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bstract

Two solutions are presented for fully-developed pipe and planar flows of multimode viscoelastic models. The fluids have a Newtonian solvent
ontribution and the polymer modes are described by the Phan-Thien—Tanner (PTT), the FENE-P or the Giesekus equation. The first solution
s exact and can handle any number of modes, but is only semi-analytical. The second solution, which is presented only for the PTT model
ith a linear stress coefficient and the FENE-P model, can also handle any number of modes. It is based on a truncated series expansion and is

ompletely analytical, but provides only an approximated solution. The complexity of the multimode solutions is investigated first with the exact

emi-analytical method and it is shown that at high Deborah number flows the high-order stresses can become as important as the stress of the first
ode. It is also under these conditions that the approximated analytical solution deviates from the exact semi-analytical solution. A criterion for

he accurate use of the approximated solution is presented. Fortran codes are provided to obtain these solutions at the internet address at the end.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Nonlinear differential constitutive equations are increasingly
sed to describe the rheology of viscoelastic fluids and in solv-
ng fluid mechanics problems of relevance to polymer melts
nd solutions. Analytical solutions of such problems provide
trong insight and are also useful for validation and verification
urposes. However, analytical solutions can only be obtained
or simple constitutive models and/or under simplifying flow
onditions, such as flow symmetry and fully-developed flow
onditions, which lead to integrable expressions. As a conse-
uence, most of the studies in the literature concern single-mode
odels. A few examples for viscoelastic constitutive equations

re: Beris et al. [1] for concentric and eccentric annular flow of
axwell, White–Metzner and Criminale–Eriksen–Filbey (CEF)
uid models, Cruz and Pinho [2] for skewed Poiseuille-Couette
ows of Phan-Thien—Tanner (PTT) fluids, Oliveira [3] for
ipe and planar flows of a FENE-P fluid (Finitely-Extensible-
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200-465 Porto, Portugal. Tel.: +351 967 170 674; fax: +351 225082153/1445.
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onlinear-Elastic dumbbell model with Peterlin approxima-
ion), for Giesekus fluids, the works of Schleiniger and Weinacht
4] for pipe and planar flows and of Yoo and Choi [5] for
ouette and planar flows. Van Schaftingen and Crochet [6]
ave developed an analytical solution for the Poiseuille flow of
ohnson–Segalman fluid model. The various works of Oliveira,
inho and co-workers [7–9] and of Hashemabadi et al. [10,11]
re for isothermal and non-isothermal pipe and planar flows of
TT and FENE-P fluids.

Whereas these works were aimed at investigating the charac-
eristics of steady flow conditions, other analytical contributions
nvestigated stability issues. It is the case of Hulsen [12] and
iline and Leonov [13] for the Giesekus and Leonov models, but
lso of Georgiou [14] for the Oldroyd-B model and of Georgiou
nd Vlassopoulos [15] for the model of Johnson and Segalman
16] in steady flow and of Fyrillas et al. [17] for unsteady flows.

any other analytical contributions can be found in the spe-
ialized journals, such as the Journal of Non-Newtonian Fluid
echanics and Rheologica Acta, or earlier in the Quaterly Jour-

al of Mechanics and Applied Mathematics, among others.

However, the complex rheology of viscoelastic polymer melts

nd polymer solutions usually requires the use of multimode
odels for an adequate description of the fluid behaviour. The

oupling between the various modes and the flow kinematics

mailto:doac@ufpa.br
mailto:fpinho@fe.up.pt
dx.doi.org/10.1016/j.jnnfm.2006.09.001
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akes analytical solutions for multimode models a rather chal-
enging task, so the tendency is to use computational rheology
ools to obtain numerical solutions [18–20]. Needless to say
hat in most cases there is no other choice, but for very simple
eometries a semi-analytical solution is possible.

In this paper we present two alternative solutions for fully-
eveloped pipe and planar flow of multimode models based on
he PTT and the FENE-P equations, with one of the solutions
lso presented for the Giesekus model. The first solution is exact,
ut is semi-analytical and depends on the corresponding ana-
ytical solution for the single-mode model, an indication that
he methodology described can be extended to other fluids or
ows provided the corresponding single mode analytical solu-

ion exists. The second solution is fully analytical, but invokes
implifying assumptions and consequently it is only approx-
mate. This being a perturbed solution, it should be possible
o produce also an approximate solution for the multimode
iesekus model, but this is not attempted here given its lim-

ted scope and higher degree of complexity.
In Section 2 we present the governing equations necessary to

olve the pipe and planar flow problems for the multimode linear
nd exponential PTT models. Section 3 describes the method to
btain the corresponding exact semi-analytical solutions. This
s followed by the presentation and discussion of some results
howing the application of the method to illustrate some dif-
erences between the flow of fluids modeled by a multimode
odel and the corresponding single-mode model. In Section 4,

he alternative approximate fully analytical solution is derived
or the linear form of the PTT model after formulating some
implifying assumptions and this is followed by a comparison
f its results with those from the exact method and the definition
f a criterion for the applicability of the approximate solution.
ection 5 presents the approximate solutions for the planar flow
f the linear PTT model, the transformations required to obtain
he exact and approximate pipe and planar flow solutions for a

ultimode FENE-P fluid and the equations necessary to obtain
he semi-analytical exact solution for a multimode Giesekus

odel.

. Governing equations

For fully-developed pipe or planar flows the momentum equa-
ion in the streamwise z-direction simplifies to

1

y

d

dr
(yτrz,F ) − dp

dz
= 0 (1)

here r designates the radial coordinate in pipe flow or the
ransverse coordinate in planar flow, p is the pressure and τrz

s the rz stress component. For pipe flow y = r whereas for pla-
ar flow y = 1. Subscript F is used to denote the extra fluid stress,
hich for a multimode model has N individual polymer contri-
utions (τij,m) and one solvent (τij,s) contribution, as given by

q. (2).

ij,F =
N∑

m=1

τij,m + τij,s. (2)

m
r
t
[
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The fluid dynamic solution is unique and is characterized
y a streamwise velocity profile (u), the radial and tangential
elocities being null.

Each polymer mode τij,m obeys the PTT constitutive equation
erived by Phan-Thien and Tanner [21]. Here, the simplified
ersion of the model with a zero second normal stress difference
s being considered (ξ = 0), which is given by Eq. (3) for each

ode m.

(τkk,m)τij,m + λm
∇
τ ij,m = 2ηmDij (3)

The stress coefficient function f(τkk) takes either the expo-
ential form (Eq. (4)) or its linearised form (Eq. (5)),

(τkk,m) = exp

(
λmεm

ηm

τkk,m

)
(4)

(τkk,m) = 1 + λmεm

ηm

τkk,m (5)

For each polymer mode λm, ηm and εm are the relaxation time,
he polymer viscosity coefficient and a parameter limiting the
xtensional viscosity, respectively. Dij is the rate of deformation

ensor defined in (Eq. (6)) and
∇
τ ij,m represents Oldroyd’s upper

onvected derivative defined in Eq. (7).

ij = (∇u)ij + (∇u)Tij
2

(6)

∇
τ ij = ∂τij

∂t
+ uk

∂τij

∂xk

− τik

∂uj

∂xk

− τkj

∂ui

∂xk

. (7)

The Newtonian solvent contribution appearing in Eq. (2) is
iven by

ij,s = 2ηsDij (8)

here ηs is the solvent viscosity.

. Exact semi-analytical solution

For fully-developed pipe and planar flows the constitutive
quation for each polymer mode simplifies to the following set,
ith Eq. (9c) accounting for the solvent contribution to the shear

tress.

rz,m = ηm

f (τkk,m)

∂u

∂r
(9a)

zz,m = 2λmηm

f (τkk,m)2

(
∂u

∂r

)2

(9b)

rz,S = ηs

∂u

∂r
(9c)

Eqs. (9a) and (9b) are identical to those for a single

ode model with the same stress function f(τkk,m). The shear

ate of the flow is mode-independent and couples all modes
hrough the momentum balance. As for the single mode model
7], the other four components of the polymer stress tensor
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τθθ = τrr = τrθ = τθz) are null and the two non-zero stresses are
elated via Eq. (10).

rz,m =
√

ηmτzz,m

2λm

(10)

As for a single mode fluid [7], the solution of the above equa-
ions for the multimode fluid involves the coupling between the
ormal and shear stresses. By back-substitution it is possible to
elate the axial velocity with the normal stress for a given stream-
ise pressure gradient. Although conceptually the procedure is

dentical to that for a single mode model the solution for the
ultimode model is more involving and requires a numerical

olution.
Henceforth, we will rewrite any modal normal stress as a

unction of a single normal stress, which we will refer to as the
rincipal stress τzz,p (subscript p). For convenience, the principal
ode will always be the first mode (τzz,1). Eq. (9b) is used to

elate the principal normal stress with any modal normal stress,
efining function φp, which is written in the form of Eq. (11).

p = τzz,pf 2
p

λpηp

= τzz,mf 2
m

λmηm

(11)

or compactness, we write fp ≡ f(τzz,p) and fm = f(τzz,m).
In Sections 3.1 and 3.2, Eq. (11) is used to obtain τzz,m as

function of φp for the linear and exponential PTT models,
espectively. Then, the momentum Eq. (1) is used together with
qs. (9b) and (10) to arrive at explicit expressions for the princi-
al normal stress and the velocity gradient, but their integration
o determine τzz,p and u must be carried out numerically.

.1. Linear PTT model

For the linear PTT model, Eq. (11) is a cubic equation to
etermine τzz,m written as

3
zz,m + a1τ

2
zz,m + a2τzz,m + a3 = 0 (12)

ith coefficients

1 = 2ηm

εmλm

(13a)

2 = η2
m

ε2
mλ2

m

(13b)

3 = − η3
m

ε2
mλm

φp (13c)

The real solution of this cubic equation is available in the
pecialized literature and is given by

zz,m = 3

√
Rm +

√
Q3

m + R2
m + 3

√
Rm −

√
Q3

m + R2
m − 1

3
a1

(14)
ith

m = 9a1a2 − 27a3 − 2a3
1

54
= 1

2

η3
m

λmε2
m

φp + 1

27

η3
m

λ3
mε3

m

(15a)

t
a
o
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m = 3a2 − a2
1

9
= −1

9

η2
m

λ2
mε2

m

(15b)

Using Eqs. (10) and (11) and the linear radial variation of
ij,F (from integration of the momentum equation), the following
quation for τzz,P is obtained:

dp

dz

r

2q
=
√

ηpτzz,p

2λp

+
N∑

m=2

√
ηm

2λm

τzz,m + ηs

du

dr
(16)

here the velocity gradient is calculated with Eq. (9b) using the
rincipal normal stress

du

dr
=
√

τzz,p

2λpηp

(
1 + εpλp

ηp

τzz,p

)
(17)

Eq. (16) is valid for both pipe (q = 1) and planar (q = 0) flows.
ts solution is numerical and provides the relationship between
zz,P and the pipe radius (or cross-stream coordinate for the flow
etween two parallel plates), whereas the velocity profile is given
y numerical integration of Eq. (17). The need for numerical
olutions stem from the dependence of τzz,m on τzz,P via φp.

.2. Exponential PTT model

For the exponential PTT model an iterative process is
equired to calculate τzz,m since an explicit expression for this
uantity cannot be obtained as for the linear model. From
q. (11)

p = τzz,p

λpηp

exp

(
εpλp

ηp

2τzz,p

)
= τzz,m

λmηm

exp

(
εmλm

ηm

2τzz,m

)
(18)

nd rewriting this equation in order to τzz,m gives

(n)
zz,m = τzz,p

λmηm

λpηp

exp

(
2
εpλp

ηp

τzz,p − 2
εmλm

ηm

τ(n−1)
zz,m

)
(19)

here superscripts (n) and (n − 1) designate the level of iteration.
s a first guess for τzz,m, the solution for the linear PTT model

Eq. (14)) can be used.
Henceforth, the calculation procedure for this model is iden-

ical to that for the linear PTT model, i.e., Eq. (16) gives the
rincipal normal stress as a function of pipe radius (transverse
oordinate for the planar flow), with the adequate modifications
f the stress coefficient function, and the numerical integration
f Eq. (20) provides the velocity profile for a given pressure
radient.

du

dr
=
√

τzz,p

2λpηp

exp

(
εpλp

ηp

τzz,p

)
(20)

.3. Results and discussion
To test the above procedure we present and discuss results for
he pipe flow of a fluid modeled by four mode PTT equation with
Newtonian solvent contribution. The fluid chosen was based
n the multimode PTT model fitted by Alves et al. [22] to the



88 D.O.A. Cruz, F.T. Pinho / J. Non-Newtonian Fluid Mech. 141 (2007) 85–98

Table 1
Linear viscoelastic spectrum for PAA500 with ξ = 0, from Alves et al. [23]. Fluid
1 has ηs = 0 and Fluid 3 has ηs = 0.27 Pa s

Mode λk (s) ηk (Pa s)

1 30 2.5
2 3 0.9
3 0.3 0.3
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olvent – 0.27

heology of the PAA500 solution (500 ppm by weight of poly-
crilamide in a 85% glycerin-15% water mixture) characterized
reviously by Alves et al. [23]. The four mode linear PTT model
f Alves et al. [22], which had constant ε = 0.02, ξ = 0.04, a New-
onian solvent contribution and parameters ηk and λk listed in
able 1, predicts well the linear viscoelastic spectrum, the steady
hear viscosity and the first normal stress difference coefficient
f the PAA500 fluid. For the tests in this paper we used a mod-
fied multimode model, termed Fluid 1, where parameter ξ = 0
simplified PTT model) and the Newtonian solvent contribution
s also removed (ηs = 0) in order to emphasize the role of the
our polymer modes. Of course, the exact solution in Sections
.1 and 3.2 are more general since they include the Newtonian
olvent contribution.

The pipe flow solution of Fluid 1 is compared with that of the
orresponding single mode PTT fluid, here called Fluid 2, and for
hich there is an analytical solution [7]. To obtain parameters
and λ of Fluid 2, from those of the multimode Fluid 1, the

ollowing equations are used [24]

= ηsolvent + ηp = ηsolvent +
∑

k �=solvent

ηk (21)

=
∑

k �=solventλkηk∑
k �=solventηk

(22)

hich gave λ = 20.48 s and η = 3.8 Pa s (for Fluid 2 ηs = 0 also).
hese two parameters are based on the Oldroyd-B model and
uarantee that at low deformation rates and low angular veloc-
ties the viscoelastic behaviour of the single mode PTT (or
ldroyd-B model) is identical to that of the multimode model

say, Ψ1,0 ≡ lim
γ̇→0

Ψ1 =
∑

k

2ηkλk = 2ηpλ).

We compare the velocity profiles (normalised by the bulk
elocity, U) for the four-mode Fluid 1 in Fig. 1(a) with those for
he corresponding single-mode Fluid 2 in Fig. 1(b). Both PTT

odels have shear-thinning behaviour increasing with ε and the
ow Deborah number, leading to blunter velocity profiles [7].
he Deborah number is calculated as De = λU/R. The shear-

hinning intensity of the corresponding single mode model is
igher than that for the multi-mode model. For both fluids, and
iven the low value of ε, flows with De ≤ 0.1 are basically New-
onian. These findings are also clear from the plots of normalized

hear stress shown in Fig. 2. The stresses are normalized by the
all shear stress for a Newtonian fluid having the same total
iscosity and flowing at the same flow rate, see Eq. (23), so that
Newtonian behavior is indicated by a linear variation from 0

b
m
m
2

ig. 1. Effect of Deborah number on the normalized velocity profiles for simpli-
ed PTT models with linear stress coefficient and ε = 0.02: (a) Fluid 1 (4 modes);
b) Fluid 2 (1 mode).

n axis to 1 at the wall.

rz = τrz

4η(U/R)
(23)

The stronger shear-thinning behaviour of Fluid 2 is clear from
he lower values of Trz in comparison with those of Fluid 1, under
imilar flow conditions.

The comparison between the elastic normal stresses Tzz,w of
he two fluids is shown in Fig. 3. The stresses are here normal-
zed by the corresponding wall shear stress value of each fluid
Tzz,w = τzz/(τrz)wall) in order to remove the non-monotonic

ehaviour found by Oliveira and Pinho [7]. The multimode
odel is seen to be less elastic than the corresponding single
ode model especially at high Deborah numbers (by a factor of

.5 at De = 100), and the radial variation of Tzz,w is also seen to
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Trz) for simplified PTT models with linear stress coefficient and ε = 0.02: (a)
luid 1 (4 modes); (b) Fluid 2 (1 mode).

e less non-linear for the multimode model than for the single
ode model. This was expected, because the intensity of shear-

hinning is directly proportional to the magnitude of the normal
tress [7].

The similarity between Fluid 1 and the corresponding single
ode model (Fluid 2) is exclusively based on the linear vis-

oelastic behaviour in the limit of low deformation rates (and
ow angular velocities). The two models behave differently in
teady shear, as a quick comparison of the corresponding steady
iscometric viscosity material functions would show. Next, we
nalyse in more detail the multimode solution, by looking at

ach individual mode and assessing its contribution to the total
tress.

For Fluid 1, we plot in Fig. 4 the normal stress (left-half) and
hear stress (right-half) for all modes, and the corresponding

m

b
b

ig. 3. Effect of Deborah number on the normalized profiles of extra normal
tress (note the different normalization, Tzz,w) for simplified PTT models with
inear stress coefficient with ε = 0.02: (a) Fluid 1 (4 modes); (b) Fluid 2 (1 mode).

xtra stress, at a low Deborah number of 0.01. All stresses were
ormalised according to Eq. (23). Since the velocity profile
s basically Newtonian, the shear stresses of all modes vary
inearly and their sum adds to 1 at the wall. The corresponding
ormal stresses are low, but non-zero, and they all vary
uadratically as for Fluid 2 at very low Deborah numbers.
epending on the numerical values of the model parameters,

t is already clear in Fig. 4 that different modes have different
agnitudes for each stress component: in particular, lower
odes tend to be more important for normal stresses than for

hear stresses, whereas the opposite happens with the higher

odes.
As the Deborah number increases and the velocity profile

ecomes shear-thinning, the individual modal shear stresses
ecome nonlinear, the individual modal normal stresses are no
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onger parabolic and the relative magnitudes between modes
hange, as is well shown in the stress plots of Fig. 5 for De = 10.
he changes in the stresses for each mode are dramatic, exhibit-

ng changes in the curvatures of the radial profiles so that profiles
or different modes now cross each other (see modes 1 and 2 for
he shear stress in Fig. 5). At higher Deborah numbers and/or val-
es of ε, not shown here for compactness, these effects become
ven more pronounced. The normalised extra shear stress always

aries linearly, but as shear thinning increases note that its wall
alue decreases from 1.

For the exponential PTT model, these features also take
lace.

ig. 5. Radial variation of the non-dimensional normal (Tzz) and shear (Trz)
tresses for all modes of Fluid 1 (linear PTT model, ε = 0.02, ηs = 0) at De = 10.
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. Approximate analytical solution

The method used here to obtain this solution for a multimode
TT model can, in principle, be used also for multimode models
ased on other single mode models. We start by defining

m ≡ θm

θT

with θm = λmεm

ηm

and θT =
N∑

m=1

θm, (24)

or the multimode PTT model (for a multimode Giesekus model
he corresponding parameter would be θm ≡ λmαm/ηm). When
tting multimode models to rheological data it is usual practice

o consider the longest relaxation time as that of the first mode
cf. Table 1 and [5,18,19,24]) and as a consequence it is often
he case that

1 > B2 > . . . > BN. (25)

In this approximate analysis this condition is enforced when-
ver it is not verified at the outset, by changing the order of the
odes if necessary. Henceforth, we refer to the first mode as

he principal mode (subscript p), and it is always the case that
m/Bp < 1. Here, it is also assumed that(

Bm

Bp

)
m�=p

� 1 (26)

hich is often the case anyway. In Debbaut et al. [18], Debbaut
nd Dooley [19], Quinzani et al. [24] and Arigo and McKinley
25] for the worst cases B2/B1 ≈ 0.28 and usually B2/B1 ≤ 0.15.

Another quantity of interest in the present analysis is B̃,
efined as

˜ ≡
∑N

m=2Bm

N − 1
(27)

Given Eqs. (25) and (26), we can assume O(B̃) ∼ O(B2)
rovided the number of modes is not too large (say, not exceeding
, which is often the case in practical terms) even though B̃ < B2.
ndeed, for a small number of modes we can even assume that
(B̃) ∼ O(Bm). This may no longer be true if the number of
odes is large as in the work of Langouche and Debbaut [20],
ho used nine modes. In this case O(B̃) ∼ O(Bm) for m ≥ 3
ith the consequence that higher-order terms in B̃ may have to
e retained (see next section).

.1. Analytical solution

The solution of the governing equations can be written as an
xpansion on powers of B̃, where to a first approximation we
eglect terms of order 2 and higher on account of the assump-
ions. Hence, the velocity u, the streamwise pressure gradient
z and the ij stress component for each polymer mode (τij,m),
xcept for the principal mode (m = 1), are given by
= u0 + B̃u1 (28a)

,z = p,z0 + B̃p,z1 (28b)

ij,m = τij,m0 + Bmτij,m1 for m = 2 . . . N (28c)
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he main terms in Eq. (28), those on the right-hand-side with
ubscript 0, include effects from all stress modes as will be seen
hortly. We also emphasize that Eq. (28c) is written in terms
f Bm (rather than B̃) and that it decomposes the stress com-
onents of each mode, except for the principal mode (mode 1),
hich is dealt with exactly. If the constitutive equation includes
solvent its contribution to the total shear stress is also dealt
ith exactly (no decomposition). The total pressure gradient p,z

an be decomposed in at least two ways: either as p,z0 = p,z and
,z1 = 0 or as p,z0 = p,z(1 − B̃) and p,z1 = p,z. The second set,
r other choices that reduce the magnitude of p,z0 , will result in
ess accuracy, therefore the first option is retained henceforth,
.e., p,z0 = p,z and p,z1 = 0.

Substituting Eq. (28) into the momentum equation, the fol-
owing equations of zeroth and first order on B̃ (B̃0 and B̃1,
espectively) are obtained after integration, and considering
(B̃) ∼ O(Bm) as explained above.

˜ 0 : p,z

r

2
= τrz,1 + ηs

du0

dr
+

N∑
m=2

τrz,m0 (29a)

˜ 1 : 0 = ηs
du1

dr
+

N∑
m=2

Bm

B̃
τrz,m1 (29b)

Since Eqs. (10) and (17) remain valid for any mode (subscript
instead of subscript p), substituting Eq. (28) into Eq. (17) for
ode m, we arrive at Eqs. (30a) and (30b) by grouping terms of

rder B̃0 and B̃1, respectively.

˜ 0 : ηm

du0

dr
= τrz,m0 (30a)

˜ 1 : ηm

du1

dr
= Bm

B̃
τrz,m1 + 2

λm

ηm

Bm

B̃
θT

× (τ3
rz,m0

+ 3Bmτ2
rz,m0

τrz,m1

+ 3B2
mτrz,m0τ

2
rz,m1

+ B3
mτ3

rz,m1
) (30b)

The last three terms inside the brackets on the right-hand-side
f Eq. (30b) will be neglected, because they are of second and
igher order on Bm. They will be important to assess the range
f applicability of the approximate analytical solution discussed
n Section 4.2.

Keeping only the underlined term inside the brackets, Eqs.
30a) and (30b) are inserted into the momentum Eqs. (29a) and
29b) yielding

,z

r

2
= τrz,1 +

(
ηs +

N∑
m=2

ηm

)
du0

dr
(31a)

=
(

ηs +
N∑

ηm

)
du1

dr
− 2

N∑(
Bmλmη2

m

B̃

)
θT

(
du0

dr

)3
m=2 m=2
(31b)

These two differential equations must be solved to obtain
he velocity profile. The solution of Eq. (31a) is similar to the
ian Fluid Mech. 141 (2007) 85–98 91

olution for the pipe flow of a viscoelastic fluid represented by a
ne-mode PTT model plus Newtonian solvent derived by Cruz et
l. [26], provided a new solvent viscosity coefficient, ηT, is made

qual to
(
ηs +∑N

m=2ηm

)
. Hence, the solution of Eq. (31a) is

0(r) = 2UN,0

β0

[
1 −

( r

R

)2
]

+ 3

8CηT

{F+(R)G−(R) − F+(r)G−(r)

+ F−(R)G+(R) − F−(r)G+(r)} (32)

here

0 ≡ ηT

ηT + η1
= ηs +∑N

m=2ηm

ηs + η1 +∑N
m=2ηm

; UN,0 = −p,zR
2

8(ηT + η1)
;

= η2
1

4ε1λ
2
1

η1

ηT

p,z

2
; A = η2

1

6ε1λ
2
1

(
1 + η1

ηT

)
(33)

±(r) =
(

Cr ±
√

A3 + (Cr)2
)1/3

(34)

±(r) = 3Cr ±
√

A3 + (Cr)2 (35)

q. (31b) is rearranged as

du1

dr
= 2θT

ηT

N∑
m=2

(
Bmλmη2

m

B̃

)(
du0

dr

)3

(36)

rior to integration and from Eq. (33) du0/dr is calculated as

du0

dr
= p,z

2ηT

r − F+(r)

ηT

− F−(r)

ηT

(37)

The solution of Eq. (36) is

1(r) = αCR2

4η3
T

[
1 −

( r

R

)2
]

×
{

4 + 12AS − S3C2R2
[

1 +
( r

R

)2
]}

+ 9

8

α

Cη3
T

A[F+(r)G−(r) + F−(r)G+(r)

− F+(R)G−(R) − F−(R)G+(R)]

+ 9

32

α

Cη3
T

S{F+2
(r)[3A3 + 2CrG−(r)]

− F+2
(R)[3A3 + 2CRG−(R)]}

+ 9

32

α

Cη3
T

S{F−2
(r)[3A3 + 2CrG+(r)]
− F−2
(R)[3A3 + 2CRG+(R)]} + 9

320

α

Cη3
T

S2

×
√

A3 + (Cr)2[9A3 − 4(Cr)2][F−(r) − F+(r)]
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− 9

320

α

Cη3
T

S2
√

A3 + (CR)2[9A3 − 4(CR)2]

× [F−(R) − F+(R)] + 9

320

α

Cη3
T

S23Cr

× [A3 − 12(Cr)2][F−(r) + F+(r)]

− 9

320

α

Cη3
T

S23CR[A3 − 12(CR)2][F−(R) + F+(R)]

(38)

ith α = 2θT /(ηT B̃) ×∑N
m=2(Bmλmη2

m) and S = p,z/2C. For
ompactness, here it is also convenient to define Φ =
A3 + (CR)2.
The bulk velocity U is obtained from the integration of Eq.

28a)

= 1

R2

[∫ R

0
2ru0(r)dr + B̃

∫ R

0
2ru1(r)dr

]
(39)

nd the result is presented as the following sum

=
4∑

j=1

U0,j + B̃

5∑
j=1

U1,j (40)

here the four U0,j terms and five U1,j terms are presented in
ppendix A.
The extra shear and normal stresses follow from Eq. (2) and

re calculated as

rz = ηsγ̇ + τrz,1 +
N∑

m=2

τrz,m (41)

zz = τzz,1 +
N∑

m=2

τzz,m (42)

The shear rate γ̇ is defined as

˙ = du

dr
= du0

dr
+ B̃

du1

dr
(43)

here the velocity derivatives are given by Eqs. (36) and (37).
The shear stress of the first mode comes from Eq. (17) using

he relation of Eq. (10) between the shear and normal stresses.
t is the solution of Eq. (17) and is given by

rz,1 = η1γ̇

1 + ε1λ1/η1 × τzz,1
(44)

here the normal stress of the first mode (τzz,1) is calculated
sing the solution of the cubic equation on this normal stress,
erived by Alves et al. [8]. That solution is actually given by
q. (14) with the coefficients of Eqs. (13) and (15), after setting
= 1 and φp = 2γ̇2.
For each of the higher modes, the shear stresses are given by

= η γ̇ − 2B λ η2 θ

(
du0

)3

for m = 2 . . . N
rz,m m m m m T
dr

(45)

nd the corresponding normal stresses are calculated using
q. (10).

i
a
v
o

ig. 6. Radial profiles of streamwise velocity for Fluid 1 (linear PTT model,
= 0.02, ηs = 0.27 Pa s) as a function of Deborah number: comparison between

he exact (lines) and approximate (symbols) solutions.

.2. Results and discussion

We now compare this approximate analytical solution with
he exact semi-analytical solution of Section 3 to assess the range
f application of the former. The comparisons are carried out
ith Fluid 3, which is Fluid 1 with a Newtonian solvent contri-
ution (see Table 1).

We plot in Fig. 6 radial profiles of streamwise velocity for
luid 3 as a function of the Deborah number. Note that ε is
onstant and equal to 0.02. It is clear that the approximate solu-
ion approaches very well the exact semi-analytical solution for
e ≤ 1 (actually εDe2 ≤ 0.02), but shows stronger shear thinning

or De ≥ 10 (corresponding to εDe2 ≥ 2).
The corresponding plots of the shear and normal stresses

re shown in Figs. 7 and 8 at De = 1 and 10, respectively. Note
hat the shear stress from the solvent is not plotted. For De ≤ 1
he approximate solution reproduces the correct stresses for all

odes. However, for De = 10 we observe that the total shear
tress of the approximate solution is below that of the exact
olution, an indication that the pressure gradient required to
ttain the same Deborah number is lower than in the approx-
mate solution. For De = 10, we also see that the stresses of
he first mode compare reasonably well with the correspond-
ng exact stresses, but for the second mode (Tzz,2 and Trz,2) the
redictions by the approximate solution are clearly not good.
n fact, the stresses of the first mode are dealt with exactly,
ut are also a consequence of the velocity profile, which was
btained with approximate stresses for the higher modes. Hence,
he small differences between the first mode stresses of the exact
nd approximate solutions are a consequence of the differences

n the velocity profile. However, the stresses of the second mode
re approximated and when its shear component becomes rele-
ant it is significantly different leading to the large differences
bserved in the velocity profile.
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Fig. 7. Radial variation of the non-dimensional normal (Tzz) and shear
(Trz) stresses for the polymer modes of Fluid 3 (linear PTT model,
ε

(

t
t
f
2
n
s
s

F
(
ε

(

Fig. 9. Comparison between the terms within the brackets in Eq. (30b)

f 2 1/3

T

t
n
t
F
a

= 0.02, ηs = 0.27 Pa s) at De = 1. Exact solution (lines); approximate solution
symbols).

This raises the issue of the validity of the approximate solu-
ion and we look first at Eq. (30b) and in particular at the four
erms inside the brackets. Using the approximate solution, these
our terms were calculated for modes 2, 3 and 4 and for mode

they are compared in Fig. 9 for De = 1 and 10 in the form of

ormalized stresses. For De = 1 terms 2, 3 and 4 are indeed much
maller than term 1 that was kept in the analysis, and the more
o because they enter Eq. (30b) as cubic powers of the plot-

ig. 8. Radial variation of the non-dimensional normal (Tzz) and shear
Trz) stresses for the polymer modes of Fluid 3 (linear PTT model,
= 0.02, ηs = 0.27 Pa s) at De = 10. Exact solution (lines); approximate solution

symbols).
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w

or mode 2: Term 1 = τrz,20 /(4ηU/R), Term 2 = (3B2τrz,20
τrz,21 ) /(4ηU/R),

erm 3 = (3B2
2τrz,20 τ

2
rz,21

)
1/3

/(4ηU/R), Term 4 = B2τrz,21 /(4ηU/R).

ed quantities. However, at De = 10 we clearly see that the first
eglected term, term 2, has the magnitude of the non-neglected
erm near the wall (term 1), even though it is multiplied by B2.
or the third and fourth modes (not plotted) a similar situation
rises, but because these stresses are smaller than τrz,2 it looked
s though they were well predicted in Fig. 8. As the Deborah
umber increases, the failure of the approximate solution is even
learer and the stresses for the higher modes (third and fourth
rder) will also be strongly affected.

The growth of the neglected terms is due to the growth of
rz,m1 which brings into question the assumptions of Eq. (28).
he solution to the problem would be to consider higher order

erms in the expansions of velocity and stress in Eqs. (28a) and
28c), leading to final expressions growing in complexity with
rogressively smaller gains in accuracy. Given this fact, and the
vailability of the exact solution of Section 3, we did not pursue
he analytical solution further to higher order terms.

A criterion for validity of the approximate solution is pre-
ented below based on mode 2 and states that the second term
ithin the brackets of Eq. (30b) must not exceed the underlined

erm, i.e.

3B2τrz,21

τrz,20

∣∣∣∣ =
∣∣∣∣ 3B̃

τrz,20

η2
du1

dr
− 6

λ2B2

η2
θT τ2

rz,20

∣∣∣∣� 1 (46)

Using Eqs. (30a) and (31b) to provide explicit expressions
or τrz,20 and du1/dr we arrive at

3B2τrz,21

τ

∣∣∣∣ = 3

(
du0

dr

)2

|B̃α − 2λ2B2η2θT | (47)

rz,20

This ratio is maximum at the wall and at the limiting condition
e may consider, from Eq. (29a), that all its terms have the same
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rder of magnitude, hence we estimate(
du0

dr

∣∣∣∣
wall

)
= O

(
p,zR

2ηT

)
→ du0

dr

∣∣∣∣
wall

≈ p,zR

2ηT

(48)

Back-substituting, we arrive at

3B2τrz,21

τrz,20

∣∣∣∣ = 3

4

p2
,zR

2

η2
T

|B̃α − 2λ2B2η2θT | � 1 (49)

roviding the means to calculate the critical pressure gradient.
ssuming that a ratio of 10% is sufficiently smaller than 1, the

riterion for validity becomes

3B2τrz,21

τrz,20

∣∣∣∣ = 3

4

p2
,zR

2

η2
T

|B̃α − 2λ2B2η2θT | ≈ 1

10
(50)

Solving in order to p,z gives the maximum pressure gradient
or which the approximate solution is an accurate multimode
olution

p,z

∣∣
max = 2ηT

R

√
1

3 × 10|B̃α − 2λ2B2η2θT | (51a)

Due to the approximation invoked in Eq. (48), the exact
alue of |3B2τrz,21/τrz,20 |, for the imposed pressure gradient
f Eq. (51a), was found to be around 30% rather than 10%,
or various tested multimode models. At this condition the
nalytical solution is still a good approximation to the exact
emi-analytical profiles as can be seen in Fig. 10 for Fluid 1
by using a fluid without solvent contribution, we have a better

est case since the solvent contribution is also dealt with without
pproximations).

The worst scenario is for identical values of Bm and in the
bsence of a solvent (ηs = 0), in which case all θm are also iden-

ig. 10. Comparison between the radial profiles of normalized velocity and
hear stresses for all modes of the exact and approximate solutions for the flow
f fluid 1 at De = 1.27, corresponding to the limiting condition of Eq. (51a).
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ical, θT = Nθm and B̃ = Bm = 1/N. Since now ηT =∑N
m=2ηm

nd considering η2
2
∑N

m=2ηm �∑N
m=2η

3
m, the criterion of valid-

ty of the approximation of Eq. (46), for the same 10% ratio, gives
he following maximum pressure gradient

p,z

∣∣
max = ηT

Rθ2

√
2

3 × 10ε2
(51b)

. Other solutions

In this section, other solutions for multimode fluids are pre-
ented, without demonstration.

.1. Approximate analytical solution for planar flow of
inear PTT fluids

For the planar flow of half-height H the momentum equation
see Eq. (1)) is slightly different, but the process to obtain the
olution remains the same. As for the pipe flow (Eq. (28a)), the
elocity profile has two contributions

(y) = u0(y) + B̃u1(y). (52)

The first order velocity on the right-hand-side (u0(y)) is
xactly Eq. (32) except that the lateral coordinate is y, instead of
, and the half-width of the channel is H instead of R. The ratio
f viscosities β0 remains unchanged, but UN,0 and C are defined
ifferently as:

N,0 = −p,zH
2

4(ηT + η1)
; C = η2

1

4ε1λ
2
1

η1

ηT

p,z (53)

The second term on the right-hand-side of Eq. (52) (u1(y)) is
iven by Eq. (38) the same equation as for pipe flow, provided r
s substituted by y and R becomes H.

The bulk velocity is different from that of the pipe flow and is
iven by the following sum of thirteen terms, which are presented
n Appendix B.

= 1

H

[∫ H

0
u0(y)dy + B̃

∫ H

0
u1(y)dy

]
→ U

=
4∑

j=1

U0,j + B̃

9∑
j=1

U1,j (54)

The stress field for the planar flow is calculated as for pipe
ow (Eqs. (41)–(45)) with the necessary adaptations in velocity
rofile and velocity derivatives.

.2. Exact and approximate solutions for pipe and planar
ows of multimode FENE-P fluids
The FENE-P model [27] can also be used in the context of a
ultimode constitutive equation, with the extra stress given as

he sum of N polymer contributions and a Newtonian solvent,
ee Eq. (2). The contribution from each polymer mode obeys
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he following expression

m(τkk,m)τij,m + λm
∇

τij,m − λm

(
τij,m + bm

bm + 2
nmkTIij

)

× D ln Zm(τkk,m)

Dt
= 2

bm

bm + 2
nmkTλmDij (55)

here Zm(τkk,m) is a function of the trace of the stress tensor. The
arious parameters of the model have specific physical mean-
ngs explained elsewhere [28], but the zero shear rate polymer
iscosity coefficient for each mode is given by

m = nmkTλm

bm

bm + 5
(56)

For fully-developed flow D ln Z/Dt = 0 and Eq. (55) becomes
imilar to the constitutive equation for a PTT model [3]. A perfect
atch is obtained provided the following substitutions are made

26]:

bm + 2

bm + 5
Zm → fm;

bm + 2

bm + 5
λm → λm;

1

bm + 5
→ εm; ηm → ηm (57)

As a consequence, the solutions derived above for pipe and
lanar flows of the multimode PTT model apply equally to a
ultimode FENE-P fluid.

.3. Exact solution for the Giesekus model

For the Giesekus model there is also a semi-analytical exact
olution and in this section the equations that need to be solved
re presented. The approach is identical to that described in
ections 2 and 3 for the PTT model, adapted to the Giesekus
odel and relying on the analytical solution for the one-mode
iesekus model of Schleiniger and Weinacht [4].
The momentum equation to be solved is again Eq. (1) and

q. (2) also applies. The constitutive equation for a one-mode
iesekus model is given by expression (58)

ij + λ

(
∂τij

∂t
+ uk

∂τij

∂xk

− τjk

∂ui

∂xk

− τik

∂uj

∂xk

)
+ αλ

η
τikτkj

= η

(
∂ui

∂xj

+ ∂uj

∂xi

)
(58)
ntroducing parameter α in the quadratic term, which is respon-
ible for a non-zero second normal stress difference.

Adapting for each polymer mode, Schleiniger and Weinacht
4] gives the following expressions for the non-zero stresses in
ully-developed Poiseuille flow:

rz,m = ηm

du

dr
+ λmτrr,m

du

dr
−αmλm

ηm

(τzz,m + τrr,m)τrz,m (59)

G
t

ian Fluid Mech. 141 (2007) 85–98 95

zz,m = 2λmτrz,m

du

dr
− αmλm

ηm

(τ2
zz,m + τ2

rz,m) (60)

rr,m = −αmλm

ηm

(τ2
rz,m + τ2

rr,m) (61)

nd with the solvent contribution still expressed by Eq. (8).
Following Schleiniger and Weinacht [4], the second order Eq.

61) gives for τrr,m

rr,m = − ηm

2αmλm

±
√

η2
m

4α2
mλ2

m

− τ2
rz,m (62)

nd the shear rate is calculated by

du

dr
= τrz,m

ηm

[1 + (2αm − 1)(τrr,m)/ηm]

(1 + λmτrr,m/ηm)2 , (63)

hich depends on two stress components. Combining these two
quations the velocity gradient is expressed as a function of the
hear stress [4] for each mode as

du

dr
= 2αmτrz,m

ηm

[1 ± (2αm − 1)
√

1 − 4α2
mλ2

mτ2
rz,m/η2

m]

[
√

1 − 4α2
mλ2

mτ2
rz,m/η2

m ± (2αm − 1)]
2

= 2αpτrz,p

ηp

[1 ± (2αp − 1)
√

1 − 4α2
pλ2

pτ2
rz,p/η2

p]

[
√

1 − 4α2
pλ2

pτ2
rz,p/η2

p ± (2αp − 1)]
2 ≡ Φp

(64)

Since the right-hand-side of Eq. (64) is independent of the
ode, it can be calculated using the principal mode which

efines Φp.
Adapting Equation (3.3) of Schleiniger and Weinacht [4] τzz,m

an now be calculated from Eq. (65) provided we know the
ther two stress components for the same mode. In this way, all
uantities depend on τrz,m.

zz,m = ηm

du

dr

1 + λmτrr,m/ηm

αmλmτrz,m/ηm

− ηm

αmλm

(
1+αmλm

ηm

τrr,m

)
(65)

For the PTT model Eq. (10) was used to relate τrz,m with τzz,m
nd everything was equated in terms of τzz,m in order to benefit
rom the previous solution of Oliveira and Pinho [7]. For the

iesekus model, and using the second equality in Eq. (64), it is

he shear stress τrz,m that is used assuming Φp is known.

2αmτrz,m

ηm

[
1 ± (2αm − 1)

√
1 − 4α2

mλ2
m

η2
m

τ2
rz,m

]

= Φp

[√
1 − 4α2

mλ2
m

η2
m

τ2
rz,m ± (2αm − 1)

]2

(66)
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Squaring Eq. (66) and making the substitution T 2
m = 1 −

α2
mλ2

mτ2
rz,m/η2

m leads to a fourth order algebraic equation

1

λ2
m

(1 −T 2
m)[1 ± (2αm − 1)Tm]2 = Φ2

p[T ± (2αm − 1)]4 (67)

or which algebra books provide a solution. Alternatively, it is
lso possible to obtain numerically values for τrz,m, but we rec-
mmend the use of the algebraic solution in the spirit of the
emi-analytical solution.

Once τrz,m is known as a function of the shear stress of the
rincipal mode via Φp, the principal shear stress τrz,p is cal-
ulated solving the integrated momentum Eq. (68) (basically
dentical to that for the PTT; compare with Eq. (16) using
q. (10)),

dp

dz

r

2q
= τrz,p +

N∑
m=2

τrz,m + ηs
du

dr
(68)

here the velocity gradient is given by Eq. (69) and we also use
= 1 for pipe flow and q = 0 for planar flow.

du

dr
= 2αpτrz,p

ηp

1 ± (2αp − 1)
√

1 − 4α2
pλ2

pτ2
rz,p/η2

p[√
1 − 4α2

pλ2
pτ2

rz,p/η2
p ± (2αp − 1)

]2 (69)

Inserting Eq. (69) and the solution of Eq. (67) into Eq. (68),
e have an analytical expression for the shear stress of the prin-

ipal mode, τrz,p. The velocity profile can now be obtained from
umerical integration of Eq. (69).

. Conclusions

Exact and approximate solutions are presented for fully-
eveloped pipe and planar flows of multimode differential vis-
oelastic equations. The exact solutions are semi-analytic and
ertain to models based on the Phan-Thien—Tanner (with ξ = 0),
iesekus and FENE-P equations, whereas the approximate solu-

ions are fully analytical and concern the PTT and FENE-P
odels. In all cases due account is taken of the presence of

Newtonian solvent.

The exact solutions show that at low Deborah numbers
he flow is dominated by the low order stress modes, but the

t
fl

U0,1 = UN,0

β0

U0,2 = 3

8ηT C
{F+(R)G−(R) + F

U0,3 = 9

320R2ηT C3

{
F+(R)

[
3

U0,4 = −9

320R2ηT C3

{
F−(R)

[
3
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tresses from the higher modes increase and become of the
ame order as, and later exceed, those from the lower modes as
he flow Deborah number progressively increases. These fea-
ures are associated with the shear-thinning character of the

odels used and the relative values of the relaxation time and
he flow characteristic time because the onset of shear-thinning
akes place at a shear rate proportional to the reciprocal of
he relaxation time. Therefore, as the flow Deborah number
ncreases, the shear rates increase and the modes with higher
elaxation times (lower modes) progressively contribute less
o the shear stress balance, because of their decreasing shear
iscosities, whereas those modes with a low relaxation time
till contribute with viscosities close to their zero shear rate
alues.

The analytical approximate solution was obtained with a
erturbation technique, but calculations with these formulae
re limited to low values of flow Deborah number (actu-
lly to low values of εDe2 for the PTT model and of the
orresponding parameter for the FENE-P model, according
o the transformation rules in Eq. (57). A criterion for the
ccurate use of this approximate solution is presented in
qs. (50), (51a) and (51b). In spite of its length, the ana-

ytical solution is advantageous at low Deborah numbers
ecause it eliminates the need for an iterative numerical pro-
edure.

Fortran codes are available at http://www.fe.up.pt/∼
pinho/research/menur.html to perform calculations with both
he exact semi-analytical and approximate analytical solu-
ions.
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ppendix A

The nine terms of Eq. (40) giving the bulk velocity of
he approximate solution for pipe flow of the multimode PTT
uid

−(R)G+(R)}

√
A3 + (CR)2(A3 + 4(CR)2) − CR(A3 + 28(CR)2)

]
− 3A5

}

√
A3 + (CR)2(A3 + 4(CR)2) + CR(A3 + 28(CR)2)

]
+ 3A5

}

http://www.fe.up.pt/~fpinho/research/menur.html
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nd, for compactness, using F+ and F− to represent the functions at the wall, i.e., F+(R) and F−(R),

U1,1 = −p,z1R
2

8ηT

+ αCR2

η3
T

[
1

2
+ 3

2
AS − S3(CR)2

6
− 9

5

F−2

A

]
− 81αA6

160C3η3
T R2

U1,2 = −αA2

960C3η3
T R2(CR + Φ)

{81A3[F+2
(3Φ + CR) + F−2

(3Φ + 5CR)] + 108(CR)2[2F−2
(Φ + 5CR) − F+2

(Φ + 9CR)]}

U1,3 = −9αS

2240C3η3
T R4(CR + Φ)6 {27A14[3H(F− − F+) + CR(19F− − 17F+)] + 4A11(CR)2[−35F+(9Φ + 17CR)

+ 44F−(9Φ + 19CR)] + 112A8(CR)4[35F−(Φ + CR) − 4F+(5Φ + 4CR)] − 64A5(CR)6[−28F+(Φ + 2CR)

+ 5F−(7Φ + 25CR)] − 256A2(CR)8[−14F+(Φ + CR) + 5F−(11Φ + 15CR)] + 10240F+2
(CR)10} − 729αA7

1120C3η3
T R2

U1,4 = −9αS2

143360C3η3
T R2(Φ + CR)4 {3483A13(F−2 + F+2

) + 774A10CR[5F+2
(3Φ + 5CR) + 7F−2

(3Φ + 7CR)]

+ 16A7(CR)3[4F+2
(222Φ + 199CR) + 7F−2

(426Φ + 481CR)] + 32A4(CR)5[4F+2
(−15Φ + CR)

+ 7F−2
(37Φ + 11CR)] + 256A(CR)7[16F+2

(Φ + CR) + 7F−2
(−4Φ + CR)] + 17920(CR)9F+} − 31347αA8S2

71680C3η3
T R2

U1,5 = 27αS2

143360A2C3η3
T R2

{[F−2 − F+2
]ΦCR[342A6 − 352A3(CR)2 + 3360(CR)4] + [F−2 + F+2

][513A9 + 114A6(CR)2

− 208A3(CR)4 + 3360(CR)6]} − 13851A8αS2

71680C3η3
T R2

ppendix B

The 13 terms of Eq. (54) giving the bulk velocity of the approximate solution for planar flow of the multimode PTT fluid

U0,1 = 4UN,0

3β0

U0,2 = 3

8CηT

[F+(H)G−(H) + F−(H)G+(H)]

U0,3 = 9

280H2C3ηT

{
F+(H)

[
8A3 + CH

(
−19CH + 9

√
A3 + (CH)2

)]
− 8A7/2

}

U0,4 = −9

280H2C3ηT

{
F−(H)

[
−8A3 + CH

(
19CH − 9

√
A3 + (CH)2

)]
+ 8A7/2

}

U1,1 = αCH2

η3
T

[
2 + 6AS

3
− C2H2S3

5

]

U1,2 = −9

8

α

Cη3
T

A[F+(H)G−(H) + F−(H)G+(H)]

U1,3 = −9

32

α

Cη3
T

S{F+2
(H)[3A3 + 2CHG−(H)] + F−2

(H)[3A3 + 2CHG+(H)]}

−9 α 2
√

2 3 2 − +
U1,4 =
320 Cη3

T

S A3 + (CH) [9A − 4(CH) ][F (H) − F (H)]

U1,5 = −9

320

α

Cη3
T

S23CH[A3 − 12(CH)2][F−(H) + F+(H)]
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2 +

19(C

F−

)]
}

(H)

45(C

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

8 D.O.A. Cruz, F.T. Pinho / J. Non-Ne

U1,6 = 54 × 44αA

77 × 320HC2η3
T

F−(H)

{
−8A3 + 9CH

√
A3 + (CH)

− 216αA

7 × 320Hη3
T

F+(H)

{
8A3 + 9CH

√
A3 + (CH)2 −

U1,7 = 54αS

320 × 77C2Hη3
T

{
CH[641A3 + 290(CH)2][F+2

(H) +

+ 6
√

A3 + (CH)2[64A3 + 25(CH)2][F−2
(H) − F+2

(H

U1,8 = 81αA3S2

35 × 320C2η3
T H

{
19CH

√
A3 + (CH)2[F−(H) − F+

U1,9 = −108αS2

5005 × 320HC2η3
T

{
3CH

√
A3 + (CH)2[−92A3 + 2

− 46A3(CH)2 − 828A6][F−(H) + F+(H)]

}
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