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Abstract

We present analytical solutions for fully developed pipe and channel flows of two viscoelastic fluids possessing a Newtonian solvent, where the
polymer contribution is either described by the Phan-Thien–Tanner (PTT) or FENE-P models. We derive in detail the pipe flow solution for the
PTT fluid, and present the final solutions for the remaining three cases. This constitutes an important addition to existing results where the presence
of a solvent with Newtonian characteristics has been consistently overlooked, as it posed considerable difficulties to the task of obtaining a closed
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orm solution. In addition, interesting aspects of the solutions are discussed.
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. Introduction

The quest for analytical solutions of the most frequently used
iscoelastic rheological models in relatively simple flows is, in
ur view, a matter of great importance but one which has been

argely overlooked. As a justification for this statement we would
ike to highlight out the major relevance of the Poiseuille flow
olution in the fluid mechanics of Newtonian fluids: it has a ped-
gogical motivation, appearing in all books of fluid mechanics
s the typical example of a closed-form analytical solution to the
avier-Stokes equations; it is employed in practical experimen-

al apparatus as a means to obtaining the viscosity of Newtonian
iquids, for example in capillary-tube viscometers; and finally, it
s often used to check numerical solutions, as a simple limiting
est case, or to impose boundary conditions in the inlet or outlet
f pipes and channels in complex geometries. A final point is

hat analytical solutions (when available) provide the simplest
nd most efficient way to perform parametric investigations of

he effects of independent variables on output variables.

Similar motivations are valid when the fluid, instead of
lowing the simple linear stress/strain relationship of the Ne
nian model, follows more complex differential constitutive m
els typical of non-Newtonian media possessing viscoelast
In the early days of Rheology, when some of the constitu
equations still in use today were devised, like the type A a
fluids developed by Oldroyd[1], such a need was realised, b
relatively simple graphical procedure was proposed by Old
[2] and later improved upon by Walters[3,4] to solve fully devel
oped flows in pipes or channels for any fluid model, prov
the steady viscosity functionη(γ̇) was known in terms of th
shear ratėγ.

The indirect procedure devised by Walters[3] consisted in
eliminating the shear stress from the constitutive and mo
equations in order to obtain an explicit equation giving the ra
positionr as a function of the shear rateγ̇. In this way the mai
independent variable is notr but the shear rate itself. Then
integrating the definitioṅγ = du/dr he was able to obtain th
desired velocity profileu(r) asu = ∫ γ̇

γ̇w
γ̇(dr/dγ̇) dγ̇, where the

wall shear ratėγw was taken as the main independent param
This approach can obviously be applied to both General
∗ Corresponding author. Fax: +351 275329952.
E-mail addresses: doac@ufpa.br (D.O.A. Cruz), fpinho@dem.uminho.pt

F.T. Pinho), pjpo@ubi.pt (P.J. Oliveira).

Newtonian Fluids (GNF) and also to viscoelastic fluid models.
In the latter case the viscosity functionη(γ̇) is not known a pri-
ori, but can be derived out for many models, leading to complex
viscosity variations. No attempt was made to introduce such
377-0257/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2005.08.013
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viscosity variations, arising from relevant differential viscoelas-
tic models, into the above procedure and solve it analytically
for the axial velocity component. An example of application of
Walters’ procedure is provided by the work of Van Schaftin-
gen and Crochet[5] who derived an “implicit” solution for the
Johnson/Segalman model having a solvent viscosity.

For many generalized Newtonian fluid models (GNF), ana-
lytical solutions for fully developed flows were derived during
the 1950 and 1960s and are compiled in the book of Bird et al.
[6]; these include the power-law model, the viscoplastic Bing-
ham model, Casson’s model, and other models for yield stress
and non-yield stress fluids.

For differential viscoelastic fluid models, some work to obtain
analytical solutions has been conducted in the past, for example
the paper already referred to above by Van Schaftingen and Cro-
chet[5] for the Johnson-Segalman fluid[7] and Yoo and Choi[8]
and Schleiniger and Weinacht[9] for the Giesekus model[10].
However, it should be pointed out that exact, explicit analytical
solutions were only possible when the Newtonian solvent con-
tribution was neglected, while a constructive procedure, along
the lines set forth by Walters, was deemed necessary for the
non-zero solvent viscosity cases.

More recently, and as direct motivation to the present contri-
bution, a number of analytical solutions[11,12]were derived for
the affine version (ξ = 0) of the model developed by Phan-Thien
and Tanner[13] whose constitutive equation is:
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In conclusion, most exact closed-form analytical solutions of
practical differential viscoelastic models in pipe flow, like the
solution of Oliveira and Pinho[11], assume a vanishing solvent
viscosity contribution. The objective of the present work is to
derive an exact solution for the same problem, involving the
affine-PTT and FENE-P models, but where the solvent viscosity
is finite. It is also important to emphasize the point that the
present analytical solutions can be viewed as pertaining to a
viscoelastic liquid that is not necessarily a polymer solution, but
one with a retardation time that would effectively take, in the
current analysis, the role of the solvent viscosity,ηs.

2. Analytical derivation for the PTT model

We consider a fully developed flow in a circular-cross section
pipe of radiusR, in which the only non-zero velocity compo-
nent is the axial componentu(r) depending solely on the radial
coordinater. A generalisation for the planar case of the channel
flow is given without detailed derivation at the end of this sec-
tion. The axial momentum equation (from Eq.(2)) in cylindrical
coordinates is the only relevant momentum equation,

0 = −pz + ηs
∂

r∂r

(
r
∂u

∂r

)
+ ∂

r∂r
(rτrz) (4)

and since the pressure gradientpz ≡ dp/dz is a constant, Eq.(4)
c
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(tr(τ)) · τ + λ
∇
τ = ηp(∇u + ∇uT)

with f (τ) = 1 + ε
λ

ηp
tr(τ)) (1)

o be solved for the extra “polymeric” stress tensorτ. In this

quation,
∇
τ denotes Oldroyd’s upper convected derivative,f(τ)

s a function of stress invariants which follows here the lin
orm proposed in the original paper,λ is the constant relaxatio
ime,ηp is a constant parameter equal to the polymer cont
ion to the zero-shear rate viscosity, andε is another consta
arameter of the model related to its extensional prope
enerally, the lower the value ofε, the higher is the uniaxi
xtensional viscosity predicted by this PTT model; whenε tends
o zero, the above equation reduces to the well-known Oldr

model[1,6]. However, contrary to this model the PTT pred
shear-thinning viscosityη(γ̇) whose limit for vanishing she

ate isη0 = ηp + ηs. The amount of Newtonian solvent contrib
ion is therefore controlled by the constant solvent viscosi
he momentum equation:

Du

Dt
= −∇p + ∇ · τs + ∇ · τ = −∇p + ηs∇ · ∇u + ∇ · τ

(2)

measured by a non-dimensional solvent viscosity param
= ηs/η0. In the present problem the acceleration Du/Dt is zero
nd the continuity equation,

· u= 0 (3)

ill be satisfied identically by the assumed axial velocity dis
utionu(r).
.

-

r

an be integrated once to give:

= −pzr

2
+ ηs

du

dr
+ τrz (5)

The constitutive equations for the polymeric stress com
ents are obtained from Eq.(1) and follow straight from ou
revious work[11]:

(τzz) · τrr = 0 ⇒ τrr = 0 (6)

(τzz) · τzz = 2λτrz

du

dr
(7)

(τzz) · τrz = ηp

du

dr
(8)

ith the trace of the stress tensor reduced only toτkk = τzz, so
hat:

(τ) = 1 +
(

ελ

ηp

)
τzz (9)

Still following our previous work, a direct relationsh
etween the normal and the shear stress can be obtained by

ng Eq.(7) by Eq.(8), therefore eliminating the stress funct
(τ):

zz = 2λ

ηp

τ2
rz (10)

The key point at this stage, and where the present deriv
eparts from that of the previous work, is to recognise tha

urther substitution ofτrz in terms ofr is required by invoking th
omentum equation, but rather that Eq.(8) ought to be solve
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as a cubic equation for the shear stress, after using(9) and(10):(
1 +

(
ελ

ηp

)
2λ

ηp
τ2
rz

)
· τrz = ηp

du

dr
= ηp

ηs

(pzr

2
− τrz

)
(11)

For the last equality on the right-hand side, the momentum
Eq. (5) was expressed explicitly in terms of the local shear rate
du/dr. After rearranging the various terms in(11) we arrive at
the standard form for a cubic equation:

τ3
rz + a1τ

2
rz + a2τrz + a3 = 0 ⇔ τ3

rz + 3Aτrz − 2B = 0 (12)

with (a1 = 0, a2 = 3A, a3 =−2B):

A = η2
p

6ελ2

(
1 + ηp

ηs

)
and B =

(
η2

p

4ελ2

ηp

ηs

pz

2

)
r ≡ Cr

(13)

The real solution to this cubic equation is:

τrz = 3
√

B +
√

A3 + B2 + 3
√

B −
√

A3 + B2 (14)

where it is noted thatB is a function of the independent coor-
dinate variabler, a feature made clearer by introducing the
definition forC in Eq.(13). SinceB andC are negative (because
pz < 0) care should be exercised while evaluating the cubic root
in the second term on the right-hand side of(14) in order to
avoid the two conjugate imaginary solutions. The result of the
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This long expression can be written under a compact form
with help of some function definitions (rather like statement
functions). If we define:

F±(X) =
(

CX ±
√

A3 + (CX)2
)1/3

and

G±(X) = 3CX ±
√

A3 + (CX)2 (17)

then we may write(16)as:

u(r) = (2UN/β)

(
1 −

( r

R

)2
)

+ 3

8Cηs
{F+(R)G−(R) − F+(r)G−(r)

+ F−(R)G+(R) − F−(r)G+(r)} (18)

where we chose to define a characteristic velocity as:

UN = −pzR
2

8η0
(19)

The first term in either Eq.(16) or Eq. (18) is clearly the
parabolic velocity variation due to the Newtonian solvent contri-
bution and thereforeUN has the meaning of the average velocity
for the pipe flow of a Newtonian fluid subjected to the same
pressure gradient−pz.
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rst cubic root on the r.h.s. of(14) is always real.
Having obtained an explicit solution for the polymeric sh

tress component, we may go back to the momentum E(5)
nd re-write it as an equation for the shear rate:

du(r)

dr
= pzr

2ηs
− 1

ηs
τrz = pzr

2ηs

− 1

ηs

(
3

√
Cr+

√
A3+(Cr)2+ 3

√
Cr −

√
A3+(Cr)2

)

(15)

hereA and C are constant parameters defined by Eqs.(13)
hich depend only on the basic material constants of the
odel. Upon integration and imposition of the no-slip bound

ondition (that is,u(r) = 0 for r = R) we arrive, after some rath
umbersome manipulations whose details are omitted, t
ollowing expression for the velocity profile in fully develop
ipe flow:

(r) =
(

−pzR
2

4ηs

)(
1 −

( r

R

)2
)

+ 3

8Cηs

{
−
(

CR +
√

A3 +

+ 3

8Cηs

{(
Cr +

√
A3 + (Cr)2

)1/3(
−3Cr +

√
A3 +

+ 3

8Cηs

{(
CR −

√
A3 + (CR)2

)1/3(
+3CR +

√
A3

− 3

8Cηs

{(
Cr −

√
A3 + (Cr)2

)1/3(
+3Cr +

√
A3 +
e

)2
)1/3(

−3CR +
√

A3 + (CR)2
)}

)2
)}

R)2
)}

)2
)}

(16)

At this point we are in possession of an exact explicit solu
or the problem of PTT pipe flow, including a Newtonian solv
ontribution, when the pressure gradient is given:

the velocity profileu(r) is given by Eq.(16);
the shear stress due to the polymerτrz(r) is given by Eq.(14);
and the axial normal stressτzz(r) is determined from Eq.(10).

If required, the total shear stress can be easily obtaine
umming the solvent contribution,ηsdu/dr with du/dr from Eq.
15), to the polymer stressτrz. In addition, the local shear vi
osity can be calculated directly from its definition:

= ηs + τrz

(du/dr)
(20)
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Another quantity of interest is the average or bulk velocity
which can be obtained by integrating the velocity distribution
over the pipe cross-section:

U ≡ 1

πR2

∫ R

0
(2πr)u(r) dr = U1 + U2 + U3 + U4 (21)

With u(r) given by Eq.(18), we obtain the following four
contributions to the average velocity:

U1 = −pzR
2

8ηs
,

U2 = 3

8ηsC
{F+(R)G−(R) + F−(R)G+(R)},

U3 = 9

320R2ηsC3

{
F+(R)

[
3
√

A3 + B2
R(A3 + 4B2

R)

−BR(A3 + 28B2
R)

]
− 3A5

}
,

U4 = −9

320R2ηsC3

{
F−(R)

[
3
√

A3 + B2
R(A3 + 4B2

R)

+ BR(A3 + 28B2
R)

]
+ 3A5

}
(22)
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while U1, U2, U3 andU4 follow expressions similar to(22)with
the necessary modifications:

U1 = −pxH
2

3ηs
,

U2 = 3

8ηsC
{F+(H)G−(H) + F−(H)G+(H)},

U3 = 9

280H2ηsC3

{
F+(H)

[
8A3 + BH(−19BH

+ 9
√

A3 + B2
H)

]
− 8A7/2

}
,

U4 = 9

280H2ηsC3F−(H)

[
8A3 + BH(19BH − 9

√
A3 + B2

H)

]

+ 8A7/2 (26)

whereBH =CH with C from Eq.(24)

3. Solution for the FENE-P model

In this section we deal with the analytical solution for the
FENE-P model[14], another very popular differential constitu-
tive equation often employed in computational rheology. While
the PTT model was derived from network theory and is there-
f oted
i the
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h exact
ith F± being the function defined in Eq.(17)and hereBR = CR
ccording to Eq.(13).

.1. Solution for channel flow

The solution for the planar (x, y) geometry of fully develope
hannel flow aligned withx can be derived following the sam
rocedure and the final result for the velocity profile is:

(y) =
(

−pxH
2

2ηs

)(
1 −

( y

H

)2
)

+ 3

8ηsC
{· · ·} (23)

ith the term inside the curled brackets exactly like the co
ponding one in Eq.(16), except that the lateral coordinate is n
, instead ofr, and the half-width of the channel isH, instead
f R. The polymeric shear stressτxy is given by an expressio

ike (14) with the same definition forA as in(13), while B and
take a slightly different definition:

≡ Cy and C ≡ η2
p

4ελ2

ηp

ηs
px (24)

The solution for the axial normal stressτxx follows exactly
rom the equivalent to Eq.(10) and the shear rate is given
q. (15), with proper changes, except that there is no 1/2 in
rst term containing the pressure gradient. Finally, the ave
elocity follows from the equivalent to Eq.(21):

≡ 1

H

∫ H

0
u(y) dy = U1 + U2 + U3 + U4 (25)
e

ore more appropriate for melts, the FENE-P model was ro
n kinetic theory and was initially developed to represent
ehaviour of dilute polymer solutions. In the FENE-P mod
olecule is represented by a single dumbbell, whose conn

ollows a non-linear spring law possessing limited extens
ithout consideration for excluded volume effects and hy
ynamic interaction, and the resulting constitutive equatio

he polymer stress can be written as[14,15]:

(tr(τ)) · τ + λ
∇
τ − λ

(
τ − b

b + 2
nkT I

)
D ln Z

Dt

= b

b + 2
nkTλ(∇u + ∇uT) (27)

hereZ is a function of the trace of the stress tensor,

= 1 + 3

b

(
b

b + 2
+ tr(τ)

3nkT

)
(28)

and nkT are parameters of the model, and we note tha
mprovements introduced by Bird et al. ([15], pp. 88–91) ar
lready accounted for. A Newtonian solvent contribution mu
dded toτ, exactly as in Eq.(2)above, in order to obtain the to
xtra stress acting on a fluid element. In Eqs.(27) and(28) the
arameterb measures the extensibility of the dumbbell and
ero-shear rate polymer viscosity is given byηp = nkTλb/(b + 5).
n spite of their quite different origins, the final equations
he two models, Eq.(1) for the PTT and(27) for the FENE-P
o show already some similarities (the recent paper of Ta
nd Nasseri[16], where similarities among various constitut
quations are discussed, is highly recommended in this res

n the case of the fully developed rectilinear flows consid
ere, those similarities are even more striking leading to an



32 D.O.A. Cruz et al. / J. Non-Newtonian Fluid Mech. 132 (2005) 28–35

equivalence in the sense of a parameter to parameter match, as
found by Oliveira[17] who gives the analytical solution for slit
and pipe flow of the FENE-P modelwithout a solvent viscosity.
Fully developed conditions imply that DZ/Dt = 0 and in this case
the constitutive Eq.(27) for each stress component becomes:

Z(τzz) · τzz = 2λτrz

du

dr
(29)

Z(τzz) · τrz =
(

b + 5

b + 2

)
ηp

du

dr
(30)

together withτrr = 0, giving:

Z(τzz) = 1 + 3

b + 2

(
1 + (b + 2)λτzz

3(b + 5)ηp

)

=
(

b + 5

b + 2

)(
1 + (b + 2)λτzz

3(b + 5)2ηp

)
(31)

Those equations are to be compared with Eqs.(7), (8), and
(9), respectively, for the affine-PTT fluid. Since the momentum
equation remains unchanged (Eq.(4)) it is straightforward to
show, by equating the last term of(31)to Eq.(9), that the results
of Section2 remain valid provided the following substitutions
are made:

f →
(

b + 2

b + 5

)
Z; λ →

(
b + 2

b + 5

)
λ;

ε
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Fig. 1. Solution in terms of velocity profiles and influence of the viscosity ratio
β =ηs/η0 for ε = 0.25 andDeN = 1. Note:UN = (−dp/dz)R2/8η0.

Pinho but it is remarkable that a small discrepancy for such a low
solvent viscosity contribution is still visible. For a smallerβ, Eq.
(16) agrees very well with Oliveira and Pinho, thus indirectly
confirming the correctness of the present solution. Otherwise,
Fig. 1 shows that the flow rate in the pipe rises considerably
when the concentration of the viscoelastic polymer increases,
on account of strong shear-thinning (an effect similar to drag
reduction, but here due to shear-thinning in laminar flow). With
polymer solutions, a concentration parameter is usually defined
asc = ηp/ηs (e.g.[18]) giving c = (1/β) − 1.

Corresponding profiles for the polymeric stress contribution
are shown inFig. 2(a), for the axial normal componentτzz, and
Fig. 2(b), for the tangential componentτzr. Stresses are here
normalised with the stress scaleηpUN/R, appropriate for the
polymeric stresses, and as expected those stress components
increase whenβ decreases, meaning higher polymer concen-
tration. The solution of Oliveira and Pinho[11], shown by the
symbols withβ = 0, is approached for very low values ofβ; it
is worth noting that in that work the stress scale was taken as
4ηpU/R giving a unit shear stress value at the wall, forr = R.
With the stress scale chosen in terms of the primary velocity
scale based directly on the imposed pressure gradient, both stress
components increase, in absolute value, whenβ decreases; with
β = 1 the polymeric stresses vanish.

When the velocity is normalised with the average velocity
in the pipe for the conditions studied here, then the level of dis-
c n
o by the
v
U ed
b n’s
r
o s less
t
a rrors
g preci-
s

→ 1

b + 5
; ηp → ηp (32)

These relations thus define an equivalence between F
and PTT results, allowing for the same expressions t

mployed with both models.

. Results

We shall concentrate here on results for the PTT mo
liveira and Pinho[11] have already studied with some detail

nfluence of elasticity, as measured by either a Deborah nu
e or the group

√
εDe, on the main characteristics of the P

ipe flow solution. Therefore, the interest here is to seek the
nce of the solvent viscosity ratioβ, which may vary betwee
= 0 (PTT without solvent viscosity; solution given by Olive
nd Pinho[11]) andβ = 1 (Newtonian fluid), on the velocity an
tress profiles. As noted above two Deborah numbers m
ormed, depending on the value chosen for the velocity s
eN =λUN/R with UN =−pzR2/8η0 based on the primary va
bles; andDe =λU/R with U being the average velocity whi
an only be determined after knowing the basic solution.

Fig. 1shows profiles of the velocity distribution, scaled w
N, for increasing values ofβ at constantε = 0.25 andDeN = 1.
he interest is to verify that the proper limits are reproduce

he present solution. Forβ = 1 the Newtonian solution shown
he round symbols inFig. 1 is recovered; in fact, the solid lin
orresponds to Eq.(16) with β = 0.9999. Forβ tending to zero
he solution of Oliveira and Pinho[11] is recovered, shown b
he square symbols marked withβ = 0. Eq.(16) with β = 0.001
ives a profile in close agreement with the result of Oliveira
repancy between results at lowβ (sayβ = 0.01) and the solutio
f Oliveira and Pinho seems less accentuated, as shown
elocity profiles inFig. 3 for DeN = 1 (De = 6.3) andε = 0.25.

is given by Eqs.(21) and(22) and could also be calculat
y numerical integration of the velocity profile with Simpso
ule, following the definition(21); it was found that values ofU
btained with these two methods agreed very closely (error

han 0.04–0.4%), but for very smallβ (sayβ < 0.0001) Eqs.(21)
nd (22) give erroneous answers due to approximation e
enerated by subtractive cancellation (even when double
ion arithmetic is used to evaluate those equations).
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Fig. 2. Normal (a) and tangential (b) polymer stress components, forε = 0.25
andDeN = 1.

The ratioUN/U of the Newtonian average velocity for the
given pressure gradient and the actual average velocity is a useful
quantity to evaluate, not only because it gives a direct relation
between the two Deborah numbers at playDeN/De, but also
because it represents a non-dimensional pressure drop being
directly proportional to the Fanning friction coefficient, defined
in the usual way:

fRe = 16
UN

U
(33)

(see[11]). Fig. 4 shows the variation ofUN/U with the group√
εDe, havingβ as a parameter. Eqs.(13)–(16)all show that the

solution depends on
√

εDe (or, equivalently, on
√

εDeN) not on
ε andDe separately. Results of Oliveira and Pinho valid forβ = 0
are shown by circular symbols inFig. 4, offering a useful check

Fig. 3. Analytical solution in terms of velocity profiles scaled with the average
velocity.

for the lower limiting conditionsβ → 0. There is a very quick
initial decrease ofUN/U due to shear thinning, followed by a
gradual levelling out at higherεDe when “elastic” effects have
saturated.

The presence of a non-zero solvent viscosity affects primar-
ily and directly the shear viscosity function of the PTT model
and so it seems relevant to look at the radial variation of shear
viscosity and shear rate across the pipe section. Profiles of the
shear viscosity are shown inFig. 5, with η from Eq.(20), while
the absolute shear rateγ̇ ≡ |du(r)/dr| can be obtained from Eq.
(15). Whenβ is nonzero,η becomes limited from below byηs,

F icity,
h

ig. 4. Variation of the ratio between the two velocity scales with elast
avingβ =ηs/η0 as a parameter.
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Fig. 5. Radial profiles of the shear viscosity.

a limitation occurring in regions of high shear rate. Hence the
profiles ofη should be accordingly modified, with a tendency
towards uniformity across the pipe asβ is raised; such behaviour
is well illustrated byFig. 5. The absolute values of the shear rate
(whose variation is not shown) increase monotonically from zero
at the centre, to a maximum at the wall, and are greatly reduce
whenβ is increased (values oḟγ at the wall increasing from 4
for β = 1, to 35.2 forβ = 0.001).

A final check of the present analytical solution is provided
by plotting the data fromFig. 5 asη versusγ̇, whereγ̇ is the
shear rate at positionr (Eq. (15)), and comparing the resulting
variation with the known shear viscosity function of the PTT
model. Such comparison is valid because steady pipe flow i

F loca
s or the
P

essentially a shear flow with a varying local rate of shearγ̇(r) =
|du(r)/dr|. The shear viscosity function is given by many authors
(for example Oliveira and Pinho):

η(γ̇) = ηs + ηp

1 + (α − 1)2/3α
(α ≡ (θ +

√
θ2 − 1)

1/3
;

θ ≡ 1 + 27ε(λγ̇)2) (34)

andFig. 6 shows the resulting plot. In this figure, the symbols
pertain to the material function above (Eq.(34)) and the lines to
the present analytical solution. A perfect agreement is observed
with the plot in log-log scale showing more clearly the usual
viscosity decay, limited by the solvent viscosity, of a standard
material function representation of log(η) versus log (̇γ).
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