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Abstract

Two solutions are presented for fully-developed pipe and planar flows of multimode viscoelastic models. The fluids have a Newtonian solvent
contribution and the polymer modes are described by the Phan-Thien—Tanner (PTT), the FENE-P or the Giesekus equation. The first solution
is exact and can handle any number of modes, but is only semi-analytical. The second solution, which is presented only for the PTT model
with a linear stress coefficient and the FENE-P model, can also handle any number of modes. It is based on a truncated series expansion and is
completely analytical, but provides only an approximated solution. The complexity of the multimode solutions is investigated first with the exact
semi-analytical method and it is shown that at high Deborah number flows the high-order stresses can become as important as the stress of the first
mode. It is also under these conditions that the approximated analytical solution deviates from the exact semi-analytical solution. A criterion for
the accurate use of the approximated solution is presented. Fortran codes are provided to obtain these solutions at the internet address at the end.
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1. Introduction

Nonlinear differential constitutive equations are increasingly
used to describe the rheology of viscoelastic fluids and in solv-
ing fluid mechanics problems of relevance to polymer melts
and solutions. Analytical solutions of such problems provide
strong insight and are also useful for validation and verification
purposes. However, analytical solutions can only be obtained
for simple constitutive models and/or under simplifying flow
conditions, such as flow symmetry and fully-developed flow
conditions, which lead to integrable expressions. As a conse-
quence, most of the studies in the literature concern single-mode
models. A few examples for viscoelastic constitutive equations
are: Beris et al. [1] for concentric and eccentric annular flow of
Maxwell, White—-Metzner and Criminale—Eriksen—Filbey (CEF)
fluid models, Cruz and Pinho [2] for skewed Poiseuille-Couette
flows of Phan-Thien—Tanner (PTT) fluids, Oliveira [3] for
pipe and planar flows of a FENE-P fluid (Finitely-Extensible-
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Nonlinear-Elastic dumbbell model with Peterlin approxima-
tion), for Giesekus fluids, the works of Schleiniger and Weinacht
[4] for pipe and planar flows and of Yoo and Choi [5] for
Couette and planar flows. Van Schaftingen and Crochet [6]
have developed an analytical solution for the Poiseuille flow of
Johnson—Segalman fluid model. The various works of Oliveira,
Pinho and co-workers [7-9] and of Hashemabadi et al. [10,11]
are for isothermal and non-isothermal pipe and planar flows of
PTT and FENE-P fluids.

Whereas these works were aimed at investigating the charac-
teristics of steady flow conditions, other analytical contributions
investigated stability issues. It is the case of Hulsen [12] and
Siline and Leonov [13] for the Giesekus and Leonov models, but
also of Georgiou [14] for the Oldroyd-B model and of Georgiou
and Vlassopoulos [15] for the model of Johnson and Segalman
[16] in steady flow and of Fyrillas et al. [17] for unsteady flows.
Many other analytical contributions can be found in the spe-
cialized journals, such as the Journal of Non-Newtonian Fluid
Mechanics and Rheologica Acta, or earlier in the Quaterly Jour-
nal of Mechanics and Applied Mathematics, among others.

However, the complex rheology of viscoelastic polymer melts
and polymer solutions usually requires the use of multimode
models for an adequate description of the fluid behaviour. The
coupling between the various modes and the flow kinematics
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makes analytical solutions for multimode models a rather chal-
lenging task, so the tendency is to use computational rheology
tools to obtain numerical solutions [18-20]. Needless to say
that in most cases there is no other choice, but for very simple
geometries a semi-analytical solution is possible.

In this paper we present two alternative solutions for fully-
developed pipe and planar flow of multimode models based on
the PTT and the FENE-P equations, with one of the solutions
also presented for the Giesekus model. The first solution is exact,
but is semi-analytical and depends on the corresponding ana-
lytical solution for the single-mode model, an indication that
the methodology described can be extended to other fluids or
flows provided the corresponding single mode analytical solu-
tion exists. The second solution is fully analytical, but invokes
simplifying assumptions and consequently it is only approx-
imate. This being a perturbed solution, it should be possible
to produce also an approximate solution for the multimode
Giesekus model, but this is not attempted here given its lim-
ited scope and higher degree of complexity.

In Section 2 we present the governing equations necessary to
solve the pipe and planar flow problems for the multimode linear
and exponential PTT models. Section 3 describes the method to
obtain the corresponding exact semi-analytical solutions. This
is followed by the presentation and discussion of some results
showing the application of the method to illustrate some dif-
ferences between the flow of fluids modeled by a multimode
model and the corresponding single-mode model. In Section 4,
the alternative approximate fully analytical solution is derived
for the linear form of the PTT model after formulating some
simplifying assumptions and this is followed by a comparison
of its results with those from the exact method and the definition
of a criterion for the applicability of the approximate solution.
Section 5 presents the approximate solutions for the planar flow
of the linear PTT model, the transformations required to obtain
the exact and approximate pipe and planar flow solutions for a
multimode FENE-P fluid and the equations necessary to obtain
the semi-analytical exact solution for a multimode Giesekus
model.

2. Governing equations

For fully-developed pipe or planar flows the momentum equa-
tion in the streamwise z-direction simplifies to
Ly - S =0 (1)
(vt _F_
ydr Yera,F dz
where r designates the radial coordinate in pipe flow or the
transverse coordinate in planar flow, p is the pressure and 7,
is the rz stress component. For pipe flow y =r whereas for pla-
nar flow y = 1. Subscript F is used to denote the extra fluid stress,
which for a multimode model has N individual polymer contri-
butions (;j,,) and one solvent (z;; ) contribution, as given by
Eq. (2).

N

TijF = Zfij’m + Tijs- 2)

m=1

The fluid dynamic solution is unique and is characterized
by a streamwise velocity profile (u), the radial and tangential
velocities being null.

Each polymer mode 7, obeys the PTT constitutive equation
derived by Phan-Thien and Tanner [21]. Here, the simplified
version of the model with a zero second normal stress difference
is being considered (£ =0), which is given by Eq. (3) for each
mode m.

v
F e m)Tijm + A Tijm = 20m Dij 3

The stress coefficient function f{ty) takes either the expo-
nential form (Eq. (4)) or its linearised form (Eq. (5)),

Amé
S (Tkk,m) = exp ( ;’; - Tkk,m) “4)
m
AméE
F@em) =1+ "Lt @)
m

For each polymer mode A,,, n,,, and &, are the relaxation time,
the polymer viscosity coefficient and a parameter limiting the
extensional viscosity, respectively. D;; is the rate of deformation

v
tensor defined in (Eq. (6)) and 7;; , represents Oldroyd’s upper
convected derivative defined in Eq. (7).

(Vu)y; + (V)
= (6)
\% 3‘(,'./' 3‘[,']' 3Mj 314,'

Tij = — +tug — Tk — Thj —-
VT ot oxr o T ox

@)

The Newtonian solvent contribution appearing in Eq. (2) is
given by

Tijs = 2nsDjj (8

where 7 is the solvent viscosity.

3. Exact semi-analytical solution

For fully-developed pipe and planar flows the constitutive
equation for each polymer mode simplifies to the following set,
with Eq. (9c) accounting for the solvent contribution to the shear
stress.

M Ou
Trom = ————— (9a)
T f(tiem) or
2 '\
Tzzm = anz <u) (%9b)
S (The,m)” \ OF
u
Trz,§ = Ns (9¢)
or

Egs. (9a) and (9b) are identical to those for a single
mode model with the same stress function f{titm). The shear
rate of the flow is mode-independent and couples all modes
through the momentum balance. As for the single mode model
[7], the other four components of the polymer stress tensor
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(Teo =Tr=Tr9=Tp,) are null and the two non-zero stresses are
related via Eq. (10).

NMmTzz,m
. 10
. (10)

Trz,m =

As for a single mode fluid [7], the solution of the above equa-
tions for the multimode fluid involves the coupling between the
normal and shear stresses. By back-substitution it is possible to
relate the axial velocity with the normal stress for a given stream-
wise pressure gradient. Although conceptually the procedure is
identical to that for a single mode model the solution for the
multimode model is more involving and requires a numerical
solution.

Henceforth, we will rewrite any modal normal stress as a
function of a single normal stress, which we will refer to as the
principal stress T, (subscript p). For convenience, the principal
mode will always be the first mode (7,,1). Eq. (9b) is used to
relate the principal normal stress with any modal normal stress,
defining function ¢, which is written in the form of Eq. (11).

Tzz,pf;%

Aphp

2
_ Tazmfm
AmNm

¢p = )
For compactness, we write f, = f(t;; ) and fi, = (Tzz.m).

In Sections 3.1 and 3.2, Eq. (11) is used to obtain 7., as
a function of ¢, for the linear and exponential PTT models,
respectively. Then, the momentum Eq. (1) is used together with
Egs. (9b) and (10) to arrive at explicit expressions for the princi-
pal normal stress and the velocity gradient, but their integration
to determine 7., , and u must be carried out numerically.

3.1. Linear PTT model

For the linear PTT model, Eq. (11) is a cubic equation to
determine 7, written as

oAt @t +a3 =0 (12)

Z,m
with coefficients

20m

a) = 13a
= (13a)
2
M
ar = (13b)
EmAim
7
a3 = ——2 13¢
3 eékm(pp (13¢)

The real solution of this cubic equation is available in the
specialized literature and is given by

1
Tzz,m = i/Rm + \/M'F i/Rm - \/m — gal

(14)
with
9ayar —27a3 — Za? 1 nf’n 1 77,311
R, = == + === 15
m 54 22 Pt i (199

2
_302—611 _

"9

1

- __ 15b
972 62 (15b)

Using Eqgs. (10) and (11) and the linear radial variation of
7;;,F (from integration of the momentum equation), the following
equation for 7, p is obtained:

N
[MpTzz,p [ Mm du
=, ,/— + E —T + ns— 16
ZA.p P 2o zz,m T 1s ar (16)

where the velocity gradient is calculated with Eq. (9b) using the
principal normal stress

du Tizp Ephp
— = : 1 17
&\ 2, Ty, a7

Eq. (16) is valid for both pipe (¢ = 1) and planar (g =0) flows.
Its solution is numerical and provides the relationship between
7, p and the pipe radius (or cross-stream coordinate for the flow
between two parallel plates), whereas the velocity profileis given
by numerical integration of Eq. (17). The need for numerical
solutions stem from the dependence of 7., on 7, p via ¢).

dp r
dz 24

3.2. Exponential PTT model

For the exponential PTT model an iterative process is
required to calculate 7., since an explicit expression for this
quantity cannot be obtained as for the linear model. From

Eq. (11)
Tzz,p Ephp Tzz,m Emim
q):exp( 2r,)= exp< 21,
? Aphp Np “r AmNm Nm o

(18)

and rewriting this equation in order to T, gives

A Eph EmA
‘E(") =1, )Lmnm exp <2 l;] P_sz’p _9 r)n7 m r(nl)) (19)

z.m zz,m
pllp p m

where superscripts (r) and (n — 1) designate the level of iteration.
As a first guess for T, the solution for the linear PTT model
(Eq. (14)) can be used.

Henceforth, the calculation procedure for this model is iden-
tical to that for the linear PTT model, i.e., Eq. (16) gives the
principal normal stress as a function of pipe radius (transverse
coordinate for the planar flow), with the adequate modifications
of the stress coefficient function, and the numerical integration
of Eq. (20) provides the velocity profile for a given pressure
gradient.

du Tizp Ephp
- ’ 20
Ve wes d G (20)

3.3. Results and discussion

To test the above procedure we present and discuss results for
the pipe flow of a fluid modeled by four mode PTT equation with
a Newtonian solvent contribution. The fluid chosen was based
on the multimode PTT model fitted by Alves et al. [22] to the
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Table 1
Linear viscoelastic spectrum for PAAS00 with & =0, from Alves et al. [23]. Fluid
1 has ns =0 and Fluid 3 has ny=0.27 Pas

Mode Ak (8) Nk (Pas)
1 30 2.5

2 3 0.9

3 0.3 0.3

4 0.03 0.1
Solvent - 0.27

rheology of the PAAS00 solution (500 ppm by weight of poly-
acrilamide in a 85% glycerin-15% water mixture) characterized
previously by Alves et al. [23]. The four mode linear PTT model
of Alves et al. [22], which had constant ¢ =0.02, £ =0.04, a New-
tonian solvent contribution and parameters n; and Ay listed in
Table 1, predicts well the linear viscoelastic spectrum, the steady
shear viscosity and the first normal stress difference coefficient
of the PAAS500 fluid. For the tests in this paper we used a mod-
ified multimode model, termed Fluid 1, where parameter £ =0
(simplified PTT model) and the Newtonian solvent contribution
is also removed (1 =0) in order to emphasize the role of the
four polymer modes. Of course, the exact solution in Sections
3.1 and 3.2 are more general since they include the Newtonian
solvent contribution.

The pipe flow solution of Fluid 1 is compared with that of the
corresponding single mode PTT fluid, here called Fluid 2, and for
which there is an analytical solution [7]. To obtain parameters
n and A of Fluid 2, from those of the multimode Fluid 1, the
following equations are used [24]

N = Nsolvent T Mp = Nsolvent + Z Nk 2n
k#solvent
Zk;ésolvent)‘k Nk
A= ——F—"— (22)
Zk#solventnk

which gave A =20.48 s and n=3.8 Pas (for Fluid 2 n, =0 also).
These two parameters are based on the Oldroyd-B model and
guarantee that at low deformation rates and low angular veloc-
ities the viscoelastic behaviour of the single mode PTT (or
Oldroyd-B model) is identical to that of the multimode model

Wio=1lim¥ =S 2 = 2n,0).
(say, ¥1,0 Jim 1 > 2k = 2mp2)

We compare the velcfcity profiles (normalised by the bulk
velocity, U) for the four-mode Fluid 1 in Fig. 1(a) with those for
the corresponding single-mode Fluid 2 in Fig. 1(b). Both PTT
models have shear-thinning behaviour increasing with ¢ and the
flow Deborah number, leading to blunter velocity profiles [7].
The Deborah number is calculated as De=AU/R. The shear-
thinning intensity of the corresponding single mode model is
higher than that for the multi-mode model. For both fluids, and
given the low value of €, flows with De < 0.1 are basically New-
tonian. These findings are also clear from the plots of normalized
shear stress shown in Fig. 2. The stresses are normalized by the
wall shear stress for a Newtonian fluid having the same total
viscosity and flowing at the same flow rate, see Eq. (23), so that
a Newtonian behavior is indicated by a linear variation from 0
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Fig. 1. Effect of Deborah number on the normalized velocity profiles for simpli-
fied PTT models with linear stress coefficient and £ =0.02: (a) Fluid 1 (4 modes);
(b) Fluid 2 (1 mode).

on axis to 1 at the wall.

Trz

T, =—— 23
4n(U/R) @

The stronger shear-thinning behaviour of Fluid 2 is clear from
the lower values of T, in comparison with those of Fluid 1, under
similar flow conditions.

The comparison between the elastic normal stresses 77; ,, of
the two fluids is shown in Fig. 3. The stresses are here normal-
ized by the corresponding wall shear stress value of each fluid
(Tzz.w = Tzz/(Trz)yay) 1n order to remove the non-monotonic
behaviour found by Oliveira and Pinho [7]. The multimode
model is seen to be less elastic than the corresponding single
mode model especially at high Deborah numbers (by a factor of
2.5 at De =100), and the radial variation of 7 ,, is also seen to
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Fig. 2. Effect of Deborah number on the normalized profiles of extra shear stress
(T},) for simplified PTT models with linear stress coefficient and ¢ =0.02: (a)
Fluid 1 (4 modes); (b) Fluid 2 (1 mode).

be less non-linear for the multimode model than for the single
mode model. This was expected, because the intensity of shear-
thinning is directly proportional to the magnitude of the normal
stress [7].

The similarity between Fluid 1 and the corresponding single
mode model (Fluid 2) is exclusively based on the linear vis-
coelastic behaviour in the limit of low deformation rates (and
low angular velocities). The two models behave differently in
steady shear, as a quick comparison of the corresponding steady
viscometric viscosity material functions would show. Next, we
analyse in more detail the multimode solution, by looking at
each individual mode and assessing its contribution to the total
stress.

For Fluid 1, we plot in Fig. 4 the normal stress (left-half) and
shear stress (right-half) for all modes, and the corresponding
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Fig. 3. Effect of Deborah number on the normalized profiles of extra normal
stress (note the different normalization, 77 ,,) for simplified PTT models with
linear stress coefficient with e =0.02: (a) Fluid 1 (4 modes); (b) Fluid 2 (1 mode).

extra stress, at a low Deborah number of 0.01. All stresses were
normalised according to Eq. (23). Since the velocity profile
is basically Newtonian, the shear stresses of all modes vary
linearly and their sum adds to 1 at the wall. The corresponding
normal stresses are low, but non-zero, and they all vary
quadratically as for Fluid 2 at very low Deborah numbers.
Depending on the numerical values of the model parameters,
it is already clear in Fig. 4 that different modes have different
magnitudes for each stress component: in particular, lower
modes tend to be more important for normal stresses than for
shear stresses, whereas the opposite happens with the higher
modes.

As the Deborah number increases and the velocity profile
becomes shear-thinning, the individual modal shear stresses
become nonlinear, the individual modal normal stresses are no
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Fig. 4. Radial variation of the non-dimensional normal (7%;) and shear (7};)
stresses for all modes of Fluid 1 (linear PTT model, ¢ =0.02, ny =0) at De =0.01.

longer parabolic and the relative magnitudes between modes
change, as is well shown in the stress plots of Fig. 5 for De = 10.
The changes in the stresses for each mode are dramatic, exhibit-
ing changes in the curvatures of the radial profiles so that profiles
for different modes now cross each other (see modes 1 and 2 for
the shear stress in Fig. 5). Athigher Deborah numbers and/or val-
ues of &, not shown here for compactness, these effects become
even more pronounced. The normalised extra shear stress always
varies linearly, but as shear thinning increases note that its wall
value decreases from 1.

For the exponential PTT model, these features also take
place.

0.5

0
1

Fig. 5. Radial variation of the non-dimensional normal (7%;) and shear (7};)
stresses for all modes of Fluid 1 (linear PTT model, ¢ =0.02, ny =0) at De = 10.

4. Approximate analytical solution

The method used here to obtain this solution for a multimode
PTT model can, in principle, be used also for multimode models
based on other single mode models. We start by defining

>

'm AmEm

By = with 6, =

E Mm

N
md%:Z%,(w
=1

for the multimode PTT model (for a multimode Giesekus model
the corresponding parameter would be 6,, = A,,,&¢,,/1,). When
fitting multimode models to rheological data it is usual practice
to consider the longest relaxation time as that of the first mode
(cf. Table 1 and [5,18,19,24]) and as a consequence it is often
the case that

B > By >...> By. (25)

In this approximate analysis this condition is enforced when-
ever it is not verified at the outset, by changing the order of the
modes if necessary. Henceforth, we refer to the first mode as
the principal mode (subscript p), and it is always the case that
B/B, < 1. Here, it is also assumed that

B
%m> <1 (26)
By m#p

which is often the case anyway. In Debbaut et al. [18], Debbaut
and Dooley [19], Quinzani et al. [24] and Arigo and McKinley
[25] for the worst cases B2/B1 ~0.28 and usually B,/B; <0.15.

Another quantity of interest in the present analysis is B,
defined as

S B
N—1

B

@7

Given Egs. (25) and (26), we can assume O(B) ~ O(B>)
provided the number of modes is not too large (say, not exceeding
5, whichis often the case in practical terms) even though B < Bj.
Indeed, for a small number of modes we can even assume that
O(B) ~ O(B,,). This may no longer be true if the number of
modes is large as in the work of Langouche and Debbaut [20],
who used nine modes. In this case O(B) ~ O(B,,) for m>3
with the consequence that higher-order terms in B may have to
be retained (see next section).

4.1. Analytical solution

The solution of the governing equations can be written as an
expansion on powers of B, where to a first approximation we
neglect terms of order 2 and higher on account of the assump-
tions. Hence, the velocity u, the streamwise pressure gradient
p- and the jj stress component for each polymer mode (z;j ),
except for the principal mode (m = 1), are given by

u = ug+ Buy (28a)
P:= P+ Bp. (28b)
Tijm = Tijmg + Bm'fij,ml form=2...N (28¢)
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The main terms in Eq. (28), those on the right-hand-side with
subscript 0, include effects from all stress modes as will be seen
shortly. We also emphasize that Eq. (28c) is written in terms
of By, (rather than B) and that it decomposes the stress com-
ponents of each mode, except for the principal mode (mode 1),
which is dealt with exactly. If the constitutive equation includes
a solvent its contribution to the total shear stress is also dealt
with exactly (no decomposition). The total pressure gradient p ,
can be decomposed in at least two ways: eitheras p ;, = p ; and
p.z, =0orasp ., = p.(1—B)andp_, = p_..Thesecondset,
or other choices that reduce the magnitude of p ,,, will result in
less accuracy, therefore the first option is retained henceforth,
ie,py =pzandp, =0.

Substituting Eq. (28) into the momentum equation, the fol-
lowing equations of zeroth and first order on B (B° and B',
respectively) are obtained after integration, and considering
O(B) ~ O(B,,) as explained above.

N
- r dug
BY: p,zi =Tz + nsg + Zfrz,mo (29a)
m=2
N
~ du B
B':0= s+ me%ml (29b)
m=2

Since Eqgs. (10) and (17) remain valid for any mode (subscript
m instead of subscript p), substituting Eq. (28) into Eq. (17) for
mode m, we arrive at Egs. (30a) and (30b) by grouping terms of
order B® and B!, respectively.

- dug
B : nm? = Trz,mg (30a)
= duy By Am Bm
Bl N — = —T —+ 2——06
Nm dr B rz,m i B T
3 2
X (rrz’mo + 3B,,1r,z,motrz,m1
+ 383, Tremg Ty + B Toemy) (30b)

The last three terms inside the brackets on the right-hand-side
of Eq. (30b) will be neglected, because they are of second and
higher order on B,,. They will be important to assess the range
of applicability of the approximate analytical solution discussed
in Section 4.2.

Keeping only the underlined term inside the brackets, Eqs.
(30a) and (30b) are inserted into the momentum Eqs. (29a) and
(29b) yielding

N
r dug
Py =Tr + (ns + Zw) < (31a)
m=2
N N 2 3
duy Bm)‘mnm dug
0={n =L oy (2ledm ) g (=2
(1 Do ) S -2 (0t o (4
m=2 m=2
(31b)

These two differential equations must be solved to obtain
the velocity profile. The solution of Eq. (31a) is similar to the

solution for the pipe flow of a viscoelastic fluid represented by a
one-mode PTT model plus Newtonian solvent derived by Cruz et
al. [26], provided a new solvent viscosity coefficient, nr, is made

equal to (ns + ery\::z’?m) Hence, the solution of Eq. (31a) is

2U 2
uo(r) = 2IN0 [1 - (4) }
Bo R
3
+ ——{F"(RG~(R)— F* (NG~ (r)
8C77T
+ F_(R)G+(R) — F_(r)G+(r)} (32)
where
o= nr _ ns + Zgzzﬁm 0= LZRZ
nr+m ns+'nl+-§:5:2nm’ 8(nr +m1)’
2 2
= TR A n12(1+’71> (33)
451)¥1 nr 2 681)\1 nr

1/3
FE(r) = <Cr + /A3 + (Cr)2> (34)
GE(r) =3Cr £/ A3 + (Cr)? (35)

Eq. (31b) is rearranged as

dui _ 201 (Bmkmni) (d) (36)
dr nr = B dr

prior to integration and from Eq. (33) dug/dr is calculated as

d F* F~

duo — Pz ) _ () 37)
dr  2nr nr nr

The solution of Eq. (36) is

- aCR? [1 ( r )2]
u(r)y=———11-(-=
! 4773T R

2
x {4+ 1248 — S3C2R? [1+ (%) H

n ZC%A[F“L(r)G_(r) +F ()G

— FT(RG™(R) — F (RIG*(R)]
L2 Y PP BA + 200G ()]
32 CTI:} r 4 r
— FY(R[3A3 + 2CRG™(R)]}
o

9 2 3
— _—_S{F 3A° +2CrGT
+32 i {F~ (r[3A° +2CrG™(r)]

2 9 «
— F~(R)[3A3 +2CRG™ (R S
(Rl + ( )]}+320C773T

x \/ A3 + (Cr)2[9A% — 4(CrHF~(r) — FY(r)]
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9 «
— — — 8%/ A3 + (CR*9A® — 4(CR)?
20 Cf + (CR)7[ (CR)’]

9 «

§*3Cr
320 Cn3,

x [F~(R) — FT(R)] +
x [A® — 12(CP?I[F~(r) + FT(r)]
9 «

_ 2" 2 3 _ 2 - +
200 S*3CR[A” — 12(CR)I[F(R) + FT(R)]
(38)

with & = 207 /(7 B) x SN _(BuAmn?) and S = p_./2C. For
compactness, here it is also convenient to define @ =

VA3 4 (CR)%.

The bulk velocity U is obtained from the integration of Eq.
(28a)

LR o [F
U= — { / 2rug(r)dr + B / Zrul(r)dr} (39)
R 0 0

and the result is presented as the following sum

4 5
U= ZU(),]- + BZU],; (40)
j=1 j=1

where the four Uy terms and five U;; terms are presented in
Appendix A.

The extra shear and normal stresses follow from Eq. (2) and
are calculated as

N
Tz = N5V + Tzl + Zfrz,m 41)
m=2
N
Tz = Tzz,1 T Zfzz,m (42)
m=2

The shear rate y is defined as

du dug . dug
=—=——+B— 43
dr dr + dr (“43)
where the velocity derivatives are given by Eqs. (36) and (37).
The shear stress of the first mode comes from Eq. (17) using
the relation of Eq. (10) between the shear and normal stresses.

It is the solution of Eq. (17) and is given by

14

Tyot = ny (44)

L4eidi/m X 121

where the normal stress of the first mode (7. 1) is calculated
using the solution of the cubic equation on this normal stress,
derived by Alves et al. [8]. That solution is actually given by
Eq. (14) with the coefficients of Egs. (13) and (15), after setting
m=1and ¢, = 252

For each of the higher modes, the shear stresses are given by

. 2 dug 3
Trom = DmV — 2BmAm0, 01| —— for m=2...N

dr
(45)

and the corresponding normal stresses are calculated using
Eq. (10).

051
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Fig. 6. Radial profiles of streamwise velocity for Fluid 1 (linear PTT model,
£=0.02, ns=0.27Pas) as a function of Deborah number: comparison between
the exact (lines) and approximate (symbols) solutions.

4.2. Results and discussion

We now compare this approximate analytical solution with
the exact semi-analytical solution of Section 3 to assess the range
of application of the former. The comparisons are carried out
with Fluid 3, which is Fluid 1 with a Newtonian solvent contri-
bution (see Table 1).

We plot in Fig. 6 radial profiles of streamwise velocity for
Fluid 3 as a function of the Deborah number. Note that ¢ is
constant and equal to 0.02. It is clear that the approximate solu-
tion approaches very well the exact semi-analytical solution for
De < 1 (actually eDe? < 0.02), but shows stronger shear thinning
for De > 10 (corresponding to sDe? > 2).

The corresponding plots of the shear and normal stresses
are shown in Figs. 7 and 8 at De=1 and 10, respectively. Note
that the shear stress from the solvent is not plotted. For De < 1
the approximate solution reproduces the correct stresses for all
modes. However, for De=10 we observe that the total shear
stress of the approximate solution is below that of the exact
solution, an indication that the pressure gradient required to
attain the same Deborah number is lower than in the approx-
imate solution. For De=10, we also see that the stresses of
the first mode compare reasonably well with the correspond-
ing exact stresses, but for the second mode (7, and T} 2) the
predictions by the approximate solution are clearly not good.
In fact, the stresses of the first mode are dealt with exactly,
but are also a consequence of the velocity profile, which was
obtained with approximate stresses for the higher modes. Hence,
the small differences between the first mode stresses of the exact
and approximate solutions are a consequence of the differences
in the velocity profile. However, the stresses of the second mode
are approximated and when its shear component becomes rele-
vant it is significantly different leading to the large differences
observed in the velocity profile.
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-1 -0.5 0 0.5 /R

Fig. 7. Radial variation of the non-dimensional normal (7, ;) and shear
(T,;) stresses for the polymer modes of Fluid 3 (linear PTT model,
£=0.02, ns=0.27 Pas) at De=1. Exact solution (lines); approximate solution
(symbols).

This raises the issue of the validity of the approximate solu-
tion and we look first at Eq. (30b) and in particular at the four
terms inside the brackets. Using the approximate solution, these
four terms were calculated for modes 2, 3 and 4 and for mode
2 they are compared in Fig. 9 for De=1 and 10 in the form of
normalized stresses. For De = 1 terms 2, 3 and 4 are indeed much
smaller than term 1 that was kept in the analysis, and the more
so because they enter Eq. (30b) as cubic powers of the plot-

S —G—0-Lg a—PLs 4]
-1 0.5 0 0.5 R

Fig. 8. Radial variation of the non-dimensional normal (7,;) and shear
(T;;) stresses for the polymer modes of Fluid 3 (linear PTT model,
£=0.02, ns=0.27Pas) at De=10. Exact solution (lines); approximate solution
(symbols).

0.25 T T 0.25
o
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2 g
=
7
0.2 0.2
0.15 0.15
0.1 0.1
N
0.05 0.05
0 0

-1 -0.5 0 0.5 Y 1

Fig. 9. Comparison between the terms within the brackets in Eq. (30b)
for mode 2: Term 1 = 7,2 5, /(4nU/ R), Term 2 = (3Bat2. , 722, ) janusR),
Term3 = (3B3712,72 ) /(4nU/R), Termd = Byt,..2, /(40U R).

ted quantities. However, at De =10 we clearly see that the first
neglected term, term 2, has the magnitude of the non-neglected
term near the wall (term 1), even though it is multiplied by B;.
For the third and fourth modes (not plotted) a similar situation
arises, but because these stresses are smaller than 7,; 5 it looked
as though they were well predicted in Fig. 8. As the Deborah
number increases, the failure of the approximate solution is even
clearer and the stresses for the higher modes (third and fourth
order) will also be strongly affected.

The growth of the neglected terms is due to the growth of
T,;,m, Which brings into question the assumptions of Eq. (28).
The solution to the problem would be to consider higher order
terms in the expansions of velocity and stress in Eqs. (28a) and
(28¢), leading to final expressions growing in complexity with
progressively smaller gains in accuracy. Given this fact, and the
availability of the exact solution of Section 3, we did not pursue
the analytical solution further to higher order terms.

A criterion for validity of the approximate solution is pre-
sented below based on mode 2 and states that the second term
within the brackets of Eq. (30b) must not exceed the underlined
term, i.e.

3B dM1

rMBy o,
n2
Ty dr

—62 0k, |« 1 (46)
m rz,20

‘ 3BZTrz,21

Trz N 20

Using Eqgs. (30a) and (31b) to provide explicit expressions
for 7,72, and du/dr we arrive at

dug 2
=3 — | |Ba—2A2Byn207| 47

3B21,;2,
dr

TrZ ) 2()

This ratio is maximum at the wall and at the limiting condition
we may consider, from Eq. (29a), that all its terms have the same
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order of magnitude, hence we estimate

d R d R
0<“0 )=0<”’z >_>”° ~ P2 (48)
dr |yan 2nr dr |yan 2n
Back-substituting, we arrive at
3B 3PER?
’ 2021 | 2 PR B — 200 Bynobr| < 1 (49)
Trz,20 4 nr

providing the means to calculate the critical pressure gradient.
Assuming that a ratio of 10% is sufficiently smaller than 1, the
criterion for validity becomes

3pER? 1
= - Bo — 20 Bynibr| ~ —
i | Ba 2B 07| 10

’3327&1’2' (50)

TrZ ) 2()

Solving in order to p_; gives the maximum pressure gradient
for which the approximate solution is an accurate multimode
solution

pol =2 :
“lmax T R\ 3 % 10| Ba — 222 Banabr|

(51a)

Due to the approximation invoked in Eq. (48), the exact
value of |[3B27,;2, /77,2, for the imposed pressure gradient
of Eq. (51a), was found to be around 30% rather than 10%,
for various tested multimode models. At this condition the
analytical solution is still a good approximation to the exact
semi-analytical profiles as can be seen in Fig. 10 for Fluid 1
(by using a fluid without solvent contribution, we have a better
test case since the solvent contribution is also dealt with without
approximations).

The worst scenario is for identical values of B,, and in the
absence of a solvent (ns =0), in which case all 6, are also iden-

(387

0.8

+ T Te
X T

u/U

O T
Tras

B Bl 0.6

1.5

. 0
-1 -0.5 0 0.5 R 1

Fig. 10. Comparison between the radial profiles of normalized velocity and
shear stresses for all modes of the exact and approximate solutions for the flow
of fluid 1 at De =1.27, corresponding to the limiting condition of Eq. (51a).

tical, 7=N6,, and B = B,, = 1/N. Since now n7 = SN _
and considering 135" _,n,, > SON_ p3 . the criterion of valid-
ity of the approximation of Eq. (46), for the same 10% ratio, gives

the following maximum pressure gradient

Pl _nr 2
“lmax T po, \ 3 x 106,

5. Other solutions

(51b)

In this section, other solutions for multimode fluids are pre-
sented, without demonstration.

5.1. Approximate analytical solution for planar flow of
linear PTT fluids

For the planar flow of half-height H the momentum equation
(see Eq. (1)) is slightly different, but the process to obtain the
solution remains the same. As for the pipe flow (Eq. (28a)), the
velocity profile has two contributions

u(y) = uo(y) + Bui(y). (52)

The first order velocity on the right-hand-side (ug(y)) is
exactly Eq. (32) except that the lateral coordinate is y, instead of
r, and the half-width of the channel is H instead of R. The ratio
of viscosities fp remains unchanged, but Uy and C are defined
differently as:

2 S m,
At +m)’ VSR

The second term on the right-hand-side of Eq. (52) (u1(y)) is
given by Eq. (38) the same equation as for pipe flow, provided r
is substituted by y and R becomes H.

The bulk velocity is different from that of the pipe flow and is
given by the following sum of thirteen terms, which are presented
in Appendix B.

Un,o z (53)

1 H 5 H
U= [/ Mo(y)dy+3/ ul(y)dy} S U
0 0
4 9
= ZUOJ+ BZULj (54)

The stress field for the planar flow is calculated as for pipe
flow (Eqs. (41)—(45)) with the necessary adaptations in velocity
profile and velocity derivatives.

5.2. Exact and approximate solutions for pipe and planar
flows of multimode FENE-P fluids

The FENE-P model [27] can also be used in the context of a
multimode constitutive equation, with the extra stress given as
the sum of N polymer contributions and a Newtonian solvent,
see Eq. (2). The contribution from each polymer mode obeys
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the following expression

v b
Zm(fkk,m)fij,m + )‘«mfij,m — Am Tijm + 7mnka1ij
by +2
Dln Zm(fkk,m) bm
X D = 2bm T 2nkak,nDij (55)

where Z,, (T, ) 18 a function of the trace of the stress tensor. The
various parameters of the model have specific physical mean-
ings explained elsewhere [28], but the zero shear rate polymer
viscosity coefficient for each mode is given by

b
Nm = NkTApy b s (56)

For fully-developed flow D In Z/Dt =0 and Eq. (55) becomes
similar to the constitutive equation for a PTT model [3]. A perfect
match is obtained provided the following substitutions are made
[26]:

by +2 by +2
Zm ; A Ams
by +5 = fms by + 5 m —> Am
1
bm+5_>8m; Nm = Nm (57

As a consequence, the solutions derived above for pipe and
planar flows of the multimode PTT model apply equally to a
multimode FENE-P fluid.

5.3. Exact solution for the Giesekus model

For the Giesekus model there is also a semi-analytical exact
solution and in this section the equations that need to be solved
are presented. The approach is identical to that described in
Sections 2 and 3 for the PTT model, adapted to the Giesekus
model and relying on the analytical solution for the one-mode
Giesekus model of Schleiniger and Weinacht [4].

The momentum equation to be solved is again Eq. (1) and
Eq. (2) also applies. The constitutive equation for a one-mode
Giesekus model is given by expression (58)

oy 0tjj n 0Tjj ou; ou j n al
T gt _ __J T
ij 5t k P Jk axk Tik axk 1 ik Tkj
Bui auj
_ [ 9ui 58
1 <ax,- + 3x,~> (58)

introducing parameter ¢ in the quadratic term, which is respon-
sible for a non-zero second normal stress difference.

Adapting for each polymer mode, Schleiniger and Weinacht
[4] gives the following expressions for the non-zero stresses in
fully-developed Poiseuille flow:

du du o)
Trz,m = Nm + mTrr,m - (Tzz,m + frr,m)Trz,m (59)
dr dr m

du o,
Teem = 2mTrem - = ’; (e + o) (60)
m

mm

(61)

Trrm = ( rz m rrm)

and with the solvent contribution still expressed by Eq. (8).
Following Schleiniger and Weinacht [4], the second order Eq.

(61) gives for T,

S NN R (62)
e 20, Am 40‘%1)‘%1 e

and the shear rate is calculated by

dl _ Trzm [14+ Qay — 1)(frr,m)/nm]
I+ xp Trr,m/nm)z

= 63
dr Nm (63)

which depends on two stress components. Combining these two
equations the velocity gradient is expressed as a function of the
shear stress [4] for each mode as

Qi Dy 1 E Qo = Dy/1 =42 22,22, /3]

dr 5
" [\/1 — 402 A2 72 /2 £ Qo — 1]
_ 20yt TG Dy/1-4a323ek /m3] @
- 2 = 7P
T [\/1 40[2)\21:117/,72 :i:(Zap ]
(64)

Since the right-hand-side of Eq. (64) is independent of the
mode, it can be calculated using the principal mode which
defines @,,.

Adapting Equation (3.3) of Schleiniger and Weinacht [4] T,
can now be calculated from Eq. (65) provided we know the
other two stress components for the same mode. In this way, all
quantities depend on T, .

Tzzm =

dr i A Trz,m [ M U Am Mm

du 1+ Ayt A
u T, m/ﬁm NMm (1 U Am >
(65)

For the PTT model Eq. (10) was used to relate 7, , with 7.,
and everything was equated in terms of 7. ,, in order to benefit
from the previous solution of Oliveira and Pinho [7]. For the
Giesekus model, and using the second equality in Eq. (64), it is
the shear stress 7., that is used assuming @), is known.

20, T 40:2 A2
7”7’7:”" 14 Qay — 1) ’"2 "l m}
4 2)\2
=@, |/1- “7;12 m2 4 (g, — 1)] (66)
m
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Squaring Eq. (66) and making the substitution Tn% =1-
4a2 22, rfz’ /12, leads to a fourth order algebraic equation
i(l—ﬂ)ui(za — DT = QAT £ Qa — DI* (67)
)\’}%1 m m ml =% m
for which algebra books provide a solution. Alternatively, it is
also possible to obtain numerically values for 7, ,,, but we rec-
ommend the use of the algebraic solution in the spirit of the
semi-analytical solution.

Once t,,,, is known as a function of the shear stress of the
principal mode via @, the principal shear stress ;) is cal-
culated solving the integrated momentum Eq. (68) (basically
identical to that for the PTT; compare with Eq. (16) using
Eq. (10)),

du

N
=Tzp+ Zfrz,m + Usa (68)

dp r
dz 249 —
where the velocity gradient is given by Eq. (69) and we also use
q =1 for pipe flow and g =0 for planar flow.

W dayr., 1 ECup - 1)\/1 — 4023222 /3

dr n 2922 2
P {\/1 — 4023272 /1 + (Qap — 1)

(69)

Inserting Eq. (69) and the solution of Eq. (67) into Eq. (68),
we have an analytical expression for the shear stress of the prin-
cipal mode, 7,;,. The velocity profile can now be obtained from
numerical integration of Eq. (69).

6. Conclusions

Exact and approximate solutions are presented for fully-
developed pipe and planar flows of multimode differential vis-
coelastic equations. The exact solutions are semi-analytic and
pertain to models based on the Phan-Thien—Tanner (with £ =0),
Giesekus and FENE-P equations, whereas the approximate solu-
tions are fully analytical and concern the PTT and FENE-P
models. In all cases due account is taken of the presence of
a Newtonian solvent.

The exact solutions show that at low Deborah numbers
the flow is dominated by the low order stress modes, but the

Un,o

Up,1 =
Bo

stresses from the higher modes increase and become of the
same order as, and later exceed, those from the lower modes as
the flow Deborah number progressively increases. These fea-
tures are associated with the shear-thinning character of the
models used and the relative values of the relaxation time and
the flow characteristic time because the onset of shear-thinning
takes place at a shear rate proportional to the reciprocal of
the relaxation time. Therefore, as the flow Deborah number
increases, the shear rates increase and the modes with higher
relaxation times (lower modes) progressively contribute less
to the shear stress balance, because of their decreasing shear
viscosities, whereas those modes with a low relaxation time
still contribute with viscosities close to their zero shear rate
values.

The analytical approximate solution was obtained with a
perturbation technique, but calculations with these formulae
are limited to low values of flow Deborah number (actu-
ally to low values of eDe? for the PTT model and of the
corresponding parameter for the FENE-P model, according
to the transformation rules in Eq. (5§7). A criterion for the
accurate use of this approximate solution is presented in
Egs. (50), (51a) and (51b). In spite of its length, the ana-
lytical solution is advantageous at low Deborah numbers
because it eliminates the need for an iterative numerical pro-
cedure.

Fortran codes are available at http://www.fe.up.pt/~
fpinho/research/menur.html to perform calculations with both
the exact semi-analytical and approximate analytical solu-
tions.
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Appendix A

The nine terms of Eq. (40) giving the bulk velocity of
the approximate solution for pipe flow of the multimode PTT
fluid

%a=43—wﬂmcwm+F7mcﬂm}

8nrC

R S / A3 2043 2y _ 3 NPV
Ups = 32020 C3 {F (R) [3 A’ 4+ (CR)*(A° +4(CR)") — CR(A” 4+ 28(CR) )} 3A }

Upg = ——
04 = 320RZy, C3

{F—(R) {3\/ A3 4+ (CR*(A3 + 4(CR)®) + CR(A3 + 28(CR)2)} + 3A5}
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and, for compactness, using F* and F~ to represent the functions at the wall, i.e., F*(R) and F~(R),

—paR* «CR[1 3 S3CR? 9F~ 81aA®
8nr ny 22 6 5 A 160C37]TR2
Uy, = —od? (81A3[FT 3 + CR) + F—(3® + 5CR)] + 108(CR*[2F " (® + 5CR) — F*'(® + 9CR)]}
"7 960C3 3. R2(CR + @)
Uz = —as (27TA™[BH(F~ — F*)+ CR(I9F~ — 17F )] + 4A'(CR)*[—-35F T (99 + 17CR)
" 2240C33R4(CR + ®)°
L 44F~ (90 + 19CR)] + 1124%(CR)*[35F (@ + CR) — 4FT(5® + 4CR)] — 64A5(CR)[—28 F+(® + 2CR)
- 28 + _ 4210 729 A7
+5F (7@ 4 25CR)] — 256 AX(CR)[—14F (@ + CR) + 5F~(11® + 15CR)] + 10240F " (CR)'0) — —
1120C3 03 R?
Upg = —9uS” (3483AB(F~ + F*°) + 774A'°CRISF 3@ + 5CR) + TF— (3@ + 1CR)]
YT 143360C3 3 RA(® + CR)
1 16A7(CR[AF+ (222 + 199CR) + TF~"(426® + 481CR)] + 32A*(CR)[4F+ (=150 + CR)
31347 A3 5?2
+7F~ (370 + 11CR)] + 256 A(CR)[16F+ (& + CR) + TF~(=4® + CR)] + 17920(CR°F "} — — ">
71680C3 3. R2
U s = 2as? ([F~> — FY']®CR[342A% — 35243(CR)? + 3360(CR)*] + [F— + F*'][513A° + 114A%(CR)
' T 14336042C3 3 R?
13851 A%« S?
—208A43(CR)* + 3360(CR)T} — ———— 2
71680C3 3. R2
Appendix B

The 13 terms of Eq. (54) giving the bulk velocity of the approximate solution for planar flow of the multimode PTT fluid

3 _ _
Upr = ——I[FT(H)G (H)+ F(H)G(H)]
8Cnr

9
Up3=————— L FT(H)|8A3 + CH [ —19CH + 91/ A3 + (CH)* | | —8A7/2
0,3 280H2C3nT{ ( ){ + ( +9y/A° + (CH)

-9
Upy = ————— L F (H)|—8A% + CH ( 19CH — 91/ A3 + (CH)? gA’/?
0.4 280H2C3n7{ ()[ + ( \VA°+(CH)" || +

aCH? [2+6AS C2H253]

U —
R 3 5

9 « + _ _ +
Uip=—5-=5AF" ()G (H)+ F (H)G"(H)]
8 Cny

;—E%S{F#(H)BM £ 2CHG™(H)] + F—(H)[3A3 + 2CHG™* (H)]}
nr

_ 22 0 /s 21043 _ I
Uis= 555 Cn%s \/ A3 + (CHY[9A® — A(CHYH[F~(H) — F+(H)]

-9 «
Uls = ———S23CH[A? — 12(CH)*|[F~(H) + FY(H
1,5 SZOCU% [ (CH)[F(H)+ F(H)]

Upz=
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54 % 4daA 5 . s
Ure = ——— 20 F~(H){ —8A% + 9CH\/ A? + (CHY + 19(CH)
77 x 320HC?ny
21604
— %% prE) {8A3 +9CH\/ A3 + (CH)? — 19(CH)2}
7 % 320H}.
5408
U a {CH[641A3 +290(CH)AF Y (H) + F~(H)]

320 x 77C%Hu3,

+61/A3 + (CH)*[64A3 + 25(CH)*1[F~"(H) — F+2(H)]}

U 8laA3S?
1.8=— -~~~ 3.,
35 x 320C2n3 H
Uro— —108a5?
275005 x 320HC2n3:
— 46A3(CH)* — 828A°)[F~(H) + F+(H)]}
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