xR/D to viscoelasticity also decreases with ER; the variations
with De at ER = 32 are smaller (of the order of 3% for 0 ≤ De ≤ 1) than
at lower ER (at ER = 4 the corresponding variation of xR/D with De
is of the order of 20%). For ER < 4 the variations of xR/D are also
significant, but because of the non-monotonic behavior smaller
differences are quantified when, say, comparing values at De = 0
and 1. Sensitivity to mesh refinement is also illustrated in Fig. 5
with essentially imperceivable distinctions between the recircu-
lation length predicted on the two meshes except at large De for
the smaller expansion ratios where small differences are visible.
Table 2 presents the extrapolated data to facilitate future compar-
isons. These data were calculated with Richardson’s extrapolation

Fig. 6. Variation of the recirculation intensity with expansion ratio and Deborah
number for UCM fluids: (� and lines) mesh M1; (×) mesh M2.
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Fig. 7. Variation of the recirculation length xR/D with expansion ratio for UCM fluids.

technique assuming second order accuracy based on an assessment
done for contraction flow [25] and a few numerical experiments in
the sudden expansion geometry.

The behavior of xR/D is somewhat mimicked by that of the recir-
culation intensity plotted in Fig. 6. For the smaller expansions �R
decreases initially at low values of De followed by an increase as De
approaches its maximum value, whereas at large expansion ratios
there is a continuous decrease of �R with De, which becomes less
pronounced as ER increases. However, the non-monotonic variation
of �R at low ER is less pronounced than that of xR/D. Additionally,
the accuracy in�R is lower than that of xR, because it is an integral
quantity obtained by a lower order sum of mass fluxes thus intro-
ducing some cumulative effects on the global error (extrapolation
of �R is calculated as �R = 2�R1 −�R2, i.e., assuming first-order
accuracy, where �R1 and �R2 refer to meshes M1 and M2, respec-
tively). This shows as somewhat larger differences between results
pertaining to M1 and M2, which are also larger at low ER than at high
ER. These differences are consistent with the fact that convergence
of �R to the same level of accuracy as of xR would require compu-
tations on finer meshes. The extrapolated �R data is listed also in
Table 2. These data were obtained assuming first order accuracy.

For Newtonian fluids xR/D tends asymptotically to a constant
value as ER increases (cf. Fig. 2). This is also seen with viscoelastic
fluids in Fig. 7, but progress to the asymptotic value is slower as
the Deborah number increases. It is difficult to ascertain whether
this asymptotic value is independent of the Deborah number since
the investigation of this particular issue would require simula-
tions at much higher expansion ratios for which the computations
become prohibitively expensive. However, since the vortex size is
then essentially controlled by flow conditions having rather low
shear rates, thus reducing the influence of elasticity, the expecta-
tion is for xR to be independent of De. In conclusion, there are clearly
two different trends on the vortex behavior with elasticity and ER,
and in the following the presentation and discussion of results will
deal separately with the high and low expansion ratio cases.

4.2.1. High expansion ratios
The asymptotic nature of the vortex size characteristics at large

ER is patent in Fig. 8 where xR/D is plotted in semi-log coordi-
nates against De/(ER − 1). A limiting asymptotic curve, not plotted
in Fig. 8, can be easily guessed as a negative-concavity curved line
enveloping the predicted data at higher De. This suggests that the
flow dynamics downstream of the expansion plane are controlled

Fig. 8. Variation of the recirculation length xR/D with De/(ER − 1) at 4 ≤ ER ≤ 32 for
UCM fluids: (� and �) mesh M1; (×) mesh M2; (solid line) extrapolated data.

by the step height in combination with an effect of Deborah num-
ber that tends to reduce the values of xR/D. The streamline plots of
Fig. 9 correspond to various high ER geometries and when normal-
ized by the step size as in Fig. 9(b), there is a good level of correlation
thus confirming the previous suggestion. The plots of Fig. 9(a) are
for identical value of De, which brings an upstream effect and as a
consequence the streamlines do not collapse. However, by plotting
the streamlines at identical values of De/(ER − 1), which is equiv-
alent to an alternative Deborah number (De′ ≡�UB/h), we see the
collapse of the flow streamlines. The exception is for ER = 4 (green
lines) which is on the borderline between high and low ER cases and

Fig. 9. Streamline plots for viscoelastic fluids at large expansion ratios (4 ≤ ER ≤ 32)
normalized by the downstream channel size: (a) at De = 1; (b) at De/(ER − 1) = 0.025.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)
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Fig. 10. Variation of recirculation intensity with expansion ratio and De/(ER − 1) for
4 ≤ ER ≤ 32.

Fig. 11. Variation of the Couette correction with De and ER at large expansion ratio:
(a) C versus De; (b) C/CNewt versus De.

does not show a large enough expansion ratio to behave asymptot-
ically. Regarding the vortex intensity, the variations of �R with De
and ER plotted in Fig. 10 show exactly the same asymptotic pattern
as the variations of xR/D in Fig. 8.

At large expansion ratios the Couette correction is also indepen-
dent of ER as shown in Fig. 11(a)), where data for ER = 8 differ from
data at ER = 32 by less than 2.5% at De = 0 and 1.2% at De = 1. Since
the extra pressure drop in C is normalized by inlet quantities (cf. Eq.
(4)), the normalized pressure (p/(�UB/d)) variation becomes inde-
pendent of ER and is essentially that given for an exit flow at the
same Deborah number, except for the very small contribution from
the entry region. For De = 0 this corresponds approximately to half
the entry pressure drop for creeping flow through a rectangular ori-
fice plate (a sudden contraction followed by a sudden expansion),
a Sampson-like solution for the circular duct [27].

The other visible effect in Fig. 11(a) concerns viscoelasticity with
C increasing with De with a linearly decreasing slope. This depen-
dence of C on De also tends to be unique at large ER, here represented
by ER = 32, and given by

C = 0.416 + 0.645 De− 0.112De2 (8)

with a correlation coefficient r = 0.9998. This expression was
obtained by fitting a parabola to Richardson’s extrapolated data
of C (denoted C*) based on the calculated values of C on
meshes M1 and M2, assuming second order accuracy, in accor-
dance with previous work [22]. For example, for De = 1 and
ER = 4 the Couette correction calculated on meshes M1 and M2
were: C1 = 0.88538 and C2 = 0.88204; Richardson extrapolation
gives C* = (4C2 − C1)/3 = 0.88093 and the uncertainty on mesh 2 is
therefore e(C2) = 100 × |C* − C2|/C* = 0.13%. Reducing the value of ER
lowers the C–De curve which is still parallel to the curves at larger
ER. This shift of the C–De curve implies that the relative variation of
C with De is actually larger at low expansion ratios than at higher ER
as shown in the plot of C/CNewt of Fig. 11(b), where CNewt is the cor-
responding Couette correction for Newtonian fluid flow presented
in Section 4.1.

4.2.2. Low expansion ratios
At low expansion ratios there is no dominant influence as

at high ER, and the flow characteristics are determined by the
complex interactions between ER and the Deborah number. As a
consequence, we observe the non-monotonic variation of the recir-
culation length with De already reported in Fig. 5, consisting of a
decrease at low De followed by an increase at high De. These vari-
ations depend in a complex way on both ER and De and are better
seen at intermediate values of ER, as exemplified by ER = 1.5 and 2.
At low ER a simple scaling is not observed, even when the same
data of Fig. 5 is plotted against De/(ER − 1), and therefore the con-
clusion is that both the upstream and downstream duct sizes have
an influence upon the vortex characteristics.

The relative amount of recirculating flow for ER ≤ 4, as measured
by �R, is plotted in Fig. 6 showing curves qualitatively similar to
those of xR/D, but the non-monotonicity is less obvious than for xR,
as already mentioned. It is necessary to look at the actual numerical
values to confirm the tendency of�R to rise at high De (for ER = 1.5
for example).

As at high expansion ratios the Couette correction increases with
both the Deborah number and ER, as shown in Fig. 12(a). This cor-
responds to an enhanced pressure drop due to viscoelasticity, in
opposition to the findings in the related contraction flows, where
predictions with the UCM and similar viscoelastic models suggest
a decrease of pressure losses while experiments nevertheless indi-
cate a pressure loss enhancement. This plot includes also the curve
pertaining to ER = 32, which is essentially the high ER limit (cf.
Fig. 11(a)). As for xR/D a simple scaling does not exist for C. We see a
reduction in C as ER decreases leading to C versus De curves shifting
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Fig. 12. Variation of the normalized pressure drop with De at low ER: (a) C; (b)
C/CNewt.

downwards, but in relative terms there is a higher sensitivity to the
Deborah number at lower expansion ratios as can be observed in
the plots of C/CNewt versus De of Fig. 12(b). The extrapolated data
for C, determined assuming second order accuracy, are also listed
in Table 2.

Fig. 14. Contours of �xx/(�UB/d) in the vicinity of the re-entrant corner for ER = 4
(blue), 8 (red) and 16 (black) at De = 1. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of the article.)

4.3. Flow at the maximum Deborah number

For all expansion ratios the simulations ceased to converge at
Deborah numbers of the order of 1. This convergence problem was
found to occur after a small vortex appears at the upstream duct
wall near the re-entrant corner, as seen in the streamline plot of
Fig. 13 for ER = 4, 8 and 16. To clarify that this is not a numerical arti-
fact we performed a series of computations for the ER = 4 geometry
using meshes finer than those in Table 1. We show at the inset of
Fig. 13 that the lip vortex is well resolved on meshes M2 and M3
(cell sizes were halved when going from mesh M2 to mesh M3). We
think these results provide sufficient evidence for the actual exis-
tence of the small lip vortex formed upstream of the expansion
plane, whose presence was already pointed out in our previous
paper [16], where it was linked with the formation of local con-
vergence of the flow streamlines. In our view the viscoelastic fluid
cannot turn the corner following the strong curvature imposed by
the walls at 90◦ and is compelled to form a small eddy in order to
reduce the local streamline curvature.

Fig. 13. Streamline plots in the vicinity of the reentrant corner for ER = 4 (blue), 8 (red) and 16 (black) at De = 1. The insets on the left correspond to a zoomed view of the lip
vortex region, as predicted for ER = 4, on M2 and on a consistently refined mesh M3. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of the article.)
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At these flow conditions (De ≈ 1) large extensional stresses
develop in this small attached eddy as shown in the contour plots
of Fig. 14, the streamlines show strong curvature (cf. Fig. 13) and
large shear rates develop. Given these conditions, it might suggest
the criterion for the onset of purely elastic instabilities of McKinley
et al. [28,29] may be valid. In this criterion, at the onset of purely
elastic instabilities it is postulated that

M ≡
[
�U

R

�11

�	̇

]1/2

≥Mcrit, (9)

where � is the fluid relaxation time, U is the local fluid velocity, � is
the zero shear rate viscosity of the fluid, 	̇ is the local deformation
rate, �11 is the streamwise normal stress in the local flow direction
and R is the local radius of curvature of the streamline. Calculations
of �11 and R were made following the procedure of Öztekin et al.
[30]. The value of the critical parameter (Mcrit) is specific to each
flow problem and fluid type. Here we find that just before diver-
gence the maximum local value of M2 (hence an estimate ofM2

crit)
takes a fairly constant value of around 4 for large expansion ratios,
but it varies at low expansion ratios. The large ER behavior is consis-
tent with the downstream scaling of the flow extensively discussed
above and the collapse of the contours of M2 (not shown here) is an
obvious consequence of the collapsing contours of normal stress of
Fig. 14. The maximum values of M2 at De = 1 are 4.1 for ER = 4 and
4.2 for ER ≥ 8.

In McKinley et al.’s [28,29] analysis there are steady stable two-
dimensional base flows with curvature and large tensile stresses,
which become disturbed at a certain critical Deborah number to end
up as steady three-dimensional or unsteady flows. In the present
work, the base stable flow is a complex combination of shear in the
upstream channel and near walls, rotation near the two corners, and
extension along the centreline, as can be inferred from a plot of a
flow type parameter [31,32]. At De ≈ 1 it gives rise to a second stable
flow containing in addition a small lip vortex, and this flow diverges
as De is further increased. In this second base flow, the lip vortex
is still two-dimensional and it naturally gives rise locally to large
stresses and large flow curvatures (flow curvature is the reciprocal
of R). Clearly, more extensive studies require the use of different
constitutive models to clarify this issue and to see whether flow
divergence is preceded by the lip vortex, and what is the criterion
for the onset of a lip vortex. Also, more investigation is required
using an unsteady approach in the calculation of these flows around
and above the critical Deborah number for unsteady flow.

5. Conclusions

The influence of expansion ratio upon viscoelastic flow through
planar expansions has been studied numerically using the UCM
constitutive model. For the creeping flow conditions considered,
there is a scarcity of useful data in the literature, even for Newto-
nian fluids, which are a limiting case of the UCM model. Hence, for
Newtonian fluid flows we provide data and useful correlations for
the recirculation length and strength and the Couette correction.
For the viscoelastic fluids in particular we have reported data char-
acterizing the vortices formed downstream of the expansion plane
and concluded that elasticity affects the flow differently depend-
ing on the expansion ratio. For high expansion ratios (ER ≥ 4) the
usual attenuation of vortex activity with elasticity is found, with
recirculation sizes and local streamlines scaling with downstream
channel width and a Deborah number defined as De/(ER − 1) (where
De =�UB/d). In contrast, for low expansion ratios (ER ≤ 3) the recir-
culation size and intensity first decrease with De, before increasing
again at high elasticity; this trend is more pronounced for the vortex
size than for the intensity. Furthermore, in this low ER range there
appears to be no definite length scale characterizing the recirculat-

ing flow; neither d nor D offer good collapse of the size and intensity
data, or enable an adequate definition of an alternative Deborah
number.

We also provide local pressure loss data, presented as a Cou-
ette correction factor C, which increases with Deborah number and
also with expansion ratio, in absolute terms, but decreasing with
ER when C is normalized with the corresponding Newtonian val-
ues. For all expansion ratios steady flow solutions were unattained
at Deborah numbers above a critical value of the order of one, after a
small lip vortex formed at the upstream duct wall near the reentrant
corner, leading to the local development of large normal stresses.
Attention was applied to matters of numerical accuracy and mesh
refinement to guarantee that the predicted data here presented
have good quality (maximum uncertainty of 1% in XR and C).
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