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Abstract

Based on a generalised Newtonian fluid (GNF) model, modified to account for strain-thickening of the extensional
viscosity, this paper derives transport equations for mass, momentum, Reynolds stresses, turbulent kinetic energy
and its rate of dissipation. An analysis of order of magnitude identifies the relevant new terms and suggestions
are made to model those terms needed to ensure closure in the perspective of a low Reynolds numberk–ε model.
Specifically, a closed model for the time-average viscosity is proposed that takes into account its non-linearity and
dependence on the second and third invariants of the fluctuating rate of deformation tensor. The turbulence model is
qualitatively shown to increase the rate of decay of turbulent kinetic energy in isotropic grid turbulence for certain
rheological conditions. The performance of the turbulence model in a pipe flow is assessed in a companion paper
by Cruz and Pinho [J. Non-Newtonian Fluid Mech., in press].
© 2003 Elsevier B.V. All rights reserved.

Keywords: Single-point closures; Drag reducing fluids; Turbulent flow models; Modified generalised Newtonian fluid

1. Introduction

Since 1948, when Toms[2] first reported the existence of drag reduction in turbulent pipe flow of
non-Newtonian fluids, many researchers have dedicated their time at understanding the behaviour of
viscoelastic fluids under turbulent flow conditions. Such efforts culminated in the mid 1970s in a fair
amount of phenomenological understanding as is well documented in the reviews of Hoyt[3] and Virk[4].

For the next 20 years, research efforts were aimed at a more in-depth physical understanding of the
details of such wall-dominated flows, made possible by developments in optical diagnostic techniques.
Examples of detailed investigations with non-intrusive optical techniques are the earlier works of Achia
and Thompson[5], Reischman and Tiederman[6], those of Luchik and Tiederman[7,8] and Pinho and
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Whitelaw[9] in the 1980s and more recently of Warholic et al.[10], Pereira and Pinho[11] and Escudier
et al.[12], amongst others. Note that Warholic et al.[10] investigated heterogenous drag reduction, rather
than the homogeneous form of concern here and in the other works listed, but some of their findings are
equally relevant. In 1995 Gyr and Bewersdorff[13] reviewed critically the existent knowledge not only
for polymer solutions but also for surfactants and fibre suspensions.

A major finding of Tiederman’s and Hanratty’s experimental investigations on channel flows was the
dramatic reduction of the Reynolds shear stress. The ensuing shear stress deficit must be accounted
for by the appearance of an extra elastic shear stress which has not yet been directly measured. This
finding suggests a new turbulence dynamics involving, amongst others, the coupling between fluctuations
of elastic stresses and fluctuating velocity gradients. This was confirmed by the DNS investigation of
Massah and Hanratty[14] with the FENE-P model who found that the added polymer stresses fluctuate
and interact with the turbulence and the mean flow. Under certain conditions the effect is similar to
an increased dissipation bearing some resemblance to the effect of anisotropic viscosity on stresses, and
contributing to drag reduction. In fact, when decoupling the shear stress into viscous, inertial and polymer
components, the latter can assume both positive and negative values, i.e. it can act as a source as well as
a sink of turbulent kinetic energy (see also the recent experimental results of Ptasinski et al.[15]).

In spite of all the efforts there is still no clear explanation for the relationship between the observed
flow characteristics and the rheology of the viscoelastic fluids. However, there are strong indications for a
relationship between drag reduction and extensional viscosity, but so far there has been no definite proof
of this speculation, one reason being the difficulties in measuring the extensional viscosity of dilute and
semi-dilute solutions required to attain turbulent flows.

The availability of increased computer power has offered an important research alternative by providing
the means for direct numerical simulations (DNS). Starting with Massah et al.[16]. DNS have provided
useful information on the effect of specific fluid properties on turbulent flow characteristics and is presently
the most powerful method available for probing the physics of turbulent flow. For viscoelastic fluids there
is, however, one important difficulty relative to DNS with Newtonian fluids: a priori there is no certainty to
what is the correct rheological constitutive equation for a given fluid. Even so, DNS is providing useful in-
sight that will enable researchers to select adequate constitutive equations and, more important, to develop
useful and more accurate single-point closures for classical or newly developed turbulence models.

The initial DNS investigations were not self-consistent as they only solved the constitutive equation,
usually the FENE-P model, for fixed Newtonian kinematics. This strategy, adopted by Hanratty and
co-workers[14,16], is not able to predict drag reduction but gave insight onto the evolution of the
molecular configurations and the corresponding fluid properties, with the turbulence dynamics. One of
their main findings were the large molecular extensions in the viscous sublayer but no significant molecular
extensions in the buffer layer. Since in a laminar Couette flow, the molecules were also significantly
extended but no drag reduction was found, it was concluded that although molecular extension affected
the shear and elongational viscosities, drag was only a function of the shear stress which is not affected
by the extensional viscosity in laminar flow. However, extensional viscosity interferes with the dynamics
of turbulence and consequently the shear stress in turbulent flow is affected.

Progress in computer technology enabled the first self-consistent DNS, but the complexity of vis-
coelastic differential constitutive equations led researchers to adopt simpler rheological equations aimed
at assessing the effects of particular rheological properties. This was done by Orlandi[17] and Den Toon-
der et al.[18,19], who adopted viscous constitutive equations to mimic the effects of polymers in DNS. In
Orlandi the anisotropy of a polymer viscous contribution to normal stresses was related to the magnitudes
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of strain and rotation rate tensors to mimic the effect of molecular extension and this was found to be
sufficient to create drag reduction. Den Toonder et al.[18] investigated two constitutive models: in model
1, an isotropic normal stress polymer contribution was only sensitive to stretching of the molecules and,
in model 2, the extensional viscosity increased with both stretching and compression of molecules. Only
the latter model lead to drag reduction. In Den Toonder et al.[19] an anisotropic viscous model and
an anisotropic simple viscoelastic model, both made especially sensitive to elongational effects, were
investigated. In this work the anisotropic viscous model was able to predict higher drag reductions than
the viscoelastic model.

More recently, self-consistent DNS investigations of turbulent channel flow with viscoelastic consti-
tutive equations derived from kinetic (FENE-P) and network (Giesekus) theories have been carried out
by Sureshkumar et al.[20] and Dimitropoulos et al.[21,22]. These works were able to predict drag re-
duction and have shown qualitative agreement with experimental findings. In fact, the simulations with
the FENE-P and Giesekus models showed similar amounts of drag reduction when their parameters were
chosen to match the plateau extensional viscosity[22]. Dimitropoulos et al.[22] have also provided bud-
gets of turbulence kinetic energy, Reynolds stresses and vorticity and consequently it is a major reference
for the development of single-point turbulence closures. Drag reduction was found to be directly related
to the extensibility of the polymer chains and that a pre-requisite for drag reduction is a sufficiently
enhanced elongational viscosity in agreement with the findings from various other sources. The recent
experiments of Ptasinski et al.[15] also provided budgets of mean energy and of turbulent kinetic energy,
the results of which confirm some findings by DNS.

As in Newtonian turbulent flow, DNS is a powerful research tool but requires enormous computing
resources and is not practical for calculations of industrial flows. For this purpose, single-point turbulence
closures are required. In contrast to experimental work, progress in single-point turbulence models for
viscoelastic flow predictions has been rather slow. After an initial effort by various research groups in
the late 1970s[23–26] very few developments have taken place henceforth. In some of these initial
investigations, thek–ε turbulence model for Newtonian fluids was used with very specific modifications
in wall functions (standard model) or damping functions (low Reynolds number model). In Hassid and
Poreh[24] a one-equation model was suggested, but in general these were rapidly being discarded for
better models due to difficulties in defining the appropriate length scale. In Poreh and co-workers[25,26]
the same modified version of the low Reynolds numberk–ε model of Jones and Launder[27] was used.
However, this was not sufficient for predicting drag reduction and the coefficientA of the Van Driest
type of damping function for eddy viscosity had to be determined from the results of drag reduction at a
particular Reynolds number for a specific fluid and pipe geometry to enable the accurate calculation of
the flow characteristics. A similar strategy was adopted by Durst and Rastogi[23].

In essence, these modifications were unable to deal with drag reduction with generality, but showed that
adequate modifications of the law of the wall or of damping functions would lead to correct predictions.
This deficiency stems from the lack of connection between turbulence model and fluid rheology. A solution
to this shortcoming was attempted as early as 1973 by Mizushina et al.[28]: the Van Driest damping
factor in a zero equation turbulence model, was modified to account for the viscoelasticity of the fluid by
incorporating Rouse’s relaxation time[29] to be determined from experiments. This approach enabled
predictions of several flow conditions with the same fluid, a situation that not even the later models of
Hassid and co-workers[24–26]and Durst and Rastogi[23] could achieve.

More recent excursions into the same subject were also of limited application: Politis[30], Cruz et al.
[31] and Malin[32,33] independently deduced the relevantk–ε equations for turbulent flows of inelastic
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power law fluids but the intense drag reduction of elastic origin could not be predicted. However, some
of their ideas are pursued in the present work and its continuation[1].

Developments of eddy viscosity models have also been attempted. Poreh and Dimant[34] developed
a model based on Van Driest’s mixing length with a variable damping parameter to represent the effect
of drag reducing additives, and more complex expressions were derived by Edwards and Smith[35] and
recently by Azouz and Shirazi[36]. In the latter, the purpose was to predict turbulent flow of polymer
solutions in annuli but again the model required previous measurements in pipe flow with the same fluids.

There is clearly the need for further progress in turbulence modelling for viscoelastic fluids, in particular
taking into account the extensional behaviour of the drag reducing fluids. This paper constitutes the first
step of a work aimed at developing and testing turbulence models for drag reducing fluids obeying a
specific constitutive equation. Specifically, a generalised Newtonian fluid model, that was modified to
mimic some effects of the extensional viscosity, was chosen as constitutive equation.

Instead of adopting immediately a complex differential constitutive equation, for which modelling
would be more difficult, a generalised Newtonian fluid modified to mimic extensional viscosity enhance-
ment effects will lead to a turbulence model with many similarities to a Newtonian turbulence model.
Turbulence models for Newtonian fluids do not suffer from the difficulty of choosing a constitutive equa-
tion and yet they often rely on damping functions and other approaches to compensate for inadequate or
incomplete physics modelling. There is no reason to assume that it will not be so for viscoelastic fluids. If
a more complex, but faithful, viscoelastic constitutive equation is adopted, it is more likely that there will
be more ad hoc assumptions and simplifications than if a simpler Newtonian-like rheological expression
is used. This will provide us with the experience for more elaborate turbulent closures in the future.

This first paper is rather general and is aimed at deriving the transport equations needed in single-point
first- and second-order turbulence models. First, the constitutive model adopted and its modifications are
explained and the corresponding time-averaged conservation equations of mass, momentum, turbulent
kinetic energy and its rate of dissipation are presented (their derivation is presented inAppendix A).
An analysis of order of magnitude is then carried out on those equations to identify relevant new terms
and proposals are made for closure especially regarding a low Reynolds numberk–ε model. At the end
the newk–ε model is tested qualitatively in isotropic decay of grid generated turbulence. In a second
companion paper[1] thek–ε model is further developed for wall flows and its capacities are investigated
via predictions of pipe flow and comparisons with experimental data from the literature.

2. A constitutive equation

The most important rheological property of polymer solutions that must be taken into account is the
viscometric viscosity. It can be constant, as with Newtonian fluids, but most often exhibits some degree
of shear-thinning. A generalised Newtonian fluid model (GNF) is adequate to predict this fluid property
accurately.

For a long time there was controversy as to what rheological properties caused drag reduction and this
was discussed in Oliveira and Pinho[37]. There, the relevance of extensional viscosity was made clear
and the recent DNS works of Dimitropoulos et al.[21,22] and De Angelis et al.[38] have extensively
confirmed it.

Experimentally, Escudier et al.[12] were probably the first to measure drag reduction and detailed
velocity profiles with polymer solutions for which they provided elongational viscosity data measured
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with an opposed-jet nozzle rheometer. Their measurements with different types of polymers showed
shear-thinning of the viscometric viscosity and confirmed the strain-thickening of the Trouton ratio,
relevant rheological features for drag reduction[37].

As mentioned in the introduction, the constitutive equation adopted is simple: the GNF model modified
to mimic extensional viscosity strain-thickening. This was the model used by Oliveira and Pinho[37],
here with small modifications. The elongational viscosity is introduced into the GNF constitutive equation
by making it a function of the strain ratėε as explained in more detail by Oliveira and Pinho[37]. The
GNF fluid, with dependence on the shear rateγ̇ and strain ratėε, is written as

σ = 2µS, (1)

whereµ is the viscosity function andS is the rate of deformation tensor defined by

S ≡ 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (2)

The viscosity function

µ = µ(γ̇, ε̇), (3)

depends oṅγ andε̇ which are related to the invariants ofS in the following way:

γ̇ =
√

−4IIS = √
2SijSij, (4)

ε̇ = 6 detS

tr S2 = 2 tr S3

tr S2 = 2(SikSkj)Sij

SijSij
. (5)

An algebraic form for the viscosity function (3) can be a Bird–Carreau type of equation

µ = µ0[1 + (λsγ̇)
2](n−1)/2[1 + (λeε̇)

2](p−1)/2, (6)

but, for simplicity in the derivation of the turbulence model, a power law-based equation is preferred.
Thus, the viscosity equation adopted henceforth is

µ = Kv[γ̇2](n−1)/2Ke[ε̇
2](p−1)/2, (7)

where some constraints to the various parameters are imposed later. The model is the product of a shear
rate dependent term with a strain rate dependent term. Both terms do not have to be dimensionally identical
but their product must be a viscosity andEq. (7)must also obey some limiting conditions and agree with
rheological measurements. The specific meanings of the various model parameters are specified in Cruz
and Pinho[1], and at this stage it is only important to considerKv, Ke, n andp as known fluid properties.
In any case, the model pretends to represent a behaviour where there is shear-thinning due to dependence
on γ̇ (n < 1,p = 1) and strain-thickening due to the dependence onε̇ (n = 1,p > 1) as is sketched in
Fig. 1.

For this GNF constitutive equation it is now necessary to deduce the corresponding conservation
equations for turbulent flow, bearing in mind that there are fluctuations in the viscosity because of its
non-linear dependence on the flow kinematics. Although specific viscosity expressions are presented in
Eqs. (6) and (7), the work inSection 3, and inAppendix A, is totally independent of the adopted equation
for µ. A specific viscosity model is only required fromSection 4onwards, but even then part of this work
remains general and independent of specific forms adopted forµ.
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Fig. 1. Schematic representation of the effect ofn andp on the variation of the viscosity with the shear and strain rates in log–log
coordinates.

3. Conservation equations

Modern developments of one-point closures for turbulence are usually based on first- or second-order
models. Since an objective of this work is to establish a framework for developing a specific type of couple
turbulence rheology closure, conservation equations for mass, momentum, turbulent kinetic energy, its
rate of dissipation and for the Reynolds stress tensor need to be derived for these fluids of variable
viscosity, where the first major conceptual difference relative to a Newtonian fluid is the existence of
fluctuations of viscosity.

The derivation of all transport equations is tedious and has similarities to that for Newtonian fluids. In
order not to break the logical sequence of the text, such work is left toAppendix Aand here only the
final forms of the various equations are presented. Throughout the paper the Reynolds decomposition is
used and the average of the fluctuating quantities, including the viscosity, is zero. Capital letters or an
overbar designate average values, small letters or a prime designate fluctuating quantities, the exception
being the average pressure represented byp.

The Reynolds-averaged momentum equation for a GNF fluid is

ρ
∂Ui

∂t
+ ρUk

∂Ui

∂xk
= − ∂p

∂xi
+ ∂(2µ̄Sik + 2µ′sik − ρuiuk)

∂xk
. (8)

Relative to the momentum equation for a Newtonian fluid there is a new diffusive term(2µ′sik) and the
classical term(2µ̄Sik) is modified. Both need to be evaluated later for closure. As will be seen inSection 4,
µ̄ also depends onsij andSij although at high Reynolds numbers the dependence onsij is more important.

In recent experimental and DNS investigations of turbulent duct flows of viscoelastic fluids using the
FENE-P model ([14,15,21,22]amongst others), the total stress is written as the sum of the solvent, the
polymer and the Reynolds shear stress tensors:τij = τij,s + τij,p − ρuiuj. It is important to understand
thatτij,p accounts not only for an elastic contribution but also for a possibly large viscous contribution.
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In our formulation, however, the separation of effects is different because both 2µ̄Sij and 2µ′sij include
purely viscous and extensional contributions of the polymer solution (notice thatµ′sij 	= 0 for an inelastic
shear-thinning fluid). Thus,τij,s is totally included in 2̄µSij but so is also part ofτij,p.

The Reynolds stress transport equation is given by

ρ
Duiuj

Dt
+ ρujuk

∂Ui

∂xk
+ ρuiuk

∂Uj

∂xk

= −ρ ∂

∂xk
uiujuk −

(
∂

∂xi
p′uj + ∂

∂xj
p′ui

)
+ p′

(
∂uj

∂xi
+ ∂ui

∂xj

)
+ µ̄

∂2uiuj

∂xk∂xk

− 2µ̄
∂ui

∂xk

∂uj

∂xk
+ ∂µ̄

∂xk

∂uiuj

∂xk
+ ∂µ̄

∂xk

(
∂ukuj

∂xi
+ ∂ukui

∂xj
− 2uksij

)
+ µ′ ∂

2uiuj

∂xk∂xk

− 2µ′ ∂ui
∂xk

∂uj

∂xk
+ ∂µ′

∂xk

∂uiuj

∂xk
+ ∂µ′

∂xk

(
uj
∂uk

∂xi
+ ui

∂uk

∂xj

)
+ µ′uj

∂2Ui

∂xk∂xk

+ µ′ui
∂2Uj

∂xk∂xk
+ uj

∂µ′

∂xk

(
∂Ui

∂xk
+ ∂Uk

∂xi

)
+ ui

∂µ′

∂xk

(
∂Uj

∂xk
+ ∂Uk

∂xj

)
, (9)

and contraction of indices gives the transport equation for the turbulent kinetic energy(k ≡ u2
ii/2):

ρ
Dk

Dt
= −∂ujp

∂xj
− ∂

∂xj

[
1

2
ρuiujui − 2µ̄uisij − 2µ′uiSij − 2µ′uisij

]
− 2µ̄s2ij − 2µ′s2ij − 2µ′sijSij − ρuiujSij. (10)

Eqs. (9) and (10)include various non-Newtonian terms, but even some of the Newtonian terms are
presented in an unusual way. The reader can recover the classical equation found in many papers and
textbooks bearing in mind properties due to the symmetry of the rate of deformation tensorSij (see also
Appendix A).

3.1. The rate of dissipation of turbulent kinetic energy

For Newtonian fluids the average rate of dissipation (ε) of turbulent kinetic energy (k), per unit of mass,
is defined as

ρεn ≡ 2µs2ij, (11)

where the subscriptn is used here to distinguish it from the rate of dissipation ofk for GNF fluids.Eq. (11)
is the time-average of the instantaneous rate of dissipation defined by

ρε̂n ≡ 2µs2ij. (12)

By analogy, one can define an instantaneous rate of dissipation for non-Newtonian fluids obeying the
GNF model by using the instantaneous viscosity:

ρε̂ ≡ 2µ̂s2ij. (13)
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Time-averaging equation (13) provides the average rate of dissipation for the GNF fluid

ρε = 2µ̂s2ij = 2(µ̄+ µ′)s2ij = 2µ̄s2ij + 2µ′s2ij. (14)

These definitions of instantaneous and average rates of dissipation are identical to those used by Politis
[30] in his derivation of ak–ε model of turbulence for purely viscous shear-thinning fluids.

The definition of the rate of dissipation of turbulent kinetic energy also deserves a comment in light
of the literature involving the FENE-P or similar models. Several works reviewed inSection 1reported
the existence of a deficit in Reynolds shear stress and the consequent existence of a polymer stress, here
calledτP

ij . The fluctuations ofτP
ij contribute to increase or decrease turbulence via the term−τ ′P

ij sij which
can take positive or negative values, respectively[10]. Also, in a viscoelastic formulation the transport
equations ofk anduiuj contain a term for the interaction between the elastic stress and the rate of strain
as shown in the DNS investigation for a FENE-P fluid of Dimitropoulos et al.[22] (theirεv

ij term). Their
results do confirm thatεv

ij (in combination to the interaction betweenτ ′P
ij andui) acts as a turbulence

production term near the wall and as dissipation elsewhere.
By defining the total stress tensor asτij = 2µ̄Sij−2µ′sij−ρuiuj and the rate of dissipation as inEq. (14),

its two terms inEq. (10)already include such interaction between fluctuating stress and fluctuating shear
rate.ε is defined as a single quantity but still it is the sum of a positive definite term(2µ̄s2ij)with a term that

can be either a source or a sink of dissipation(2µ′s2ij). So, in a limiting situation of a 1D shear flow, where
the Reynolds shear stresses are found to be negligible (due to the presence of additives, cf.[10]), under
the classical equilibrium condition the definition ofEq. (14)results in negligible production of turbulence
and negligible dissipation. However, for the flow to be turbulent there must be production of turbulence,
as well as dissipation, and so what is really happening is−2µ′s2ij = 2µ̄s2ij. Note that recently Ptasinski
et al.[15] showed that in pipe flow the Reynolds stress stays definitely non-zero even at maximum drag
reduction.

3.2. The transport equation for the rate of dissipation of turbulent kinetic energy

ρ
∂ε

∂t︸︷︷︸
Ia

+ ρUk

∂ε

∂xk︸ ︷︷ ︸
Ib

= −2
∂Ui

∂xk

[
(µ̄+ µ′)

∂ui

∂xm

∂uk

∂xm

]
︸ ︷︷ ︸

IIa

− 2
∂Uk

∂xm

[
(µ̄+ µ′)

∂ui

∂xm

∂ui

∂xk

]
︸ ︷︷ ︸

IIb

− 2
∂2Ui

∂xk∂xm

[
(µ̄+ µ′)uk

∂ui

∂xm

]
︸ ︷︷ ︸

IIc

− 2(µ̄+ µ′)
∂ui

∂xm

∂ui

∂xk

∂uk

∂xm︸ ︷︷ ︸
IId

− (µ̄+ µ′)
∂

∂xk

[
uk
∂ui

∂xm

∂ui

∂xm

]
︸ ︷︷ ︸

IIIa

− 2(ν̄ + ν′)
∂

∂xi

[
∂p′

∂xm

∂ui

∂xm

]
︸ ︷︷ ︸

IIIb

+ (µ̄+ µ′)2

ρ

∂

∂xk

[
∂

∂xk

(
∂ui

∂xm

∂ui

∂xm

)]
︸ ︷︷ ︸

IV

− 2
(µ̄+ µ′)2

ρ

∂2ui

∂xk∂xm

∂2ui

∂xk∂xm︸ ︷︷ ︸
V
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+ 4(ν̄ + ν′)
∂2(µ̄+ µ′)
∂xm∂xk

[
∂ui

∂xm
sik

]
︸ ︷︷ ︸

VI

+ 4(ν̄ + ν′)
∂(µ̄+ µ′)

∂xk

∂ui

∂xm

∂sik

∂xm︸ ︷︷ ︸
VII

+ 2(ν̄ + ν′)
∂(µ̄+ µ′)
∂xm

∂ui

∂xm

∂

∂xk

(
∂ui

∂xk

)
︸ ︷︷ ︸

VIII

+ 4Sik

[
(ν̄ + ν′)

∂ui

∂xm

∂2µ′

∂xm∂xk

]
︸ ︷︷ ︸

IX

+ 4
∂Sik

∂xm

[
(ν̄ + ν′)

∂ui

∂xm

∂µ′

∂xk

]
︸ ︷︷ ︸

X

+ 2
∂2Ui

∂xk∂xk

[
(ν̄ + ν′)

∂ui

∂xm

∂µ′

∂xm

]
︸ ︷︷ ︸

XI

+ 2
∂

∂xm

(
∂2Ui

∂xk∂xk

)[
(ν̄ + ν′)µ′ ∂ui

∂xm

]
︸ ︷︷ ︸

XII

− 4ν′ ∂ui
∂xm

∂

∂xm

[
∂µ′

∂xk
sik

]
︸ ︷︷ ︸

XIIIa

− 2ν′ ∂ui
∂xm

∂

∂xm

[
µ′ ∂2ui

∂xk∂xk

]
︸ ︷︷ ︸

XIIIb

+ 2µ′ ∂ui
∂xm

∂

∂xm

[
∂uiuk

∂xk

]
︸ ︷︷ ︸

XIV

+ ∂(µ̄+ µ′)
∂t

∂ui

∂xm

∂ui

∂xm︸ ︷︷ ︸
XVa

+ Uk

∂(µ̄+ µ′)
∂xk

∂ui

∂xm

∂ui

∂xm︸ ︷︷ ︸
XVb

. (15)

The transport equation for the time-average rate of dissipation (ε) of turbulent kinetic energy of a GNF
fluid is given byEq. (15).

In Eq. (15)the alternative definitions of the average and instantaneous rates of dissipation areρε ≡
(µ̄+ µ′)(∂ui/∂xm)(∂ui/∂xm) andρε̂ ≡ (µ̄+µ′)(∂ui/∂xm)(∂ui/∂xm), respectively. These two definitions
of rate of dissipation are equivalent to those ofEqs. (13) and (14)only under the assumption of homo-
geneous turbulence. For convenience, in writing downEq. (15)use was made of the kinematic viscosity
(ν ≡ µ/ρ).

Eq. (15) includes two types of terms: those having similarities with terms found in the dissipation
equation for a Newtonian fluid originate from the inertial, pressure and one of the viscous terms in the
momentum equation, and include both the average and fluctuating viscosities. The second set of terms is
new and involves the fluctuating viscosityµ′. Often, their physical meaning can be easily identified due
to similarities with terms involving the average viscosity.

4. The time-average molecular viscosity

In turbulent flow, the molecular viscosity of a variable-viscosity fluid depends on the fluctuating rates
of shear and strain, a major difference relative to a Newtonian fluid. Hence, a major contribution of this
work is the relationship between the time-average molecular viscosity and turbulent quantities to ensure
closure of the set of equations. In order to arrive at such relationship it is now necessary to adopt a specific
form for the viscosity function and hereEq. (7)is used.
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In terms of instantaneous values the viscosity is

µ̂ = Kv[ ˆ̇γ2
](n−1)/2Ke[ ˆ̇ε2

](p−1)/2, (16)

with ˆ̇γ and ˆ̇ε following from Eqs. (4) and (5).
The maximum value oḟ̂ε was estimated by Oliveira and Pinho[37] to be

ˆ̇εmax =
√

2
3ŜijŜij. (17)

For a high Reynolds number turbulent flow Tennekes and Lumley[39] have shown that̂SijŜij
∼= sijsij,

thus Oliveira and Pinho[37] concluded that

ˆ̇εmax =
√

2
3sijsij. (18)

Typical values of̂̇ε being smaller, let us assume that in general

ˆ̇ε =
√
sijsij

Aε

, (19)

where the value ofAε is to be found from experimental data (see[1]) but must be higher than
√

3/2.
Back-substituting these definitions into the viscosity model and simplifying gives

µ̂ = KvKe

A
p−1
ε

2(n−1)/2[s2ij]
(n+p−2)/2. (20)

This expression can now be used to calculate the instantaneous rate of dissipation inEq. (13):

ρε̂ = 2(n+1)/2KvKe

A
p−1
ε

[s2ij]
(n+p)/2. (21)

Eqs. (20) and (21)are combined to eliminates2ij and yielding a relation between the instantaneous viscosity
and rate of dissipation

µ̂ =
[
KvKe

A
p−1
ε

]2/(n+p)
2(1−p)/(n+p)(ρε̂)(n+p−2)/(n+p). (22)

Introducing parameters

m ≡ n+ p− 2

n+ p
, (23a)

and

B ≡
[
KvKe

A
p−1
ε

]1−m
2((n−1)−m(n+1))/2ρm, (23b)

for compactness,Eq. (22)assumes the simple form

µ̂ = Bε̂m. (24)
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The average viscosity and the average rate of dissipation are determined using their probability distribution
functions. By definition, the time-average viscosity

µ̄ =
∫ ∞

0
Bε̂mP(ε̂)dε̂. (25)

Since the instantaneous viscosity is always a positive quantity, the instantaneous rate of dissipation(ε̂)

is positive-definite and is associated with small scale motion, assumed here to be locally isotropic at
high Reynolds number flows. Thus, as explained by Monin and Yaglom[40], ε̂ follows a log-normal
distribution

P(ε̂) = 1

ε̂σ
√

2π
exp

{
−1

2

(
ln ε̂−M

σ

)2
}
, (26)

with M andσ standing for the mean and standard deviation ofε̂.
Following Monin and Yaglom[40] (pp. 614–615),∫ ∞

0

ε̂m

ε̂σ
√

2π
exp

{
−1

2

(
ln ε̂−M

σ

)2
}

dε̂ = exp

(
mM + m2σ2

2

)
, (27)

so, the average viscosity comes out as

µ̄ = B exp(mM + 1
2m

2σ2). (28)

The average rate of dissipation is also obtained from the probability distribution function ofε̂

ε =
∫ ∞

0
ε̂P(ε̂)dε̂ =

∫ ∞

0
ε̂

1

ε̂σ
√

2π
exp

{
−1

2

(
ln ε̂−M

σ

)2
}

dε̂k = exp

(
M + σ2

2

)
. (29)

Now, µ̄ andε can be related to each other by solvingEq. (28)to get eM and substituting it back into
Eq. (29). The result is

µ̄ = Bεm emσ
2(m−1)/2, (30)

with m andB given byEqs. (23a) and (23b).
In Eq. (30), σ2 is the variance of the distribution of ln̂ε which is given by

σ2 = A1 + A2 ln

(
L

η

)
, (31)

with L representing an external turbulence length scale, such as a large eddy scale, andη an appropriately
defined internal length scale such as the Kolmogorov microscale[40]. A1 is a parameter depending on the
turbulence macrostructure andA2 is a universal constant. The extensive discussion of these quantities, in
pp. 612–626 of Monin and Yaglom[40], suggests thatA2 = 0.3–0.5, although the most appropriate value
seems to be between 0.4 and 0.5, thus 0.45 is considered.A1 depends on the form of the space regions
and there is very little information concerning it (p. 634 in[40]), so it is assumed to be zero. Hence,σ2

is finally given by

σ2 = A2 ln

(
L

η

)
. (32)
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The Kolmogorov scale is

η ≡
[
ν̄3

ε

]1/4

=
[
µ̄3

ρ3ε

]1/4

, (33)

where the average molecular viscosity was used. The large length scale for the energy containing eddies
is given by the inviscid estimate proportional tok1.5/ε. A commonly used equation forL derived from
inviscid theory arguments is adopted here as given by Younis[41]

L ≈ 2C0.75
µ k1.5

ε
, (34)

whereCµ is a universal constant that usually assumes the numerical value of 0.09 for Newtonian fluids.
Finally, combiningEqs. (30)–(34)provides the final form of an explicit expression forµ̄

µ̄= (Cµρ)
3m(m−1)A2/(8+3m(m−1)A2)24m(m−1)A2/(8+3m(m−1)A2)k6m(m−1)A2/(8+3m(m−1)A2)

ε[8−3(m−1)A2]m/(8+3m(m−1)A2)B8/(8+3m(m−1)A2) (35)

with m andB defined above. In the limiting case of a Newtonian fluid(n = p = l) a constant average
molecular viscosity of̄µ = KvKe is recovered.

With this relationship the full closure of the set of transport equations can be ensured provided the new
non-Newtonian terms of the conservation equations are adequately modelled. This is carried out in the
next sections, but only in the context of a first-orderk–ε turbulence closure. In the companion paper[1]
the final details of the model are derived and the model is used to make predictions and comparisons with
data from the literature. The developments for more elaborate first-order and second-order models are
left for the future.

5. Order of magnitude analysis

An order of magnitude analysis is carried out for all the transport equations to help in their sim-
plification. There will be a preoccupation to identify similarities with the corresponding equations for
Newtonian fluids and, because of the lack of experience and knowledge on turbulence modelling for
viscoelastic fluids, the number of modifications is kept to a minimum except when based on solid
arguments.

To perform the order of magnitude analysis, the following scales are used:L represents a large length
scale of the energy containing eddies,U is the velocity scale of mean flow,u is the velocity scale of
fluctuations(u ≈ √

k) andl is the length scale associated with small fluctuations and its gradients, which
is related to the Kolmogorov scale. Note also that the inviscid estimate of the rate of dissipation is used
(ε = u3/L) and that both the instantaneous molecular viscosityµ̂ and the molecular viscosity fluctuations
µ′ are needed. This analysis starts with an estimate of these two viscous quantities, but henceforth their
kinematic equivalentŝν andν′ (ν ≡ µ/ρ) are used instead.

The ratio of instantaneous to average molecular viscosities is needed and is estimated as

ν̂

ν̄
= ε̂m

εm exp[mσ2(m− 1)/2]
∼ exp

[
mσ2(1 −m)

2

]
, (36)
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becauseε is determined from the pdf of̂ε andm (Eq. (23)) is a coefficient of order 1 (it depends onn and
p where usuallyn ≤ 1 andp ≥ 1). Upon substitution ofσ2 (Eq. (32))

ν̂

ν̄
∼
(
L

η

)0.225m(1−m)
. (37)

For conveniencea ≡ 0.225m(1 − m) is defined. Considering typical values ofn and p, m = 0 for
Newtonian fluids and for non-Newtonian fluids for which the shear-thinning exponentn differs from 1
by exactly the same amount that the strain-thickeningp differs from 1 (i.e. whenp = 1 − n). For other
realistic values ofn andp [1] the exponenta stays in the range limited by−0.05 and+0.05. Finally,
considering the Kolmogorov scale (Eq. (33)) andL from Eq. (34):

ν̂

ν̄
∼ 0.33a

(
uL

ν̄

)3a/4

∼
(

uL

ν̄

)3a/4

, (38)

and, by definition,

ν′

ν̄
∼
(

uL

ν̄

)3a/4

− 1. (39)

The use of the difference in estimatingν′ is advantageous, because it will produce a null contribution for
fluids having a constant viscosity.

5.1. Momentum equation

The momentum equation (Eq. (8)) has a modified diffusive term that can now be calculated since there
is a relationship for̄µ and a new diffusive term(2µ′sik) that must be evaluated.

The relevance of this new term is assessed by comparison with the modified diffusion as

2µ′sij

2µ̄Sij
∼ ν′

ν̄

u/ l

U/L
=
[(

uL

ν̄

)3a/4

− 1

]
u

U

L

l
, (40)

so in principleµ′sij cannot be neglected becausel/L � u/U (in fact, l/L ∼ (uL/ν̄)−3/4).
Under certain conditions, however, it is possible to neglectµ′sij as shown by Oliveira and Pinho[37]:

basically, in 2D flows of shear rate (γ̇) independent viscosity fluids the average strain rate¯̇ε is zero, hence
the fluctuating viscosity is an even function ofε̇′. Thus, any correlation ofµ′ with other approximately
Gaussian-distributed variable related to the small scale of turbulence will vanish because the odd moments
of the normal distribution are zero[42]. So, no terms are dropped and the final form of the time-average
momentum equation is that ofEq. (8).

5.2. The transport equations for uiuj and k

The transport equation for the Reynolds stressuiuj (Eq. (9)) contains several new molecular diffusion
or dissipative terms. Their orders of magnitude are compared with that of the Newtonian-like dissipative
term 2µ̄(∂ui/∂xk)(∂uj/∂xk) which, note, is not equal toεij due to the new definition ofε. The outcome
of this analysis is contained inTable 1. At first sight, it is obvious that only the third and fourth terms in
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Table 1
Order of magnitude relative to Newtonian dissipative term

Term Order Numerical

∂µ̄

∂xk

(
∂uiuj

∂xk
+ ∂ukuj

∂xi
+ ∂ukui

∂xj

) (
uL

ν̄

)−3/2

1 × 10−6

− ∂µ̄

∂xk
uksij

(
uL

ν̄

)−3/4

1 × 10−3

µ′ ∂
2uiuj

∂xk∂xk
− 2µ′ ∂ui

∂xk

∂uj

∂xk

(
uL

ν̄

)3a/4

− 1 1

∂µ′

∂xk

∂uiuj

∂xk
+ ∂µ′

∂xk

(
uj
∂uk

∂xi
+ ui

∂uk

∂xj

) (
uL

ν̄

)3a/4

− 1 1

µ′uj
∂2Ui

∂xk∂xk
+ µ′ui

∂2Uj

∂xk∂xk

[(
uL

ν̄

)3a/4

− 1

]
U

u

(
uL

ν̄

)−3/2

1 × 10−5

uj
∂µ′

∂xk

(
∂Ui

∂xk
+ ∂Uk

∂xi

)
+ ui

∂µ′

∂xk

(
∂Uj

∂xk
+ ∂Uk

∂xj

) [(
uL

ν̄

)3a/4

− 1

]
U

u

(
uL

ν̄

)−3/4

1 × 10−3

the table should be retained in a high Reynolds number formulation. Possibly, in a low Reynolds number
formulation some of the other terms may be retained, but that requires a more extensive analysis left for
the future as the present paper concentrates on modelling only ak–ε closure. Anyway, note also that the
first term does not require modelling.

In conclusion, the simplified transport equation ofuiuj is

ρ
Duiuj

Dt
+ ρujuk

∂Ui

∂xk
+ ρuiuk

∂Uj

∂xk

= −ρ ∂

∂xk
uiujuk −

(
∂

∂xi
p′uj + ∂

∂xj
p′ui

)
+ p′

(
∂uj

∂xi
+ ∂ui

∂xj

)
+ µ̄

∂2uiuj

∂xk∂xk
− 2µ̄

∂ui

∂xk

∂uj

∂xk

+µ′ ∂
2uiuj

∂xk∂xk
− 2µ′ ∂ui

∂xk

∂uj

∂xk
+ ∂µ′

∂xk

∂uiuj

∂xk
+ ∂µ′

∂xk

(
uj
∂uk

∂xi
+ ui

∂uk

∂xj

)
. (41)

The transport equation ofk (Eq. (10)), obtained by contraction of the indices of the equation ofuiuj, also
contains new dissipative and diffusive terms and, as with the Reynolds stress equation, comparing their
orders of magnitude with the order of magnitude of the dissipation term allows us to simplify it. The
dissipative terms 2µ′s2ij and 2̄µs2ij are lumped together to define the dissipationε (cf. Eq. (14)). The other

dissipative term 2µ′sijSij is neglected in comparison toε as in the Reynolds stress equation.
Terms 2̄µuisij and 2µ′uisij are components of the molecular diffusion ofk which can be recast as

2(µ̄+ µ′)uisij. Here, the diffusivity coefficient is the average molecular viscosity plus a contribution
from the fluctuating molecular viscosity. This second contribution takes on positive and negative values
and so it should be smaller than the former. The diffusion ofk is usually very small, except at low
Reynolds numbers and in the vicinity of walls, so the contribution from the fluctuating viscosity is in
principle smaller and neglected by comparison, at least until further research shows that it should be kept,
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i.e. as a first approximation one has

2µ̄uisij + 2µ′uisij ≈ 2µ̄uisij. (42)

Therefore, the simplified version of the transport equation ofk is given by

ρ
Dk

Dt
= − ∂

∂xj

[
uip+ 1

2
ρuiujui − 2µuisij

]
− ρε− ρuiujSij. (43)

5.3. Transport equation for ε

For theε equation (Eq. (15)) the estimated order of magnitude of its various terms are summarised in
Table 2.

Using terms Ia+ Ib as reference, and consideringl to be identical to the Kolmogorov length scale
(leading tol/L ∼ (uL/ν̄)−3/4), one ends up with the relative results ofTable 3which gives a better idea
of the relevance of the various terms. To help in this determination, numerical values are given toa and
to the two Reynolds numbers. Fora there are three typical values of 0,−0.05 and+0.05, but in terms of
order of magnitudea = −0.05 and+0.05 are equivalent. For the Reynolds numbers, a bulk Reynolds
number (ReU) of about 50,000 is considered and a turbulence intensity of about 10% givesReu = 5000.
However, before proceeding, and to help in the critical assessment of the relevance of the various terms
of theε equation, the equivalent Newtonian equation is presented in its general form[43]:

ρ
∂ε

∂t︸︷︷︸
Ia

+ρUi

∂ε

∂xi︸ ︷︷ ︸
Ib

= µ∇2ε︸ ︷︷ ︸
IV

−2µ
∂ui

∂xj

∂uk

∂xj

∂Ui

∂xk︸ ︷︷ ︸
IIa

−2µ
∂uj

∂xi

∂uj

∂xk

∂Ui

∂xk︸ ︷︷ ︸
IIb

−2µuk
∂ui

∂xj

∂2Ui

∂xk∂xj︸ ︷︷ ︸
IIc

−2µ
∂ui

∂xk

∂ui

∂xm

∂uk

∂xm︸ ︷︷ ︸
IId

−µ
∂

∂xk

[
uk
∂ui

∂xm

∂ui

∂xm

]
︸ ︷︷ ︸

IIIa

− 2
µ

ρ

∂

∂xk

[
∂p′

∂xm

∂uk

∂xm

]
︸ ︷︷ ︸

IIIb

− 2
µ2

ρ

∂2ui

∂xk∂xm

∂2ui

∂xk∂xm︸ ︷︷ ︸
V

. (44)

In Eq. (44) the various terms are identified by the same codes used in the non-Newtonian equation
(15) to facility comparisons, but caution must be exercised because the presence of molecular viscosity
fluctuations can change their physical meaning as will be seen. Using now the numerical values of the
previous paragraph, the numerical estimate of the relative order of magnitude of the terms inTable 3
leads toTable 4and the following conclusions are drawn:

(i) For Newtonian fluids the purely non-Newtonian terms VI–XV vanish.
(ii) The terms that are common to the Newtonian and non-Newtonian equations (terms I–V), most

of which have been modified, have the same order of magnitude regardless of the value of pa-
rametera. The exceptions are the diffusive terms (turbulent diffusion: IIIa+ IIIb; molecular dif-
fusion: IV) which have been significantly modified and enhanced by the viscosity fluctuations.
These terms were named by analogy to the Newtonian equation and considering the physics of the
latter.

(iii) Of the new terms of the non-Newtonian equation, terms IX–XIV are irrelevant in comparison with
terms VI+ VII + VIII + XV. Terms IX–XII originate in the diffusive term 2̄µSij of the momentum
equation and terms XIII and XIV come from the other diffusive term 2µ′sij. These two sets of
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Table 2
Estimated order of magnitude of terms ofε (Eq. (15))

Term Order

Ia + Ib
Uu3

L2

IIa + IIb ν̂
Uu2

Ll2

IIc ν̂
Uu2

L2l

IId ν̂
u3

l3

IIIa + IIIb
u3

l2

(
ν̄

L
+ ν′

l

)

IV
u2

l2

(
ν′2

l2
+ ν̄2

L2
+ ν′ν̄

l2

)

V ν̂2u
2

l4

VI + VII + VIII ν̂ν′ u
2

l4

IX ν̂ν′ Uu

Ll3

X + XI ν̂ν′ Uu

L2l2

XII ν̂ν′ Uu

L3l

XIIIa + XIIIb ν′2 u
2

Ll3

XIV ν′ u
3

Ll2

XVa + XVb ν′ Uu2

l3

terms have a negligible influence except perhaps in the perspective of a low Reynolds number
flow and wall proximity. In this case terms IX and XIV look more important than the others but
more detailed investigations are required to ascertain which should be kept under those conditions.
Note that, with viscoelastic drag reducing fluids, a low Reynolds number formulation is essential
because there is no universal law of the wall in contrast to what happens with Newtonian fluids.
Since many of the arguments used in this order of magnitude analysis were formulated on the basis
of high Reynolds number flow, some of the neglected terms may need to be re-evaluated close
to walls. At this stage of knowledge on modelling turbulent viscoelastic flow we opted to neglect
them.

(iv) Term XV is the most important of all terms as its order of magnitude is the highest. This does not
make complete sense as the term should be balanced by at least another one. It is an indication that
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Table 3
Estimated order of magnitude of terms ofε (Eq. (15)) relative to terms Ia+ Iba

Term Order

IIa + IIb Re(2+3a)/4
u

IIc Re(3a−1)/4
u

IId Re(9+3a)/4
u Re−1

U

IIIa + IIIb Re3/2
u Re−1

U [1 + Re(3+3a)/4
u − Re3/4

u ]

IV Re1/2
u Re−1

U {1 + Re3/2
u [Re3a/4

u − 1]2 + Re3/2
u [Re3a/4

u − 1]}
V Re(4+3a)/2

u Re−1
U

VI + VII + VIII Re(8+3a)/4
u Re−1

U [Re3a/4
u − 1]

IX Re(1+3a)/4
u [Re3a/4

u − 1]

X + XI Re(3a−2)/4
u [Re3a/4

u − 1]

XII Re(3a−5)/4
u [Re3a/4

u − 1]

XIIIa + XIIIb Re5/4
u Re−1

U [Re3a/4
u − 1]2

XIV Re3/2
u Re−1

U [Re3a/4
u − 1]

XVa + XVb Re5/4
u [Re3a/4

u − 1]

a ReU is based onU andReu is based onu. In both cases the length scale isL andν̄ is used.

perhaps the viscosity gradient should not be scaled with the lengthl as it was, but withL. In any
case, the term is important and hence it is kept.

At this stage, and since the turbulent flows of viscoelastic solutions are almost always associated with
Reynolds numbers well below those of Newtonian fluids, and given the need for a low Reynolds number

Table 4
Numerical estimate of the order of magnitude of terms ofEq. (15)relative to terms Ia+ Ib

Term Order

IIa + IIb 100

IIc 0.1

IId 1000

IIIa + IIIb a = 0 → 1, a 	= 0 → 1000

IV a = 0 → 0.001,a 	= 0 → 100

V 100

VI + VII + VIII a = 0 → 0, a 	= 0 → 100

IX a = 0 → 0, a 	= 0 → 1

X + XI a = 0 → 0, a 	= 0 → 0.001

XII a = 0 → 0, a 	= 0 → 0.00001

XIIIa + XIIIb a = 0 → 0, a 	= 0 → 0.1

XIV a = 0 → 0, a 	= 0 → 1

XVa + XVb a = 0 → 0, a 	= 0 → 10000
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formulation, theε transport equation is

ρ
∂ε

∂t
+ ρUk

∂ε

∂xk
= −2

∂Ui

∂xk

[
(µ̄+ µ′)

∂ui

∂xm

∂uk

∂xm

]
− 2

∂Uk

∂xm

[
(µ̄+ µ′)

∂ui

∂xm

∂ui

∂xk

]

− 2
∂2Ui

∂xk∂xm

[
(µ̄+ µ′)uk

∂ui

∂xm

]
− 2(µ̄+ µ′)

∂ui

∂xm

∂ui

∂xk

∂uk

∂xm

− (µ̄+ µ′)
∂

∂xk

[
uk
∂ui

∂xm

∂ui

∂xm

]
− 2(ν̄ + ν′)

∂

∂xi

[
∂p′

∂xm

∂ui

∂xm

]

+ (µ̄+ µ′)2

ρ

∂

∂xk

[
∂

∂xk

(
∂ui

∂xm

∂ui

∂xm

)]
− 2

(µ̄+ µ′)2

ρ

∂2ui

∂xk∂xm

∂2ui

∂xk∂xm

+ 4(ν̄ + ν′)
∂2(µ̄+ µ′)
∂xm∂xk

[
∂ui

∂xm
sik

]
+ 4(ν̄ + ν′)

∂(µ̄+ µ′)
∂xk

∂ui

∂xm

∂sik

∂xm

+ 2(ν̄ + ν′)
∂(µ̄+ µ′)
∂xm

∂ui

∂xm

∂

∂xk

(
∂ui

∂xk

)
+ 4Sik

[
(ν̄ + ν′)

∂ui

∂xm

∂2µ′

∂xm∂xk

]

− 4ν′ ∂ui
∂xm

∂

∂xm

[
∂µ′

∂xk
sik

]
− 2ν′ ∂ui

∂xm

∂

∂xm

[
µ′ ∂2ui

∂xk∂xk

]
+ 2µ′ ∂ui

∂xm

∂

∂xm

[
∂uiuk

∂xk

]

+ ∂(µ̄+ µ′)
∂t

∂ui

∂xm

∂ui

∂xm
+ Uk

∂(µ̄+ µ′)
∂xk

∂ui

∂xm

∂ui

∂xm
. (45)

This equation will be further simplified when discussing its modelling in the perspective of ak–ε closure,
in the next section.

6. Modelling the transport equations for ak–ε closure

The analysis of order of magnitude of the previous section has shown what terms of the transport
equations must be retained and which to neglect under some assumptions. The relevant terms are of two
types: those that can be directly evaluated, such as the molecular diffusion or the production of turbulence
in thek equation, and those that must be modelled, such as the turbulent diffusion.

6.1. Momentum equation

The aim is to solve the momentum equation (Eq. (8)) which possesses three terms that require modelling:
the mean molecular stress 2µ̄Sij, the molecular turbulent stress 2µ′sij and the Reynolds stressuiuj.

For the mean molecular term, closure is ensured by the expression for the average viscosity (Eq. (35)).
The molecular-turbulent stress is a new term coupling the fluctuations in viscosity and in the rate of

strain tensor. It is a relevant term for shear-thinning fluids, that can only be neglected in non- or weakly
shear-thinning fluids in 2D mean flows, such as in boundary layers, jets or pipe flows. As mentioned in
Section 3, 2µ′sij brings into the momentum equation of the polymer solution both viscous and elastic
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contributions from the polymer molecules. However, 2µ̄Sij also include viscous and elastic contributions
from the polymer molecules in addition to he viscous contribution from the Newtonian solvent. It is
difficult to ascertain how the polymer contributions are split between both terms, but the fact that 2µ′sij

becomes negligible under certain conditions suggests that 2µ̄Sij takes in a significant amount of the effect.
At present 2µ′sij is dropped and its effect is basically taken by 2µ̄Sij and a new damping functionfv to be
introduced in the follow-up paper[1]. In the near future, this must be improved by an adequate modelling
of 2µ′sij.

Finally, the Reynolds stress requires modelling and henceforth in this work a first-order turbulence
closure of thek–ε type is the choice. The selection of such model may seem too simplistic an approach
but the truth is that there is no single-point turbulence model for drag reducing fluids that combine
the effects of turbulence and non-linear rheology. Therefore, ak–ε formulation seems adequate as a
starting point for semi-quantitative predictions meaning that the trends will be captured, a significant
drag reduction will also obtained but predictions will not always match experimental results.

For the Reynolds stress, the Boussinesq approximation or gradient hypothesis is used

−uiuj = νT

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
− 2

3
kδij, (46)

with the turbulent eddy viscosity given by the Prandtl–Kolmogorov equation

νT = Cµfµ
k2

ε
. (47)

In Eq. (47)there is a damping functionfµ that is needed for low Reynolds number models, but is equal
to 1 in high Reynolds number formulations and away from the wall. This, and other damping functions
appearing later, account for physical inadequacies in modelling[44]. Naturally, since the fluids involved
are now non-Newtonian, the damping functionfµ, parameterCµ and other parameters and damping
functions found in Newtonian models must be evaluated differently. This is done by Cruz and Pinho[1]
and is partially inspired by the work of Cruz et al.[31] for inelastic power law fluids.

6.2. Transport equation for k

In Eq. (43)only the terms within the square brackets need modelling. There is one term due to the inter-
action of velocity and pressure fluctuations (pressure diffusion) and a second term due to the interaction
of velocity fluctuations with Reynolds stresses, both grouped together under the name of turbulent diffu-
sion. The third term is the molecular diffusion of turbulent kinetic energy differing from the Newtonian
definition because it involves the average molecular viscosity.

Pressure diffusion has a small contribution in Newtonian flows and is not expected to behave differently
with the non-Newtonian fluids. In fact, the DNS simulations of Dimitropoulos et al.[22] and De Angelis
et al.[38] show that viscoelasticity decreases pressure diffusion. Hence, the usual approach in its modelling
is used: pressure diffusion is lumped with turbulent diffusion and modelled as a symmetric term or,
equivalently it is neglected.

Since turbulent diffusion is independent of the constitutive equation, it is modelled exactly as for
Newtonian fluids using the classical gradient model

ujp+ 1

2
uiujui = −ρνT

σk

∂k

∂xj
, (48)
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whereσk is an empirical coefficient called the turbulent Prandtl number. The final form of the transport
equation ofk is

ρ
Dk

Dt
= ∂

∂xj

[
ρ
νT

σk

∂k

∂xj
+ µ̄

∂k

∂xj

]
− ρuiujSij − ρε. (49)

6.3. Transport equation for ε

The equation with the most substantial number of modifications is the transport equation for the rate
of dissipation of turbulent kinetic energy. Unfortunately, there is still no viscoelastic DNS work with a
budget ofε to guide modelling.

The dissipation equation concerns physical processes in the dissipative range but for its modelling with
Newtonian fluidsε is viewed rather as an energy flow rate in the energy cascade, i.e. a large scale motion
quantity. Consequently, the modelled transport equation ofε for Newtonian fluids is basically empirical
and the same approach is used in this work. Therefore, inspection of the various terms of the exact equation
of ε basically serves the purpose of identifying similarities with the corresponding Newtonian equation
and the physical mechanisms involved in order to help in their modelling.

Terms IIa, IIb and IIc correspond to the production ofε, because they quantify the interaction between
ε and the mean flow gradient, and now they also include the effect of variable viscosity. Terms IId in
Eqs. (15) and (44)pertain to the generation of vorticity fluctuations which are often included as part of
the destruction ofε [45]. In the Newtonian equation, term IIc is usually neglected in comparison with
term IId with the argument that the fluctuations of velocity and its gradient in IIc are less well correlated
than the gradient quantities in IId[45]. The same approach is adopted here and it is worth remembering
that in the presence of drag reducing fluids the correlations between turbulent quantities usually decrease
in comparison with their Newtonian equivalents. This was seen to be the case in the Reynolds stress and
k budgets obtained by Dimitropoulos et al.[22] and De Angelis et al.[38] with DNS and experimentally
in several works[13], so there is no reason to believe that it can not be so also for theε equation.

Regarding terms IIa and IIb, under the assumption of isotropic dissipation (small scales) they are
neglected here. This is one of the issues that may have to be reviewed in the future given the tendency for
fluid elasticity to accentuate anisotropy of turbulence (large scales).

µ
∂ui

∂xl

∂uj

∂xm
= 0, wheni = j andl 	= m, i 	= j andl = m. (50)

For Newtonian fluids, Hanjalic and Launder[46] modelled the production ofε (terms IIa+ IIb) by not
assuming isotropy of dissipation but then modelled the generation of vorticity fluctuations (IId) and the
destruction ofε (V) in a different way so that, the sum IIa+ IIb + IIc + V gives rise to two terms in the
modelled equation that exactly match the modelling of other authors who assumed isotropy of dissipation
(Eq. (50)). Therefore, defining the production ofε asPε ≡ IIa + IIb + IIc + IId, this is modelled as

Pε ≡ −ρf1Cε1
ε

k
uiuj

∂Ui

∂xj
= ρf1Cε1

ε

k
νT

(
∂Ui

∂xj

)2

= ρf1Cε1
ε

k
Cµfµ

k2

ε

(
∂Ui

∂xj

)2

. (51)

This model of production automatically considers the modifications due to the variable molecular vis-
cosity in the modified definition of average rate of dissipation. The damping functionf1 accounts for
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modelling inadequacies at low Reynolds numbers and near walls may need to be modified to account for
non-Newtonian effects.

The next two terms inEqs. (15) and (44)(terms IIIa+ IIIb) must be analysed cautiously. In the
Newtonian equation (44) IIIa represents the turbulent diffusion of dissipation by the velocity fluctuations,
whereas the role of pressure fluctuations on turbulent diffusion is accounted for by term IIIb. For the
non-Newtonian fluids it is convenient to further manipulate these terms. Term IIIa is separated into two
subterms as follows:

−(µ̄+ µ′)
∂

∂xk

[
uk
∂ui

∂xm

∂ui

∂xm

]
︸ ︷︷ ︸

IIIa

= − ∂

∂xk

(
ρukε̂

)
︸ ︷︷ ︸

IIIa1

+ uk
∂(µ̄+ µ′)

∂xk

(
∂ui

∂xm

)2

︸ ︷︷ ︸
IIIa2

. (52)

The first term on the right-hand side is the classical turbulent diffusion and the second term is purely
non-Newtonian, having the same order of magnitude of the whole term IIIa inTable 2. This is very
important because the order of magnitude of term IIIa for non-Newtonian fluids was 100 times larger
than for Newtonian fluids, i.e. the magnitude of IIIa1 is quite small in comparison to that of term IIIa2.
Modelling of IIIa2 is discussed below inEq. (59).

Term IIIb can also be split as

−(ν̄ + ν′)
∂

∂xk

[
∂p′

∂xm

∂ui

∂xm

]
︸ ︷︷ ︸

IIIb

= −2
∂

∂xk

[
(ν̄ + ν′)

∂ui

∂xm

∂p′

∂xm

]
︸ ︷︷ ︸

IIIb1

+ 2
∂p′

∂xm

∂ui

∂xm

∂(µ̄+ µ′)
∂xi︸ ︷︷ ︸

IIIb2

, (53)

with term IIIb1 accounting for diffusion by pressure fluctuations and the second term associated with
viscosity variations. The latter is again the predominant contribution and is the main responsible for the
order of magnitude of the whole term IIIb.

However, at the moment term IIIb2 is neglected for lack of knowledge on how to model it. Politis
[30] has considered this term to have a negligible influence and assumed that its magnitude was smaller
and similar to that of our term IIIb1. To estimate the order of magnitude of term IIIb2, he usedL as the
length scale for the gradient of pressure fluctuations (we usedl). In the absence of more information, we
consider the view of Politis[30] and so the effect of coupling pressure gradient with viscosity gradient
fluctuations is assumed included in the modelling of term IIIb1. In conclusion, terms IIIa1+ IIIb1 + IIIb2
are modelled together and as part of turbulent diffusion, but in the future term IIIb2 may have to be
specified separately and in a different way.

Finally, there is an extra non-Newtonian turbulent diffusion term due to viscosity fluctuations (term
XIV in Eq. (15)). As seen above, term XIV is small compared with terms IIIa1+ IIIb1 and so, together
these three contributions, in addition to term IIIb2, will be denoted asDε. In the analysis of Politis[30]
for purely viscous fluids term XIV was also shown to be negligible.

In a classicalk–ε closure, the turbulent diffusionDε is often modelled with a gradient transport hy-
pothesis: the argument is that, for a continuum flow, the time and length scales of the fluctuations and of
the molecular processes are different by many orders of magnitude, but the time and length scales of the
mean and fluctuating flows are of similar magnitudes. For thek–ε closure it is further assumed that the
turbulence is isotropic leading to

Dε = ∂

∂xi

(
ρCε

k2

ε

∂ε

∂xi

)
= ∂

∂xi

(
ρ
νT

σε

∂ε

∂xi

)
. (54)
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There are also alternative models to account for anisotropic turbulent diffusion ofε and these will be
needed in the future, since turbulence anisotropy is enhanced in viscoelastic turbulent flow.

Molecular diffusion ofε is a rather complex combination of terms in the non-Newtonian equation.
Whereas inEq. (44) that mechanism is only represented by term IV (µ∇2ε), in Eq. (15)molecular
diffusion is IV + VI + VII + VIII. At high Reynolds number flows the molecular diffusion is usually
neglected in comparison to turbulent diffusion, but in a low Reynolds number formulation it must be
included. Although one may assume that the contributions VI, VII and VIII can be neglected, because
they involve first and second derivatives of the total viscosity, the order of magnitude analysis has shown
that they tend to be as important as term IV for a non-Newtonian fluid. However, their relevance is well
below that of the new terms XV and IIIa2, hence, as a first approximation those new terms (VI, VII and
VIII) are not considered.

Therefore, molecular diffusion of dissipation is calculated as

∂

∂xi

(
µ̄
∂ε

∂xj

)
, (55)

where the non-Newtonian contribution to the viscosity is accounted for inµ̄.
The last term on the right-hand side of the Newtonian equation (44) represents the destruction of

dissipation by viscosity (Φε). Its equivalent form for non-Newtonian fluids is term V inEq. (15). In the
standard model for Newtonian fluids, Hanjalic and Launder[46] consider

Φε = −ρf2Cε2
ε2

k
, (56)

wheref2 takes the value of 1. Near the wall this damping function accounts for deficiencies in modelling
Φε. Here, term V of the non-Newtonian equation (15) is modelled in the same way, i.e. byEq. (56)and
the damping functionf2 may have to be modified in the future.

Concerning the most important new term(XVa + XVb), Politis [30] has also shown it to be impor-
tant in his purely viscous analysis, and his modelling options are taken here. Term XVa is modelled
as

ρ
∂ui

∂xm

∂ui

∂xm

∂(µ̄+ µ′)
∂t

= ρ
ε̂

µ̂

∂µ̂

∂t
≈ ρCε3

ε

µ̄

∂µ̄

∂t
, (57)

but is only required for transient flows. Similarly, for term XVb

ρUk

∂ui

∂xm

∂ui

∂xm

∂(µ̄+ µ′)
∂xk

= ρUk

ε̂

µ̂

∂µ̂

∂xk
≈ ρCε3

ε

µ̄
Uk

∂µ̄

∂xk
. (58)

The relevance of these two terms XV is not surprising: they originate in the convective momentum-transport
and take into account the gradients of viscosity. In fact, the advection ofε involves the gradients ofε and
so, with its new definition it is necessary to account for both the spatial gradients of the instantaneous
rates of deformation, this is the classical advective term ofε, as well as the spatial gradients of the variable
viscosity which leads to the new term ofEq. (58). For the time gradient part ofε a similar decomposition
is required leading to the new term ofEq. (57). The two classical terms derived from the convective
momentum transport, and accounting for both the time and spatial gradients of the rates of deformation,
are those on the left-hand side ofEq. (15), the convective transport ofε (terms Ia and Ib).
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Naturally, under conditions of symmetry for which the convective terms Ia and Ib are null, the viscosity
gradient convective terms XVa and XVb also become zero.

In modelling XVa and XVb the gradient of instantaneous viscosity is approximated by the gradient of
average viscosity and then this quantity is decoupled from the square gradients of velocity. Then, this
square gradient of velocity is related to the rate of dissipation divided by the time-average viscosity and
a parameterCε3 is introduced to account for deficiencies in this decoupling. ParameterCε3 will require
quantification in the future. Note that in the second part of this work on turbulent fully developed pipe
flow [1] this term does not appear due to geometric symmetry.

Term IIIa2 has mathematical similarities to term XVb, in that the fluctuating velocity has substituted
the mean velocity. Physically, the term represents turbulent diffusion (cf.Eq. (52)) and hence it will be
modelled as
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∂(µ̄+ µ′)

∂xk

∂ui

∂xm

∂ui

∂xm
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ρε̂

(µ̄+ µ′)
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∂xk
∼ Cε4ρukε̂

1

µ̄

∂µ̄

∂xk
∼ Cε4

νT

σεν̄

∂ε

∂xk

∂µ̄

∂xk
, (59)

where use is made of the gradient transport hypothesis as in term IIIa1:

ukε̂ ∼ νT

σε

∂ε

∂xk
(60)

and inEq. (59)some of the approximations are the same used to model XVb. ParameterCε4 requires
quantification.

In conclusion, the final form of the modelled dissipation equation for a low Reynolds number formu-
lation is
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∂ε
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. (61)

6.4. Model parameters and functions

The turbulence model has introduced several parameters and damping functions: most also exist in a
Newtonian formulation (Cµ, fµ, f1, f2, Cε1, Cε2), whereas others are new and specific to the non-Newtonian
formulation (Cε3, Aε, A2, Cε4). This does not mean that the first set of parameters and functions is known
and only the second must be quantified. The non-Newtonian rheology certainly changes the turbulence
dynamics typical of Newtonian fluids, so classical terms are also affected. This means that there are
changes in the turbulent flow behaviour of viscoelastic fluids in reference flows that are essential to
determine the numerical values of the parameters as we see in the next section. Unfortunately, very often
no such data are available and the Newtonian values are kept. This issue, together with other relevant
points, are addressed in the second part of this work[1] which applies this turbulence model to the
prediction of fully developed pipe flow of different polymer solutions and compares the results with
experimental data.
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7. Behaviour in isotropic grid turbulence

One of the fundamental flows for determining turbulence model parameters is the decay of isotropic
turbulence generated in a grid[44,45]. Such simple flows can also show whether new formulations are
able to capture certain essential features.

Given the properties of this flow and of isotropic turbulence, and particularly the absence of directional
correlations for triple correlations of vectors and for double correlations between vectors and scalars, the
transport equations ofk andε take the forms ofEqs. (62) and (63), respectively:

dk

dt
= U0

dk

dx
= −ε, (62)

dε

dt
= U0

dε

dx
= −Cε2ε

2

k
+ Cε3

ε

µ̄
U0

dµ̄

dx
, (63)

whereU0 is the uniform flow mean velocity in thex direction. Thek equation is the same regardless of
fluid rheology, whereas the last term on the right-hand side ofEq. (63)is absent for a Newtonian fluid.
However, we also assume thatCε2 takes on the same values for Newtonian and non-Newtonian fluids.

According to the adopted constitutive model, where the influence of the polymer is basically introduced
in the non-linear viscosity variation, and more specifically extensional effects are introduced via exponent
p, it is the spatial gradient of the molecular viscosity that will determine whether the rate of decay ofk
is faster or slower than for Newtonian fluids. Before proceeding it is helpful to understand the physical
meaning of this new term inEq. (63). As mentioned when the new term was modelled in the previous
section (see discussion belowEq. (58)), it is not too different from the term on the left-hand side of
Eq. (63): convective terms account for spatial gradients ofε, but now it is necessary to account for both
the spatial gradients of the product of instantaneous rates of deformation (leading to the classical left-hand
side term) as well as to the gradients of viscosity, leading to the new term inEq. (63). So, the new term can
be thought of as a correction to the classical convective term because of the slightly different definition
of ε taking into account a variable viscosity.

In the following analysis of the rate of decay ofk we assume that the production of turbulence at the
grid is independent of fluid rheology, i.e. the initial values ofk andε are identical for Newtonian and
non-Newtonian fluids. It is also helpful to analyse first the Newtonian situation for which it is easy to
arrive at an expression fork andε [45]. Since there is no production of turbulence,k andε must decay
longitudinally according to

k = axr, (64)

ε = −U0arxr−1, (65)

with r taking some negative value which for Newtonian fluids is close to−1.1. This is a consequence of
the first term on the right-hand side ofEq. (63)being always negative.

For drag reducing fluids,Eqs. (64) and (65)are also solutions toEqs. (62) and (63)although the
complex dependence ofµ̄ on ε andk (Eq. (35)) make it more laborious and the parametersa andr are
necessarily different from the corresponding Newtonian parameters. This is obvious because the absence
of turbulence production requiresk to decay. The real issue, however, is whether this decay is faster or
slower than for Newtonian fluids.
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Since this flow has null average shear rates, in the absence of turbulence the molecular viscosity will
be determined by the first Newtonian plateau. Turbulence will change the molecular viscosity and here
there are two possibilities:

(i) If parametersn andp are such that̄µ shear-thins (say,n < 1, p = 1), then d̄µ/dx > 0 because of
the decrease ofk with x. This entails a positive second term on the right-hand side ofEq. (63)and so
0 > (dε/dx)NN > (dε/dx)N, i.e. the rate of dissipation decays slower for non-Newtonian than for
Newtonian fluids (subscripts N and NN stand for Newtonian and non-Newtonian fluids, respectively).
The consequence is that the non-Newtonian dk/dx is more negative than the Newtonian dk/dx and so
rNN < rN < 0 in Eqs. (64) and (65).

(ii) If parametersn andp are such that̄µ strain-hardens (say,n = 1, p > 1), then d̄µ/dx < 0 again
because of the decrease ofk with x. Now, in contrast to the previous case the second term on the
right-hand side ofEq. (63)is negative, therefore the rate of dissipation decays faster 0> (dε/dx)N >

(dε/dx)NN, εNN < εN and the turbulent kinetic energy for the non-Newtonian fluid decays slower
than for the Newtonian case.

It is this second case (p > 1, n = 1) that is representative of many dilute polymer solutions that
show drag reduction in pipe flow. Unfortunately, the data in the literature for the decay of grid turbulence
are scarce but still show tendencies of behaviour. Greated[48] measured a Newtonian decay ofk with
r = −1.9, when it should be closer to−1.1, but his measurements indicated a non-Newtonian exponent
of −1.5 for 1000 wppm polyethylene oxide, i.e. his rate of decay of turbulence for drag reducing fluids
was lower than for Newtonian fluids. This reduction in the decay rate ofk for polymer solutions was later
confirmed by Mc Comb et al.[49].

Note that in this work the determination of parametersKv, Ke, n andp in Eq. (7)has not been specified.
As shown in the companion paper[1] the term withKv andn accounts for the pure viscometric behaviour,
whereas the term involvingKe andp quantifies the Trouton ratio, meaning thatp > 1 only for fluids
where the ratio of extensional over the shear viscosities increase with the rate of deformation of the fluid.
These are the fluids that can have large amounts of drag reductions (see also[37]).

8. Conclusions

The transport equations for momentum, Reynolds stresses, turbulent kinetic energy and its rate of
dissipation were derived for the GNF model. This model accurately predicts shear-thinning, but was
modified to include strain rate effects aimed at mimicking strain-hardening of the extensional viscosity,
considered to be the most important rheological characteristic for the occurrence of drag reduction. These
transport equations, except that for the Reynolds stresses, were subsequently simplified after an analysis
of order of magnitude identified the relevant term to retain. Since viscosity is a non-linear function of
kinematic quantities, it will have fluctuations due to turbulence, and in this work a closed form for the
average molecular viscosity was also derived.

At the end of the paper a low Reynolds numberk–ε model is formulated, which includes some new
terms not present in the classicalk–ε model for Newtonian fluids. The suggested model is presented in
closed form and the remaining details required for its useful application to engineering wall flows, such as
the quantification of model parameters and damping functions, are presented in a follow-up paper[1]. It
was also shown that the presentk–εmodel can predict a slower rate of decay of grid generated turbulence
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than that of Newtonian fluids for fluids having a Trouton-thickening viscosity variation, in agreement
with results from the literature.

The results of this work are not restricted to the model to be used in[1], but remain valid for other specific
turbulence models for viscoelastic fluids, provided their rheology is modelled with a GNF equation. It
is realised that further improvements to the model derived at the end are still required and that more
advanced first-order non-linear and second-order models are advantageous. However, we should first
fully explore the current model to weigh its merits and shortcomings, the subject of the paper by Cruz
and Pinho[1].
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Appendix A. Conservation equations for generalised Newtonian fluids in turbulent flow

The derivation of the various conservation equations for the turbulent flow of GNF fluids follows the
same guidelines as for Newtonian fluids.

The continuity equation remains unchanged as it is independent of the rheological constitutive equation.
However, the momentum equation, and all other dependent conservation equations will be affected. The
starting point is always the Cauchy equation for thei-component of the velocity vector.

In all that follows a hat designates instantaneous values, capital letters or overbars refer to average
values and small letters or primes refer to fluctuations.

A.1. Momentum equation

The Cauchy equation for thei-component of the instantaneous velocity vector is

ρ
DÛi

Dt
= − ∂p̂

∂xi
+ ∂σ̂ik

∂xk
, (A.1)

whereσik is the deviatoric stress tensor and D/Dt represents the total derivative(D/Dt ≡ ∂/∂t+Uk∂/∂xk).
Applying the Reynolds decomposition and taking the time-average, after substitution of the constitutive

equation for the stress tensor, results in

ρ
∂Ui

∂t
+ ρUk

∂Ui

∂xk
= − ∂p

∂xi
+ ∂(2µ̄Sik + 2µ′sik − ρuiuk)

∂xk
. (A.2)

Eq. (A.2)is the momentum conservation equation for GNF fluids and it has an extra term(2µ′sik) relative
to the corresponding Newtonian equation.
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A.2. The Reynolds stress transport equation

Following Hinze[47], to deduce the transport equation for the Reynolds stress componentij, one first
takes the instantaneousi-component momentum equation (A.3):

ρ
∂(Ui + ui)

∂t
+ ρ(Uk + uk)

∂(Ui + ui)

∂xk
= − ∂p

∂xi
− ∂p′

∂xi
+ ∂

∂xk
[2(µ̄+ µ′)(Sik + sik)], (A.3)

and subtracts from it the time-averaged momentum conservation (Eq. (A.2)) to yield an equation on the
fluctuations of thei-velocity component (Lui) onto which the zero quantityρui(∂uk/∂xk) was added.

Lui : ρ
∂ui

∂t
+ ρUk

∂ui

∂xk
+ ρuk

∂Ui

∂xk
+ ρ

∂

∂xk
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= −∂p′

∂xi
+ 2

∂

∂xk
(µ̄sik + µ′Sik + µ′sik − µ′sik). (A.4)

Identically for thej-component of momentum gives equationLuj.
Next, equationsLui andLuj are combined asuiLuj + ujLui to yieldEq. (A.5)

ρ
∂(uiuj)

∂t
+ρUk

(
uj
∂ui

∂xk
+ ui

∂uj

∂xk

)
+ ρujuk

∂Ui

∂xk
+ ρuiuk

∂Uj

∂xk

+ ρuj
∂

∂xk
(uiuk − uiuk)+ ρui

∂

∂xk
(ujuk − ujuk)

= −uj ∂p
′

∂xi
− ui

∂p′

∂xj
+ 2uj

∂

∂xk
(µ̄sik + µ′sik + µ′Sik − µ′sik)

+ 2ui
∂

∂xk
(µ̄sjk + µ′sjk + µ′Sjk − µ′sjk). (A.5)

Time-averaging equation (A.5), grouping together the advective terms and after some algebra one gets

ρ
Duiuj

Dt
+ ρujuk

∂Ui

∂xk
+ ρuiuk

∂Uj

∂xk
+ ρ

∂

∂xk
uiujuk

= − ∂

∂xi
p′uj − ∂

∂xj
p′ui + p′ ∂uj

∂xi
+ p′ ∂ui

∂xj
+ 2uj

∂

∂xk
(µ̄sik)+ 2ui

∂

∂xk
(µ̄sjk)

+2uj
∂

∂xk
(µ′sik)+ 2ui

∂

∂xk
(µ′sjk)+ 2uj

∂

∂xk
(µ′Sik)+ 2ui

∂

∂xk
(µ′Sjk). (A.6)

All the non-viscous terms were written in the traditional way and below the viscous terms are rearranged to
facilitate their identification.Eq. (A.6)has “Newtonian-like” terms (some of those involving the average
viscosityµ̄) and non-Newtonian terms (some of those involvingµ̄ and all terms withµ′). Looking first
at the average viscosity terms

2uj
∂

∂xk
(µ̄sik)+ 2ui

∂

∂xk
(µ̄sjk)= µ̄uj

∂

∂xk

(
∂ui

∂xk
+ ∂uk

∂xi

)
+ µ̄ui

∂

∂xk

(
∂uj

∂xk
+ ∂uk

∂xj

)

+ ∂µ̄

∂xk
uj

(
∂ui

∂xk
+ ∂uk

∂xi

)
+ ∂µ̄

∂xk
ui

(
∂uj

∂xk
+ ∂uk

∂xj

)
. (A.7)
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Since

∂2

∂xk∂xk
uiuj = ui

∂2uj

∂xk∂xk
+ uj

∂2ui

∂xk∂xk
+ 2

∂ui

∂xk

∂uj

∂xk
and

∂

∂xk

(
∂uk

∂xi

)
= ∂

∂xi

(
∂uk

∂xk

)
= 0,

the right-hand side terms inEq. (A.7)become

µ̄uj
∂2ui

∂xk∂xk
+ µ̄ui

∂2uj

∂xk∂xk
+ ∂µ̄

∂xk

∂

∂xk
(uiuj)+ ∂µ̄

∂xk

[
uj
∂uk

∂xi
+ ui

∂uk

∂xj

]

= µ̄
∂2

∂xk∂xk
uiuj − 2µ̄

∂ui

∂xk

∂uj

∂xk
+ ∂µ̄

∂xk

∂

∂xk
uiuj + ∂µ̄

∂xk

[
∂

∂xi
ukuj + ∂

∂xj
ukui − 2uksij

]
. (A.8)

In Eq. (A.8)the first two terms are “Newtonian-like”, whereas the last two terms are non-Newtonian and
take into account the gradients of the average molecular viscosity within the flow field.

A similar rearrangement can be carried out for the other two groups of two terms. First, for those
involving fluctuations of the viscosity and of the rate of deformation tensor

2uj
∂

∂xk
(µ′sik)+ 2ui

∂

∂xk
(µ′sjk)

= µ′uj
∂

∂xk

(
∂ui

∂xk
+ ∂uk

∂xi

)
+ µ′ui

∂

∂xk

(
∂uj

∂xk
+ ∂uk

∂xj

)

+ ∂µ′

∂xk
uj

(
∂ui

∂xk
+ ∂uk

∂xi

)
+ ∂µ′

∂xk
ui

(
∂uj

∂xk
+ ∂uk

∂xj

)

= µ′uj
∂2ui

∂xk∂xk
+ µ′ui

∂2uj

∂xk∂xk
+ ∂µ′

∂xk

∂uiuj

∂xk
+ ∂µ′

∂xk

(
uj
∂uk

∂xi
+ ui

∂uk

∂xj

)

= µ′ ∂
2uiuj

∂xk∂xk
− 2µ′ ∂ui

∂xk

∂uj

∂xk
+ ∂µ′

∂xk

∂uiuj

∂xk
+ ∂µ′

∂xk

(
uj
∂uk

∂xi
+ ui

∂uk

∂xj

)
, (A.9)

and now for the terms depending on the fluctuating viscosity and the average rate of deforma-
tion

2uj
∂

∂xk
(µ′Sik)+ 2ui

∂

∂xk
(µ′Sjk)

= µ′uj
∂

∂xk

(
∂Ui

∂xk
+ ∂Uk

∂xi

)
+ µ′ui

∂

∂xk

(
∂Uj

∂xk
+ ∂Uk

∂xj

)
+ ∂µ′

∂xk
uj

∂

∂xk

(
∂Ui

∂xk
+ ∂Uk

∂xi

)

+∂µ′

∂xk
ui

∂

∂xk

(
∂Uj

∂xk
+ ∂Uk

∂xj

)

= µ′uj
∂2Ui

∂xk∂xk
+ µ′ui

∂2Uj

∂xk∂xk
+ uj

∂µ′

∂xk

(
∂Ui

∂xk
+ ∂Uk

∂xi

)
+ ui

∂µ′

∂xk

(
∂Uj

∂xk
+ ∂Uk

∂xj

)
. (A.10)
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Everything can now be assembled into the final form of the Reynolds stress equation

ρ
Duiuj

Dt
+ ρujuk

∂Ui

∂xk
+ ρuiuk

∂Uj

∂xk

= −ρ ∂

∂xk
uiujuk −

(
∂

∂xi
p′uj + ∂

∂xj
p′ui

)
+ p′

(
∂uj

∂xi
+ ∂ui

∂xj

)
+ µ̄

∂2uiuj

∂xk∂xk
− 2µ̄

∂ui

∂xk

∂uj

∂xk

+ ∂µ̄

∂xk

∂uiuj

∂xk
+ ∂µ̄

∂xk

(
∂ukuj

∂xi
+ ∂ukui

∂xj
− 2uksij

)
+ µ′ ∂

2uiuj

∂xk∂xk
− 2µ′ ∂ui

∂xk

∂uj

∂xk
+ ∂µ′

∂xk

∂uiuj

∂xk

+ ∂µ′

∂xk

(
uj
∂uk

∂xi
+ ui

∂uk

∂xj

)
+ µ′uj

∂2Ui

∂xk∂xk
+ µ′ui

∂2Uj

∂xk∂xk
+ uj

∂µ′

∂xk

(
∂Ui

∂xk
+ ∂Uk

∂xi

)

+ui ∂µ
′

∂xk

(
∂Uj

∂xk
+ ∂Uk

∂xj

)
. (A.11)

A.3. The turbulent kinetic energy transport equation

There are two different ways to deduce this equation: either from first principles, using a methodology
similar to that used here to get the Reynolds stress equation, or by contraction of indices of the Reynolds
stress equation. The first strategy is adopted here. Consider again thei-momentum equation written in
terms of the instantaneous values (Eq. (A.3)) and the time-average momentum equation for the same
i-component (Eq. (A.2)). Eq. (A.3) is multiplied by the instantaneous velocity(Ui + ui) leading to
Eq. (A.12)and (Eq. (A.2)) is multiplied by the time-average velocityUi leading toEq. (A.13):

ρ(Ui + ui)

[
∂(Ui + ui)

∂t
+ (Uk + uk)

∂(Ui + ui)

∂xk

]

= (Ui + ui)

[
− ∂p

∂xi
− ∂p′

∂xi

]
+ (Ui + ui)

∂

∂xk
[2(µ̄+ µ′)(Sik + sik)], (A.12)

ρUi

[
∂Ui

∂t
+ Uk

∂Ui

∂xk

]
= −Ui

∂p

∂xi
+ Ui

∂

∂xk
[2µ̄Sik + 2µ′sik − ρuiuk]. (A.13)

Eq. (A.13)is now subtracted fromEq. (A.12)and the result is time-averaged, to yield

ρui
∂ui

∂t
+ ρUkui

∂ui

∂xk
+ ρuiuk

∂Ui

∂xk
+ ρuiuk

∂ui

∂xk
= −ui ∂p

′

∂xi
+ 2ui

∂(µ̄sik + µ′Sik + µ′sik)

∂xk
. (A.14)

Now, a few transformations are performed: first, the turbulent kinetic energyk is defined ask ≡ u2
ii/2,

and its fluctuation ask′ ≡ u2
ii/2. Secondly,

∂

∂xk
(p′uk) = p′ ∂uk

∂xk
+ uk

∂p′

∂xk
= uk

∂p′

∂xk
,

and given the symmetries ofsik (generallysijAij = (∂ui/∂xk)Aij) and ofuiuj, uiuk(∂Ui/∂xk) = uiukSik.
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Finally, since∂uiµ̄sik/∂xk = ui(∂(µ̄sik))/∂xk + µ̄sik(∂ui/∂xk), back-substituting leads to the following
form of the turbulent kinetic energy equation

ρ
Dk

Dt
= −ρuiukSik − ∂uip′

∂xi
+ ∂

∂xk
(2µ̄uisik + 2µ′uiSik + 2µ′uisik − k′uk)

− 2µ̄siksik − 2µ′siksik − 2µ′sikSik. (A.15)

A.4. The transport equation for the rate of dissipation of turbulent kinetic energy

Following Speziale[43], the transport equation for the rate of dissipation of turbulent kinetic energy is
obtained as

2µ̂
∂ui

∂xm

∂

∂xm
(Lui) = 0, (A.16)

whereLui is the equation of the fluctuations of thei-velocity component (Eq. (A.4)).
Next, applying the operators ontoEq. (A.16)and time-averaging leads to

2µ̂
∂ui

∂xm

∂

∂xm

(
ρ

Dui
Dt

)
︸ ︷︷ ︸

I and II

+ 2µ̂
∂ui

∂xm

∂

∂xm

(
ρuk

∂Ui

∂xk

)
︸ ︷︷ ︸

III

+ 2µ̂
∂ui

∂xm

∂

∂xm

[
ρ
∂

∂xk
(uiuk)

]
︸ ︷︷ ︸

IV

− 2µ̂
∂ui

∂xm

∂

∂xm

[
ρ
∂

∂xk
(uiuk)

]
︸ ︷︷ ︸

V

+ 2µ̂
∂ui

∂xm

∂

∂xm

(
∂p′

∂xi

)
︸ ︷︷ ︸

VI

− 4µ̂
∂ui

∂xm

∂

∂xm

[
∂

∂xk
(µ̄sik)

]
︸ ︷︷ ︸

VII

− 4µ̂
∂ui

∂xm

∂

∂xm

[
∂

∂xk
(µ′sik)

]
︸ ︷︷ ︸

VIII

− 4µ̂
∂ui

∂xm

∂

∂xm

[
∂

∂xk
(µ′Sik)

]
︸ ︷︷ ︸

IX

+ 4µ̂
∂ui

∂xm

∂

∂xm

[
∂

∂xk
(µ′sik)

]
︸ ︷︷ ︸

X

= 0.

(A.17)

All terms of Eq. (A.17) contain the viscosity and hence will be different from those in the corre-
sponding Newtonian equation. Next, each of the terms is analysed. Terms I and II can each be split
into a local time variation term and an advective term. All terms will be named as either Newto-
nian (N) if they exist for the equivalent Newtonian equation, or as non-Newtonian (NN) if they are
new.

• Term I

2µ̂
∂ui

∂xm

∂

∂xm

(
ρ
∂ui

∂t

)
= ρµ̄

∂

∂t

(
∂ui

∂xm

∂ui

∂xm

)
︸ ︷︷ ︸

Ia (N)

+ ρµ′ ∂
∂t

(
∂ui

∂xm

∂ui

∂xm

)
︸ ︷︷ ︸

Ib (NN)

.



F.T. Pinho / J. Non-Newtonian Fluid Mech. 114 (2003) 149–184 179

• Term II

2ρµ̂
∂ui

∂xm

∂

∂xm

(
Uk

∂ui

∂xk

)
= 2ρ

∂Uk

∂xm



µ̄
∂ui

∂xm

∂ui

∂xk︸ ︷︷ ︸
(N)

+ µ′ ∂ui
∂xm

∂ui

∂xk︸ ︷︷ ︸
(NN)︸ ︷︷ ︸

IIa




+ ρUk



µ̄
∂

∂xk

[
∂ui

∂xm

∂ui

∂xm

]
︸ ︷︷ ︸

(N)

+ µ′ ∂
∂xk

[
∂ui

∂xm

∂ui

∂xm

]
︸ ︷︷ ︸

(NN)︸ ︷︷ ︸
IIb



.

• Term III

2ρµ̂
∂ui

∂xm

∂

∂xm

(
uk
∂Ui

∂xk

)
= 2ρ

∂Ui

∂xk



µ̄
∂ui

∂xm

∂uk

∂xm︸ ︷︷ ︸
(N)

+ µ′ ∂ui
∂xm

∂uk

∂xm︸ ︷︷ ︸
(NN)︸ ︷︷ ︸

IIIa




+ 2ρ
∂2Ui

∂xk∂xm



µ̄uk

∂ui

∂xm︸ ︷︷ ︸
(N)

+ µ′uk
∂ui

∂xm︸ ︷︷ ︸
(NN)︸ ︷︷ ︸

IIIb



.

• Term IV

2ρµ̂
∂ui

∂xm

∂

∂xm

[
∂(uiuk)

∂xk

]
= 2ρµ̄

∂ui

∂xm

∂ui

∂xk

∂uk

∂xm︸ ︷︷ ︸
IVa (N)

+ 2ρµ′ ∂ui
∂xm

∂ui

∂xk

∂uk

∂xm︸ ︷︷ ︸
IVb (NN)

+ ρµ̄
∂

∂xk

(
uk
∂ui

∂xm

∂ui

∂xm

)
︸ ︷︷ ︸

IVc (N)

+ ρµ′ ∂
∂xk

[
uk
∂ui

∂xm

∂ui

∂xm

]
︸ ︷︷ ︸

IVd (NN)

.



180 F.T. Pinho / J. Non-Newtonian Fluid Mech. 114 (2003) 149–184

• Term V

2ρµ̂
∂ui

∂xm

∂

∂xm

[
∂uiuk

∂xk

]
= 2ρµ̂

∂ui

∂xm

∂

∂xm

[
∂uiuk

∂xk

]
︸ ︷︷ ︸

V (NN)

.

• Term VI

2µ̂
∂ui

∂xm

∂

∂xm

(
∂p′

∂xi

)
= 2µ̄

∂

∂xi

(
∂p′

∂xm

∂ui

∂xm

)
︸ ︷︷ ︸

VIa (N)

+ 2µ′ ∂
∂xi

(
∂p′

∂xm

∂ui

∂xm

)
︸ ︷︷ ︸

VIb (NN)

.

• Term VII

4µ̂
∂ui

∂xm

∂

∂xm

[
∂

∂xk
(µsik)

]
= 2µ̄

∂2µ̄

∂xm∂xk

∂ui

∂xm

(
∂ui

∂xk
+ ∂uk

∂xi

)
︸ ︷︷ ︸

VIIa (NN)

+ 2
∂2µ̄

∂xm∂xk
µ′ ∂ui
∂xm

(
∂ui

∂xk
+ ∂uk

∂xi

)
︸ ︷︷ ︸

VIIa ′ (NN)

+ 2µ̄
∂µ̄

∂xk

∂ui

∂xm

∂

∂xm

(
∂ui

∂xk
+ ∂uk

∂xi

)
︸ ︷︷ ︸

VIIb (NN)

+ 2
∂µ̄

∂xk
µ′ ∂ui
∂xm

∂

∂xm

(
∂ui

∂xk
+ ∂uk

∂xi

)
︸ ︷︷ ︸

VIIb ′ (NN)

+ 2µ̄
∂µ̄

∂xm

∂ui

∂xm

∂

∂xk

(
∂ui

∂xk

)
︸ ︷︷ ︸

VIIc (NN)

+ 2
∂µ̄

∂xm
µ′ ∂ui
∂xm

∂

∂xk

(
∂ui

∂xk

)
︸ ︷︷ ︸

VIIc ′ (NN)

+ 2µ̄2 ∂ui

∂xm

∂

∂xm

[
∂

∂xk

(
∂ui

∂xk

)]
︸ ︷︷ ︸

VIId (N)

+ 2µ̄µ′ ∂ui
∂xm

∂

∂xm

[
∂

∂xk

(
∂ui

∂xk

)]
︸ ︷︷ ︸

VIId ′ (NN)

.

• Term VIII

4µ̂
∂ui

∂xm

∂

∂xm

[
∂

∂xk
(µ′sik)

]
= 2µ̄

∂2µ′

∂xm∂xk

∂ui

∂xm

(
∂ui

∂xk
+ ∂uk

∂xi

)
︸ ︷︷ ︸

VIIIa (NN)

+ 2
∂2µ′

∂xm∂xk
µ′ ∂ui
∂xm

(
∂ui

∂xk
+ ∂uk

∂xi

)
︸ ︷︷ ︸

VIIIa ′ (NN)

+ 2µ̄
∂µ′

∂xk

∂ui

∂xm

∂

∂xm

(
∂ui

∂xk
+ ∂uk

∂xi

)
︸ ︷︷ ︸

VIIIb (NN)

+ 2µ′ ∂µ
′

∂xk

∂ui

∂xm

∂

∂xm

(
∂ui

∂xk
+ ∂uk

∂xi

)
︸ ︷︷ ︸

VIIIb ′ (NN)

+ 2µ̄
∂µ′

∂xm

∂ui

∂xm

∂

∂xk

(
∂ui

∂xk

)
︸ ︷︷ ︸

VIIIc (NN)

+ 2µ′ ∂µ
′

∂xm

∂ui

∂xm

∂

∂xk

(
∂ui

∂xk

)
︸ ︷︷ ︸

VIIIc ′ (NN)

+ 2µ̄µ′ ∂ui
∂xm

∂

∂xm

[
∂

∂xk

(
∂ui

∂xk

)]
︸ ︷︷ ︸

VIIId (NN)

+ 2µ′2 ∂ui
∂xm

∂

∂xm

[
∂

∂xk

(
∂ui

∂xk

)]
︸ ︷︷ ︸

VIIId ′ (NN)

.
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• Term IX

4µ̂
∂ui

∂xm

∂

∂xm

[
∂

∂xk
(µ′Sik)

]
= 2µ̄

(
∂Ui

∂xk
+ ∂Uk

∂xi

)
∂ui

∂xm

∂2µ′

∂xm∂xk︸ ︷︷ ︸
IXa (NN)

+ 2

(
∂Ui

∂xk
+∂Uk

∂xi

)
µ′ ∂ui
∂xm

∂2µ′

∂xm∂xk︸ ︷︷ ︸
IXa′ (NN)

+2µ̄
∂

∂xm

(
∂Ui

∂xk
+∂Uk

∂xi

)
∂ui

∂xm

∂µ′

∂xk︸ ︷︷ ︸
IXb (NN)

+ 2
∂

∂xm

(
∂Ui

∂xk
+ ∂Uk

∂xi

)
µ′ ∂ui
∂xm

∂µ′

∂xk︸ ︷︷ ︸
IXb′ (NN)

+ 2µ̄
∂2Ui

∂xk∂xk

∂ui

∂xm

∂µ′

∂xm︸ ︷︷ ︸
IXc (NN)

+ 2
∂2Ui

∂xk∂xk
µ′ ∂ui
∂xm

∂µ′

∂xm︸ ︷︷ ︸
IXc′ (NN)

+ 2µ̄
∂

∂xm

(
∂2Ui

∂xk∂xk

)
µ′ ∂ui
∂xm︸ ︷︷ ︸

IXd (NN)

+ 2
∂

∂xm

(
∂2Ui

∂xk∂xk

)
µ′2 ∂ui

∂xm︸ ︷︷ ︸
IXd ′ (NN)

.

• Term X

4µ̂
∂ui

∂xm

∂

∂xm

[
∂

∂xk
(µ′sik)

]
= 4µ′ ∂ui

∂xm

∂

∂xm

[
∂

∂xk
(µ′sik)

]

= 2µ′ ∂ui
∂xm

∂

∂xm

[
∂µ′

∂xk

(
∂ui

∂xk
+ ∂uk

∂xi

)]
︸ ︷︷ ︸

Xa (NN)

+ 2µ′ ∂ui
∂xm

∂

∂xm

[
µ′ ∂2ui

∂xk∂xk

]
︸ ︷︷ ︸

Xb (NN)

.

In these transformations there are several common terms, especially those associated with the Reynolds
decomposition of the instantaneous viscosity.

Defining the average (ε) and fluctuating (ε′) rates of dissipation as

ε ≡ (µ̄+ µ′)
∂ui

∂xm

∂ui

∂xm
and ε′ ≡ (µ̄+ µ′)

∂ui

∂xm

∂ui

∂xm
,

the various terms can be put into a form which enables comparisons with the corresponding Newtonian
equation forε. The terms, where a transformation can be performed, are

Terms Ia+ Ib = ρ(µ̄+ µ′)
∂

∂t

(
∂ui

∂xm

∂ui

∂xm

)
= ρ

∂ε

∂t
− ρ

ε′

µ̄+ µ′
∂(µ̄+ µ′)

∂t
.

Term IIb = ρUk(µ̄+ µ′)
∂

∂xk

[
∂ui

∂xm

∂ui

∂xm

]
= ρUk

∂ε

∂xk
− ρUk

ε′

µ̄+ µ′
∂(µ̄+ µ′)

∂xk
.
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Terms VIId+ VIIId = 2µ̄(µ̄+ µ′)
∂ui

∂xm

∂

∂xm

[
∂

∂xk

(
∂ui

∂xk

)]
+ 2µ′(µ̄+ µ′)

∂ui

∂xm

∂

∂xm

[
∂

∂xk

(
∂ui

∂xk

)]

= (µ̄+ µ′)2
∂

∂xk

[
∂

∂xk

(
∂ui

∂xm

∂ui

∂xm

)]
− 2(µ̄+ µ′)2

∂2ui

∂xk∂xm

∂2ui

∂xk∂xm
.

Terms VIIa+ VIIIa = 2
∂2(µ̄+ µ′)
∂xm∂xk

(µ̄+ µ′)
∂ui

∂xm

(
∂ui

∂xk
+ ∂uk

∂xi

)
.

Terms VIIb+ VIIIb = 2(µ̄+ µ′)
∂(µ̄+ µ′)

∂xk

∂ui

∂xm

∂

∂xm

(
∂ui

∂xk
+ ∂uk

∂xi

)
.

Terms VIIc+ VIIIc = 2(µ̄+ µ′)
∂(µ̄+ µ′)
∂xm

∂ui

∂xm

∂

∂xk

(
∂ui

∂xk

)
.

Finally, it is time to write theε equation into its final form.

ρ
∂ε

∂t
− ρ

ε′

µ̄+ µ′
∂(µ̄+ µ′)

∂t
+ ρUk

∂ε

∂xk
− ρUk

ε′

µ̄+ µ′
∂(µ̄+ µ′)

∂xk

= −2ρ
∂Uk

∂xm

(
µ̄
∂ui

∂xm

∂ui

∂xk
+ µ′ ∂ui

∂xm

∂ui

∂xk

)
− 2ρ

∂Ui

∂xk

(
µ̄
∂ui

∂xm

∂uk

∂xm
+ µ′ ∂ui

∂xm

∂uk

∂xm

)

− 2ρ
∂2Ui

∂xk∂xm

(
µ̄uk

∂ui

∂xm
+ µ′uk

∂ui

∂xm

)
− 2ρµ̄

∂ui

∂xm

∂ui

∂xk

∂uk

∂xm
− 2ρµ′ ∂ui

∂xm

∂ui

∂xk

∂uk

∂xm

− ρµ̄
∂

∂xk

(
uk
∂ui

∂xm

∂ui

∂xm

)
− ρµ′ ∂

∂xk

(
uk
∂ui

∂xm

∂ui

∂xm

)
+ 2ρµ′ ∂ui

∂xm

∂

∂xm

(
∂uiuk

∂xk

)

− 2µ̄
∂

∂xi

(
∂p′

∂xm

∂ui

∂xm

)
− 2µ′ ∂

∂xi

(
∂p′

∂xm

∂ui

∂xm

)
+ 2

∂2(µ̄+ µ′)
∂xm∂xk

(µ̄+ µ′)
[
∂ui

∂xm

(
∂ui

∂xk
+ ∂uk

∂xi

)]

+ 2
∂(µ̄+ µ′)

∂xk
(µ̄+ µ′)

∂ui

∂xm

∂

∂xm

(
∂ui

∂xk
+ ∂uk

∂xi

)
+ 2

∂(µ̄+ µ′)
∂xm

(µ̄+ µ′)
∂ui

∂xm

∂

∂xk

(
∂ui

∂xk

)

+ (µ̄+ µ′)2
∂

∂xk

[
∂

∂xk

(
∂ui

∂xm

∂ui

∂xm

)]
− 2(µ̄+ µ′)2

∂2ui

∂xk∂xm

∂2ui

∂xk∂xm

+ 2

(
∂Ui

∂xk
+ ∂Uk

∂xi

)
(µ̄+ µ′)

∂ui

∂xm

∂2µ′

∂xm∂xk
+ 2

∂

∂xm

(
∂Ui

∂xk
+ ∂Uk

∂xi

)
(µ̄+ µ′)

∂ui

∂xm

∂µ′

∂xk

+ 2
∂2Ui

∂xk∂xk
(µ̄+ µ′)

∂ui

∂xm

∂µ′

∂xm
+ 2

∂

∂xm

(
∂2Ui

∂xk∂xk

)
(µ̄+ µ′)µ′ ∂ui

∂xm

−2µ′ ∂ui
∂xm

∂

∂xm

[
∂µ′

∂xk

(
∂ui

∂xk
+ ∂uk

∂xi

)]
− 2µ′ ∂ui

∂xm

∂

∂xm

[
µ′ ∂2ui

∂xk∂xk

]
. (A.18)
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In conclusion, the transport equations are the following: for momentum,Eq. (A.2); for the Reynolds
stresses,Eq. (A.11); for the turbulent kinetic energy,Eq. (A.15)and for the rate of dissipation of turbulent
kinetic energy,Eq. (A.18).
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