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Abstract

We present analytical solutions for fully developed pipe and channel flows of two viscoelastic fluids possessing a Newtonian solvent, where the
polymer contribution is either described by the Phan-Thien—Tanner (PTT) or FENE-P models. We derive in detail the pipe flow solution for the
PTT fluid, and present the final solutions for the remaining three cases. This constitutes an important addition to existing results where the presen
of a solvent with Newtonian characteristics has been consistently overlooked, as it posed considerable difficulties to the task of obtaining a close
form solution. In addition, interesting aspects of the solutions are discussed.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction Similar motivations are valid when the fluid, instead of fol-
lowing the simple linear stress/strain relationship of the Newto-
The quest for analytical solutions of the most frequently useaiian model, follows more complex differential constitutive mod-
viscoelastic rheological models in relatively simple flows is, inels typical of non-Newtonian media possessing viscoelasticity.
our view, a matter of great importance but one which has beemm the early days of Rheology, when some of the constitutive
largely overlooked. As a justification for this statement we wouldequations still in use today were devised, like the type A and B
like to highlight out the major relevance of the Poiseuille flow fluids developed by Oldroyf], such a need was realised, but a
solution in the fluid mechanics of Newtonian fluids: it has a ped-+elatively simple graphical procedure was proposed by Oldroyd
agogical motivation, appearing in all books of fluid mechanicq?2] and laterimproved upon by Waltg&4] to solve fully devel-
as the typical example of a closed-form analytical solution to theped flows in pipes or channels for any fluid model, provided
Navier-Stokes equations; it is employed in practical experimenthe steady viscosity function(y) was known in terms of the
tal apparatus as a means to obtaining the viscosity of Newtoniashear rate.
liquids, for example in capillary-tube viscometers; and finally, it  The indirect procedure devised by Walt¢8$ consisted in
is often used to check numerical solutions, as a simple limitingliminating the shear stress from the constitutive and motion
test case, or to impose boundary conditions in the inlet or outletquations in order to obtain an explicit equation giving the radial
of pipes and channels in complex geometries. A final point igositionr as a function of the shear rateln this way the main
that analytical solutions (when available) provide the simplesindependent variable is netbut the shear rate itself. Then by
and most efficient way to perform parametric investigations ofintegrating the definitiory = du/dr he was able to obtain the
the effects of independent variables on output variables. desired velocity profile:(r) asu = f}j;v y(dr/dy) dy, where the
wall shear ratey, was taken as the main independent parameter.
This approach can obviously be applied to both Generalised-
Newtonian Fluids (GNF) and also to viscoelastic fluid models.
mponding author. Fax: +351 275329952 In_the latter case the viscosity functig(y) is not kr_lown a pri-
E-mail addresses: doac@ufpa.br (D.O.A. Cruz), fpinho@dem.uminho.pt Ofi, but can be derived out for many models, leading to complex
(F.T. Pinho), pjpo@ubi.pt (P.J. Oliveira). viscosity variations. No attempt was made to introduce such

0377-0257/% — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jnnfm.2005.08.013



D.O.A. Cruz et al. / J. Non-Newtonian Fluid Mech. 132 (2005) 28-35 29

viscosity variations, arising from relevant differential viscoelas-  In conclusion, most exact closed-form analytical solutions of
tic models, into the above procedure and solve it analyticallyractical differential viscoelastic models in pipe flow, like the
for the axial velocity component. An example of application of solution of Oliveira and Pinhfill1], assume a vanishing solvent
Walters’ procedure is provided by the work of Van Schatftin-viscosity contribution. The objective of the present work is to
gen and Crochdb] who derived an “implicit” solution for the derive an exact solution for the same problem, involving the
Johnson/Segalman model having a solvent viscosity. affine-PTT and FENE-P models, but where the solvent viscosity
For many generalized Newtonian fluid models (GNF), anais finite. It is also important to emphasize the point that the
Iytical solutions for fully developed flows were derived during present analytical solutions can be viewed as pertaining to a
the 1950 and 1960s and are compiled in the book of Bird et alviscoelastic liquid that is not necessarily a polymer solution, but
[6]; these include the power-law model, the viscoplastic Bing-one with a retardation time that would effectively take, in the
ham model, Casson’s model, and other models for yield stressurrent analysis, the role of the solvent viscosity,
and non-yield stress fluids.
For differential viscoelastic fluid models, some workto obtainy - Apalytical derivation for the PTT model
analytical solutions has been conducted in the past, for example

the paper already referred to above by Van Schaftingen and Cro- \ye consider a fully developed flow in a circular-cross section
chet[5] for the Johnson-Segalman fiyid and Yooand ChdB]  pipe of radiusg, in which the only non-zero velocity compo-
and Schleiniger and Weinac}®] for the Giesekus mod€l0].  nent is the axial componen(r) depending solely on the radial
However, it should be pointed out that exact, explicit analyticalooordinate-. A generalisation for the planar case of the channel
solutions were only possible when the Newtonian solvent confioy is given without detailed derivation at the end of this sec-
tribution was neglected, while a constructive procedure, alonggon. The axial momentum equation (from E8)) in cylindrical

the lines set forth by Walters, was deemed necessary for theyordinates is the only relevant momentum equation,
non-zero solvent viscosity cases.

More recently, and as direct motivation to the present contriy _ _ o ( du n i(” ) (@)
bution, a number of analytical solutiofisl,12]were derived for =P s 5\ rors ¢
the affine versiong= 0) of the model developed by Phan-Thien

and Tannef13] whose constitutive equation is: and since the pressure gradippt dp/dz is a constant, Eq4)

can be integrated once to give:

\%
f@r(7) - T+ At =np(Vu + vu') por du

5 + ﬂsa + 7 )

The constitutive equations for the polymeric stress compo-
to be solved for the extra “polymeric” stress tensoin this  nents are obtained from E@L) and follow straight from our
previous work{11]:

N 0=
(with f(z) = 1+ Enftr(‘r)) 1)
p

equation,¥ denotes Oldroyd’s upper convected derivatjye)

is a function of.stress invariants wf_nch follows here the I!nearf(rzz) 1, =0=1,=0 (6)
form proposed in the original papeérjs the constant relaxation
time, np is a constant parameter equal to the polymer contribu- du

tion to the zero-shear rate viscosity, anis another constant frze) - e = ZM’ZE (7)
parameter of the model related to its extensional properties. du

Generally, the lower the value ef the higher is the uniaxial  f(z;;) - 1. = n,— (8)
extensional viscosity predicted by this PTT model; whéends dr

to zero, the above equation reduces to the well-known Oldroydwith the trace of the stress tensor reduced onlyc= .., SO
B model[1,6]. However, contrary to this model the PTT predicts that:

a shear-thinning viscosity(y) whose limit for vanishing shear

rate isno = np + ns. The amount of Newtonian solvent contribu- f(¢) = 1 + (”‘) . 9)
tion is therefore controlled by the constant solvent viscosity in Np

the momentum equation: Still following our previous work, a direct relationship

Du i ivid-
=t e VP4V T4V T=—Vp+nV-Vu+V-1 between the normal and the shear stress can be obtained by divid

Dt ing Eq.(7) by Eq.(8), therefore eliminating the stress function
2 fo)
measured by a non-dimensional solvent viscosity parameter 2n 5
B=ns/ne. In the present problem the acceleratiow/Dr is zero  Tzz = —— T, (10)
and the continuity equation, e

The key point at this stage, and where the present derivation
departs from that of the previous work, is to recognise that no
will be satisfied identically by the assumed axial velocity distri- further substitution of,, in terms of- is required by invoking the
butionu(r). momentum equation, but rather that E8) ought to be solved

V-u=0 3)
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as a cubic equation for the shear stress, after Sipgnd(10): This long expression can be written under a compact form
with help of some function definitions (rather like statement
A\ 24 , du  np /p.r . .
1+ (=)= ) me=np = — <7 — T,Z) (11)  functions). If we define:
mp/) mp dr ns\ 2 13
For the last equality on the right-hand side, the momentunF=(X) = (CX +4/A%+ (CX)2) and
Eq. (5) was expressed explicitly in terms of the local shear rate
du/dr. After rearranging the various terms (h1) we arrive at Loy [ 3 2
the standard form for a cubic equation: G(X) =3CX £/ 4%+ (CX) (17)

then we may writ€16) as:
rr31+a11,21+azrrz+a3:0¢>rfz+3Ar,z—2B:0 (12) y ¢16)

with (a1 =0, a2 = 34, a3 = —2B): u(r) = (2Un/) <1 - (;)2>
A:i’ <1+ '7p> and B= (ngnppz)rECr + {FY*(R)G™(R) — F™(r)G(r)
6eA2 s 4e)2 ng 2 8Cns
(13) + F(R)GT(R) — F~ ("G (r)) (18)
The real solution to this cubic equation is: where we chose to define a characteristic velocity as:
v = B+ VA T B2 1 B /A3 1 B2 O (19)
10

where it is noted thaB is a function of the independent coor-

dinate variabler, a feature made clearer by introducing the The first term in either Eq(16) or Eq. (18) is clearly the

definition forCin Eg.(13). SinceB andC are negative (because parabolic velocity variation due to the Newtonian solvent contri-

p.<0) care should be exercised while evaluating the cubic roobution and therefor&y has the meaning of the average velocity

in the second term on the right-hand side(d#) in order to  for the pipe flow of a Newtonian fluid subjected to the same

avoid the two conjugate imaginary solutions. The result of thepressure gradientp,.

first cubic root on the r.h.s. ¢iL4)is always real. At this point we are in possession of an exact explicit solution
Having obtained an explicit solution for the polymeric shearfor the problem of PTT pipe flow, including a Newtonian solvent

stress component, we may go back to the momentum(q. contribution, when the pressure gradient is given:

and re-write it as an equation for the shear rate:

e the velocity profilex(r) is given by Eq(16);

d 1
L;(r) = ? — — T, = ? e the shear stress due to the polymg(r) is given by Eq(14);
d s s s e and the axial normal stress (r) is determined from E10).
1 /(s 3
T <\/CV+ A3+(Cr)2+\/Cr -/ A3+(CV)2> If required, the total shear stress can be easily obtained by

summing the solvent contributionsdu/dr with du/dr from Eq.
(15) (15), to the polymer stress,,. In addition, the local shear vis-

whereA and C are constant parameters defined by H48) cosity can be calculated directly from its definition:

which depend only on the basic material constants of the PTT Trz
model. Upon integration and imposition of the no-slip boundary77 = st (du/dr)
condition (that isu(r) = 0 for r = R) we arrive, after some rather
cumbersome manipulations whose details are omitted, to the
following expression for the velocity profile in fully developed

(20)

pipe flow:
0= (-2 (1= (3)7) + o { - (emar i) ™ (-acr Ve o) |
oo o )
+ 8;75 { (CR — /A3 + (CR)2> 7 (+3CR + \/m }
3

1/3
~ 8, { (Cr — /A3 + (Cr)z) (+3Cr + 1/ A3+ (Cr)z) } (16)
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Another quantity of interest is the average or bulk velocitywhile Uy, U, Uz andUj follow expressions similar t(22) with
which can be obtained by integrating the velocity distributionthe necessary modifications:
over the pipe cross-section:

—p.H?
Uy = Dx ’
1 R 3ns
U= 2 / @rr)u(@r)dr = Up + Uz + Uz + Uy (22) 3
b
° Uz = g (FY(H)G™(H) + F~ ()G (H)).
With u(r) given by Eq.(18), we obtain the following four ® 9
contributions to the average velocity: Us = FH(H) |843 + Bu(—19B
3= 380HZnC? (H) + B( H
Us = —p:R? 3., p2 72
3
Uz = {FY(RG™(R) + F~(RIGT(R)}, Ur=————F (H) |84% + By(19By — 91/ A3 + B3
8nsC 4 280H2)75C3 ( ) + H( H + H)
9
Us = ———5——= 3 FT(R) |3/ A3 + B3(A3 + 4B +847/2 26
2= paecs | (R [3/A7 + BR(4° + 45f) (26)
whereBy =CH with C from Eq.(24)
—Br(A® + 283%)} - 3A5} ,
3. Solution for the FENE-P model
-9
- 2  Jp- / A3 2043 2

Us= 320R21sC3 {F (R) {3 A%+ BR(A” + 45BR) In this section we deal with the analytical solution for the

FENE-P mode[14], another very popular differential constitu-
+ Br(A3 + 283,%)} + 3A5} (22)  tive equation often employed in computational rheology. While

the PTT model was derived from network theory and is there-

fore more appropriate for melts, the FENE-P model was rooted
in kinetic theory and was initially developed to represent the
behaviour of dilute polymer solutions. In the FENE-P model a
molecule is represented by a single dumbbell, whose connector
2.1. Solution for channel flow follows a non-linear spring law possessing limited extension,
without consideration for excluded volume effects and hydro-

The solution for the planax(y) geometry of fully developed dynamic interaction, and the resulting constitutive equation for
channel flow aligned witl can be derived following the same the Polymer stress can be written[ag, 15}
procedure and the final result for the velocity profile is: b Din Z

+2 Dt

u(y) = —pr2>< _ (X 2> 3 ...
(y)—< 2ns ! (H) +8175C{ } 23) = biznka(Vu+VuT) 27)

with the term inside the curled brackets exactly like the correyherez is a function of the trace of the stress tensor,
sponding one in E16), exceptthatthe lateral coordinate is now

y, instead ofr, and the half-width of the channel i%, instead , _ + § (b () ) (28)
of R. The polymeric shear stress, is given by an expression b\b+2 3nkT

like (14) with the same definition fadA as in(13), while B and
C take a slightly different definition:

with F*+ being the function defined in E(L7)and hereBr = CR
according to Eq(13).

Z(tr(z) - T+ AT — A (r - nkTI>

b andnkT are parameters of the model, and we note that the

improvements introduced by Bird et a[15], pp. 88-91) are

2 already accounted for. A Newtonian solvent contribution must be

o 7p D (24) added ta, exactly as in Eq(2) above, in order to obtain the total

4e)? s extra stress acting on a fluid element. In H@S.) and(28) the

parameteb measures the extensibility of the dumbbell and the

The solutic_)n for the axial normal stress, foIIow§ ex_actly zero-shear rate polymer viscosity is givervipys nkTAb/(b +5).

from the equivalent to E(10) and the shear rate is given by | gpite of their quite different origins, the final equations for

Eq. (15), with proper changes, except that there is no 1/2 in thgne two models, Eq(1) for the PTT and27) for the FENE-P,

first term containing the pressure gradient. Finally, the averaggy show already some similarities (the recent paper of Tanner

B=Cy and C=

velocity follows from the equivalent to E21): and Nasseffi16], where similarities among various constitutive
1 equations are discussed, is highly recommended in this respect).
U= — u(y)dy = Uy + U + Us + U (25) In the case of the fully developed rectilinear flows considered

H Jo here, those similarities are even more striking leading to an exact
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equivalence in the sense of a parameter to parameter match, as 10.0 geceeecososeey,, 00000 gﬂ't/}:] o
found by Oliveira[17] who gives the analytical solution for slit 90l _ T, e PTT §28' 8
and pipe flow of the FENE-P modeirhout a solvent viscosity. 1 Tl Reog. oo R ﬁfgﬁ i
Fully developed conditions imply thatZD¢ = 0 and in this case 8.0 S %y, - - pTT ﬁ;o: 001
the constitutive Eq(27) for each stress component becomes: 70 S PTT =0
du i
Z(ty) - T = 2)~Trzd7 (29)
"
b+5 du

Z(t) T = | ——= — 30

()t = (15 ) g (30

together withr,,. =0, giving:

3 b+ 21,
Ze) = 1 1
() = 1477 ( 30+ 5mp

b+5 b+ 2)\
_ (b j: 2) (1 + é(b++ ;);“ ) (31)
e Fig. 1. Solution in terms of velocity profiles and influence of the viscosity ratio

Those equations are to be compared with E@k.(8), and  g= g/ for £ =0.25 andDen = 1. Note:Uy = (—dp/dz)R?/8ro.
(9), respectively, for the affine-PTT fluid. Since the momentum
equation remains unchanged (E4)) it is straightforward to  pjnng put it is remarkable that a small discrepancy for such a low

show, by equating the last term(@1) to Eq.(9), that the results  so|yent viscosity contribution is still visible. For a smaliiEq.

are made: confirming the correctness of the present solution. Otherwise,

Fo (b—l-Z) 7 (b+2> _ Fig. 1 shows that the flow rate in the pipe rises considerably
b+5/)7" b+5/)"" when the concentration of the viscoelastic polymer increases,
1 on account of strong shear-thinning (an effect similar to drag

& — m; Np — Np (32)  reduction, but here due to shear-thinning in laminar flow). With

polymer solutions, a concentration parameter is usually defined
These relations thus define an equivalence between FENRsc =,/ (€.9.[18]) giving ¢ =(1/8) — 1.
P and PTT results, allowing for the same expressions to be Corresponding profiles for the polymeric stress contribution

employed with both models. are shown irFig. 2(a), for the axial normal component;, and
Fig. 2b), for the tangential component,. Stresses are here
4. Results normalised with the stress scalgUn/R, appropriate for the

polymeric stresses, and as expected those stress components
We shall concentrate here on results for the PTT modelincrease wherg decreases, meaning higher polymer concen-
Oliveiraand Pinh¢11] have already studied with some detail the tration. The solution of Oliveira and Pini1], shown by the
influence of elasticity, as measured by either a Deborah numbeymbols withg =0, is approached for very low values gf it
De or the groupy/e De, on the main characteristics of the PTT is worth noting that in that work the stress scale was taken as
pipe flow solution. Therefore, the interest here is to seek the infludnp U/R giving a unit shear stress value at the wall, ferR.
ence of the solvent viscosity rat) which may vary between With the stress scale chosen in terms of the primary velocity
B=0 (PTT without solvent viscosity; solution given by Oliveira scale based directly onthe imposed pressure gradient, both stress
and Pinhd11]) andB =1 (Newtonian fluid), on the velocity and components increase, in absolute value, whdecreases; with
stress profiles. As noted above two Deborah numbers may bg=1 the polymeric stresses vanish.
formed, depending on the value chosen for the velocity scale: When the velocity is normalised with the average velocity
Den =AUn/R with Uy =—p_R?/8no based on the primary vari- in the pipe for the conditions studied here, then the level of dis-
ables; ande = AU/R with U being the average velocity which crepancy between results at I@says = 0.01) and the solution
can only be determined after knowing the basic solution. of Oliveira and Pinho seems less accentuated, as shown by the
Fig. 1shows profiles of the velocity distribution, scaled with velocity profiles inFig. 3 for Dey =1 (De=6.3) ande =0.25.
Un, for increasing values f at constant =0.25 andDey = 1. U is given by Eqs(21) and(22) and could also be calculated
The interest is to verify that the proper limits are reproduced byby numerical integration of the velocity profile with Simpson’s
the present solution. Fgr=1 the Newtonian solution shown by rule, following the definition(21); it was found that values df
the round symbols ifrig. 1is recovered; in fact, the solid line obtained with these two methods agreed very closely (errors less
corresponds to Eq16) with $=0.9999. FoiB tending to zero  than 0.04-0.4%), but for very sm@l(says < 0.0001) Eqs(21)
the solution of Oliveira and Pinhld 1] is recovered, shown by and(22) give erroneous answers due to approximation errors
the square symbols marked wigh=0. Eq.(16) with 8=0.001  generated by subtractive cancellation (even when double preci-
gives a profile in close agreement with the result of Oliveira andsion arithmetic is used to evaluate those equations).
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Fig. 2. Normal (a) and tangential (b) polymer stress components,=@r25
andDen = 1.

The ratioUN/U of the Newtonian average velocity for the
given pressure gradient and the actual average velocity is a useful 5 18
quantity to evaluate, not only because it gives a direct relation ~>

between the two Deborah numbers at plagw/De, but also

because it represents a non-dimensional pressure drop being .
directly proportional to the Fanning friction coefficient, defined

in the usual way:
U
fRe = 167’“ (33)

(see[11]). Fig. 4 shows the variation of/N/U with the group
J/€De, havingg as a parameter. Eq4.3)(16)all show that the
solution depends oy's De (or, equivalently, on/s Dey) not on
¢ andDe separately. Results of Oliveira and Pinho validgerO
are shown by circular symbols Fig. 4, offering a useful check
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Fig. 3. Analytical solution in terms of velocity profiles scaled with the average
velocity.

for the lower limiting conditiong8 — 0. There is a very quick
initial decrease ol/N/U due to shear thinning, followed by a
gradual levelling out at highetDe when “elastic” effects have
saturated.

The presence of a non-zero solvent viscosity affects primar-
ily and directly the shear viscosity function of the PTT model
and so it seems relevant to look at the radial variation of shear
viscosity and shear rate across the pipe section. Profiles of the
shear viscosity are shown kig. 5, with  from Eq.(20), while
the absolute shear raje= |du(r)/dr| can be obtained from Eqg.
(15). Wheng is nonzeroy becomes limited from below by,

00000 PTT $=0
o T PTT $=0.8
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0.9 i i S S
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Fig. 4. Variation of the ratio between the two velocity scales with elasticity,
having B = ns/no as a parameter.
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1.0 e T T essentially a shear flow with a varying local rate of sheay =
| & _________________________________________________ | |du(r)/dr|. The shear viscosity function is given by many authors
& T (for example Oliveira and Pinho):
0.8 X 1 3
\\ \-.‘_‘~ . 77p _ 2 .
N i =ns+——"-—— (a=0+Vo--1) ;
- i S M) =nst o 1P, @S0 VE-D
& 067 LN 1 6 = 1+ 27:(Ap)?) (34)
\ \\
= ] K% | andFig. 6 shows the resulting plot. In this figure, the symbols
E 0.4 1 SN 1 pertain to the material function above (Eg4)) and the lines to
| oo pTT =0 %%aﬁ e the present analytical solution. A perfect agreement is observed
oo PTT 8=1.0 B T with the plot in log-log scale showing more clearly the usual
---------- PTT B=0.8 08~ . : 2 X )
024 - PTT $=0.5 Dﬂugﬂgﬁ\ _ 1 viscosity decay, limited by the solvent viscosity, of a standard
__Z E’H 5;8; (1)1 DBE'ETEETEEBE material function representation of lag(versus logy).
1 — — PTT B=0.001 7
0.0 —_—
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