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a b s t r a c t

When viscous dissipation effects are important in duct flows the Brinkman number is widely used to
quantify the relationship between the heat generated by dissipation and the heat exchanged at the wall.
ccepted 3 July 2008

eywords:
iscous dissipation
onvective heat transfer

For Newtonian laminar fully developed pipe flow the use of the classical expression for this dimensionless
group is appropriate, but under different conditions it can lead to misleading conclusions, such as when
comparing flows through different cross-section ducts, flow regimes and mainly non-Newtonian flows.
In this work a generalized Brinkman number is proposed, based on an energy balance for the power
dissipated by friction, that allows proper quantification of viscous heating effects and reduces to the
classical definition in laminar Newtonian pipe flow. The advantages of the new definition are shown and
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. Introduction

When dissipation effects are important in fluid mechanics the
rinkman number is widely used to quantify the relationship
etween the heat generated by dissipation and the heat exchanged
t the wall. This dimensionless group was named after Brinkman,
ho solved the Newtonian Poiseuille pipe flow problem with vis-

ous dissipation [1].
For Newtonian laminar pipe flow the use of the classical def-

nition of the Brinkman number is straightforward and provides
n adequate estimate of the ratio between the heat generated by
iscous heating and the heat exchanged at the pipe wall. However,
utside this flow condition [2–7], the same definition quantifies dif-
erent values of that ratio leading to an incorrect interpretation of
ome results. A simple example is the comparison between laminar
nd turbulent pipe flows at the same Reynolds number of around
000 and equal wall heat transfer. The classical Brinkman num-
er has a unique value, but the friction heat in turbulent flow is
learly larger than in laminar flow. This difference is captured by
he generalized definition of the Brinkman number. Other exam-
les of more interest to this audience are comparisons of duct
ows of Newtonian and non-Newtonian fluids in the same or in

ifferent cross-section ducts and especially including fluids of vari-
ble viscosity. The classical Brinkman number restricts any attempt
o compare dissipation effects between different fluids or flow
egimes even flowing in the same geometry. The emergence of

∗ Corresponding author. Tel.: +351 225081703; fax: +351 225082153.
E-mail addresses: pmc@fe.up.pt (P.M. Coelho), fpinho@fe.up.pt (F.T. Pinho).
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alized Brinkman numbers in the most common cases.
© 2008 Elsevier B.V. All rights reserved.

icro and nanotechnology applications, where surface forces gain
elevance, emphasizes the role of viscous dissipation in geometries
hat are seldom circular [8].

The definition of a general Brinkman number is the objective of
his work and is aimed at a comprehensive and correct quantifica-
ion of dissipation effects, regardless of the rheological constitutive
quation adopted and of flow regime, thus facilitating meaningful
omparisons of viscous effects over a wide variety of Newtonian
nd non-Newtonian, laminar and turbulent duct flows.

This paper starts with the general definition of Brinkman num-
er and then derives the classical Brinkman number as a particular
ase of the former. Section 3 justifies the unified definition of
rinkman number showing that it leads to a more correct inter-
retation of several examples and that its use is only marginally
ore expensive than the classical definition.

. The generalized Brinkman number

A unified definition of Brinkman number compares the energy
issipated internally as heat and the flux of thermal energy trans-
erred at the wall, denoted q̇w. An energy balance on a duct segment
f constant cross-section, provides the following expression for the
ower dissipated by friction [9], Ẇ ,
˙ = �pV̇ (1)

here �p is the frictional pressure drop and V̇ is the volume flow
ate. For a duct of infinitesimal length, dx, the power per unit wall
rea dissipated by friction, ẇ, is related to the frictional pressure

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:pmc@fe.up.pt
mailto:fpinho@fe.up.pt
dx.doi.org/10.1016/j.jnnfm.2008.07.001
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radient by

˙ = −dp

dx

A

P
Ū = −dp

dx

Dh

4
Ū (2)

here A, P and Dh are the duct cross-section area, duct-wetted
erimeter and hydraulic diameter, respectively, Ū is the flow bulk
elocity and the minus sign ensures positive work. This expres-
ion is general and considers both fully developed flow (constant
ressure gradient) as well as developing flow (variable pressure
radient). In addition, this definition can be used to quantify vis-
ous dissipation in other cases such as flow through porous media,
s shown later.

For fully developed flow the momentum balance relates
he pressure variation with the wall shear stress, �w, by
w = −(dp/dx)Dh/4 so that the power dissipated by friction can be
xpressed as a function of the wall shear stress by ẇ = �wŪ.

The generalized form of the Brinkman number, henceforth
enoted by Br*, would be expressed uniquely as the ratio ẇ/q̇w, but
slight modification is introduced to ensure that it reduces to the

lassical definitions of the Brinkman number for Newtonian lam-
nar pipe flow. This introduces a coefficient 8 and the generalized
rinkman number is defined as

r∗ = ẇ

8q̇w
. (3)

ote that for generalized Brinkman number to arise naturally when
ormalizing the energy conservation equation it suffices to make
he stress tensor nondimensional with the wall shear stress.

Substituting ẇ, Br* assumes the particular forms of Eqs. (4a)
nd (4b) for constant wall heat flux and constant wall temperature,
espectively.

r∗ = Ū�w

8q̇w
(4a)

r∗ = Ū�wD

8k(Tw − T0)
, (4b)

ere Tw denotes the wall temperature, T0 is the inlet bulk tempera-
ure, k is the fluid thermal conductivity and D is the pipe diameter.
s mentioned, the coefficient 8 is introduced for consistency with
revious definitions.

For fully developed duct flows the wall shear tress is related to
he Darcy friction factor, f, by the definition of Eq. (5) where � is the
uid density

w = f Ū2�

8
. (5)

or laminar pipe flow f = 64/Re, where Re is the Reynolds number
nd by back substitution the classical Brinkman numbers are recov-
red. These are Eqs. (6a) and (6b) for the constant wall heat flux and
he constant wall temperature, respectively, with � here denoting
he dynamic viscosity of the Newtonian fluid.

r∗ = Br ≡ �Ū2

q̇wD
(6a)

r∗ = Br ≡ �Ū2

k(Tw − T0)
. (6b)

he generalized Brinkman number provides a unique and
hysically based definition that incorporates dissipation effects

egardless of rheological constitutive model, duct size, duct shape
nd flow regime valid for both the laminar and turbulent regimes,
ncluding flows through porous media. It remains to be seen

hether the use of Br* is as simple as the classical definition, an
ssue addressed in the next section.

c
e
i
l
a

ig. 1. Variation of Nusselt number in a thermally developing pipe flow for fixed
all temperature with cooling at Brinkman numbers of 0, −10 and −100. Solid

ine—Newtonian fluid; dashed line—sPTT fluid (εWi2 = 10). Symbols: × generalized
rinkman number, Br*; � classical Brinkman number, Br.

. Examples of application

.1. Fully developed laminar duct flows of non-Newtonian fluids

For fully developed laminar duct flows of non-Newtonian fluids
ith a characteristic shear viscosity � the wall shear stress can be

ewritten as a function of the bulk velocity of a Newtonian fluid
owing under the same wall shear stress, ŪN as

w = f Re�ŪN

8Dh
. (7)

he product fRe, here applied to Newtonian fluids is constant for a
iven duct cross-section, [9]. Back substitution into Eq. (4a) or (4b)
he following relation between Br* and Br in laminar flow is derived

r∗ = f Re

64
Br

ŪN

Ū
. (8)

he advantage of the generalized Brinkman number stands out
learly when comparing results plotted as a function of the clas-
ical and generalized Brinkman numbers. This is done next for the
raetz problem in a pipe flow for Newtonian and viscoelastic flu-

ds represented by the simplified Phan–Thien—Tanner (sPTT) fluid,
riginally investigated by Coelho et al. [10].

This flow has a nondimensional number measuring the fluid
ow elasticity of εWi2 = 10, where ε is a constitutive parameter and
i is the Weissenberg number. Of relevance are the variations of the

ocal Nusselt number along the thermal entrance region of the pipe
hown in Fig. 1. This figure compares data for different numerical
alues of the Brinkman number using both the classical (Br, see [10]
or details on dimensionless numbers) and the generalized defini-
ions (Br*). The cases plotted pertain to imposed wall temperatures,
o the relevant definitions are those involving k(Tw − T0)/D rather
han q̇w. The Brinkman numbers are negative, because the inlet
emperature is higher than the wall temperature (wall cooling).

In the absence of viscous dissipation, the Nusselt number for
he sPTT fluids is higher than for the Newtonian fluid by a small
mount, but the two curves are essentially parallel. For Newtonian
uids there is a significant increase in the heat transfer coeffi-

ient with increasing viscous dissipation effects, especially in the
ntrance region, but for fully developed flow the Nusselt number
s independent of the Brinkman number. Note that for Newtonian
aminar pipe flow the generalized and classical Brinkman numbers
re identical, cf. Eqs. (6a), (6b) and (8).
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Table 1
Generalized Brinkman number in laminar flow of an sPTT fluid

(a) Pipe flow

�w ŪNŪ(with ŪN ≡ [−(dp/dx)R2]/(8�)) Br∗ = Br
ŪN

Ū

8�
Ū

D

ŪN

Ū

[√
144εWi2 + 1 + 12

√
εWi2

]1/3

−
[√

144εWi2 + 1 − 12
√

εWi2
]1/3

8
√

εWi2
�Ū2

q̇wD

ŪN

Ū
(b) Parallel plates flow

�w ŪN/Ū(with ŪN ≡ [−(dp/dx)R2/(3�)]) Br∗ = 3
2

Br
ŪN

Ū

12�
Ū

Dh

ŪN

Ū

101/3

{[√
729εWi2 + 10 + 27

√
εWi2

]1/3

−
[√

729εWi2 + 10 − 27
√

εWi2
]1/3

}
18

√
εWi2

3
2

�Ū2

q̇wDh

ŪN

Ū
(c) Annular flow

�̄w ŪC/Ū(with ŪC = (−dp/dx)D2
h
/32�) Br∗ = Br

ŪC

[13] fo

� t, Wi ≡
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Dh
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Eq. (16) [12] for sPTT fluids and Eq. (6)

—Polymer viscosity coefficient in sPTT model. R—Pipe radius or channel half heigh

Inspecting next the sPTT plots for Br /= 0 even though the Nus-
elt number has increased significantly in comparison with the
r = 0 case, their curves now fall below those for the Newtonian
uid at the same value of the classical Brinkman number and the
orresponding sPTT and Newtonian curves cease to be parallel, even
hough the velocity profiles remain unchanged. However, using the
eneralized Brinkman number moves the Nu curve for the sPTT

uid to a place slightly above and parallel to the Newtonian curve
s previously seen in the absence of viscous dissipation. Regard-
ess of the value of the generalized Brinkman number, at the same
alue of Br* the curves pertaining to the sPTT and Newtonian fluids
aintain the same shape and relative difference, because the veloc-

s
v
c
i
e

able 2
eneralized Brinkman number in laminar pipe and channel flows of a Bingham fluid

a) Pipe flow

�w ŪN/U

8�0
Ū

D

ŪN

Ū

[
1 −

he ratio �0/�w is obtained by solving the following equation

Ū

D�0/(8�0)
=

(
�0

�w

)−1
[

1 − 4
3

�0

�w
+ 1

3

(
�0

�w

)4
]

and the solution is
�0

�w
=

25/6

4

{√
(B1/3 + C1/3) −

√[
2
√

(B2/3 − B1/3C1/3 + C2/3) − B1/3 − C1/3

]}
with

= (3U+ + 4)2 −
√

3U+(27U+3 + 144U+2 + 288U+ + 256),

= (3U+ + 4)2 +
√

3U+(27U+3 + 144U+2 + 288U+ + 256) and

+ = Ū

D�0/(8�0)
b) Parallel plates flow

�w ŪN/U

12�0
Ū

Dh

ŪN

Ū

[
1 −

he ratio �0/�w is obtained by solving the following equation

Ū

Dh�0/(12�0)
=

(
�0

�w

)−1
[

1 − 3
2

�0

�w
+ 1

2

(
�0

�w

)3
]

and the solution is

�0

�w
=

2
3

√
3(2U+ + 3) sin

{
1
3

arctan

[
3
√

6

2
√

U+(4U+2 + 18U+ + 27)

]}

ith U+ = Ū

Dh�0/(12�0)

0 and �0 are the Bingham model rheological parameters, � = �0 + �0/	̇, � ≥ �0 and
Ū

r Newtonian fluids
�Ū2

q̇wDh

ŪC

Ū

�Ū/R.

ty profiles and the ratio ẇ/q̇w for each fluid are the same leading
o a coherent set of results. This was not the case when using the
lassical Brinkman number definition, which is related to the vis-
ous dissipation in a inconsistent manner. Note that Br = −100 and
r = −10 correspond to Br* = −15.8 and Br* = −1.58, respectively.

There is a wealth of analytical solutions in the literature for
eat transfer in laminar duct flows of fluids represented by the

implified Phan–Thien—Tanner and FENE-P models, accounting for
iscous dissipation effects, all of which are presented in terms of the
lassical Brinkman numbers [10,11]. Our recommendation, which
s equally valid for fluids described by other rheological constitutive
quation, is to reconsider those results using instead the general-

¯ (with ŪN ≡ [−(dp/dx)R2]/(8�0)) Br∗ = Br
ŪN

Ū

4
3

�0

�w
+ 1

3

(
�0

�w

)4
]−1

�0Ū2

q̇wD

ŪN

Ū

¯ (with ŪN ≡ [−(dp/dx)R2]/(3�0)) Br∗ = 3
2

Br
ŪN

Ū

3
2

�0

�w
+ 1

2

(
�0

�w

)3
]−1

3
2

�0Ū2

q̇wDh

ŪN

Ū

	̇ = 0, � ≤ �0. R—Pipe radius or the channel half height.
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Table 3
Coefficients a and b of Eq. (10) for the square duct, parallel plates and pipe

Square duct
a = 0.2121 b = 0.6766

Parallel plate
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a = 0.5000 b = 1.0000

ipe
a = 0.2500 b = 0.7500

zed Brinkman number Br*. This implies some transformations for
xisting solutions in the literature: for sPTT and Bingham fluids
or example, it suffices to substitute Br by Br∗(64/fRe)(Ū/ŪN), (cf.
q. (8)). This modification is easy to implement, because usually
he existing solution already contains the product Br(ŪN/Ū) in an
xplicit or implicit form. In comparisons where only the fluids differ
t is also acceptable to drop 64/fRe although the resulting Brinkman
umber is no longer the original generalized Brinkman number of
ection 2.

The ratio ŪN/Ū assumes different forms for different duct sec-
ions and fluids. Examples are summarized in Tables 1 and 2 for the
PTT and Bingham fluids, respectively. Note that the expressions for
¯ N/Ū in Table 1 for the pipe and channel flows are simpler to use
han the general equation given in [12]. For the annular flow the
erimeter averaged wall shear stress, �̄w, and wall heat flux, q̇w,
hould be used in Br*.

For the sake of simplicity, in the remaining part of the paper
esults will be presented only for the constant wall heat flux case.

For fully developed duct flows of power-law fluids, an expression
or the generalized Brinkman number can be deduced using Eq. (5)
nd the corresponding fRe expression which is

Re = f
�Ū2−nDn

h
K

= 23n+3
(

a + bn

n

)n

, (9)

erived after the work of Kozicki et al. [14], who provided tables
or parameters a and b as a function of the shape of the duct cross-
ection. These are reproduced in Table 3 for the square duct, the
arallel plates and pipe.

Back-substituting in Eqs. (5) and (4a) leads to Eq. (10) for the
eneralized Brinkman number

r∗ = 23n−3
(

a + bn

n

)n KU
1+n

q̇wDn
h

. (10)

In his investigation Barletta [15] defined the Brinkman number
s Br = KŪn+1/q̇wDn, but in his Eq. (40) Br appears multiplied by
n−3[(3n + 1)/n]n giving precisely the generalized Brinkman num-
er in Eq. (10) with a = 0.25 and b = 0.75, cf. Table 3.

For n = 1 Eq. (10) gives Br* = 0.889Br and Br* = 1.5Br for flows
n square ducts and between parallel plates, respectively. These
xpressions put in evidence the importance of using the gen-
ralized Brinkman number when comparing dissipation effects
etween different duct flows. While Br indicates the same level of
iscous dissipation Br* reveals an increase of 70% for a flow between
arallel plates relative to the square duct flow, i.e., the use of Br* is
ore enlightening than the use of Br. For Newtonian fluids the clas-

ical Brinkman number approach is only adequate if we are dealing
ith the same duct cross-section and flow regime.

Finally, a change in flow regime is also dealt with correctly by
r*. Whereas with the classical Brinkman number there is no dif-

erence in the numerical value of Br for flows in the laminar and
urbulent regimes, all other conditions being identical, and in par-
icular the Reynolds number, the corresponding numerical values
f Br* will differ to express the fact that viscous heating is higher
n turbulent flow than in laminar flow. For instance, at a Reynolds

[
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umber of around 3000 the value of Br* under turbulent flow con-
itions is about two times larger than the corresponding laminar
alue expressing the amount of heat generated internally by fric-
ion as accounted for by the presence of the wall shear stress in the
efinition of Br*.

.2. Flow through porous media

The usual Brinkman number Br for a Newtonian flow through
orous media is defined in Eq. (6a), whereas the generalized
rinkman number is given by Eq. (11) obtained after substituting
q. (2) into Eq. (3). Incidentally, in the context of injection moulding
f plastics Janeschitz–Kriegl [16] used a similar equation.

r∗ = −(dp/dx)(A/P)Ū
8q̇w

. (11)

he frictional pressure drop and the bulk velocity for flow
hrough a porous medium are related by Darcy’s equation [2],
¯ = −(dp/dx)k/�, where 
 is its permeability. Back substituting into
q. (11) gives the following relation between Br* and Br

r∗ = Br

32 Da
, (12)

here Da is the Darcy number defined as 
/D2
h. Incidentally, for

ow through a saturated porous medium the relevant parameter is
r/Da rather than Br, as reported by Nield [17], i.e., proportional to
he generalized Brinkman number (cf. Eq. (12)).

. Conclusions

The generalized Brinkman number is a unified definition valid
or any fluid, duct and/or flow regime correctly quantifying the ratio
etween frictional heat and heat transfer at the wall, thus clarifying
he physics of flow phenomena. Its use is only marginally costlier
han that of the classical Brinkman number, especially because the
ormal expression for Br* appears often disguised in published solu-
ions with the failure to recognize its presence leading to some

isinterpretations of results.
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