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Abstract

Analytical solutions have been derived for the helical flow of PTT fluids in concentric annuli, due to inner cylinder rotation, as well as for
Poiseuille flow in a channel skewed by the movement of one plate in the spanwise direction, which constitutes a simpler solution for helical
flow in the limit of very thin annuli. Since the constitutive equation is a non-linear differential equation, the axial and tangential/spanwise flows
are coupled in a complex way. Expressions are derived for the radial variation of the axial and tangential velocities, as well as for the three shear
stresses and the two normal stresses. For engineering purposes expressions are given relating the friction factor and the torque coefficient to the
Reynolds number, the Taylor number, a nondimensional number quantifying elastic effla@sand the radius ratio. For axial dominated
flows fReandCy are found to depend only aiDe€? and the radius ratio, but as the strength of rotation increases both coefficients become
dependent on the velocity ratig)(which efficiently compacts the effects of Reynolds and Taylor numbers. Similar expressions are derived
for the simpler planar case flow using adequate non-dimensional numbers.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction plastic or the Herschel-Bulkley models. For viscoelastic
fluids, investigations are scarcer. Among the first to study

Annular flows of non-Newtonian fluids are found in a viscoelastic annular flows was Bhatnada}, who used a
wide variety of applications: from drilling oil and gas wells Rivlin—Eriksen model to investigate low Reynolds number
and well completion operations to industrial processes in- flow (Re = 1) in a concentric geometry, with no cylinder
volving waste fluids, synthetic fibres, foodstuffs and the ex- rotation, but in the presence of suction and injection at the
trusion of molten plastics as well as in some flows of polymer cylinder walls. With rotation of the inner cylinder, Dierckes
solutions. The large variety of fluids and industrial applica- and Schowaltef3] measured the laminar annular flow of
tions has been a major motivation for research in annular polyisobutelene solutions and confirmed that the symmet-
flow with varying degrees of complexity. An extensive bib- ric flow could be predicted from an inelastic theory based
liographic list of work on annular flows has been presented on a power law fitted to the experimental rheological data.
by Escudier et al[1]. Of concern to this work are mainly  Kaloni [4] and Kulshresth§b] derived analytical solutions
previous investigations with viscoelastic fluids in concentric for viscoelastic fluids obeying Oldroyd’s equations. Pinho
annuli under laminar flow conditions. and Oliveira[6] solved analytically the concentric annular

The vast majority of non-Newtonian investigations in an- laminar flow without inner cylinder rotation for the simpli-
nular flows concern purely viscous fluids obeying the power fied PTT model. They provided expressions for the veloc-
law model, and yield stress fluids obeying the Bingham ity and stress profiles as well as for the friction factor as a

function of the Reynolds and Deborah numbers and the ra-

mspondmg author. dius rati_o. Thgt wprk i§ the immediate predecgssor of the

E-mail addressesdoac@ufpa.br (D.O.A. Cruz), present investigation since the adopted rheological constitu-
fpinho@dem.uminho.pt (F.T. Pinho). tive equation is the same.

0377-0257/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
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Nomenclature

c2

3
C4

Cr
Cm
De

Dec
Dep

Der
Der,

D

f

fltro) =
f(i)

F

P.z

Re
R
Ro

Uch
Up
Ut

normalised constant of integration:
2c2/(p..8%) (annulus)c2/(p..8) (channel)
normalised constant of integratioty/ U
normalised constant of integration:
c48/U (annulus)c4/ U (channel)

force coefficient in the channel,
—F3/(nUp)

torque coefficient in the annulus,
—M(R3 — R?)/(4nwnR% R?)

Deborah number based on axial bulk
velocity U, AU/$S

Deborah number based @iy, AU:/$
Deborah number based @érp, AUp/$§
(channel)

Deborah number based @i, AUT/S
Deborah number based on tangential
velocity of inner cylinderiwR, /8
(annulus)

hydraulic diameter in annulus and chann
26 (m)

Fanning friction factor—38(dp/dz)/(pU?)
stress function of PTT model

force per unit area in channel flow (Nfin
torque per unit length of cylinder (Nm/m)
pressure (Pa)

axial pressure gradienip/dz (Pa/m)
radial/transverse coordinate (m)
Reynolds numbeiRe= pU25/n

inner cylinder radius (m)

outer cylinder radius (m)
rotational/transverse Reynolds number:
T = pwR\8/n (@annulus),T = pUps/n
(channel)

Taylor numberTa= p?w?R;83/n?
normalised stress;j /(n(Uch/$))

with Uch = U or Ut

axial/longitudinal component of
velocity (m/s)

axial/longitudinal bulk velocity (m/s)
characteristic axial/longitudinal velocity
scale:—p .8%/8n (annulus),— p..6%/3n
(channel) (m/s)

characteristic velocity (in general) (m/s)
velocity of lower plate (channel)
characteristic tangential/spanwise
velocity scale:M/(7nd) (annulus),

F§/n (channel) (m/s)
tangential/spanwise component of
velocity (m/s)

normalised radial/ transverse
coordinatey/s

axial/longitudinal coordinate (m)

e

Greek letters

gap in annulus or in channeRo — R; (M)

parameter in PTT model

viscosity parameter in PTT model (Pas)

radius ratio,R|/Ro

relaxation time in PTT model (s)

tangential angular coordinate (annulus),

spanwise (linear) coordinate (channel)

stress componeiit (Pa)

1) angular velocity of inner cylinder in
annulus (rad/s)

& velocity ratio,wR|/U

PRI H >

Other analytical studies of swirling viscoelastic flows in
the literature have been motivated by applications in rheol-
ogy and tribology. The journal bearing flow has been the
source of much work: Beris et dlf] studied the tangential
flow of Maxwell, White-Metzner and CEF fluids in concen-
tric and eccentric annuli using a perturbation theory, and for
other fluids the reader is referred to Bird et [@]. Rheo-
metrical flows were investigated much earlier, with Coleman
et al.[9] providing an extensive review of their characteris-
tics. Studies of secondary effects in these rheometrical flows
was of concern especially in the sixties and seventies as in
Giesekud10] or Walters and Waterd 1] who investigated
the flow in the cone—plate system. For the flow between cir-
cular plates, the onset of instabilities was investigated by
JosepH12] following Hill's [13] experiments.

The rod climbing effect, and its sibling without a rod, have
also been a major motivation of research, often numerical
like that of Debbaut and Hoc[d4]. A major contributor to
these studies was Joseph and his co-workers: Jdd&ph
summarises his many contributions.

There are a few other investigations specifically on the
topic of viscoelastic annular flows with and without inner
cylinder rotation, but under turbulent flow conditions as in
Nouri et al.[16] and Escudier et a[17].

The objective of the present paper is to analyse in de-
tail the laminar flow of viscoelastic fluids obeying the
Phan—Thien-Tanner model in concentric annuli with inner
cylinder rotation. In the limit of very thin annulus this so-
lution is well approximated by the simpler solution for the
skewed Poiseuille—Couette flow in a channel for which a
full analytical solution is also presented. Here, there is a
pressure driven Poiseuille flow in the longitudinal direction
combined with Couette flow in the spanwise direction. This
flow condition has not been previously investigated: the
closer to this is the analytical solution for Poiseuille—Couette
flow of PTT fluids in the same direction by Hashemabadi
et al.[18], an obviously different flow condition given the
non-linearities of the fluid constitutive equation.

The paper is organised as follows: in the next sec-
tion the relevant equations are presented and the various
non-dimensional numbers are definedSkection 3 the an-
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alytical solutions are derived for the cylindrical and planar 201 d s vr12
geometries and iBection 4the results corresponding to the T = W [r"a (r_”>] ) (8)
annular flow are plotted and the effect of rotation investi- "
gated. A summary of the main conclusions closes the paper. " d v
o= () ©)
f(ip) dr A\
. . n du
2. Governin uations = —, 10
geq = o (10)
Two similar flows are under investigation here. First, 2t du d /v
the helical flow in a concentric annulus of inner and outer %z = f(zi)2 dr dr (r_n) (11)

radius R and Rp, respectively, defining an annular gap, o
8§ = Ro — R, and radius ratiox = R,/Ro. The flow where the stress coefficiefft;;) was used for compactness.

is fully-developed, so both the axial velocity, and the The stress coefficient is now given by the non-linear cubic
tangential velocityp, are only functions of the radial coor-  €duation Eg. (12)

dinater and the imposed axial pressure gradient is constant. 2622 du\ 2 d s va)\2

The second flow condition is the corresponding planar case, f(zi) = 1+ a2 <E) (r"a <r_n)) . (12)
with longitudinal velocity,u, and spanwise velocity, both "

functions of the transverse coordinate)n both cases the  The boundary conditions for this problem express no-slip at
wall at » = R; moves (inner wall/lower plate): it rotates  the walls and are given by:

with angular velocityw in the annulus and moves in the

spanwise direction with linear velocity/p in the channel. r=R = u=0, v=wR(orv= Upforthe channel
Under these conditions the momentum equations are r=Ro=u=0, v=0.
1d op
r_na("n'frz)—a—Z =0, (1)
3. Analytical solution

v 1d o9  Op
—pn—:—n—(r Tr) —n— — —, (2) - T

r rtdr r or Although initially there are many similarities between the
d axisymmetric and planar solutions, for the sake of clarity the
E(rz"r,e) =0, 3) two cases are presented separately, starting with the helical

flow.

wherez refers to the axial or longitudinal direction in the an-

nulus and channel, respectivetyis the radial or transverse  3.1. Flow in the annular geometry

direction and is the tangential or spanwise directions. Pa-

rametem takes the value of 1 for the axisymmetric geometry  Introducing the torque per unit length of the cylindif)(

and of 0 in the planar case. integration ofEq. (3)gives the variation of the stress com-
The extra stresses are given here by the simplified form ponentz,y
of the PTT constitutive equatidi 9] M
T9= —>. (23)
t i =2yD with fit 14 4 arr?
r = r = —tr(v), I . . . .
Jar@)r + A 7 W fr(@) + n ® Substituting this result int&q. (9) provides the following
4) expression
. . . . d /v M
where D is the deformation rate tensok,is the relaxation r— <_) = —— f(7ii), (14)
dr \r 2mnr?

time, n is the viscosity coefficient and is a parameter of
the model limiting the extensional viscosity of the fluid. The that can be used to calculatg in Eq. (8) The tangential
stress functiorf(tr(t)), defined irEq. (4) is the Iinvearization normal stressy is thus given by

of the more general exponential coefficient andlenotes

2
Oldroyd’s upper convective derivative Tgo = ﬂ (15)
2m2yr4

v_ Dz T . . . . .
T=go T Ve- (Vo) T (5) Now, using this result into the radial momentum equation

: - o (Ea. (2)gives
For this flow geometry the constitutive equation simplifies to 2

_ 2

7w =0, (6) Tor P T oA (16)

Tzz

2wy (du 2 7 which provides the radial distribution of pressure once the
T f(ni)? dr (7) radial variation of the tangential velocity is known.
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To obtain the axial velocity it is still necessary to deduce whereA is the cross section area aRds the corresponding
expressions fot,, andz,,, that depend only on derivatives wetted perimeter. Elsewhergwas used as the length scale.
of velocity and pressurdzq. (1) can be integrated into After normalisation and integration &q. (21) the axial
velocity profileu/U is given by

)
Trz = 3_p£ + — (17)
< u _ ZUC 2 4z UC | SDe-zr UC 8De-2|- UC 52

wherec; is an integration constant. With., also given by U= Uyt Ty ny+ yz U 2 Uy
Eqg. (10) the stress coefficient function is determined as U
. n(ce/dlr) 8 —~ 32,9De§ — 192D —czy

Tij) = .

" (0p/0)(r/2) + (c2/r) Ueoy &
Squaring this function and using it Bq. (7)leads to - 384€D95762 Iny+ 64eDe§ =2 423, (23)

2
Ty = 2_)\ [3_17[ 2] ' (19) where the radial coordinate is presented in normalised form
0z 2 asy =r/s.

In Eqg. (23) the new constant of integratiag and constant
co appear in normalized forné; = 2cp/p 8% andés =
c3/U. From Eq. (14) and using the stresses Bfys. (15)
and (19) the differential equation for the tangential velocity
component becomes

Now, it is possible to determine the axial and tangential
velocity profiles.
According toEq. (18)and the definition of(z;;)

d
dif |:1 + —(Tee + Tzz)i| |:8_§ + i| (20)

d /v
so that, after substitution &qs. (15) and (19Yhe following "ar (;)

apr
n

expression for the axial velocity gradient is deduced M . 2032 [ M2 N opr + 2 o
du _1[opr L e 22 n2 | 4n2rt 9z 2 ’
dr 0z 2
22 ' M2 9 P After normalisation, the integration of this equation gives
Leeyor ey oo oer, e the following tangential velocity profile:
n [0z2 42p4 9z 2

1U 1 U U
1y Y__29T < p —T 16eD2— yIn
U 4y U 24y58 ST TR

Using Egs. (14) and (18)the shear stress), can also be Ut & 22
simplified to - 165De2—— - 4eDe2 —g Cay. (25)
y Uy
opr
Tz = W 922 + T (22) Eq. (25)introduces a new nondimensional constant of inte-

gration,c4 = c48/U.
A solution in terms of non-dimensional quantities is sought.  Application of the boundary conditions to the velocity
Therefore, for simplicity and prior to integration, the fol- profiles provides equations to determine the constants of
lowing characteristic parameters are defined: a characteristicntegration. No-slip condition of the axial velocity at both
axial velocity scald/c = (—p .8/8n), a characteristic tan-  walls (Eq. (23) gives the following cubic equation G
gential velocity scalé/t = (M/nnd), and the corresponding
characteristic Deborah numbebg, = (AU¢/8) andDer = bo + b1&2 + b + bat3 =0, (26)
(AUTt/8). Alternative Deborah numbers are defined on the

basis of the axial bulk velocity{ leading toDe = AU/$) with coefficients

and of the tangential velocity of the inner surface of the an- 1 1

nulus Ut, = @R, leading toDer, = AUT,/$). bo = 2(y2 — y?) + ¢De&? (—2 = —2) + 32:D€2(vg — ¥,
This problem requires five independent non-dimensional [ o

guantities to characterise the flow:and a Deborah num- sDe% 1 1

ber related to the axial flowDe or De;) are constitutive b1 =4In— — > (—4 - —4) 192:DeA(v5 — »P),

parameters, the radius ratids a geometric parameter, and Y Yo Vi

finally the Deborah number related to the rotating fl@vef 210 &2 1 1
or Der,), or alternatively a Taylor number or a rotational /2 = 384D c'”;’ b3 = —64¢De; ) (27)
Reynolds number, and the Reynolds number of the axial flow o Ji

(Re), all of which are dynamical parameters. The Reynolds  This cubic equation has the following solution
number of the axial flow is defined & = 25oU/n, i.e.,

it is based on the hydraulic diamet®y — 44/P = 25, & = sign(p)|p|"/3

+ signig) g3 — 3a1, (28)
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with
b b » a8
=4 Jd g=-—=—dd="-+—,
2t =75 4 o7
2 3
aj arap  2a3
= —_ b = —_—_— —_
a=az= 3 BT T
by by bo
and = —, = — and = —. 29
ap be az by as by (29)

Oncec¢s is known, determination of the other two con-
stants is straightforwardiz is obtained fromEqg. (23) by
setting the no-slip condition at any of the walls afdis
calculated withEq. (25)applying the no-slip condition at
the outer wall. The axial cross section average velocity can

be calculated from its definition for the annulus
21 —«k) [
U= uydy. 30
T ydy (30)

Yi

Substituting the velocity variation dfq. (23) andperform-
ing the integration, the following expression is obtained

2

20— [ 1 e y2
|:—§Uc(yg =¥ ) — 222U ( >

1+«

2

+yo|ny0

eDe-Zr 1

(s

cC2

+eDEUIn 22— =
i 5 )7

2
+ 192De2U.2 <y2,

2

Settingv = wy;§ aty = y; in Eqg. (25)gives the angular
rotational speed

eDe2 Ur
24 o

1

4

yid

Ut

4y

=+ 16U-|-8De2y, In yj

~ 2
— 16U7eDe2y; In yi 2 — AUTeDER2 + 524y
Vi

& avi | (32
y3 }()

. . . . M
The stress field can also be presented in nondimensional

form using the various non-dimensional parameters dis-

cussed above. Next, note the different velocity scales used
to normalise axial related and rotation related stress tensor

components. The exceptionig, which can be normalised
in both ways, as indicated below.

Trz €2
T, = =—-4|y+ —) , 33
= (U5 (y y (33)
Tro
To = =—, 34
P T8 T 22 (34)
Tzz 2 2
Ty = = 2De.T5 = 32D , 35
A A eC(”y) (35)
_ Der
T =2D T _— 36
6o = (U /8) er =24 (36)

16
)-—ng%Uaﬁ—

3,1 ¢3
% 4 y2Iny, — y?In yi> + 64eDE2UCE I P E(y% — y?)]

Tp; 4Dec|: 521|
Ty, = —— =20 Tl = —— |y + — or
%= U9 2 R

_ Tor 4Der C2
T, = =2DerT9Ty; = — — 1. (37
0z U(Uc/a) erlrolrz 12 I:}’+ yi| (37)

The axial pressure gradient is more conveniently written as
the Fanning friction factof and, as shown in Pinho and
Oliveira [6], in the case of the PTT model it is given by

U
fRe= 16—, (38)

U
which can be compared with the corresponding expression
for Newtonian fluids

(fRe)n
1
1+x)/A—=1)1/In1/k)
(39)

= oy —n?=

The torque required to rotate the inner cylinder is usually
qguantified by a torque coefficiel@,, defined in such way

yZIn yi)

¥8) — 48DEU2(yE — v

(1)

that it is unity for Newtonian fluids (note tha is torque
per unit length).

M(RZ — RY)
Cn=———""5. (40)
drwnRER;
For this flow, it can be shown th&,, is given by
1-«%)(1—
_ Urd—«)( K) (a1)

UT 4k

Finally, to quantify the rotation it is usual to use either the
rotational Reynolds number

R\
=270 (42)
n
or alternatively the Taylor number
2
Ta= (p—“’) Ri&. (43)
n

These numbers are related to each other abéfpas below

T = 5 Der, (44)
Ta= <%— >T2= (%-1) <2%ee>zoe%i. (45)
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The combination oRe De andDer; into those more typical u 2
nondimensional numbers, makes them more difficult to use 7 = — _[y + &) + eDef + ED 2Ly + &2l
analytically. ¥ Za, (53a)
3.2. Flow in the planar case or alternatively

u U
The solution for the planar case follows the same steps as— = 3— (yi — »)(y — Yo)
S L. U U
for the annulus, but is simpler and for brevity is presented 1
here with less detail. { + eDe& + gDeg[ + (v +&2) “ (53b)
Instead of a torque, the lower plate moves by action of 2
a force per unit areaf, and integration ofeg. (3) and where the normalised constants of integration are=

subsequent substitutions (s&ection 3.}, give c2/(p.;8) andéz = c3/U.
o = F (46) The spanwise velocity profile in non-dimensional form is
v U
o3 F2 o= “Ty[1 + 2¢D€} + 6eDe2y?
Top = : (47)
U + 18De?yp + 18:De2c3] + 4, (54)
and a null transverse distribution of pressue/or = 0), i.e. with &4 = ca/U.

now the pressure only varies with the longitudinal coordinate
in contrast to the annular case where it also depends on
The stresses,,, 7, and the stress coefficient function are

As in the annular case, application of the boundary con-
ditions determine the constants of integration, but here, in
contrast, an explicit equation givés as

given by ~
g &2 = —3(yo + W), (55)
Trz = d—IZ)V + c2, (48) and
3U
dp 2 f3=-—% [ + ¢De2 + eDez} (56)
Tzz= — |:d_r+ 021| s (49) 4 U
¢ The longitudinal bulk velocity is obtained from its definition
(du/dr for the planar case
fGi) = _n(@Qujdn) (50)
(dp/d2)r + c2 Yo 1 eDe? Lz
» , _ , U:/ udy =Uc| > + De2 (57)
Combining the various equations gives yi 4 2
e = 2F [?r N 2] (51) The velocity of the lower plate is related tr via
z Up = —Ut(1+ 2:D€f + 3:D€?). (58)

and the equation to be integrated for the longitudinal velocity The stress field in non-dimensional form is therefore given

profile by
du 1[dp Trp= — 12 = —3(y + &), (59)
&= ; |:d_zr + czi| T 0(Ue/9) ?
222 [d d 2 Tp=—"" =1, o0
+ — 3(s [ pr+c2} F2+ [_pr+c2} - (32) T aU/9) >
n dz dz

Tzz

The following non-dimensional quantities are used in the T2 = n(Uc/$)
planar case: the longitudinal characteristic velocity scale Top )
Ue = —p..82/(3y), the characteristic spanwise velocity 7eo = (U /8) 2Der Ty = 2Der, (62)
scaleUt = F§/n and the corresponding Deborah numbers

defined as for the annulus. The alternative Deborah numbers

= 2De, T2 = 18Des(y + &2)2, (61)

Toz
areDe = AU/§ andDe, = AUp/$, this latter taking over ~ To; = /8 = 2DecT9Trz = —6Dec(y +c2)  or
the role ofDer; for the annulus. The Reynolds number and g t@T
the hydraulic diameter are also identical to those used in the Ty, = n(Ue/3) = 2DerTyTrz = —6Der(y + c2). (63)
C

annular flow case.
The normalised transverse coordingts also defined as ~ The Fanning friction factor is quantified as

y = r/§ and the normalised longitudinal velocity profile is U,

given by fRe= GUC, (64)
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and the force coefficient

=N

—FS Ut S G

Cr=—F—=——. (65) M e
nUp Up : e Y

To quantify the movement of the lower plate, we can use an ol TR

adequate Reynolds umber, here also referred  as ' /
Upé Re I

= )O_P —_ (66) 1.0 - B

n 2De

A Taylor number can also be defined in analogy to the an- 3
nular case as

0.6 |- -
Ups\% 8 T2 ,
TaE (p—P> E = —. (67) D 5
. ! EDe
n I Ji 04l f % ]
The motivation for the derivation of this solution was its [}/ ... oo

use for the limiting condition of flow in very thin annulus 02| /
(x — 1), hence the specific form of the equations. The above o100

expressions for skewed planar Poiseuille—Couette flow cang - . | . .
0.0 0.2 0.4 0.6

be further simplified if the lower plate is fixed at the origin O'?"’R//(R(;R/l'
of the coordinate systenyj(= 0, yo = 1).
1.0y :
. . =N ®
4. Results and discussion ElL N
The presentation of results is divided in three parts and 038 |- "'-:_“.‘ \ eDe’ -
concerns only the more difficult helical flow. First, radial I 0
profiles of velocity and stress components are shown to illus- I N S N E LR 0.1
trate the influence of the various relevant non-dimensional | ‘\‘ — i
numbers. In the second part, results of more engineering in- | AN oo
terest are presented for the direct and indirect problems. Fi- | ‘\‘ .
nally, it is shown that the simpler equations for the planar — N
case are valid for very thin annuli. 04 - e 1
4.1. Detailed flow characteristics I i - |
02 L ?3\“..\ |
In the absence of inner cylinder rotatiofiy(= 0), Pinho I
and Oliveira[6] developed an analytical solution and our f ~,
solution exactly matches theirs, as it should. Under these )
conditions, the axial velocity profile anfiRe are indepen- %0 02 os 06

0.8 1.0
dent of the Reynolds number. The flow behaves essentially (e RME R

as Newtonian forDe? < 0.001, whereas farDe? > 10 the Fig. 1. Radial profiles of the normalised axial (a) and tangential (b)
velocity profile is near the high Deborah number asymptotic velocities in an annulus of = 0.5 for an SPTT fluid for axial-dominated
shape corresponding to a PTT fluid where the shear-thinningflow conditions Re= 1000; Ta= 1000).

viscosity behaviour is present over a very wide range of

shear rates (for the viscosity function §@€] or [21], al-

though Keunings and Crochg2] plotted it much earlier). The axial and tangential velocity profiles presented in
These profiles are presented in Pinho and Olivfsiaand Figs. 1-3pertain to each of the above mentioned flow
consequently are omitted here for conciseness. regimes. In the axially-dominated flow regime, the varia-

As with inelastic power law fluid§l], the rotation of the  tion of the axial velocity profile irFig. 1(a)is like that for
inner cylinder affects the stress field and this has an impactno cylinder rotation in Pinho and Oliveirg], with flow
on the axial velocity. Escudier et 4l] identified three dif- elasticity ¢De?) imparting a plug-like shape. In terms of
ferent flow regimes according to the relative strengths of the tangential velocity, the flow elasticity parameter also has a
axial and tangential flow. If the velocity ratipis less than dramatic influence as can be seerFig. 1(b) As ¢D€? in-
1 the flow is dominated by the axial flow, a rotation domi- creases the/(wR,) profile becomes increasingly distorted
nated flow requires a velocity ratig)(larger than 10 and a  to a sigmoidal shape and feDe? in excess of about 10
mixed flow is present in the range<d ¢ < 10. the profile is no longer monotonic. This behaviour is akin
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Fig. 3. Radial profiles of the normalised axial (a) and tangential (b)
velocities in an annulus ot = 0.5 for an SPTT fluid for mixed flow
conditions Re= 1; Ta= 10).

Fig. 2. Radial profiles of the normalised axial (a) and tangential (b) ve-
locities in an annulus of = 0.5 for an SPTT fluid for rotation-dominated
flow conditions Re= 1; Ta= 10,000).

leading to& below the present value of 0.006325, the same
to that seen by Nouar et gR23], and also calculated by patterns are observed.
Escudier et al[24], and is due to the intense shear-thinning  For rotation-dominated flowig. 2 plots the axial and tan-
of the viscometric viscosity of the fluids. This sigmoidal gential velocity profiles corresponding to a condition with
shape is easy to understand: for axial-dominated flows andé = 200. To understand the observed variations it is impor-
strongly shear-thinning fluids, the viscosity is very low near tant to realise that, whereas in axially dominated flow the
the walls and high in the centre of the annulus where the shear-thinning behaviour affects the whole annular space,
shear rate is minimum. Since the stress controlling rota- here the high rates of deformation and the shear thinning
tional flow (z4,) varies with radius less than the viscosity, concentrate near the inner cylinder. Higher valuesTaf
the radial gradient of the tangential velocity must be high would increase the extent of such region, but this would
close to the walls and small in the center, thus imparting the correspond to conditions where laminar flow is unstable. In
sigmoidal shape to the profile. For lower Taylor numbers, fact, even for Taylor numbers well below 50,000 secondary
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flows are known to appear due to flow instabilities in purely s
azimuthal flow{25]. For the concentric geometry, and in the ="
absence of any elasticity, the PTT model simplifies to the |
Newtonian behaviour for which there is a perfect decoupling 3
between axial and tangential flows. »
As soon agDé? differs from zero both flows are coupled
and the axial flow becomes highly distorted towards the in- |
ner cylinder and the peak velocities increase around 15%
because of the lower viscosities there. Similarly, for the tan- ©
gential velocity inFig. 2(b) a strong deviation of the flow I
towards the inner cylinder is seen. The effect of the Debo- |
rah number is also weaker than fpk 1, because now (for -2
& > 10) the rates of deformation of the fluid are weaker. I
Still, a tendency is observed for the maximum axial velocity I
to decrease and for the profile to widens@¥? increases. 4L
Under the mixed flow conditions iRig. 3 the axial and
tangential velocity profiles show better the progression from ®y 007 o4 os . os L
the Newtonian decoupled flow to the flow dominated by (r-RMR -R)
elasticity agDe? increases. Simultaneously, the progression
from the axial dominated flow, where the axial velocity pro- 6 —————1——————71 71—
files are more central, to the rotation dominated flow where ="
they are distorted toward the inner cylinder, is also evident.
This figure corresponds to relatively weak axial and rota-
tional flows hence the rates of deformation are low eide?
is not seen to affect the magnitude of the velocities. 2
Next, the radial variation of the various stress tensor com-
ponents is analysed in detail. Fig. 4(a)the shear stress 1
due to rotation €4,) is plotted in normalised form; it has a I
universal form regardless of the valuesRé Ta andeDe?. |
This is immediately clear from inspection of its definitionin
Eqg. (34) In contrast, the definition of the axial shear stress A
in Eg. (33) shows this component not to be independent -2
of Re Ta and ¢De€? via the constant of integratiof, and
Fig. 4 also shows its variation. For a Newtonian fluid, or in
the absence of rotatioil,, is independent of flow elasticity _
and balances the axial pressure gradient as is known fron |
Pinho and Oliveirg6]. For an axial-dominated flow there L . . . . . . . . . .+ . . . | .
is a weak dependence @f, on ¢éD€?, because of the de- 00 02 04 06 0% Rk &)°
crease in viscosity due to the rotational flow and this is seen te
in Fig. 4(a) The dependence oDe? is clearer inFig. 4(b) Fig. 4. Radial profiles of the nondimensional shear stresseand g,
which shows the progression @, from an independent for an SPTT fluid in anngli withe = 0.5: (a) Re= 1000, Ta = 10,000
profile ateDe? = 0 towards the profile for a rotation domi- (6 = 02); (b) Re=1 with Ta = 10 & = 6.325) andTa = 10,000

@

2

0

nated flow. When the flow is dominated by rotation (curves (¢ =200)

for Ta = 10,000), the viscosity is basically defined by the

rotational flow and the weak dependenceTpf on sDe? Given the combined axial and rotational flow the tan-
is due to the slight effect of the axial flow upon the vis- gential axial shear stress, is non-zero and is plotted in
cosity. Under mixed flow conditions (curves féa = 10), Fig. 5(a) and (b¥or axially-dominated and tangential dom-
the viscosity is strongly affected by both the axial and the inated flow, respectively. The normalised stress plotted uses
rotational flow and now the variation &f.. with ¢éD€? is the tangential characteristic velocity (see definition7pf

stronger, reflecting the changes in viscosity across the annu4in Eq. (37) and is given by the product of,¢ and T,,.

lus. T, is proportional to the axial velocity gradient hence Although the variations of these two stresses witle? are

in axial dominated flowsI,, goes to zero near the center small, in particular for the two limiting flow conditions,
of the annulus where the peak velocity occurs. Since rota- larger variations are observed fdp, because the charac-
tion deviates the axial flow towards the inner wall, de- teristic axial Deborah numbde; varies significantly with
creases here and increases in the outer wall region as is welkDe?. As rotation becomes increasingly relevant the value
shown. of De; drops and the variations dfy, decrease. Had we
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SPTT fluid in annuli withx = 0.5: (a) Re = 1000, Ta = 10,000; (b)  SPTT fluid in annuli withx = 0.5: (a) Re = 1000, Ta = 10,000; (b)

Re= 1, Ta= 10,000. Re= 1, Ta= 10,000.

plotted the alternative tangential-axial stregy ), similar strength, the curves move towards the inner cylinder and the

magnitude of variations would have been observed, but now magnitude of the stresses decrease significantly as can be

for axial dominated flow we would see values Bf 15 seen inFig. 6(b} note the different ordinates iRig. 6(a)

times smaller than for tangential dominated flow, because and (b)showing a decrease by a factor of 6. As mentioned

it would be affected byDer rather than byDe. above, this reduction is due to lower rates of deformation in
The axial normal stress variations are showrfig. 6. the rotation dominated flows.

These are exclusively due to the strength of the axial flow, Finally, for the tangential normal stress the behaviour is
via its radial gradient squared, and fluid elasticity, but are qualitatively opposite to that of the axial normal stregg.
also affected by rotation (cEq. (34)due to the distortions  is due to the rotational flow, via the radial gradient of the
in the axial flow. For axially dominated flowjg. 6(a) the tangential velocity squared, and fluid elasticity. The effect of
stresses increase with flow elasticity and reach maxima of the axial flow is more difficult to observe given the mono-
the order of 100 foeDe? = 100. As rotation increases in  tonic variation of the tangential velocity. Profiles B are
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Fig. 7. Radial profiles of the nondimensiondjy normal stress of an
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Re= 1, Ta= 10,000.

plotted in Fig. 7(a) and (b)or axially dominated and ro-
tation dominated flows, respectively. Note the different or-
dinates in the figures showing values f in the axially
dominated case that are 40 times smaller thakign 7(b)

4.2. Bulk flow characteristics

In analysing the bulk flow characteristics we aim to solve

the so-called direct and indirect problems, via universal re-

11

presented irSection 3and here the focus is on defining the
correct sequence of calculations and in plotting the corre-
sponding results as a function of the more useful Reynolds
number, the Taylor number anrfDe?.

In the direct problem the Reynolds number (or the axial
bulk velocity) and the Taylor number (or rotational speed)
are known quantities and we wish to determine the friction
factor (or the pressure gradient) and the torque coefficient (or
the torque). The produéReis given byEq. (38) but requires
prior knowledge ofU./U whereasC,,, defined inEq. (40)
needs the ratid/t/Ut,. Note that due to the non-linear
characteristic of the fluidfRe and Cy, are not decoupled
quantities sincéJ./U depends orUt/Ut; and vice-versa,
as can be seen below.

To obtain these velocity ratios it is necessary to solve a
system of three non-linear equations that result from the ap-
plication of no-slip boundary conditions Exgs. (23) and (25)
for the axial and tangential velocities, respectively. These
three equations are the culiiq. (26)to determine,, which
affects bothUc/U and Ut/ Ur;, and the quadratic Egs. (68)
and (69) to calculate the ratid/U and Ut/ UT;, respec-
tively. Note also that, even though Eq. (69) is quadratic on
Ut/ UT;, the determination of this quantity is straighforward.

1UT<1 yi) aDe?ri<UT>3 11
AUt \yi yg 24 U, yi5 yg

+1epe T (e 2 In
[— . K
Ur, \U Yi
U 1
— 165De2—T <_°> ¢ <_ — ﬂ
UTi U Yi yO
U U
— 4eD L (=2 = (68)
U, \U |3
1Uc Us (¥ Y5, 2
_EU(O W - U(?l_30+yolny0_yi Inyi
2
Ut Uc o]
1D <_) Ue 2o
e%' Ur,/) U
D& (UT\?Us. (1 1
) =5l - =
4 Ut U 2 ycz) yi2

16 3 Uc\2.
— D€ <—) o=y — 488De2(7°> 20y — ¥7)
3 2 2
o) a2l X%
+1925De2<U) c2<2 >
U\® . 1 ¢ 1+
+ 64cD? (ﬁ) =+ 6_23@3 —y) =" (69)

2(1—«)

In the indirect problem, the friction factor and torque coef-
ficient are known guantities and the aim is to determine the
Reynolds and the Taylor numbers. The solution to this prob-

+y2Inyo — y?In yi)

lations that are based on non-dimensional quantities. All the lem is straightforward. In fact, to determine the axial bulk
equations relating the relevant quantities have already beervelocity and angular speed it suffices to usgs. (31) and
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Fig. 8. Variation offRewith £ andsDe? of an SPTT fluid in annuli with
k= 0.5.

(32), respectively together with the definitions of the char-
acteristic velocitied). andUt. OnceU andw are known,
ReandTa can be calculated using their definitions.

The variations ofReand C,, with Re Ta and sDe? for
« = 0.5 are shown irfFigs. 8 and 9respectively. It was found
that the relevant independent quantities that deterrfiRee
andCy, are simplysDe? and the velocity ratig, the latter
compacting the effects of botRe and Ta according to its
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Fig. 9. Variation ofCy, with & andeDe? of an SPTT fluid in annuli with
k= 0.5.
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definition ¢ = 27/Re). For axially dominated flows (< 1)
fReandC,, only depend orDe? as represented iRigs. 8
and 9by the curves fog < 0.2. The effect ofsDée? is to
decreaséReandC,,, because the fluid shear-thins thus re-
ducing the viscosity near the walls. The universal behaviour
of Cy, is due to the fact that the viscosity is defined by the
axial flow and is independent of the magnitude of rotation
in this range of conditions. Note also that the definition of
Cy is such that it is always bounded by 1 in the Newtonian
limit.

With increased rotation, thiRe versuseD€? curves are
shifted to the left showing a decrease in friction factor for
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the axial flow because of the decreased viscosity impartedfor rotation dominated flows the tangential velocities always
to the shear-thinning fluid by the increasingly strong ro- have a monotonic variation and the flow is distorted towards
tation. As rotation comes to dominate, the axial flow no the inner cylinder where viscosities are lower. Now, the ax-
longer determines the shear-thinning viscosity. The energyial shear stress shows a clear dependence on fluid elasticity.
loss decreases for both axial and tangential flow and so the For engineering purposes expressions were also derived
normalised resistance coefficieriide and Cy, decrease at  relating the friction factor and torque coefficient to the
identical values of the elasticity paramet&e?. Reynolds number, Taylor numbeme? (quantifying flow
Although these effects take place for an elastic fluid, they elasticity) and the radius ratio. When the flow is axially
are due to the inherent shear-thinning behaviour of the sim- dominatedfRe and Cy; only depend oreDe? for a given
plified PTT fluid and, consequently, the conclusions regard- annulus, but they decrease with the velocity ratio as rota-
ing Cy andfReare in agreement with the observations of tion increases in strength. In all cases, an increase in flow
Escudier et al[1] for inelastic power law fluids in concen- elasticity leads to a reduction in the axial and rotational

tric annuli. resistance to the flow. RegardifieandC,, it was found
that the velocity ratio adequately compacts the effects of
4.3. Very thin annuli both the Reynolds number and the Taylor number.

As the annulus thinsk( — 1) the flow field ap-

For very thin annuli, the radius ratio approaches unity ~ proaches that given by the solution for the skewed planar
and the complex equations derived $ection 3.1can be Poiseuille—Couette flow which is given by the simpler
well approximated by the simpler expressionSetction 3.2 equations ofSection 3.2
This is clearly shown ifFig. 10 where radial profiles of the
axial and tangential velocities are plotted as a function of
k for a condition corresponding to mixed flog € 2) and Acknowledgements
high elasticity éDe? = 100).
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