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bstract

Analytical solutions are obtained for heat transfer in concentric annular flows of viscoelastic fluids modeled by the simplified Phan-Thien–Tanner
onstitutive equation. Solutions for thermal and dynamic fully developed flow are presented for both imposed constant wall heat fluxes and imposed
onstant wall temperatures, always taking into account viscous dissipation.

Equations are presented for the normalized temperature profile, the bulk temperature, the inner and outer wall temperatures and, through their
efinitions for the inner and outer Nusselt numbers as a function of all relevant non-dimensional parameters. Some special results are discussed

n detail. Given the complexity of the derived equations, for ease of use compact exact expressions are presented for the Nusselt numbers and
rogrammes to calculate all quantities are made accessible on the internet. Generally speaking, fluid elasticity is found to increase the heat
ransfer for imposed heating at the wall, especially in combination with internal heat generation by viscous dissipation, whereas for imposed wall
emperatures it reduces heat transfer when viscous dissipation is weak.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The concentric annulus is commonly found in heat exchang-
rs and has consequently been the subject of countless research
1,2]. The vast majority of research work has concentrated on
he behavior of Newtonian fluids, and much less is known for
on-Newtonian fluids, in particular those obeying differential
onstitutive equations. For these fluids, such as polymer melts,
sually possessing viscoelastic properties and high viscosity,
eat transfer in the laminar annular flow of viscoelastic fluids is
uite important in tube extrusion [3]. From an industrial point of
iew, the analytical solutions presented here provide the simplest

nd most efficient way to perform parametric investigations of
he effects of independent variables on output quantities. In addi-
ion, these solutions serve as test cases for validating numerical
olutions and have a pedagogical interest.

∗ Corresponding author.
E-mail addresses: fpinho@fe.up.pt (F.T. Pinho), pmc@fe.up.pt
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osed wall temperatures; Imposed wall heat fluxes

The objective of this work is to present analytical heat trans-
er solutions for the annular flow of viscoelastic fluids of high
iscosity, i.e. including effects of viscous dissipation. The sim-
lified form of the Phan-Thien–Tanner constitutive equation
PTT) [4,5] is considered, which includes the Upper Convected

axwell (UCM) [6] model as a special case.
A consequence of the large viscosity, typical of many vis-

oelastic fluids, is the fast dynamic flow development. Although
he thermal behavior develops slower, the case of simultaneous
ully-developed dynamic and thermal flow can be important and
s addressed for two different sets of thermal wall boundary con-
itions: imposed heat fluxes and imposed wall temperatures. In
oth cases the imposed conditions are uniform at each wall,
.e. they can take identical or different values at the inner and
uter walls. The combined situation with imposed heat flux at
ne wall and imposed wall temperature at the other wall is not

ddressed here. The general solutions remain valid even when
he Brinkman number is set to zero (negligible viscous dissi-
ation), except for identical wall temperatures which requires a
ompletely different approach.

mailto:fpinho@fe.up.pt
mailto:pmc@fe.up.pt
dx.doi.org/10.1016/j.jnnfm.2006.04.002
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Nomenclature

Br Brinkman number, Eq. (15) for imposed wall heat
flux and Eqs. (33) and (34) for imposed wall tem-
perature

cp specific heat
DH hydraulic diameter, DH 2δ

h heat transfer coefficient
k thermal conductivity
Nu Nusselt number, Nu = 2δh/k
p,x axial pressure gradient
Pr Prandtl number, Pr = ηcp/k
q̇ heat flux
r radial coordinate
Re Reynolds number, Re = ρU2δ/η
Ri inner radius of concentric annulus
Ro outer radius of concentric annulus
T fluid temperature
T̄ mass-averaged temperature
T+ normalised temperature for the uniform wall heat

flux case, Eq. (13a)
T′ normalised temperature for the uniform wall heat

flux case, Eq. (13b)
T* normalised temperature for the uniform wall tem-

perature case, Eqs. (30a) and (30b)
Tg glass transition temperature
u axial velocity
u+ normalised axial velocity, u+ = u/U
U bulk velocity
Uc characteristic velocity, Uc = −p,xδ

2/(8η)
x axial coordinate
x′ normalized axial coordinate, x′ = 2x/(δRePr)
X ratio of characteristic and bulk velocities
y+ radius normalised by the inner radius,

y+ = r/Ri = r/(δY)
y+∗ non-dimensional zero shear stress radius
Y geometric parameter, Y = κ/(1 − κ)
We Weissenberg number, We = λU/δ

Greek letters
α parameter in energy Eqs. (10a) and (10b)
δ annular gap (δ Ro − Ri)
ε extensional parameter of the PTT model
λ relaxation time of the PTT model
Φ ratio of outer and inner wall heat fluxes, Φ ≡

q̇o/q̇i
η coefficient of viscosity of PTT model
κ radius ratio (κ = Ri/Ro)
τrx shear stress
Ω geometric parameter,

Subscripts
i refers to inner wall
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Fluid properties are considered independent of temperature
nd consequently the fluid dynamic problem is decoupled from
he thermal problem. Variation of fluid properties with temper-
ture can account for important differences, but leads to a more
omplex solution requiring numerical treatment which is left for
uture investigation. The thermal developing flow case for fully
eveloped dynamics, the so-called Graetz problem, is also not
nalysed here.

The solution of the fully developed isothermal laminar annu-
ar flow for Newtonian fluids was obtained in the XIXth cen-
ury following the seminal work of Boussinesq in 1868 [1,7].
or non-Newtonian fluids Fredrikson and Bird [8] obtained the
olution for a power law fluid and Hanks [9] derived the solu-
ion for Herschel-Bulkley materials, for both sets of boundary
onditions. For the same form of the PTT constitutive model,
inho and Oliveira [10] derived the annular isothermal flow
olution, but the more general and slightly different expres-
ion of Cruz and Pinho [11] is preferred as starting point
f the present work. An extensive bibliography on annular
ows of non-Newtonian fluids can be found in Escudier et al.
12].

In the absence of viscous dissipation and provided the fluid
ynamic and thermal problems are decoupled, the energy equa-
ion for purely viscous fluids is homogenous and linear and
he superposition principle can be used to obtain solutions for
omplex situations [13]. According to Shah and London [1],
undberg et al. [14,15] solved this problem for the four funda-
ental types of boundary conditions in doubly connected ducts
hen the fluid is Newtonian.
Research on heat transfer in the presence of viscous dissipa-

ion is scarcer. For Newtonian fully developed pipe and channel
ows, analytical solutions were obtained by Brinkman [16] and
u and Cheng [17]. For power law fluids Toor [18] and Gill

19] presented analytical solutions for the Graetz problem and
ully developed flow in pipes, respectively while Forrest and

ilkinson [20] added temperature effects in their numerical
nvestigation of the Graetz pipe flow problem with constant wall
emperature. Recently, Jambal et al. [21] investigated the effects
f axial heat diffusion and viscous dissipation on the Graetz
roblem for power law fluids.

For axial flow inside an annulus most of the solutions are
sually for rather limited conditions, such as with one insulated
all, no viscous dissipation or few thermal boundary condi-

ions [22–29]. Exceptions are the works of Lin [30] and Jambal
t al. [31] for power law fluids at constant wall temperature
oth accounting for viscous dissipation in their investigations of
ouette-Poiseuille and annular flows, respectively. The recent
nalytical work of Coelho and Pinho [32] for Newtonian fluids
lso includes viscous dissipation for both constant wall tempera-
ures and constant wall heat fluxes. The extensive investigations
f Manglik and Fang [33] and Fang et al. [34] for flow of New-
onian and non-Newtonian fluids in concentric and eccentric
nnuli are again numerical and also do not account for vis-

ous dissipation. In the extensive literature survey of Fang and
anglik [35] there is also no reference to work on concen-

ric annular flow with viscoelastic fluids accounting for viscous
issipation.
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Fig. 1. Schematic representation of the annular geometry and of the axisym-
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Non-isothermal flows of viscoelastic fluids have capture the
ttention of researchers due to their industrial relevance. In par-
icular, there have been significant contributions towards the
evelopment of accurate rheological constitutive and energy
quations for viscoelastic fluids accounting for such effects
s temperature dependent properties, compressibility and ther-
odynamics of non-equilibrium processes (Leonov [36,37],
apperom and Hulsen [38], Peters and Baaijens [39], amongst

thers). A comprehensive review is presented in Wapperom [40].
Still, solutions are lacking for heat transfer in annular flows

f highly viscoelastic fluids, including effects of viscous dissi-
ation, for any combination of imposed heat fluxes or imposed
emperatures at both walls for which this paper presents analyt-
cal solutions.

The paper is organized as follows: in Section 2 the gen-
ral governing equations for non-isothermal viscoelastic flows
re presented prior to their simplification. This leads to a
uid dynamical problem which is decoupled from the ther-
al problem and so the fully-developed hydrodynamic solution

s presented. In Sections 3 and 4 the thermal energy equa-
ion is integrated and results presented for imposed wall heat
uxes and imposed wall temperatures, respectively. As alter-
atives to the very long analytical expressions for Nusselt
umbers, we present in each Section compact formulae with
oefficients listed in tables. For conciseness, the tables pre-
ented in the paper are limited, but the interested reader is
nvited to download an extensive set of Tables, as well as For-
ran codes implementing the analytical solutions here derived,
rom the following internet address and under “heat transfer”:
ttp://www.fe.up.pt/∼fpinho/research/menur.html.

. Governing equations

The behaviour of viscoelastic fluids undergoing heat transfer
rocesses is governed by the momentum, continuity and energy
quations in addition to various constitutive equations for the
tress, the heat flux and the internal energy. For non-isothermal
ows the momentum and rheological constitutive equations are
ffected in two ways relative to an isothermal case: dependence
f fluid properties on temperature and, on thermodynamic argu-
ents the existence of extra terms in the constitutive equation

36,37], which can be traced back to the effect of temperature
n the mechanisms acting at microscopic level. These changes,
ogether with considerations of second law of thermodynamics
or irreversible processes also affect the energy equation [38,41].

The analytical solutions are for dynamic and thermally fully-
eveloped steady laminar flow in concentric annuli of Phan-
hien–Tanner fluids (PTT) having a zero second normal stress
ifference in pure shear flow. The annuli, shown schematically
n Fig. 1(a), have inner and outer walls of radius Ri and Ro,
espectively, defining the radius ratio κ = Ri/Ro and annular gap
= Ro − Ri.
The constitutive equation adopted here for the PTT fluid is

(τkk)τ + λ
�
τ − λṪHT

(
τ + η

λ
I
)

= 2ηD (1) t
s

etric thermal boundary conditions (BC). (a) Cross section; (b) upper half of
nnular duct: BC for imposed wall heat fluxes; (c) lower half of annular duct:
C imposed wall temperatures.

ith a linear stress coefficient given by

(τkk) = 1 + ελ

η
τkk. (2)

In Eqs. (1) and (2) D is the deformation rate tensor
D = (�u + (�u)T)/2) and the fluid properties are the relaxation
ime (λ), the viscosity coefficient (η) and a parameter limiting

he extensional viscosity of the fluid (ε).
�
τ denotes Oldroyd’s

pper convective derivative of the stress tensor given in Eq. (3).

= Dτ − τ.�u − (�u)T.τ (3)

Dt

The last term on the left-hand-side of Eq. (1) accounts for
he variation with temperature of the connector force repre-
enting the fluid structure and appears when this equation is

http://www.fe.up.pt/~fpinho/research/menur.html
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erived from kinetic theory arguments. Its influence vanishes
or isothermal flows (Ṫ = 0), but here we also neglect it fol-
owing Peters and Baaijens [39]. In general, the relaxation time
nd the viscosity coefficient (and less so the extensibility coef-
cient) depend on temperature, especially for temperatures in

he range Tg < T < Tg + 100 K, where Tg is the glass transition
emperature. Such temperature dependence can be accounted
or by an Arrehnius type of expression, as in the non-isothermal
eat transfer investigation of Nikoleris and Darby [42] of dif-
erential viscoelastic fluids in rectangular ducts, or by invoking
he time–temperature superposition principal [43]. Here we con-
ider only temperature independent properties to allow analyti-
al solutions to be obtained.

As a consequence of considering temperature independent
roperties, and of neglecting the λṪHT term in the constitu-
ive equation, the fluid dynamical problem becomes decoupled
rom the thermal problem and its solution identical to that for an
sothermal flow. This fully-developed flow solution was obtained
y Pinho and Oliveira [10], but for convenience we use the
xpressions of Cruz and Pinho [11] for the non-dimensional
elocity and shear stress in Eqs. (4) and (7), respectively. For
ompactness, some non-dimensional quantities used here differ
rom the corresponding quantities in those two works, such as
+ and y+∗ defined below.

+ ≡ u

U
= −2Λ ln(Yy+) − ϕy+4

y+4
∗

+ Λy+2

y+2
∗

− 2ϕy+2

∗
y+2 + c1

(4)

Parameters c1, Λ and ϕ are given by

≡ 2Xκ2y+2

∗ (96X2εWe2κ2y+2

∗ − κ2 + 2κ − 1)

(κ − 1)4 and

≡ 32X3εWe2κ4y+4

∗
(κ − 1)4 (5)

1 = −2Λ ln(1 − κ) + 2ϕκ2y+2

∗ − Λ

κ2y+2
∗

+ ϕ

κ4y+4∗
(6)

+
rx ≡ τrx

ηU/δ
= 4Yy+

∗ X

(
y+∗
y+ − y+

y+∗

)
. (7)

In these equations U represents the bulk velocity, X the
atio between a characteristic (Uc) and the bulk velocities
X = Uc/U) and We is the Weissenberg number based on the bulk
elocity, and defined as We = λU/δ. The characteristic veloc-
ty Uc is a normalization of the constant pressure gradient
p,x) defined as Uc = −p,xδ

2/(8η). Y is a geometric parameter
Y = κ/(1 − κ)), y+ the radius (r) normalized by the inner cylinder
adius (y+ = r/Ri = r/(�Y)) and y+∗ refers to the non-dimensional
adial location of zero shear stress. For the PTT fluid, the ratio X
nd the zero shear stress radius (y+∗ ) are given by Eqs. (16)

nd (23) in Pinho and Oliveira [10], respectively, and result
rom two cubic equations. However, our definition of y+∗ differs
rom that of Pinho and Oliveira [10] (subscript PO) according
o y+∗ = y+

∗,POδ/Ri = y+
∗,PO(1 − κ)/κ.

i
b
b
e
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To compact the solution, we further define the following three
arameters:

= 16Bry+2

∗ X2Y4, Ω ≡ 32εWe2X2Y2y+2

∗ and

≡ Y2(1 + 8XBr) (8)

The normalized shear rate appearing in the viscous dissipa-
ion term of the normalized energy equations in Sections 3 and
is calculated by

du+

dy+ = Yτ+
rz(1 + 2εWe2τ+2

rz ) (9)

The general energy equation for an incompressible viscoelas-
ic fluid modeled by the Phan-Thien–Tanner equation is pre-
ented by Peters and Baaijens [39], assuming that the internal
nergy not only depends on temperature but also on the strain,
nd is given by

��.q + ατ : D + (1 − α)
trτ

2λ

(
1 + ελ

η
trτ

)
= ρcpṪ (10a)

here the two last terms on the left-hand-side represent the
echanical energy supply by the viscoelastic medium. Term

:D, the viscous dissipation, accounts for the so-called entropic
lasticity, which quantifies the energy that is stored as entropy
nd so contributes to temperature changes. The (1 − α) term
s the energy elasticity contribution and quantifies the energy
tored elastically as internal energy which can be released later
nd therefore does not contribute to temperature changes. For
he heat flux Fourier’s law of heat conduction is assumed with
n isotropic thermal conductivity (q = −k �∇T ) so for this steady
ow the energy equation to be solved reduces to

1

r

∂

∂r

(
r
∂T

∂r

)
+ ατrx

du

dr
+ (1 − α) τxx

(1 + (ελ/η)τxx)

2λ

= ρcpu
∂T

∂x
, (10b)

here the temperature T varies with the axial and radial coordi-
ates, denoted x and r, respectively, k, ρ and cp are the thermal
onductivity, density and specific heat of the fluid, respec-
ively. Variable u represents the axial velocity and τxr is the
elevant shear stress. Normalization of this equation is problem-
ependent and is deferred to Sections 3 and 4.

The split of mechanical energy into entropic elasticity and
nergetic elasticity is quantified by coefficient α, and depends
n both the polymer and the flow type. Sarti and Esposito [44]
xperimentally showed that for melts of amorphous polymers,
uch as polyisobutylene and polyvinylacetate, α = 1 provided the
emperature is well above the glass transition temperature. The
umerical simulations of Peters and Baaijens [39] of the non-
sothermal flow around a confined cylinder have also shown
hat the temperature profiles for PTT fluids with α = 0 and α = 1
re fairly similar, although the differences increase with Weis-
enberg number, and both are considerably different from what

s obtained for a purely viscous fluid with the same viscosity
ehaviour as that of the PTT. However, this is not an issue here
ecause for fully-developed pure shear flow there is no internal
nergy storage, only viscous dissipation as shown in Wapperom
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40] and Wapperom and Hulsen [38]. This can be easily demon-
trated here: regardless of the value of α it suffices to substitute
xx and du/dr in equation (10b) by the expressions of equations
8) and (10) in Pinho and Oliveira [10], respectively. The terms
nvolving α cancel out and the final result is mathematically
quivalent to setting α = 1 in equation (10b).

For the energy equation two sets of boundary conditions will
e investigated separately: (1) peripherally and axially constant
eat fluxes at both walls (Fig. 1(b))

= Ri → −k
∂T

∂r
= q̇i (11a)

= Ro → T = To(x) (11b)

here the outer wall heat flux will be imposed later when cal-
ulating the streamwise derivative of the bulk temperature; (2)
eripherally and axially constant wall temperatures (Fig. 1(c))

= Ri → T = Ti (12a)

= Ro → T = To (12b)

Note that in each case the boundary conditions are axisym-
etric, but for conciseness in Fig. 1 we show a different set on

ach half annulus.

. Solution for imposed uniform wall heat fluxes

.1. Non-dimensional energy equation

For imposed uniform wall heat fluxes ∂T/∂x = ∂Tw/∂x =
T̄ /∂x is a constant [13], with subscript w denoting a wall and the
verbar denoting mass averaging. To make the energy equation
on-dimensional for this problem, two different normalizations
re used for the temperature. For the terms on the left-hand-side
f Eq. (10b) the definition embodied in Eq. (13a) is used, based
n the temperature at the outer wall (To(x)), whereas for the right-
and-side of Eq. (10b) the above equality of the longitudinal
emperature gradient is used together with the normalization of
q. (13b), where Tin represents the inlet temperature.

+ ≡ T − To

2δq̇/k
(13a)

¯ ′ ≡ T̄ − Tin

2δq̇/k
(13b)

The non-dimensional axial coordinate is x′ = 2x/(δRe Pr), the
eynolds and the Prandtl numbers are defined as Re = ρU2δ/η
nd Pr = ηcp/k, and the non-dimensional energy equation
ecomes

1

y+
∂

∂y+

(
y+ ∂T+

∂y+

)
+ YBrτ+

rx

du+

dy+ = Y2u+ dT̄ ′

dx′ (14)

here the derivative on the right-hand-side is a constant and the

rinkman number is defined as

r = ηU2

2δq̇
(15)

i

-
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This definition is adequate for arbitrarily imposed wall heat
ux. However, the use of the perimeter-average wall heat flux

˙ of Eq. (16), based on the inner (q̇i) and outer (q̇o) wall heat
uxes, turns Br into a quantity dependent on κ. This definition

s not usual in the less general solutions in the literature and
ust be taken into account when performing comparisons. The

erimeter-average wall heat flux is

˙ = q̇iRi + q̇oRo

Ri + Ro
= q̇i

κ + Φ

1 + κ
(16)

here Φ stands for the ratio between the outer and inner wall
eat fluxes, Φ ≡ q̇o/q̇i.

The normalized heat flux boundary conditions of Eqs. (11a)
nd (11b) become

+ = y+
i = 1 → ∂T+

∂y+ = κ(κ + 1)

2(κ + Φ)(κ − 1)
(17a)

+ = y+
o = 1

κ
→ T+ = 0 (17b)

The outer wall boundary condition (Eq. (17b)) is a conse-
uence of the normalization used for temperature, c.f. Eq. (13a).
ven though this is a problem with imposed heat flux at both
alls, this is done at the outer wall via a temperature, Eq. (11b).
his is so because the outer wall heat flux is indirectly imposed
hen the derivative on the right-hand-side of Eq. (14) is calcu-

ated from the following energy balance over a control volume
ncompassing the annulus and both walls:

˙i2πRidx + q̇o2πRodx + U2π(Ri|τwi| + Ro|τwo|)dx

= ρcpUπ(R2
o − R2

i )dT̄ . (18)

Solving and normalizing Eq. (18) gives the following con-
tant axial gradient of non-dimensional bulk temperature

dT̄ ′

dx′ = 1 + 8BrX. (19)

Back-substitution in the non-dimensional energy Eq. (14)
he final solution only contains a single definition of non-
imensional temperature (T+), even for the bulk temperature
T̄+) expression in Section 3.2.

.2. Analytical solution

Integration of the energy equation was carried out with the
elp of the symbolic mathematics code Derive 5 from Texas
nstruments.

The heat transfer from the walls to the fluid is quantified via
he inner wall (Nui) and outer wall (Nuo) Nusselt numbers. Each
usselt number is defined as Nu = 2δh/k, i.e. on the basis of the
ydraulic diameter (DH = 2δ) and the heat transfer coefficient
t that wall (h), calculated from q̇w = h(Tw − T̄ ). Normalis-
ng temperatures by Eq. (13a), the Nusselt number becomes
u = q̇ /[q̇(T+ − T̄+)], and after using Eq. (16), the follow-
w w w

ng expressions are obtained:

at the inner wall, Nui = (1 + κ)

(κ + Φ)

1

(T+
i − T̄+)

(20a)
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c ∗
and J4 = (1 − κ2){36Ωβκ6y+8

∗ + 36κ4y+4

∗ [(2Λ + c1)Ψ −
2β(3Ω − 1)] + 9κ2y+2

∗ S1[ΛΨ + β(4Ω − 1)] − 4S2(ϕΨ +
Ωβ)}. B11, S1 and S2 are defined in Appendix A.
2 F.T. Pinho, P.M. Coelho / J. Non-N

at the outer wall, Nuo = Φ(1 + κ)

(κ + Φ)

1

(T+
o − T̄+)

(20b)

The inner wall temperature is calculated from the derived
emperature profile whereas the outer wall non-dimensional
emperature is fixed at T+

o = 0. Finally, the normalised bulk tem-
erature is the following integration of the temperature profile

¯ + =
∫ y+

o

y+
i

2
κ2

1 − κ2 u+T+y+dy+ (21)

The analytical solution for the temperature profile, the bulk
emperature and the inner wall temperature are given by Eqs.
22), (25) and (26), below.

- Non-dimensional temperature profile, T+(y+)

+ = y+2

∗ [β(4Ω − 1) − 2ϕΨ ]

2
(ln y+)

2 + ΛΨy+2

2
ln

(
1

y+

)

−y+6
(ϕΨ + Ωβ)

36y+4
∗

− Ωβy+4

∗
4y+2 + y+4

[ΛΨ + β(4Ω − 1)]

16y+2
∗

+y+2
(2ΛΨ − 6Ωβ + Ψc1 + 2β)

4
+ c2 + c3 (22)

here the constants of integration are given by

2 = ΛΨ ln Y + ϕΨ + βΩ

6y+4
∗

−ΛΨ + βΩ(y+4

∗ − 6) + Ψc1 + 2β − 1

2

−ΛΨ + β(4Ω − 1)

4y+2
∗

+ Φ(1 − Φ)

2(Φ + 1)(κ + Φ)

+ 1

(Φ + 1)(κ − 1)
(23)

3 = −ΛΨ ln(1 − κ)

(
ln κ + 1

2κ2

)

+(ln κ)2

[
Ψ (ϕy+2

∗ + Λ) + βy+2

∗ (1 − 4Ω)

2

]

+ ln κ

6y+4
∗

(βΩ + ϕΨ ) − ln κ

2
[βΩ(y+4

∗ − 6) + Ψ (Λ + c1)

+2β − 1] − ΛΨ + β(4Ω − 1)

4y+2
∗

ln κ + ϕΨ + βΩ

36κ6y+4
∗

+βΩκ2y+4

∗
4

+ Φ(1 − Φ) ln κ

2(Φ + 1)(κ + Φ)
+ ln κ

(Φ + 1)(κ − 1)

−Ψ (2Λ + c1) + 2β(1 − 3Ω)

4κ2 − ΛΨ + β(4Ω − 1)

16κ4y+2
∗

(24)
- Inner wall temperature, T+
i

+
i = ΛΨ

2
ln

(
1

Y

)
− β[4Ω(9y+8

∗ + 54y+4

∗ − 9y+2

∗ + 1) − 9y+2

∗ (8

144y+2
∗
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- Bulk temperature, T̄+

¯ + = A1[ln(1 − κ)]2 + A2 ln(1 − κ) + B1(ln κ)3

+B2(ln κ)2 + B3 ln κ + B4 (26)

here the coefficients A and B are presented in Appendix A.
This general analytical solution has various particular cases,

everal of which have been obtained previously and used here
o check the validity of this solution: (i) the channel flow, with
dentical wall heat fluxes and viscous dissipation of Oliveira
nd Pinho [45]; (ii) the pipe flow, with viscous dissipation, of
liveira and Pinho [45], (iii) the channel flow case of Shah and
ondon [1] (their Eq. 273) without viscous dissipation.

The Nusselt numbers are given in Eqs. (20a) and (20b) upon
ubstitution of the above expression for the wall and bulk tem-
eratures. Since the Nusselt numbers are used more often in
ngineering calculations, it is advantageous to have more com-
act expressions. Specifying numerical values for the radius
atio, such compact exact expressions are given in Eqs. (28a)
nd (28b) for the inner and outer walls Nusselt numbers, respec-
ively:

ui = α1

Br((Φ/κ) + 1) + α2Φ + α3
(28a)

uo = B1Φ

Br((Φ/κ) + 1) + β2Φ + β3
(28b)

here the coefficients αi and βi depend on the radius ratio and
We2. Values of these coefficients are listed in Table 1 for a
imited number of cases. Full sets of Tables are freely avail-
ble from the internet (at http://www.fe.up.pt/∼fpinho/research/
enur.html and under “heat transfer”) together with Fortran

odes implementing the exact equations derived here. Also, see
32] for the limit of εWe2 → 0.

A particularly interesting case, obtained from the general
olution, corresponds to heating or cooling at both walls leading
o identical wall temperatures (T+

i = T+
o ). This takes place for

heat flux ratio of

c = 72κ7y+4

∗ (κ + 1) ln κ

(κ − 1){J1 − J2(ln κ)2 + J3 ln κ + J4}
− κ (29)

here J1 = 72ΛΨκ4y+4

∗ ln(1 − κ)(2κ2 ln κ − κ2 + 1), J2 =
2κ6y+4

∗ [y+2

∗ B11+2ΛΨ ], J3 = 12κ6{6Ωβy+8

∗ + 6y+4

∗ [Ψ (2Λ +
1) − 6Ωβ + 2β] + 3y+2

[ΛΨ + β(4Ω − 1)] − 2(ϕΨ + Ωβ)}
y+2

∗ − 1)] + 4ϕΨ + Ψc1

4
+ ΛΨ (8y+2

∗ + 1)

16y+2
∗

+ c3 (25)

http://www.fe.up.pt/~fpinho/research/menur.html
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Table 1
Coefficients for the Nusselt number Eqs. (28a) and (28b)

κ α1 α2 α3 β1 β2 β3

(a) εWe2 = 0.1
0.02 686.53 −93.522 20.786 95.892 20.100 −0.26125
0.05 105.37 −13.809 5.8340 41.556 8.6148 −0.27228
0.1 40.478 −5.0222 3.3421 22.859 4.6958 −0.28361
0.2 18.507 −2.0906 2.1355 13.177 2.6755 −0.29770
0.3 12.479 −1.2978 1.6890 9.8451 1.9771 −0.30717
0.4 9.6938 −0.93506 1.4432 8.1475 1.6169 −0.31436
0.5 8.0933 −0.72822 1.2838 7.1171 1.3946 −0.32019
0.6 7.0547 −0.59493 1.1705 6.4254 1.2422 −0.32512
0.7 6.3259 −0.50202 1.0853 5.9297 1.1305 −0.32940
0.8 5.7861 −0.43363 1.0185 5.5577 1.0445 −0.33321
0.9 5.3698 −0.38123 0.96448 5.2689 0.97599 −0.33666
1 5.0387 −0.33984 0.91983 5.0387 0.91983 −0.33984

(b) εWe2 = 10
0.02 −3868.4 520.16 −118.23 345.12 68.611 −0.92813
0.05 845.48 −110.77 47.214 148.47 29.369 −0.97256
0.1 217.13 −27.235 18.045 81.446 16.069 −1.0216
0.2 83.196 −9.5981 9.6268 47.088 9.2575 −1.0865
0.3 52.535 −5.6060 7.1094 35.383 6.9163 −1.1327
0.4 39.352 −3.9046 5.8437 29.472 5.7144 −1.1697
0.5 32.088 −2.9742 5.0663 25.915 4.9755 −1.2010
0.6 27.505 −2.3915 4.5345 23.550 4.4714 −1.2286
0.7 24.355 −1.9938 4.1451 21.874 4.1034 −1.2535
0.8 22.058 −1.7059 3.8463 20.631 3.8215 −1.2764

3.608
3.415

3
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0.9 20.310 −1.4881
1 18.934 −1.3180

.3. Discussion of results

In the general case of imposed uniform wall heat fluxes, these
re positive when heating the fluid and negative when cooling.
or wall heating or cooling at both walls, the heat flux ratio is
ositive whereas the Brinkman number, Eq. (15), changes sign
rom positive for the former to negative for the latter. We restrict
ur discussion to Br > 0, Φ > 0 and a radius ratio (κ) of 0.5.

In Fig. 2, the inner wall Nusselt number is plotted as a function
f Br, εWe2 and Φ. The three values of Φ selected correspond
o three different situations: for Φ = 0.01 inner wall heating is so
arge compared to outer wall heating that the thermal behaviour
orresponds to that of an insulated outer wall and is identical
o that for Φ ≤ 0.01; for Φ ≥ 100 the thermal behaviour is akin
o that for an insulated outer wall and is well represented by
he curves for Φ = 100; In between these two values the fluxes at
oth walls are important to determine the thermal characteristics
f the flow and this case is represented here by Φ = 1.

Regardless of the heat flux ratio the Nusselt number increases
ith εWe2 for two reasons: (1) the velocity profiles become

teeper near the walls (c.f. Figs. 3 and 6 in [10]), increasing
he proportion of fluid flowing near the walls, which contributes
o a reduction of the overall thermal resistance; (2) higher values
f εWe2 increase shear-thinning, thus reducing the viscosity and
y implication the internal heat generation (c.f. the variations of

or fRe in Figs. 1 and 7 of [10]), thus reducing the temperature

ifference T+
i − T̄ , as seen in Fig. 3.

Regarding the effect of the Brinkman number, the Nusselt
umber decreases with viscous dissipation, exactly because of

a
T
a
a

9 19.680 3.5978 −1.2978
4 18.934 3.4154 −1.3180

he opposite effect. As internal heat generation becomes more
mportant, the fluid heats more, especially near to the wall, and
he difference between the wall and bulk temperatures increases
for example, compare the curves for Br = 0.01 and 1 in Fig. 3 at
We2 = 0.01). Since the wall heat flux remains constant, the heat
ransfer coefficient (Nusselt number) must necessarily decrease.
xceptions to this behaviour, also known to occur with Newto-
ian fluids, happen when the difference between the wall and
ulk temperatures goes through zero and changes sign, leading
o a singularity in the Nui profiles, as shown in Fig. 2(c)). This
appens because of the heating effect of the other wall, together
ith the influence of the extra heat generated by viscous dissi-
ation interfering with the relative magnitudes of bulk and wall
emperatures, since the bulk temperature comes to exceed the
all temperature. This change in the relative magnitudes of the
all and bulk temperatures is shown in the temperature pro-
les of Fig. 3, especially Fig. 3(c)), which also illustrates the
ifferent behaviors for small and large amounts of viscous dis-
ipation: when viscous dissipation is weak the fluid and bulk
emperatures are everywhere limited by the two wall tempera-
ures, but as Br increases those temperatures exceed the limiting
alues.

For the outer Nusselt number the trends are similar, but
eversed relative to the heat flux ratio: there are smooth vari-
tions of Nuo at large values of Φ and the singularities due to

change of sign in temperature difference appear at low Φ.
he thermal behaviour for other combinations of Φ, Br, εWe2

nd κ can also be explained on the basis of similar physical
rguments.
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F Br > 0

4

4

i
f
t
i

T

T

b
s
b

ig. 2. Variation of the inner wall Nusselt number with the Brinkman number (

. Solution for imposed uniform temperatures at walls

.1. Non-dimensional energy equation

Two different normalizations are used for temperature since
t is advantageous to distinguish between the situations of dif-
erent and identical wall temperatures, and the non-dimensional
emperatures to be used in the energy equation (T*) are defined
n Eqs. (30a) and (30b), respectively.

∗ = T − Ti
, when T 
= T (30a)
To − Ti
i o

∗ = T − Tin

Tw − Tin
when Tw = Ti = To (30b)

d

) and εWe2 for κ = 0.5. (a) q̇o/q̇i = 0.01; (b) q̇o/q̇i = 1; (c) q̇o/q̇i = 100.

Only the asymptotic solution, for which ∂T̄ /∂x = 0, will
e presented here. Upon substitution of the shear rate and
hear stress expressions, the non-dimensional energy Eq. (10b)
ecomes

1

y+
∂

∂y+

(
y+ ∂T ∗

∂y+

)

= −β

(
y+∗
y+ − y+

y+∗

)2
[

1 + Ω

(
y+∗
y+ − y+

y+∗

)2
]

(31)
The boundary conditions and the Brinkman number are also
ifferent for the two cases, as follows:
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F = 0.0

(

(

ig. 3. Temperature variation across a κ = 0.5 annulus as a function of εWe2 for Br

1) To 
= Ti

inner wall : y+ = 1 → T ∗
i = 0; outer wall :

y+ = 1

κ
→ T ∗

o = 1 (32)

Br = ηU2

k(T − T )
(33)
o i

For this case, when setting εWe2 = 0 the Newtonian solution
of Coelho and Pinho [32] is recovered and further setting
Br = 0 provides the solution of Shah and London [1] as it
1 (no symbols) and Br = 1 (O). (a) q̇o/q̇i = 0.01; (b) q̇o/q̇i = 1; (c) q̇o/q̇i = 100.

should be. Setting Br → ∞ we get the same solution as for
identical wall temperatures and for which both the inner and
outer wall Nusselt numbers are independent of Br.

2) Tw = To = Ti,

Br = ηU2

k(Tw − Tin)
(34)
inner wall : y+ = 1 → T ∗
i = 1;

outer wall : y+ = 1

κ
→ T ∗

o = 1 (35)
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.2. Analytical solution

The Nusselt numbers at the inner and outer walls are now
efined in Eqs. (36a) and (36b), respectively.

ui = − 2

Y

dT ∗/dy+∣∣
y+=1

T ∗
i − T̄ ∗ (36a)

uo = 2

Y

dT ∗/dy+∣∣
y+=1/κ

T ∗
o − T̄ ∗ (36b)

The bulk temperature is calculated as in Eq. (21), except for
he use of the different non-dimensional temperature, i.e.

¯ ∗ =
∫ y+

o

y+
i

2
κ2

1 − κ2 u+T ∗y+ dy+ (37)

The analytical solution for all the relevant quantities is given
y Eqs. (38)–(45). Except for the constants of integration c4
nd c5, and the above definitions of normalized temperature,
rinkman number and inner wall temperature, the equations are

he same regardless of whether the two wall temperatures are
dentical or different.

- Non-dimensional temperature profile, T*

∗ = βy+2

∗ (4Ω − 1)(ln y)2 − βy+2
(3Ω − 1)

2
− Ωβy+4

∗
4y+2

+βy+4
(4Ω − 1)

16y+2
∗

− Ωβy+6

36y+4
∗

+ c4 ln y + c5 (38)

ith the constants of integration c4 and c5 given by Eqs. (39)
nd (40) for Ti 
= To and Eqs. (41) and (42) for Ti = To.

4 = βy+2

∗ (4Ω − 1) ln κ

2
+ Ωβy+4

∗ (1 − κ2)

4 ln κ

+β(1 − κ4)(4Ω − 1)

16κ4y+2
∗ ln κ

+ Ωβ(κ6 − 1)

36κ6y+4∗ ln κ

+β(3Ω − 1)(κ2 − 1) − 2κ2

2κ2 ln κ
(39)

5 = Ωβy+4

∗
4

+ β(1 − 4Ω)

16y+2
∗

+ Ωβ

36y+4
∗

+ β(3Ω − 1)

2
(40)

4 = βy+2

∗ (4Ω − 1) ln κ

2
+ Ωβy+4

∗ (1 − κ2)

4 ln κ

+β(1 − κ4)(4Ω − 1)

16κ4y+2
∗ ln κ

+ Ωβ(κ6 − 1)

36κ6y+4
∗ ln κ

+β(3Ω − 1)(κ2 − 1)

2κ2 ln κ
(41)
5 = Ωβy+4

∗
4

+ β(1 − 4Ω)

16y+2
∗

+ Ωβ

36y+4
∗

+ β(3Ω − 1)

2
+ 1 (42)

a
w
m
i

ian Fluid Mech. 138 (2006) 7–21

The Nusselt numbers are calculated using Eqs. (36a) and
36b) with the temperature derivatives given by Eqs. (43) and
44).

-Derivative of temperature at inner wall, dT ∗/dy+∣∣
y+=1

dT ∗

dy+

∣∣∣∣
y+=1

= c4 + Ωβy+4

∗
2

+ β(4Ω − 1)

4y+2∗
− Ωβ

6y+4
∗

− β(3Ω − 1)

(43)

- Derivative of temperature at outer wall, dT ∗/dy+∣∣
y+= 1

κ

dT ∗

dy+

∣∣∣∣
y+= 1

κ

= β(1 − 4Ω)

(
κy+2

∗ ln κ − 1

4κ3y+2
∗

)
+ c4κ

+Ωβ

(
κ3y+4

∗
2

− 1

6κ5y+4
∗

)
− β(3Ω − 1)

κ
(44)

- Bulk temperature, T̄ ∗

¯ ∗ = [D1(ln κ)2 + D2 ln κ + D3] ln(1 − κ) + D4(ln κ)3

+D5(ln κ)2 + D6 ln κ + D7 (45)

ith expressions for coefficients D1 to D7 presented in Appendix
.
For ease of use, we also provide in Eqs. (46) and (47)

ompact expressions for the Nusselt numbers at the inner and
uter walls, respectively, as a function of the Brinkman num-
er. When Ti = To, Nui = χ1 and Nuo = ε1. The corresponding
oefficients depend on the radius ratio and εWe2 and are listed
n Table 2 for a limited number of cases. Again, full sets of
ables together with Fortran codes implementing the exact
quations derived here are freely available from the internet
at http://www.fe.up.pt/∼fpinho/research/menur.html and under
heat transfer”). Also, see [32] for the limit of εWe2 → 0.

ui = χ1 Br + χ2

Br + χ3
(46)

uo = ε1 Br + ε2

Br + ε3
(47)

.3. Discussion of results

The discussion of these results is restricted to different wall
emperatures (Ti 
= To), positive Brinkman numbers (To > Ti
ccording to definition in Eq. (33)) and two different radius ratios
n Figs. 4 and 5 for the temperature profiles and the inner wall
usselt numbers, respectively. In terms of heat fluxes, two dif-

erent situations may occur as shown in the temperature profiles
f Fig. 4: for low values of Br fluid heats at the warmer wall and
ools at the colder wall, whereas for intense viscous dissipation
he internal generation of heat increases the fluid temperature

bove the higher wall temperature and the fluid cools at both
alls. The critical Brinkman number separating these two ther-
al conditions corresponds to the warmer wall behaving as an

nsulated wall, i.e. dT ∗/dy+∣∣
wall = 0 to be obtained from Eq.

http://www.fe.up.pt/~fpinho/research/menur.html
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Table 2
Coefficients for the Nusselt number Eqs. (46) and (47)

κ χ1 χ2 χ3 ε1 ε2 ε2

(a) εWe2 = 0.1
0 – – – 11.041 0 0
0.02 103.80 78.105 2.5776 14.031 −1.5621 −0.54024
0.05 64.878 41.354 2.5606 14.822 −2.0677 −0.69961
0.1 46.555 26.284 2.4963 15.556 −2.6284 −0.86605
0.2 34.536 17.167 2.3687 16.513 −3.4334 −1.0850
0.3 29.620 13.562 2.2587 17.250 −4.0685 −1.2402
0.4 26.858 11.542 2.1637 17.891 −4.6168 −1.3616
0.5 25.062 10.220 2.0808 18.477 −5.1098 −1.4610
0.6 23.788 9.2720 2.0076 19.024 −5.5632 −1.5447
0.7 22.832 8.5524 1.9424 19.543 −5.9867 −1.6164
0.8 22.084 7.9829 1.8838 20.040 −6.3863 −1.6789
0.9 21.480 7.5183 1.8308 20.518 −6.7665 −1.7338
1 20.981 7.1303 1.7826 20.981 −7.1303 −1.7826

(b) εWe2 = 10
0 – – – 12.890 0 0
0.02 98.294 331.76 11.032 16.204 −6.6351 −2.2113
0.05 64.566 178.01 11.107 17.228 −8.9004 −2.9267
0.1 48.432 114.70 10.970 18.191 −11.470 −3.7016
0.2 37.490 75.924 10.537 19.386 −15.185 −4.7372
0.3 32.853 60.366 10.102 20.254 −18.110 −5.4724
0.4 30.187 51.563 9.7033 20.982 −20.625 −6.0456
0.5 28.422 45.754 9.3444 21.630 −22.877 −6.5127
0.6 27.153 41.568 9.0215 22.225 −24.941 −6.9040
0.7 26.189 38.373 8.7299 22.781 −26.861 −7.2380
0.8 25.428 35.835 8.4655 23.308 −28.668 −7.5272
0.9 24.809 33.758 8.2248 23.810 −30.382 −7.7805
1 044

(
e

w

F
s

24.293 32.018 8.0
43) when Ti > To and from Eq. (44) when Ti < To. Note here the
ssential use of dimensional temperatures.

The Nusselt number behaviour, for this condition of imposed
all temperature, is rather different from that in Section 3 for

ig. 4. Temperature profile T* across the annulus (κ = 0.5) for Br = +0.01 (no
ymbols) and Br = +1 (©) as a function of εWe2.
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24.293 −32.018 −8.0044

mposed wall heat fluxes, as shown by a direct comparison
etween Figs. 2 and 5, respectively. The heat flux at walls in
ig. 5 have two contributions in this limiting thermal flow con-
ition: one contribution from the wall temperature difference
pure diffusion in an annulus), which is independent of εWe2

nd Br and only depends on κ and the contribution due to the
nternal heat generation, which is strongly dependent on Br and
We2. Since Br > 0 (To > Ti) the variations of Nui are monotonic
ith both Br and κ because the inner wall is always cooling

he fluid (c.f. Fig. 5), with Nui increasing with the former and
ecreasing with the latter. Higher values of Br mean that more
eat is generated internally and needs to be evacuated, leading
o higher heat transfer coefficients and hence higher Nui. This is
een in all curves of Fig. 4.

The role of fluid rheology on Nui is more complex, because
We2 effects are coupled to viscous dissipative effects, leading
o opposite behaviours at negligible and large Brinkman num-
ers, as can also be seen in Fig. 5. When viscous dissipation is
eak, an increase in εWe2 decreases Nui because the increased

hear-thinning of the fluids actually results in less viscous dis-
ipation than for a Newtonian fluid due to the lower viscosity of
he former fluid, as already discussed in Section 3.3. So, when
omparing cases for low and high values of εWe2, the total wall

eat flux (the temperature derivative in Eqs. (36a) and (36b))
ill be lower for the latter case because of the lower total inter-
al heat generation. However, as shear-thinning increases, the
nternal heat generation becomes more localized near the walls,
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Fig. 5. Variation of the inner wall Nusselt number with th

ecause of the correspondingly steeper velocity profiles. This
educes the thermal resistance and hence the difference between
he wall and bulk temperatures, which appears in the denomi-
ator of Eqs. (36a) and (36b). When Br is low, the decrease in
all heat flux is actually stronger than the decrease in the tem-
erature difference, but for higher values of Br the magnitude of
hese effects of εWe2 are reversed and the decrease in the tem-
erature difference exceeds the decrease of the wall heat flux
eading to higher Nusselt numbers for the more shear-thinning
uids.

For compactness no other plots were drawn, but if the magni-
udes of the dimensional wall temperatures were to be reversed,
.e. To < Ti, the Brinkman number would become negative and
he variations of Nui would no longer be monotonic, because
elow a critical negative Br (more negative Br) the fluid tem-
eratures near the inner wall would be higher than the inner
all temperature and the heat flux would switch from heating

o cooling, i.e. exactly the same behaviour observed near the
uter wall in Fig. 4, now taking place at the inner wall. This also
appens for Newtonian fluids [32], and the difference here is
hat the singularity appearing when Ti = T̄ is εWe2-dependent.
ence, we may also conclude that the behaviour of the outer
all Nusselt number (not shown) is qualitatively similar to that

or Nui but reversed as far as the effect of Br is concerned:
uo varies monotonically for Br < 0 and exhibits singularities

or Br > 0.

. Conclusions

Analytical solutions are presented for fully-developed lami-

ar convective heat transfer in concentric annuli of viscoelastic
uids modeled by the PTT equation with linear stress coeffi-
ient. The solutions account for internal heat generation due to
iscous dissipation, but the fluid properties are assumed inde-

c
S

nkman number (Br > 0) and εWe2: (a) κ = 0.2; (b) κ = 0.8.

endent of temperature. The investigated boundary conditions
ere imposed uniform wall heat fluxes and imposed uniform
all temperatures.
The results are presented as explicit equations for the temper-

ture profile, the inner and outer wall temperatures, the mixing
emperature and, through their definitions for the inner and outer
usselt numbers, as a function of the Brinkman number, the

adius ratio, εWe2 and, for the case with imposed wall fluxes, the
all heat flux ratio. For imposed wall temperatures, a solution

s also given for the special case of identical wall temperatures,
hich cannot be used for Br = 0. The variations of the inner

nd outer Nusselt numbers, as a function of all the independent
arameters are discussed in Sections 3.3 and 4.3.

Although explicit, the equations are rather long, so that,
or ease of use, compact Nusselt number expressions are pre-
ented with the coefficients listed in Tables for some values
f the independent variables. To obtain accurate results for
ther conditions, the interested reader is advised to down-
oad the fortran codes made available at the following web
ite: http://paginas.fe.up.pt/∼fpinho/research/menur.html under
heat transfer”.
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ppendix A
Throughout this appendix variables S1 to S5 are used for
ompactness, which are defined as S1 = κ2 + 1, S2 = κ4 + S1,
3 = κ6 + S2, S4 = κ8 + S3 and S5 = κ10 + S4.

http://paginas.fe.up.pt/~fpinho/research/menur.html
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