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Abstract

Analytical solutions have been derived for the helical flow of PTT fluids in concentric annuli, due to inner cylinder rotation, as well as for
Poiseuille flow in a channel skewed by the movement of one plate in the spanwise direction, which constitutes a simpler solution for helical
flow in the limit of very thin annuli. Since the constitutive equation is a non-linear differential equation, the axial and tangential/spanwise flows
are coupled in a complex way. Expressions are derived for the radial variation of the axial and tangential velocities, as well as for the three shear
stresses and the two normal stresses. For engineering purposes expressions are given relating the friction factor and the torque coefficient to the
Reynolds number, the Taylor number, a nondimensional number quantifying elastic effects (εDe2) and the radius ratio. For axial dominated
flows fReandCM are found to depend only onεDe2 and the radius ratio, but as the strength of rotation increases both coefficients become
dependent on the velocity ratio (ξ) which efficiently compacts the effects of Reynolds and Taylor numbers. Similar expressions are derived
for the simpler planar case flow using adequate non-dimensional numbers.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Annular flows of non-Newtonian fluids are found in a
wide variety of applications: from drilling oil and gas wells
and well completion operations to industrial processes in-
volving waste fluids, synthetic fibres, foodstuffs and the ex-
trusion of molten plastics as well as in some flows of polymer
solutions. The large variety of fluids and industrial applica-
tions has been a major motivation for research in annular
flow with varying degrees of complexity. An extensive bib-
liographic list of work on annular flows has been presented
by Escudier et al.[1]. Of concern to this work are mainly
previous investigations with viscoelastic fluids in concentric
annuli under laminar flow conditions.

The vast majority of non-Newtonian investigations in an-
nular flows concern purely viscous fluids obeying the power
law model, and yield stress fluids obeying the Bingham
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plastic or the Herschel–Bulkley models. For viscoelastic
fluids, investigations are scarcer. Among the first to study
viscoelastic annular flows was Bhatnagar[2], who used a
Rivlin–Eriksen model to investigate low Reynolds number
flow (Re = 1) in a concentric geometry, with no cylinder
rotation, but in the presence of suction and injection at the
cylinder walls. With rotation of the inner cylinder, Dierckes
and Schowalter[3] measured the laminar annular flow of
polyisobutelene solutions and confirmed that the symmet-
ric flow could be predicted from an inelastic theory based
on a power law fitted to the experimental rheological data.
Kaloni [4] and Kulshrestha[5] derived analytical solutions
for viscoelastic fluids obeying Oldroyd’s equations. Pinho
and Oliveira[6] solved analytically the concentric annular
laminar flow without inner cylinder rotation for the simpli-
fied PTT model. They provided expressions for the veloc-
ity and stress profiles as well as for the friction factor as a
function of the Reynolds and Deborah numbers and the ra-
dius ratio. That work is the immediate predecessor of the
present investigation since the adopted rheological constitu-
tive equation is the same.
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Nomenclature

c̃2 normalised constant of integration:
2c2/(p,zδ

2) (annulus),c2/(p,zδ) (channel)
c̃3 normalised constant of integration,c3/U

c̃4 normalised constant of integration:
c4δ/U (annulus),c4/U (channel)

CF force coefficient in the channel,
−Fδ/(ηUP)

CM torque coefficient in the annulus,
−M(R2

O − R2
I )/(4πωηR

2
OR

2
I )

De Deborah number based on axial bulk
velocity U, λU/δ

Dec Deborah number based onUc, λUc/δ

Dep Deborah number based onUP, λUP/δ

(channel)
DeT Deborah number based onUT, λUT/δ

DeTi Deborah number based on tangential
velocity of inner cylinder,λωRI/δ

(annulus)
DH hydraulic diameter in annulus and channel,

2δ (m)
f Fanning friction factor,−δ(dp/dz)/(ρU2)

f(trτ) = stress function of PTT model
f(τii )

F force per unit area in channel flow (N/m2)
M torque per unit length of cylinder (Nm/m)
p pressure (Pa)
p,z axial pressure gradient,∂p/∂z (Pa/m)
r radial/transverse coordinate (m)
Re Reynolds number,Re= ρU2δ/η
RI inner cylinder radius (m)
RO outer cylinder radius (m)
T rotational/transverse Reynolds number:

T = ρωRIδ/η (annulus),T = ρUPδ/η

(channel)
Ta Taylor number,Ta = ρ2ω2RIδ

3/η2

Tij normalised stress,τij/(η(Uch/δ))

with Uch = Uc or UT
u axial/longitudinal component of

velocity (m/s)
U axial/longitudinal bulk velocity (m/s)
Uc characteristic axial/longitudinal velocity

scale:−p,zδ
2/8η (annulus),−p,zδ

2/3η
(channel) (m/s)

Uch characteristic velocity (in general) (m/s)
UP velocity of lower plate (channel)
UT characteristic tangential/spanwise

velocity scale:M/(πηδ) (annulus),
Fδ/η (channel) (m/s)

v tangential/spanwise component of
velocity (m/s)

y normalised radial/ transverse
coordinate,r/δ

z axial/longitudinal coordinate (m)

Greek letters
δ gap in annulus or in channel,RO − RI (m)
ε parameter in PTT model
η viscosity parameter in PTT model (Pa s)
κ radius ratio,RI/RO
λ relaxation time in PTT model (s)
θ tangential angular coordinate (annulus),

spanwise (linear) coordinate (channel)
τij stress componentij (Pa)
ω angular velocity of inner cylinder in

annulus (rad/s)
ξ velocity ratio,ωRI/U

Other analytical studies of swirling viscoelastic flows in
the literature have been motivated by applications in rheol-
ogy and tribology. The journal bearing flow has been the
source of much work: Beris et al.[7] studied the tangential
flow of Maxwell, White-Metzner and CEF fluids in concen-
tric and eccentric annuli using a perturbation theory, and for
other fluids the reader is referred to Bird et al.[8]. Rheo-
metrical flows were investigated much earlier, with Coleman
et al. [9] providing an extensive review of their characteris-
tics. Studies of secondary effects in these rheometrical flows
was of concern especially in the sixties and seventies as in
Giesekus[10] or Walters and Waters[11] who investigated
the flow in the cone–plate system. For the flow between cir-
cular plates, the onset of instabilities was investigated by
Joseph[12] following Hill’s [13] experiments.

The rod climbing effect, and its sibling without a rod, have
also been a major motivation of research, often numerical
like that of Debbaut and Hocq[14]. A major contributor to
these studies was Joseph and his co-workers: Joseph[15]
summarises his many contributions.

There are a few other investigations specifically on the
topic of viscoelastic annular flows with and without inner
cylinder rotation, but under turbulent flow conditions as in
Nouri et al.[16] and Escudier et al.[17].

The objective of the present paper is to analyse in de-
tail the laminar flow of viscoelastic fluids obeying the
Phan–Thien–Tanner model in concentric annuli with inner
cylinder rotation. In the limit of very thin annulus this so-
lution is well approximated by the simpler solution for the
skewed Poiseuille–Couette flow in a channel for which a
full analytical solution is also presented. Here, there is a
pressure driven Poiseuille flow in the longitudinal direction
combined with Couette flow in the spanwise direction. This
flow condition has not been previously investigated: the
closer to this is the analytical solution for Poiseuille–Couette
flow of PTT fluids in the same direction by Hashemabadi
et al. [18], an obviously different flow condition given the
non-linearities of the fluid constitutive equation.

The paper is organised as follows: in the next sec-
tion the relevant equations are presented and the various
non-dimensional numbers are defined. InSection 3, the an-
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alytical solutions are derived for the cylindrical and planar
geometries and inSection 4the results corresponding to the
annular flow are plotted and the effect of rotation investi-
gated. A summary of the main conclusions closes the paper.

2. Governing equations

Two similar flows are under investigation here. First,
the helical flow in a concentric annulus of inner and outer
radius RI and RO, respectively, defining an annular gap,
δ ≡ RO − RI , and radius ratio,κ ≡ RI/RO. The flow
is fully-developed, so both the axial velocity,u, and the
tangential velocity,v, are only functions of the radial coor-
dinater and the imposed axial pressure gradient is constant.
The second flow condition is the corresponding planar case,
with longitudinal velocity,u, and spanwise velocityv, both
functions of the transverse coordinate,r. In both cases the
wall at r = RI moves (inner wall/lower plate): it rotates
with angular velocity� in the annulus and moves in the
spanwise direction with linear velocityUP in the channel.
Under these conditions the momentum equations are

1

rn

d

dr
(rnτrz) − ∂p

∂z
= 0, (1)

−ρn
v2

r
= 1

rn

d

dr
(rnτrr ) − n

τθθ

r
− ∂p

∂r
, (2)

d

dr
(r2nτrθ) = 0, (3)

wherez refers to the axial or longitudinal direction in the an-
nulus and channel, respectively,r is the radial or transverse
direction andθ is the tangential or spanwise directions. Pa-
rametern takes the value of 1 for the axisymmetric geometry
and of 0 in the planar case.

The extra stresses are given here by the simplified form
of the PTT constitutive equation[19]

f(tr(�))� + λ
∇
� = 2ηD with f(tr(�)) = 1 + ελ

η
tr(τ),

(4)

whereD is the deformation rate tensor,λ is the relaxation
time, η is the viscosity coefficient andε is a parameter of
the model limiting the extensional viscosity of the fluid. The
stress functionf(tr(�)), defined inEq. (4), is the linearization
of the more general exponential coefficient and

∇
� denotes

Oldroyd’s upper convective derivative

∇
� = D�

Dt
− � · ∇u − (∇u)T · �. (5)

For this flow geometry the constitutive equation simplifies to

τrr = 0, (6)

τzz = 2λη

f(τii )2

(
du

dr

)2

, (7)

τθθ = 2λη

f(τii )2

[
rn

d

dr

( v

rn

)]2

, (8)

τrθ = ηrn

f(τii )

d

dr

( v

rn

)
, (9)

τrz = η

f(τii )

du

dr
, (10)

τθz = 2ληrn

f(τii )2

du

dr

d

dr

( v

rn

)
, (11)

where the stress coefficientf(τii) was used for compactness.
The stress coefficient is now given by the non-linear cubic
equation (Eq. (12))

f(τii ) = 1 + 2ελ2

f(τii )2

[(
du

dr

)2

+
(
rn

d

dr

( v

rn

))2
]
. (12)

The boundary conditions for this problem express no-slip at
the walls and are given by:

r = RI ⇒ u = 0, v = ωRI(orv = UP for the channel),

r = RO ⇒ u = 0, v = 0.

3. Analytical solution

Although initially there are many similarities between the
axisymmetric and planar solutions, for the sake of clarity the
two cases are presented separately, starting with the helical
flow.

3.1. Flow in the annular geometry

Introducing the torque per unit length of the cylinder (M),
integration ofEq. (3)gives the variation of the stress com-
ponentτrθ

τrθ = M

2πr2
. (13)

Substituting this result intoEq. (9) provides the following
expression

r
d

dr

(v
r

)
= M

2πηr2
f(τii ), (14)

that can be used to calculateτθθ in Eq. (8). The tangential
normal stressτθθ is thus given by

τθθ = λM2

2π2ηr4
. (15)

Now, using this result into the radial momentum equation
(Eq. (2)gives

r
∂p

∂r
= ρv2 − λM2

2π2ηr4
, (16)

which provides the radial distribution of pressure once the
radial variation of the tangential velocity is known.
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To obtain the axial velocity it is still necessary to deduce
expressions forτrz andτzz, that depend only on derivatives
of velocity and pressure.Eq. (1)can be integrated into

τrz = ∂p

∂z

r

2
+ c2

r
, (17)

wherec2 is an integration constant. Withτrz also given by
Eq. (10), the stress coefficient function is determined as

f(τii ) = η(du/dr)

(∂p/∂z)(r/2) + (c2/r)
. (18)

Squaring this function and using it inEq. (7) leads to

τzz = 2λ

η

[
∂p

∂z

r

2
+ c2

r

]2

. (19)

Now, it is possible to determine the axial and tangential
velocity profiles.

According toEq. (18)and the definition off(τii)

η
du

dr
=
[
1 + λε

η
(τθθ + τzz)

] [
∂p

∂z

r

2
+ c2

r

]
, (20)

so that, after substitution ofEqs. (15) and (19), the following
expression for the axial velocity gradient is deduced

du

dr
= 1

η

[
∂p

∂z

r

2
+ c2

r

]

+ 2λ2ε

η3

[
∂p

∂z

r

2
+ c2

r

]{
M2

4π2r4
+
[
∂p

∂z

r

2
+ c2

r

]2
}
.

(21)

Using Eqs. (14) and (18), the shear stressτθz can also be
simplified to

τθz = λM

πηr2

[
∂p

∂z

r

2
+ c2

r

]
. (22)

A solution in terms of non-dimensional quantities is sought.
Therefore, for simplicity and prior to integration, the fol-
lowing characteristic parameters are defined: a characteristic
axial velocity scaleUc = (−p,zδ

2/8η), a characteristic tan-
gential velocity scaleUT = (M/πηδ), and the corresponding
characteristic Deborah numbersDec = (λUc/δ) andDeT =
(λUT/δ). Alternative Deborah numbers are defined on the
basis of the axial bulk velocity (U leading toDe ≡ λU/δ)
and of the tangential velocity of the inner surface of the an-
nulus (UTi = ωRI leading toDeTi = λUTi/δ).

This problem requires five independent non-dimensional
quantities to characterise the flow:ε and a Deborah num-
ber related to the axial flow (De or Dec) are constitutive
parameters, the radius ratioκ is a geometric parameter, and
finally the Deborah number related to the rotating flow (DeT
or DeTi ), or alternatively a Taylor number or a rotational
Reynolds number, and the Reynolds number of the axial flow
(Re), all of which are dynamical parameters. The Reynolds
number of the axial flow is defined asRe = 2δρU/η, i.e.,
it is based on the hydraulic diameterDH = 4A/P = 2δ,

whereA is the cross section area andP is the corresponding
wetted perimeter. Elsewhere,δ was used as the length scale.

After normalisation and integration ofEq. (21), the axial
velocity profileu/U is given by

u

U
= −2

Uc

U
y2 − 4c̃2

Uc

U
ln y + εDe2

T

y2

Uc

U
+ εDe2

T

2

Uc

U

c̃2

y4

− 32εDe2
c
Uc

U
y4 − 192εDe2

c
Uc

U
c̃2y

2

− 384εDe2
c
Uc

U
c̃2

2 ln y + 64εDe2
c
Uc

U

c̃3
2

y2
+ c̃3, (23)

where the radial coordinate is presented in normalised form
asy = r/δ.

In Eq. (23), the new constant of integrationc3 and constant
c2 appear in normalized form:̃c2 ≡ 2c2/p,zδ

2 and c̃3 ≡
c3/U. From Eq. (14), and using the stresses ofEqs. (15)
and (19), the differential equation for the tangential velocity
component becomes

r
d

dr

(v
r

)

= M

2πηr2

{
1 + 2ελ2

η2

[
M2

4π2r4
+
(
∂p

∂z

r

2
+ c2

r

)2
]}

. (24)

After normalisation, the integration of this equation gives
the following tangential velocity profile:

v

U
= − 1

4y

UT

U
− 1

24y5
εDe2

T
UT

U
+ 16εDe2

c
UT

U
y ln y

− 16εDe2
c
UT

U

c̃2

y
− 4εDe2

c
UT

U

c̃2
2

y3
+ c̃4y. (25)

Eq. (25)introduces a new nondimensional constant of inte-
gration,c̃4 = c4δ/U.

Application of the boundary conditions to the velocity
profiles provides equations to determine the constants of
integration. No-slip condition of the axial velocity at both
walls (Eq. (23)) gives the following cubic equation oñc2

b0 + b1c̃2 + b2c̃
2
2 + b3c̃

3
2 = 0, (26)

with coefficients

b0 = 2(y2
o − y2

i ) + εDe2
T

(
1

y2
i

− 1

y2
o

)
+ 32εDe2

c(y
4
o − y4

i ),

b1 = 4 ln
yo

yi
− εDe2

T

2

(
1

y4
o

− 1

y4
i

)
+ 192εDe2

c(y
2
o − y2

i ),

b2 = 384εDe2
cln

yo

yi
, b3 = −64εDe2

c

(
1

y2
o

− 1

y2
i

)
, (27)

This cubic equation has the following solution

c̃2 = sign(p)|p|1/3 + sign(q)|q|1/3 − 1
3a1, (28)
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with

p = −b

2
+
√
d, q = −b

2
−
√
d,d = b2

4
+ a3

27
,

a = a2 − a2
1

3
, b = a3 − a1a2

3
+ 2a3

1

27
,

and a1 = b2

b3
, a2 = b1

b3
and a3 = b0

b3
. (29)

Once c̃2 is known, determination of the other two con-
stants is straightforward:̃c3 is obtained fromEq. (23) by
setting the no-slip condition at any of the walls andc̃4 is
calculated withEq. (25) applying the no-slip condition at
the outer wall. The axial cross section average velocity can
be calculated from its definition for the annulus

U = 2(1 − κ)

1 + κ

∫ yo

yi

uydy. (30)

Substituting the velocity variation ofEq. (23) andperform-
ing the integration, the following expression is obtained

U = 2(1 − κ)

1 + κ

[
−1

2
Uc(y

4
o − y4

i ) − 2c̃2Uc

(
y2

i

2
− y2

o

2
+ y2

o ln yo − y2
i ln yi

)

+ εDe2
TUc ln

yo

yi
− εDe2

T

4
Ucc̃2

(
1

y2
o

− 1

y2
i

)
− 16

3
εDe2

cUc(y
6
o − y6

i ) − 48εDe2
cUcc̃2(y

4
o − y4

i )

+ 192εDe2
cUcc̃

2
2

(
y2

i

2
− y2

o

2
+ y2

o ln yo − y2
i ln yi

)
+ 64εDe2

cUcc̃
3
2 ln

1

κ
+ c̃3

2
(y2

o − y2
i )

]
(31)

Settingv = ωyiδ at y = yi in Eq. (25)gives the angular
rotational speed

ω= 1

yiδ

[
−UT

4yi
− εDe2

T

24

UT

y5
i

+ 16UTεDe2
cyi ln yi

− 16UTεDe2
cyi ln yi

c̃2

yi
− 4UTεDe2

c
c̃2

2

y3
i

+ δc̃4yi

]
. (32)

The stress field can also be presented in nondimensional
form using the various non-dimensional parameters dis-
cussed above. Next, note the different velocity scales used
to normalise axial related and rotation related stress tensor
components. The exception isτθz which can be normalised
in both ways, as indicated below.

Trz ≡ τrz

η(Uc/δ)
= −4

(
y + c̃2

y

)
, (33)

Trθ ≡ τrθ

η(UT/δ)
= 1

2y2
, (34)

Tzz ≡ τzz

η(Uc/δ)
= 2DecT

2
rz = 32Dec

(
y + c̃2

y

)2

, (35)

Tθθ ≡ τθθ

η(UT/δ)
= 2DeTT

2
rθ = DeT

2y4
, (36)

Tθz ≡ τθz

η(UT/δ)
= 2DecTrθTrz = −4Dec

y2

[
y + c̃2

y

]
or

T ′
θz ≡ τθz

η(Uc/δ)
= 2DeTTrθTrz = −4DeT

y2

[
y + c̃2

y

]
. (37)

The axial pressure gradient is more conveniently written as
the Fanning friction factorf and, as shown in Pinho and
Oliveira [6], in the case of the PTT model it is given by

fRe= 16
Uc

U
, (38)

which can be compared with the corresponding expression
for Newtonian fluids

(fRe)N

= 16
1

(1 + κ)2/(1 − κ)2 − (1 + κ)/(1 − κ)(1/ln(1/κ))
.

(39)

The torque required to rotate the inner cylinder is usually
quantified by a torque coefficientCM defined in such way

that it is unity for Newtonian fluids (note thatM is torque
per unit length).

CM ≡ −M(R2
o − R2

i )

4πωηR2
oR

2
i

, (40)

For this flow, it can be shown thatCM is given by

CM = − UT

UTi

(1 − κ2)(1 − κ)

4κ
, (41)

Finally, to quantify the rotation it is usual to use either the
rotational Reynolds number

T = ρωRIδ

η
, (42)

or alternatively the Taylor number

Ta =
(
ρω

η

)2

RIδ
3. (43)

These numbers are related to each other and toDeTi as below

T = Re

2De
DeTi , (44)

Ta =
(

1

κ
− 1

)
T 2 =

(
1

κ
− 1

)(
Re

2De

)2

De2
Ti
. (45)
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The combination ofRe, DeandDeTi into those more typical
nondimensional numbers, makes them more difficult to use
analytically.

3.2. Flow in the planar case

The solution for the planar case follows the same steps as
for the annulus, but is simpler and for brevity is presented
here with less detail.

Instead of a torque, the lower plate moves by action of
a force per unit area,F, and integration ofEq. (3), and
subsequent substitutions (seeSection 3.1), give

τθr = F, (46)

τθθ = 2λF2

η
, (47)

and a null transverse distribution of pressure (∂p/∂r = 0), i.e.
now the pressure only varies with the longitudinal coordinate
in contrast to the annular case where it also depends onr.

The stressesτrz, τzz and the stress coefficient function are
given by

τrz = dp

dz
r + c2, (48)

τzz = 2λ

η

[
dp

dz
r + c2

]2

, (49)

f(τii ) = η(du/dr)

(dp/dz)r + c2
. (50)

Combining the various equations gives

τθz = 2λF

η

[
dp

dz
r + c2

]
, (51)

and the equation to be integrated for the longitudinal velocity
profile

du

dr
= 1

η

[
dp

dz
r + c2

]

+ 2λ2ε

η3

[
dp

dz
r + c2

]{
F2 +

[
dp

dz
r + c2

]2
}
. (52)

The following non-dimensional quantities are used in the
planar case: the longitudinal characteristic velocity scale
Uc = −p,zδ

2/(3η), the characteristic spanwise velocity
scaleUT = Fδ/η and the corresponding Deborah numbers
defined as for the annulus. The alternative Deborah numbers
are De = λU/δ and Dep = λUP/δ, this latter taking over
the role ofDeTi for the annulus. The Reynolds number and
the hydraulic diameter are also identical to those used in the
annular flow case.

The normalised transverse coordinatey is also defined as
y = r/δ and the normalised longitudinal velocity profile is
given by

u

U
= −3

Uc

U
[y + c̃2]2

{
1

2
+ εDe2

T + 9

2
εDe2

c[y + c̃2]2
}

+ c̃3, (53a)

or alternatively

u

U
= 3

Uc

U
(yi − y)(y − yo)

×
{

1

2
+ εDe2

T + 9

2
εDe2

c

[
1

4
+ (y + c̃2)

2
]}

, (53b)

where the normalised constants of integration arec̃2 ≡
c2/(p,zδ) and c̃3 ≡ c3/U.

The spanwise velocity profile in non-dimensional form is

v

U
= UT

U
y[1 + 2εDe2

T + 6εDe2
cy

2

+ 18εDe2
cyc̃2 + 18εDe2

cc̃
2
2] + c̃4, (54)

with c̃4 ≡ c4/U.
As in the annular case, application of the boundary con-

ditions determine the constants of integration, but here, in
contrast, an explicit equation givesc̃2 as

c̃2 = −1
2(yo + yi), (55)

and

c̃3 = 3

4

Uc

U

[
1

2
+ εDe2

T + 9

8
εDe2

c

]
. (56)

The longitudinal bulk velocity is obtained from its definition
for the planar case

U =
∫ yo

yi

udy = Uc

[
1

4
+ εDe2

T

2
+ 27

40
εDe2

c

]
. (57)

The velocity of the lower plate is related toUT via

UP = −UT(1 + 2εDe2
T + 3

2εDe2
c). (58)

The stress field in non-dimensional form is therefore given
by

Trz ≡ τrz

η(Uc/δ)
= −3(y + c̃2), (59)

Trθ ≡ τrθ

η(UT/δ)
= 1, (60)

Tzz ≡ τzz

η(Uc/δ)
= 2DecT

2
rz = 18Dec(y + c̃2)

2, (61)

Tθθ ≡ τθθ

η(UT/δ)
= 2DeTT

2
rθ = 2DeT, (62)

Tθz ≡ τθz

η(UT/δ)
= 2DecTrθTrz = −6Dec(y + c̃2) or

Tθz ≡ τθz

η(Uc/δ)
= 2DeTTrθTrz = −6DeT(y + c̃2). (63)

The Fanning friction factor is quantified as

fRe= 6
Uc

U
, (64)
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and the force coefficient

CF = −Fδ

ηUP
= −UT

UP
. (65)

To quantify the movement of the lower plate, we can use an
adequate Reynolds umber, here also referred to asT

T ≡ ρUPδ

η
= Re

2De
DeP. (66)

A Taylor number can also be defined in analogy to the an-
nular case as

Ta ≡
(
ρUPδ

η

)2
δ

RI
= T 2

yi
. (67)

The motivation for the derivation of this solution was its
use for the limiting condition of flow in very thin annulus
(κ → 1), hence the specific form of the equations. The above
expressions for skewed planar Poiseuille–Couette flow can
be further simplified if the lower plate is fixed at the origin
of the coordinate system (yi = 0, y0 = 1).

4. Results and discussion

The presentation of results is divided in three parts and
concerns only the more difficult helical flow. First, radial
profiles of velocity and stress components are shown to illus-
trate the influence of the various relevant non-dimensional
numbers. In the second part, results of more engineering in-
terest are presented for the direct and indirect problems. Fi-
nally, it is shown that the simpler equations for the planar
case are valid for very thin annuli.

4.1. Detailed flow characteristics

In the absence of inner cylinder rotation (Ta = 0), Pinho
and Oliveira[6] developed an analytical solution and our
solution exactly matches theirs, as it should. Under these
conditions, the axial velocity profile andfRe are indepen-
dent of the Reynolds number. The flow behaves essentially
as Newtonian forεDe2 < 0.001, whereas forεDe2 > 10 the
velocity profile is near the high Deborah number asymptotic
shape corresponding to a PTT fluid where the shear-thinning
viscosity behaviour is present over a very wide range of
shear rates (for the viscosity function see[20] or [21], al-
though Keunings and Crochet[22] plotted it much earlier).
These profiles are presented in Pinho and Oliveira[6] and
consequently are omitted here for conciseness.

As with inelastic power law fluids[1], the rotation of the
inner cylinder affects the stress field and this has an impact
on the axial velocity. Escudier et al.[1] identified three dif-
ferent flow regimes according to the relative strengths of the
axial and tangential flow. If the velocity ratioξ is less than
1 the flow is dominated by the axial flow, a rotation domi-
nated flow requires a velocity ratio (ξ) larger than 10 and a
mixed flow is present in the range 1< ξ < 10.

Fig. 1. Radial profiles of the normalised axial (a) and tangential (b)
velocities in an annulus ofκ = 0.5 for an SPTT fluid for axial-dominated
flow conditions (Re= 1000; Ta = 1000).

The axial and tangential velocity profiles presented in
Figs. 1–3 pertain to each of the above mentioned flow
regimes. In the axially-dominated flow regime, the varia-
tion of the axial velocity profile inFig. 1(a)is like that for
no cylinder rotation in Pinho and Oliveira[6], with flow
elasticity (εDe2) imparting a plug-like shape. In terms of
tangential velocity, the flow elasticity parameter also has a
dramatic influence as can be seen inFig. 1(b). As εDe2 in-
creases thev/(ωRI) profile becomes increasingly distorted
to a sigmoidal shape and forεDe2 in excess of about 10
the profile is no longer monotonic. This behaviour is akin
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Fig. 2. Radial profiles of the normalised axial (a) and tangential (b) ve-
locities in an annulus ofκ = 0.5 for an SPTT fluid for rotation-dominated
flow conditions (Re= 1; Ta = 10,000).

to that seen by Nouar et al.[23], and also calculated by
Escudier et al.[24], and is due to the intense shear-thinning
of the viscometric viscosity of the fluids. This sigmoidal
shape is easy to understand: for axial-dominated flows and
strongly shear-thinning fluids, the viscosity is very low near
the walls and high in the centre of the annulus where the
shear rate is minimum. Since the stress controlling rota-
tional flow (τθr) varies with radius less than the viscosity,
the radial gradient of the tangential velocity must be high
close to the walls and small in the center, thus imparting the
sigmoidal shape to thev profile. For lower Taylor numbers,

Fig. 3. Radial profiles of the normalised axial (a) and tangential (b)
velocities in an annulus ofκ = 0.5 for an SPTT fluid for mixed flow
conditions (Re= 1; Ta = 10).

leading toξ below the present value of 0.006325, the same
patterns are observed.

For rotation-dominated flowFig. 2plots the axial and tan-
gential velocity profiles corresponding to a condition with
ξ = 200. To understand the observed variations it is impor-
tant to realise that, whereas in axially dominated flow the
shear-thinning behaviour affects the whole annular space,
here the high rates of deformation and the shear thinning
concentrate near the inner cylinder. Higher values ofTa
would increase the extent of such region, but this would
correspond to conditions where laminar flow is unstable. In
fact, even for Taylor numbers well below 50,000 secondary
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flows are known to appear due to flow instabilities in purely
azimuthal flow[25]. For the concentric geometry, and in the
absence of any elasticity, the PTT model simplifies to the
Newtonian behaviour for which there is a perfect decoupling
between axial and tangential flows.

As soon asεDe2 differs from zero both flows are coupled
and the axial flow becomes highly distorted towards the in-
ner cylinder and the peak velocities increase around 15%
because of the lower viscosities there. Similarly, for the tan-
gential velocity inFig. 2(b) a strong deviation of the flow
towards the inner cylinder is seen. The effect of the Debo-
rah number is also weaker than forξ < 1, because now (for
ξ > 10) the rates of deformation of the fluid are weaker.
Still, a tendency is observed for the maximum axial velocity
to decrease and for the profile to widen asεDe2 increases.

Under the mixed flow conditions inFig. 3 the axial and
tangential velocity profiles show better the progression from
the Newtonian decoupled flow to the flow dominated by
elasticity asεDe2 increases. Simultaneously, the progression
from the axial dominated flow, where the axial velocity pro-
files are more central, to the rotation dominated flow where
they are distorted toward the inner cylinder, is also evident.
This figure corresponds to relatively weak axial and rota-
tional flows hence the rates of deformation are low andεDe2

is not seen to affect the magnitude of the velocities.
Next, the radial variation of the various stress tensor com-

ponents is analysed in detail. InFig. 4(a) the shear stress
due to rotation (τθr) is plotted in normalised form; it has a
universal form regardless of the values ofRe, Ta andεDe2.
This is immediately clear from inspection of its definition in
Eq. (34). In contrast, the definition of the axial shear stress
in Eq. (33) shows this component not to be independent
of Re, Ta and εDe2 via the constant of integratioñc2 and
Fig. 4 also shows its variation. For a Newtonian fluid, or in
the absence of rotation,Trz is independent of flow elasticity
and balances the axial pressure gradient as is known from
Pinho and Oliveira[6]. For an axial-dominated flow there
is a weak dependence ofTrz on εDe2, because of the de-
crease in viscosity due to the rotational flow and this is seen
in Fig. 4(a). The dependence onεDe2 is clearer inFig. 4(b)
which shows the progression ofTrz from an independent
profile atεDe2 = 0 towards the profile for a rotation domi-
nated flow. When the flow is dominated by rotation (curves
for Ta = 10,000), the viscosity is basically defined by the
rotational flow and the weak dependence ofTrz on εDe2

is due to the slight effect of the axial flow upon the vis-
cosity. Under mixed flow conditions (curves forTa = 10),
the viscosity is strongly affected by both the axial and the
rotational flow and now the variation ofTrz with εDe2 is
stronger, reflecting the changes in viscosity across the annu-
lus. Trz is proportional to the axial velocity gradient hence
in axial dominated flowsTrz goes to zero near the center
of the annulus where the peak velocity occurs. Since rota-
tion deviates the axial flow towards the inner wall,Trz de-
creases here and increases in the outer wall region as is well
shown.

Fig. 4. Radial profiles of the nondimensional shear stressesτrz and τθr
for an SPTT fluid in annuli withκ = 0.5: (a) Re= 1000, Ta = 10,000
(ξ = 0.2); (b) Re = 1 with Ta = 10 (ξ = 6.325) andTa = 10,000
(ξ = 200).

Given the combined axial and rotational flow the tan-
gential axial shear stressτθz is non-zero and is plotted in
Fig. 5(a) and (b)for axially-dominated and tangential dom-
inated flow, respectively. The normalised stress plotted uses
the tangential characteristic velocity (see definition ofTθz
in Eq. (37)) and is given by the product ofTrθ and Trz.
Although the variations of these two stresses withεDe2 are
small, in particular for the two limiting flow conditions,
larger variations are observed forTθz because the charac-
teristic axial Deborah numberDec varies significantly with
εDe2. As rotation becomes increasingly relevant the value
of Dec drops and the variations ofTθz decrease. Had we
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Fig. 5. Radial profiles of the nondimensionalTθz normal stress of an
SPTT fluid in annuli withκ = 0.5: (a) Re = 1000, Ta = 10,000; (b)
Re= 1, Ta = 10,000.

plotted the alternative tangential-axial stress (T ′
θz), similar

magnitude of variations would have been observed, but now
for axial dominated flow we would see values ofT ′

θz 15
times smaller than for tangential dominated flow, because
it would be affected byDeT rather than byDec.

The axial normal stress variations are shown inFig. 6.
These are exclusively due to the strength of the axial flow,
via its radial gradient squared, and fluid elasticity, but are
also affected by rotation (cf.Eq. (34)due to the distortions
in the axial flow. For axially dominated flows,Fig. 6(a), the
stresses increase with flow elasticity and reach maxima of
the order of 100 forεDe2 = 100. As rotation increases in

Fig. 6. Radial profiles of the nondimensionalTzz normal stress of an
SPTT fluid in annuli withκ = 0.5: (a) Re = 1000, Ta = 10,000; (b)
Re= 1, Ta = 10,000.

strength, the curves move towards the inner cylinder and the
magnitude of the stresses decrease significantly as can be
seen inFig. 6(b); note the different ordinates inFig. 6(a)
and (b)showing a decrease by a factor of 6. As mentioned
above, this reduction is due to lower rates of deformation in
the rotation dominated flows.

Finally, for the tangential normal stress the behaviour is
qualitatively opposite to that of the axial normal stress.Tθθ
is due to the rotational flow, via the radial gradient of the
tangential velocity squared, and fluid elasticity. The effect of
the axial flow is more difficult to observe given the mono-
tonic variation of the tangential velocity. Profiles ofTθθ are
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Fig. 7. Radial profiles of the nondimensionalTθθ normal stress of an
SPTT fluid in annuli withκ = 0.5: (a) Re = 1000, Ta = 10,000; (b)
Re= 1, Ta = 10,000.

plotted in Fig. 7(a) and (b)for axially dominated and ro-
tation dominated flows, respectively. Note the different or-
dinates in the figures showing values ofTθθ in the axially
dominated case that are 40 times smaller than inFig. 7(b).

4.2. Bulk flow characteristics

In analysing the bulk flow characteristics we aim to solve
the so-called direct and indirect problems, via universal re-
lations that are based on non-dimensional quantities. All the
equations relating the relevant quantities have already been

presented inSection 3and here the focus is on defining the
correct sequence of calculations and in plotting the corre-
sponding results as a function of the more useful Reynolds
number, the Taylor number andεDe2.

In the direct problem the Reynolds number (or the axial
bulk velocity) and the Taylor number (or rotational speed)
are known quantities and we wish to determine the friction
factor (or the pressure gradient) and the torque coefficient (or
the torque). The productfReis given byEq. (38), but requires
prior knowledge ofUc/U whereasCM , defined inEq. (40),
needs the ratioUT/UTi . Note that due to the non-linear
characteristic of the fluid,fRe and CM are not decoupled
quantities sinceUc/U depends onUT/UTi and vice-versa,
as can be seen below.

To obtain these velocity ratios it is necessary to solve a
system of three non-linear equations that result from the ap-
plication of no-slip boundary conditions toEqs. (23) and (25)
for the axial and tangential velocities, respectively. These
three equations are the cubicEq. (26)to determinẽc2, which
affects bothUc/U andUT/UTi , and the quadratic Eqs. (68)
and (69) to calculate the ratiosUc/U andUT/UTi , respec-
tively. Note also that, even though Eq. (69) is quadratic on
UT/UTi , the determination of this quantity is straighforward.

− 1
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UTi

(
1
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− yi

y2
o
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(
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. (69)

In the indirect problem, the friction factor and torque coef-
ficient are known quantities and the aim is to determine the
Reynolds and the Taylor numbers. The solution to this prob-
lem is straightforward. In fact, to determine the axial bulk
velocity and angular speed it suffices to useEqs. (31) and
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Fig. 8. Variation offRewith ξ andεDe2 of an SPTT fluid in annuli with
κ = 0.5.

(32), respectively together with the definitions of the char-
acteristic velocitiesUc andUT. OnceU andω are known,
ReandTa can be calculated using their definitions.

The variations offReandCM with Re, Ta andεDe2 for
κ = 0.5 are shown inFigs. 8 and 9, respectively. It was found
that the relevant independent quantities that determinefRe
andCM are simplyεDe2 and the velocity ratioξ, the latter
compacting the effects of bothRe and Ta according to its

Fig. 9. Variation ofCM with ξ andεDe2 of an SPTT fluid in annuli with
κ = 0.5.

definition (ξ ≡ 2T/Re). For axially dominated flows (ξ < 1)
fReandCM only depend onεDe2 as represented inFigs. 8
and 9by the curves forξ ≤ 0.2. The effect ofεDe2 is to
decreasefReandCM , because the fluid shear-thins thus re-
ducing the viscosity near the walls. The universal behaviour
of CM is due to the fact that the viscosity is defined by the
axial flow and is independent of the magnitude of rotation
in this range of conditions. Note also that the definition of
CM is such that it is always bounded by 1 in the Newtonian
limit.

With increased rotation, thefRe versusεDe2 curves are
shifted to the left showing a decrease in friction factor for

Fig. 10. Radial profiles of normalised axial (a) and tangential (b) velocities
at Re = 1, T = 1 and εDe2 = 100 for different radius ratios and
comparison with planar solution.
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the axial flow because of the decreased viscosity imparted
to the shear-thinning fluid by the increasingly strong ro-
tation. As rotation comes to dominate, the axial flow no
longer determines the shear-thinning viscosity. The energy
loss decreases for both axial and tangential flow and so the
normalised resistance coefficientsfRe and CM decrease at
identical values of the elasticity parameterεDe2.

Although these effects take place for an elastic fluid, they
are due to the inherent shear-thinning behaviour of the sim-
plified PTT fluid and, consequently, the conclusions regard-
ing CM and fReare in agreement with the observations of
Escudier et al.[1] for inelastic power law fluids in concen-
tric annuli.

4.3. Very thin annuli

For very thin annuli, the radius ratioκ approaches unity
and the complex equations derived inSection 3.1can be
well approximated by the simpler expressions inSection 3.2.
This is clearly shown inFig. 10, where radial profiles of the
axial and tangential velocities are plotted as a function of
κ for a condition corresponding to mixed flow (ξ = 2) and
high elasticity (εDe2 = 100).

For small radius ratios the correct profiles are quite dif-
ferent from those for a planar geometry, especially for the
azimuthal velocity component, but approach the planar so-
lution asκ → 1. In the particular flow condition of the fig-
ure, the axial velocity profile atκ = 0.9 is already close to
the simpler planar profile, whereas for the tangential veloc-
ity the difference is still remarkable and it is necessary to
attainκ = 0.99 to have negligible differences. The impact
on integral quantities reflect the effect on the corresponding
relevant velocity profiles.

5. Conclusions

Analytical solutions have been derived for the skewed
Poiseuille–Couette flows of nonlinear viscoelastic PTT flu-
ids in concentric annuli and planar channels. These flows are
formed by the combination of an imposed constant pressure
gradient in the axial/longitudinal direction and the move-
ment of a wall in a normal direction, namely the rotation of
the inner cylinder or the spanwise motion of a plate. Expres-
sions are presented for the radial variation of the axial and
tangential velocities, as well as for the three shear stresses
and the two normal stresses (transverse variation of the lon-
gitudinal and spanwise velocities in the planar case).

For the axisymmetric flow it was found that under con-
ditions of axial dominated flow the peak axial velocity is in
the center of the annulus and becomes plug like asεDe2 in-
creases, while the tangential velocity progressively distorts
to a sigmoidal shape. The tangential shear stress, that bal-
ances the applied torque, has always a universal behavior
and the axial shear stress, balancing the axial pressure gra-
dient, has a quasi-universal variation withεDe2. In contrast,

for rotation dominated flows the tangential velocities always
have a monotonic variation and the flow is distorted towards
the inner cylinder where viscosities are lower. Now, the ax-
ial shear stress shows a clear dependence on fluid elasticity.

For engineering purposes expressions were also derived
relating the friction factor and torque coefficient to the
Reynolds number, Taylor number,εDe2 (quantifying flow
elasticity) and the radius ratio. When the flow is axially
dominated,fRe and CM only depend onεDe2 for a given
annulus, but they decrease with the velocity ratio as rota-
tion increases in strength. In all cases, an increase in flow
elasticity leads to a reduction in the axial and rotational
resistance to the flow. RegardingfReandCM it was found
that the velocity ratio adequately compacts the effects of
both the Reynolds number and the Taylor number.

As the annulus thins (κ → 1) the flow field ap-
proaches that given by the solution for the skewed planar
Poiseuille–Couette flow which is given by the simpler
equations ofSection 3.2.
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