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This paper presents an analytical model that describes a two-fluid electro-osmotic flow of stratified fluids
with Newtonian or viscoelastic rheological behavior. This is the principle of operation of an electro-osmo-
tic two-fluid pump as proposed by Brask et al. [Tech. Proc. Nanotech., 1, 190–193, 2003], in which an elec-
trically non-conducting fluid is transported by the interfacial dragging viscous force of a conducting fluid
that is driven by electro-osmosis. The electric potential in the conducting fluid and the analytical steady
flow solution of the two-fluid electro-osmotic stratified flow in a planar microchannel are presented by
assuming a planar interface between the two immiscible fluids with Newtonian or viscoelastic rheolog-
ical behavior. The effects of fluid rheology, shear viscosity ratio, holdup and interfacial zeta potential are
analyzed to show the viability of this technique, where an enhancement of the flow rate is observed as
the shear-thinning effects are increased.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction pump by equivalent circuit theory and computational fluid dy-
Electro-osmotic flows (EOFs) in microfluidic devices have been
studied extensively over the past decade [1–5], because they en-
able precise liquid manipulation and are easily miniaturized to
nanosized systems. The major applications of electro-osmotic
(EO) pumps are in micro flow injection analysis, microfluidic liquid
chromatography systems, microreactors, microenergy systems,
and microelectronic cooling systems. Fluid pumps are important
elements in such microchannel networks, and promising candi-
dates for miniaturization are electro-hydrodynamic pumps using
ion-dragging effects via the so-called electro-osmosis [6] due to
the inherent simplicity in producing small-sized pumps with these
techniques. A comprehensive review on electrokinetic pumps has
been recently published by Wang et al. [5].

Some of the above mentioned studies focused on the transport
of single-phase fluids with high electrical conductivity, for which a
classical EO pump is needed. An overview of fabrication methods
and working principles for such systems was presented by Zeng
et al. [7]. For nonpolar fluids, such as oil, traditional EOF pumping
cannot be used, due to the low fluid conductivity [2].To overcome
this limitation, Brask et al. [1] proposed an alternative construction
that allows the use of EOF as a driving mechanism, using an elec-
trolyte fluid with high conductivity to drag the low conductivity
nonpolar fluid. Their study [1] analyzed the performance of the
ll rights reserved.
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namic simulations.
The theoretical study of electro-osmotic flows of non-Newto-

nian fluids is recent and has been mainly focused in simple inelas-
tic fluid models, such as the power-law, due to the inherent
analytical difficulties introduced by more complex constitutive
equations. Examples are the recent works of Das and Chakraborty
[8] and Chakraborty [9], who presented explicit relationships for
velocity, temperature, and concentration distributions in electro-
osmotic microchannel flows of non-Newtonian bio-fluids de-
scribed by the power-law model. Other purely viscous models
were analytically investigated by Berli and Olivares [10], who
considered the existence of a small wall layer depleted of additives
and behaving as a Newtonian fluid (the skimming layer), under the
combined action of pressure and electrical fields, thus restricting
the non-Newtonian behavior to the electrically neutral region out-
side the electrical double layer (EDL). More recently, these studies
were extended to viscoelastic fluids by Afonso et al. [11], who pre-
sented analytical solutions for channel and pipe flows of viscoelas-
tic fluids under the mixed influence of electrokinetic and pressure
forces, using two constitutive models: the Phan-Thien and Tanner
(PTT) model [12], with linear kernel for the stress coefficient func-
tion and zero second normal stress difference [13], and the Finitely
Extensible Non-linear Elastic dumbbell model with a Peterlin
approximation for the average spring force (FENE-P model, cf. Bird
et al. [14]). An earlier investigation with the PTT model by Park and
Lee [15] was concerned with EOF in a square duct for which a
numerical method was used. The analysis of Afonso et al. [11]
was restricted to cases with small electric double layers, where
the distance between the walls of a microfluidic device is at least
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one order of magnitude larger than the EDL, and the fluid is well
mixed and uniformly distributed across the channel. This well-
mixed approximation was also considered by Park and Lee [15].
When the viscoelastic flow is induced by a combination of both
electric and pressure potentials, in addition to the single contribu-
tions from these two mechanisms, there is an extra term in the
velocity profile that simultaneously combines both forcings, which
is absent for the Newtonian fluids where the superposition princi-
ple applies. This extra term can contribute significantly to the total
flow rate, depending on the value of the relative microchannel ra-
tio and appears only when the rheological constitutive equation is
non-linear. Afonso et al. [16] extended this study to the flow of vis-
coelastic fluids under asymmetric zeta potential forcing, Sousa
et al. [17] considered the formation of a skimming layer without
polymer near the walls, and Dhinakaran et al. [18] analyzed the full
PTT model with non-zero second normal stress differences, but
only considering EOF without a pressure gradient. Recently, Afonso
et al. [19] derived the full analytical solution for fully-developed
electro-osmosis driven flow of polymer solutions described by
the sPTT or FENE-P models with a Newtonian solvent.

The analytical solution of the steady two-fluid electro-osmotic
stratified flow in a planar microchannel is presented in this work,
assuming a planar interface between the two viscoelastic immisci-
ble liquids. The working principle of the two-fluid pump is de-
scribed in detail in Section 2. The PTT fluid considered here
obeys the simplified model [12], with a linear kernel for the stress
coefficient function and a zero second normal stress difference in
shear [13]. The PTT model also includes the limiting case of the
Upper-Convected Maxwell (UCM) fluids.

The remaining of the paper starts with the flow problem defini-
tion, followed by the presentation of the set of governing equations
and a discussion of the assumptions made to obtain the analytical
solution. Using this solution, the effects of the various relevant
dimensionless parameters upon the flow field characteristics and
pump efficiency are discussed in detail.

2. Flow geometry and definitions

The flow under investigation is the steady, fully-developed
channel flow of two incompressible and immiscible layers of visco-
elastic fluids which also have significantly different conductivities,
as shown schematically in Fig. 1a. This type of flow can be found in
some EOF pumps [1], where the non-conducting fluid located at
the upper part of the system is dragged by an electrically conduct-
ing fluid at the bottom part, as illustrated in Fig. 1b. Although the
origin of the coordinate system is considered at the interface be-
tween the two fluids, their thickness is not necessarily identical.
Fig. 1. (a) Illustration of the coordinate system and (b) schematic of the two-fluid
EOF pump.
The migration of ions leading to the formation of the electric lay-
ers naturally arises due to the interaction between the dielectric bot-
tom wall and the conducting fluid. Concerning the wall-fluid
interface, the charged bottom wall of the channel attracts counter-
ions to form a layer of charged fluid near the wall and repels the
co-ions. A very thin layer of immobile counter-ions covers the bot-
tom wall, known as the Stern layer, and is followed by a thicker more
diffuse layer of mobile counter-ions. These two layers near the wall
form the EDL. The global charge of the conducting fluid remains neu-
tral, but since the EDL is thin the core of the conducting fluid is essen-
tially neutral. Applying a DC potential difference between the two
electrodes at the inlet and outlet of the bottom channel section gen-
erates an external electric field that exerts a Coulombic body force
on the counter-ions of the EDL, which move along the bottom chan-
nel dragging the remaining fluid above by viscous forces.

A similar situation arises at the fluid–fluid interface, where
there is also dielectric interaction leading to the formation of a sec-
ond EDL in the conducting fluid next to the interface. The conduct-
ing fluid (Fluid B) moves under the forcing imposed by the
Coulombic forces and drags the non-conducting fluid (Fluid A) by
hydrodynamic viscous forces at the interface (cf. Fig. 1a).

The pressure difference that can be independently applied be-
tween the inlets and outlets of both the upper and the lower chan-
nels can act in the same or in the opposite direction of the electric
field. Alternatively, the streamwise electric potential difference
may not be imposed independently, but results from the accumu-
lation of ions at the end of the channel due to the flow forced by an
imposed pressure difference. This particular case is known as the
streaming potential and implies a specific relationship between
the imposed favorable pressure gradient and the ensuing adverse
external electric field [20], a case which will not be analyzed in this
paper for conciseness.

To analyze this system, a two-dimensional Cartesian orthonor-
mal coordinate system ( x,y) is used with the origin of the y-axis
located at the fluid–fluid interface, as shown in Fig. 1a. We assume
a stratified viscoelastic flow and a planar interface. The thickness of
the conducting and non-conducting fluid is H1 and H2, respectively.
The width w is assumed to be very large, such that
w� H2 þ H1 ¼ H.

The holdup of the conducting fluid (Fluid B), RB, is here defined
as the ratio between the cross-section area occupied by the con-
ducting fluid and the total cross-section area of the channel,

RB ¼
H1

H2 þ H1
¼ H1

H
: ð1Þ

Similarly, the holdup of non-conducting fluid (Fluid A) is defined as

RA ¼ 1� RB ¼
H2

H2 þ H1
¼ H2

H
: ð2Þ

The electrical double layer that forms near the bottom channel
wall in contact with the conducting fluid (Fluid B) has a zeta poten-
tial denoted by f1. The second EDL in Fluid B, at the interface con-
tact with fluid A, has an interfacial zeta potential (fi) that depends
on the properties of the two fluids and also varies with the pH va-
lue, the concentration of ions in the conducting fluid and the pres-
ence of ionic surfactants [2]. This interfacial zeta potential
influences the potential distribution in the two EDLs, hence the
electro-osmotic force distribution and consequently the flow rates.

3. Theoretical model of the two-fluid electro-osmotic
viscoelastic flow

The basic field equations describing this fully-developed lami-
nar flow of incompressible fluids are the continuity equation,

r � u ¼ 0; ð3Þ
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and the modified Cauchy equation,

q
Du
Dt
¼ �rpþr � sþ qeE; ð4Þ

where u is the velocity vector, p is the pressure, and s is the polymeric
extra-stress tensor. The qeE term of Eq. (4) represents a Coulombic
body force per unit volume, where E is the applied external electric
field, and qe is the net electric charge density in the fluid. This term
is null for the nonpolar fluid A, but needs to be quantified for the polar
fluid B. The main simplifying assumptions and considerations in the
current analysis are as follows: (i) the two fluids are viscoelastic (the
Newtonian fluid is included in the analysis as a limiting case when the
relaxation time is negligible); (ii) fluid properties are assumed to be
independent of local electric field, ion concentration, and tempera-
ture (this is certainly true for dilute solutions [2], but we also consider
this assumption to hold for our case); (iii) the flow is steady and fully-
developed with no-slip boundary conditions at the channel walls;
(iv) the two fluids are immiscible, and there is stratification with a
planar interface between fluids where a second EDL forms; (v) a pres-
sure gradient can simultaneously be imposed along the channel and
(vi) the standard electrokinetic theory conditions apply [21].

3.1. PTT model constitutive equations

The polymer extra-stress s is described by an appropriate con-
stitutive equation, and in this work, we consider the viscoelastic
model of Phan-Thien and Tanner [12,13] (PTT model), derived from
network theory arguments:

f ðskkÞsþ k s
r
¼ 2gD: ð5Þ

Here, D ¼ 5uT þ5u
� �

=2 is the rate of deformation tensor, k is the
relaxation time of the fluid, g is the viscosity coefficient, and s

r
rep-

resents the upper-convected derivative of s, defined as

s
r
¼ Ds

Dt
�5uT :s� s:5 u: ð6Þ

The stress coefficient function, f ðskkÞ, is given by the linear form [12]

f ðskkÞ ¼ 1þ ek
g

skk; ð7Þ

where skk represents the trace of the extra-stress tensor. The extensi-
bility parameter, e , bounds the steady-state elongational viscosity,
which is inversely proportional to e, for small e. For e ¼ 0, the UCM
model is recovered which has an unbounded elongational viscosity
above a critical strain rate _e ¼ 1=ð2kÞ [14]. For fully-developed flow
conditions, for which u ¼ uðyÞ;0;0f g, the extra-stress field for the
PTT model can be obtained from equations (5)–(7), leading to

f ðskkÞsxx ¼ 2k _csxy ð8Þ

and

f ðskkÞsxy ¼ g _c ð9Þ

where skk ¼ sxx, since syy ¼ szz ¼ 0 [22,23], and _c is the transverse
velocity gradient ( _c � du=dy). Then, upon division of Eq. (8) by Eq.
(9), the specific function f ðskkÞ cancels out, and a relation between
the normal and shear stresses is obtained,

sxx ¼ 2
k
g
s2

xy: ð10Þ
3.2. Electric double layers in the conducting fluid (Fluid B)

The potential field within the conducting fluid B can be ex-
pressed by means of a Poisson equation:
r2w ¼ �qe

�
; ð11Þ

where w denotes the induced electric potential, and � is the dielec-
tric constant of the fluid. In equilibrium conditions near a charged
wall, the net electric charge density, qe, can be described as

qe ¼ �2noez sinh
ez

kBT
w

� �
; ð12Þ

where no is the ion density, e is the elementary electric charge, z is
the valence of the ions, kB is the Boltzmann constant, and T is the
absolute temperature. In order to obtain the velocity field for fluid
B, we first need to determine the net charge density distribution
(qe). The charge density field can be calculated by combining Eqs.
(11) and (12) under fully-developed flow conditions, to obtain the
well-known Poisson–Boltzmann equation

d2w
dy2 ¼

2noez
�

sinh
ez

kBT
w

� �
: ð13Þ

The electro-osmotic flow is primarily caused by the action of an
externally applied electric field on the charged species that exist
near the bottom channel wall and in the vicinity of the interfacial
surface. The distribution of the charged species in the domain is
governed by the potentials at the wall and at the interface and then
by the externally applied electric field. When the Debye thicknesses
are small, and the charges at the wall and at the interface are not
large, the distribution of the charged species is governed mainly
by the f1 potential at the wall and by fi at the interface, and negli-
gibly affected by the applied external DC electric field (standard
electrokinetic theory). Thus, the charge distribution across fluid B
can be determined independently of the externally applied electric
field. Indeed, the effect of fluid motion on the charge redistribution
can be neglected when the fluid velocity is small, that is, when the
inertial terms in the momentum equation are not dominant (indeed
they vanish under fully-developed conditions) or when the Debye
thickness is small. Additionally, for small values of w, the Debye–
Hückel linearization principle (sinh x � x) can also be used, which
means physically that the electric potential energy is small com-
pared with the thermal energy of ions, and the Poisson–Boltzmann
equation can be simplified to:

d2w
dy2 ¼ j2w; ð14Þ

where j2 ¼ 2noe2z2

�kBT is the Debye–Hückel parameter, related with the
thickness of the Debye layer as n ¼ 1

j (normally referred to as the
EDL thickness). This approximation is valid when the Debye thick-
ness is small but finite, that is, for 10 K H1=nK 103.

Eq. (14) can be integrated subjected to the following boundary
conditions: zeta potential at the bottom wall wky¼�H1

¼ f1 and zeta
potential at the interface wky¼0 ¼ fi. The potential field becomes

wðyÞ ¼ f1 W1ejy �W2e�jyð Þ ð15Þ

for �H1 6 y 6 0. Denoting Rf ¼ fi=f1 as the ratio of zeta potentials,

then, W1 ¼ RfejH1�1
2 sinh jH1ð Þ and W2 ¼ Rfe�jH1�1

2 sinh jH1ð Þ. When Rf ¼ 1 a symmetric

potential profile is observed within the conducting fluid, as ob-
tained by Afonso et al. [11] for the whole channel with a single con-
ducting fluid, whereas for vanishing zeta potential at the interface,
Rf ¼ 0, one obtains a special case discussed by Afonso et al. [16]. Fi-
nally, the net charge density distribution, Eq. (12), coupled with the
Debye–Hückel linearization principle leads to

qe ¼ ��j2f1 W1ejy �W2e�jyð Þ ¼ ��j2f1X
�
1 ðyÞ ð16Þ

where the operator

X�p ðyÞ ¼ W1ejyð Þp � W2e�jyð Þp ð17Þ
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is a hyperbolic function of the transverse variable y, that depends on
the ratio of zeta potentials, Rf, and on the thickness of the Debye
layer. For the non-conducting Fluid A, there is no potential distribu-
tion, that is, the induced potential is null as well as the correspond-
ing electric charge density, qe.

3.3. Momentum equation of the two-fluid flow

3.3.1. Conducting fluid (Fluid B)
For the conducting fluid (Fluid B), the momentum Eq. (4) re-

duces to,

dsxy;B

dy
¼ p;x � qeEx ¼ p;x þ �j2f1ExX

�
1 ðyÞ ð18Þ

where Ex � �d/=dx and p;x � dp=dx. The electric potential of the ap-
plied external field, /, is characterized by a constant streamwise
gradient. Eq. (18) is integrated to yield the following shear stress
distribution

sxy;B ¼ p;xyþ �jf1ExX
þ
1 ðyÞ þ sB ð19Þ

where sB is a stress integration coefficient related to the stress at
the fluid–fluid interface. It is clear that in contrast to pure Poiseuille
flow, the shear stress distribution is no longer linear on the trans-
verse coordinate. Using the relationship between the normal stress
and the shear stress, Eq. (10), an explicit expression for the normal
stress component is also obtained,

sxx;B ¼ 2
k
g

p;xyþ �jf1ExX
þ
1 ðyÞ þ sB

� �2
: ð20Þ

For simplicity, subscript B will be removed from the rheological
parameters of Fluid B (gB ¼ g, eB ¼ e and kB ¼ k). Combining Eqs.
(9), (19) and (20) allows to obtain the expression for the velocity
gradient:

duB

dy
¼ 1þ 2ek2 �Exf1

g
jXþ1 ðyÞ þ

sB

g
þ

p;x
g

y
� �2

" #
ð21Þ

� �Exf1

g
jXþ1 ðyÞ þ

sB

g
þ

p;x
g

y
� �

:

Eq. (21) can be integrated subject to the no-slip boundary condition
at the lower wall (uBky¼�H1 ¼ 0) leading to

uB ¼
sB

g
yþ H1ð Þ 1þ 2ek2 sB

g

� �2
 !

þ �Exf1

g

� �
1þ 6

sB

g

� �2

ek2

 !
X�1;1ðyÞ

þ 2ek2 �Exf1

g

� �2

j
sB

g
6W1W2j yþ H1ð Þ þ 3

2
X�2;1ðyÞ

� �

þ 2ek2 �Exf1

g

� �3

j2 1
3

X�3;1ðyÞ þ 3W1W2X
�
1;1ðyÞ

� �

þ 1
2

p;x
g

� �
y2 � H2

1

� 	
1þ 6ek2 sB

g

� �2

þ ek2 p;x
g

� �2

y2 þ H2
1

� 	 !
þ 2

� sB

g
ek2 p;x

g

� �2

y3 þ H3
1

� 	
þ 12

ek2 �Exf1
g

h i
p;x
g

h i
j

sB

g
X�1;2ðyÞ �Xþ1;1ðyÞ
� 	

þ 6
ek2 �Exf1

g

h i
p;x
g

h i2

j2 X�1;3ðyÞ þ 2X�1;1ðyÞ � 2Xþ1;2ðyÞ
� 	

þ 6ek2 �Exf1

g

� �2 p;x
g

� �
W1W2j2 y2 � H2

1

� 	
þ 1

2
X�2;2ðyÞ �

1
4

Xþ2;1ðyÞ
� �

ð22Þ
where the operator X�p;qðyÞ, is now defined for compactness:

X�p;qðyÞ ¼ jyð Þðq�1ÞX�p ðyÞ � ð�1Þðqþ1Þ jH1ð Þðq�1ÞX�p ð�H1Þ: ð23Þ

Eq. (22) is valid for �H1 6 y < 0.
It is often more convenient to work with the dimensionless

form of Eq. (22). Introducing the normalizations �y ¼ y=H1 ¼
y= RBHð Þ and �j ¼ jRBH , the dimensionless velocity profile in the
conducting fluid can be rewritten as

uB

ush
¼ sB yþ 1ð Þ 1þ 2s2

B
eDe2

j
j2

 !
� 1þ 6s2

B
eDe2

j
j2

 !
X�1;1ðyÞ

þ 2sB
eDe2

j
j

6W1W2j yþ 1ð Þ þ 3
2

X�2;1ðyÞ
� �

� 2eDe2
j

1
3

X�3;1ðyÞ þ 3W1W2X�1;1ðyÞ
� �

þ 1
2

C y2 � 1
� �

1þ 6s2
B
eDe2

j
j2 þ

eDe2
j

j2 C2 y2 þ 1
� � !

þ 2sB

� eDe2
j

j2 C2 y3 þ 1
� �

� 12sB
eDe2

j
j3 C X�1;2ðyÞ �Xþ1;1ðyÞ

� 	

þ 6
eDe2

j
j2 C W1W2j2 y2 � 1

� �
þ 1

2
X�2;2ðyÞ �

1
4

Xþ2;1ðyÞ
� �

� 6
eDe2

j
j4 C2 X�1;3ðyÞ þ 2X�1;1ðyÞ � 2Xþ1;2ðyÞ

� 	
ð24Þ

where sB ¼ sB
g

RBH
ush

and Dej ¼ kush
n ¼ kjush is the Deborah number

based on the relaxation time of the conducting fluid (Fluid B), on
the EDL thickness and on the Helmholtz–Smoluchowski electro-os-
motic velocity near the bottom wall, defined as ush ¼ � �f1Ex

g . The

dimensionless parameter C ¼ � RBHð Þ2
�f1

p;x
Ex

represents the ratio of pres-

sure to electro-osmotic driving forces. Note that for simplicity, the
above terms were based on the zeta potential at the bottom wall
ðwky¼�H1

¼ f1Þ, but could have been based instead on the interfacial
zeta potential using the ratio of zeta potentials: ush ¼ ushi=Rf,
C ¼ RfCi and Dej ¼ Deji=Rf.

The normalized flow rate of the pumping Fluid B can be deter-
mined from integration of the velocity profile

Q B ¼ uB
ush
¼
R 0
�H1

uB
ushH1

dy¼ 1
2sB 1þ2 eDe2

j
j2 s2

B

� 	
� 1

3C 1þ6s2
B

eDe2
j

j2 þ 6
5

eDe2
j

j2 C2
� 	

þ3
2sB

eDe2
j

j2 C2� 1þ6 eDe2
j

j2 s2
B

� 	
Xþ1;1ð0Þ

j �X�1 ð�1Þ
� �

þ2 eDe2
j

j sB 3W1W2jþ 3
4

Xþ2;1ð0Þ
j �2X�2 ð�1Þ

� �� �

�2eDe2
j

Xþ3;1ð0Þ
9j �

1
3X
�
3 ð�1Þþ3W1W2

Xþ1;1ð0Þ
j �X�1 ð�1Þ

� �� �

�12sB
eDe2

j
j4 C 2Xþ1;2ð0Þ�2X�1;1ð0Þþj2X�1 ð�1Þ

h i
þ6 eDe2

j
j2 C 1

2jXþ2;2ð0Þ� 2
3W1W2j2þ 1þ2j2

4j X�2 ð�1Þ� 1
4jX�2 ð0Þ

� 	
�6 eDe2

j
j5 C2 jX�1;3ð0Þ�3jXþ1;2ð0Þþ6Xþ1;1ð0Þ�6jX�1 ð�1Þ

� 	
:

ð25Þ
3.3.2. Non-conducting fluid (Fluid A)
The derivation of the analytical solution for this fluid layer fol-

lows the same steps as for the conducting fluid, with the necessary
adaptations. For the non-conducting fluid (Fluid A), the momen-
tum conservation Eq. (4) reduces to

dsxy;A

dy
¼ p;x; ð26Þ

since, as explained, there is no external electrical field forcing, due
to low conductivity of fluid A. Eq. (26) can be integrated to yield the
following shear stress distribution
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sxy;A ¼ p;xyþ sA ð27Þ

where sA is the shear stress at the fluid–fluid interface, to be quan-
tified in the next section. Using the relationship between the nor-
mal and shear stresses, Eq. (10), the following explicit expression
for the normal stress component is obtained,

sxx;A ¼ 2
kA

gA
p;xyþ sA
� �2

: ð28Þ

Combining Eqs. (9), (27) and (28) the velocity gradient distribution
in Fluid A is given by

duA

dy
¼ 1þ 2eAk

2
A

p;x
gA

yþ sA

gA

� �2
" #

p;x
gA

yþ sA

gA

� �
ð29Þ

Eq. (29) can be integrated subject to the no-slip boundary condition
at the upper wall (uAky¼H2 ¼ 0), leading to

uA ¼
sA

gA
y� H2ð Þ 1þ 2eAk

2
A

sA

gA

� �2
 !

þ 2eAk
2
A
sA

gA
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� �2

y3 � H 3
2

� �
þ 1

2
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� �

� 1þ 6eAk
2
A

sA
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� �2

þ eAk
2
A

p;x
gA

� �2

y2 þ H 2
2

� � !
ð30Þ

valid for 0 < y 6 H2. Introducing the normalizations
�yA ¼ y=H2 ¼ y=RAH and �jA ¼ jRAH, the dimensionless velocity pro-
file can be written as

uA

ush
¼ sA �yA � 1ð Þ 1þ 2s2

A
eADe2

jA

j2
A

 !
þ 2sA

1
b2

� eADe2
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A y3
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þ 1
2

� 1
b
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j2
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þ 1
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A

C2
A y2
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� � !

ð31Þ

where sA ¼ sA
gA

RAH
ush

, b ¼ gA=gB is the dynamic viscosity ratio, and

DejA ¼ kAush
n ¼ kAushj is the Deborah number based on the relaxation

time of fluid A, and on the EDL thickness on the bottom wall and on
the corresponding Helmholtz–Smoluchowski electro-osmotic
a1 ¼
�3X�1;1ð0Þ � 3

2 C� 3 R2
e

b3 jAX
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a4
velocity (so, for simplicity, we use a single set of characteristic
scales for normalization related to the bottom wall of the channel).

The parameter CA ¼ � RAHð Þ2
�f1

p;x
Ex

represents the ratio of pressure to

electro-osmotic driving forces. The normalized volumetric flow rate
of the pumped Fluid A in the upper part of the channel is given by

QA ¼
uA

ush

� �
¼
R H2

0 uAdy
ushH2

¼ � sA

2
1þ 2
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3.3.3. Fluid A–Fluid B interface conditions
In deriving the shear stress profiles, Eqs. (19) and (27), and all

the subsequent quantities such as velocity and flow rates, two inte-
gration coefficients appeared, sA and sB, which have to be deter-
mined from the boundary conditions at the fluid–fluid interface,
namely: sxy;Aky¼0 ¼ sxy;Bky¼0 and uA;ky¼0 ¼ uBky¼0.

Using the relationships between the shear stresses at the inter-
face, equations (19) and (27), and those for the dimensionless
velocity profiles, Eqs. (24) and (31), the variables sA and sB can
be determined:

sA ¼ RA
RB

1
b sB � jA

b Xþ1 ð0Þ

sB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b1

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1
4 þ a3

27

q
3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b1

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1
4 þ a3

27

q
3

r
� a1

3

8><
>: ð33Þ

where a ¼ a2 � a2
1=3 and b1 ¼ a3 � a1a2=3þ 2a3

1=27. The coefficients

a1, a2 and a3 are given byand a4 ¼ 1þ R2
e

b3
j2

j2
A

RA
RB

� 	3
, where Re ¼

ffiffiffiffi
eA
e

q
kA
k

is a dimensionless parameter that relates the rheological properties

of the two fluids.
4. Results and discussion

In the previous section, general equations were derived for stea-
dy fully-developed two-fluid electro-osmotic stratified flow of PTT
viscoelastic fluids under the mixed influence of electrokinetic and
pressure gradient forcings. The different influences of the driving
RA
RB

j2

eDe2
j

ð34Þ

þ 3W1W2X�1;1ð0Þ
	
� 1

4 C3

;2ð0Þ
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þ
1 ð0Þ
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forces (C), fluid rheology ðReÞ, viscosity ratio ðbÞ, fluids holdup ðRBÞ,
and of the ratio of zeta potentials ðRfÞ on the velocity profile were
explicitly incorporated in Eqs. (30), (22) and (33). In this section,
we discuss in detail some limiting cases in order to understand
the system fluid dynamics.

The following set of two-fluid systems is included in the general
solution where the second fluid is the conducting medium: (a)
Newtonian–Newtonian fluid system; (b) viscoelastic–Newtonian
fluid system; (c) Newtonian–viscoelastic fluid system; and (d) vis-
coelastic–viscoelastic fluid system. Cases (b and d) are not dis-
cussed in this work, due to space limitations, although the
derived equations also include these cases. Case (a) was studied
in detail elsewhere [2], but this situation is revisited here as a start-
ing point and for comparison with case (c), that is, in the following
we analyze in detail the pumping of a Newtonian fluid by another
Newtonian fluid, and, alternatively, by a viscoelastic fluid.
4.1. Newtonian–Newtonian EOF pump configuration

For the Newtonian–Newtonian fluid flow configuration, both
the conducting and the non-conducting fluids are Newtonian
ðDej ¼ DejA ¼ 0Þ. The velocity profile system equations and the
dimensionless boundary condition coefficients, provided by Eq.
(33), simplify to

uA
ush
¼ sA yA � 1ð Þ þ 1

2b CA y2
A � 1

� �
for 0 6 yA 6 1

uB
ush
¼ sB yþ 1ð Þ �X�1;1ðyÞ þ 1

2 C y2 � 1
� �

for � 1 6 y 6 0

(
ð35Þ
For small relative microchannel ratio, �j! 1, the double layer
thickness is of the same order of magnitude as the Fluid B thickness,
and the region of excess charge is distributed over the entire fluid.
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This situation is not compatible with this solution for which the De-
bye–Hückel approximation was invoked, which requires jJ 10. In
this work and as a typical example, we set �j ¼ 20 in all figures.

For C ¼ 0, that is, when the flow is driven only by electro-osmo-
sis, the velocity profile is a function of the wall distance, of the rel-
ative microchannel ratio, �j, of the ratio of zeta potentials, Rf, and of
the viscosity ratio as shown earlier by Gao et al. [2]. Also, for a sin-
gle fluid situation ðb ¼ 1Þ and in the absence of interface zeta po-
tential ðRf ¼ 0Þ, the solution simplifies to a particular case
obtained by Afonso et al. [11] (no zeta potential in the upper wall
and no pressure gradient, symbols in Fig. 2a). The corresponding
effect of the ratio of pressure gradient to electro-osmotic driving
forces on the dimensionless flow rate is obvious (cf. Fig. 2b),
increasing with favorable pressure gradients ðC < 0Þ and decreas-
ing for flows with adverse pressure gradients ðC > 0Þ. Obviously,
the flow rate for Fluid B is higher than for Fluid A because for iden-
tical fluids height Fluid B is being forced also by electro-osmosis.
Fig. 3 shows the influence of the viscosity ratio ðb � gA=gBÞ on
the dimensionless velocity profile (a) and volumetric flow rate
(b). When the viscosity ratio decreases, the dimensionless velocity
increases (cf. Fig. 3a). So, if the viscosity of the conducting fluid is
much higher than the viscosity of the non-conducting fluid, an in-
crease in the dimensionless volumetric flow rate is expected, as
can be observed in Fig. 3b. However, a higher viscosity implies a
lower Helmholtz–Smoluchowski electro-osmotic velocity and con-
sequently the dimensional flow rate may actually decrease.

A major effect on the velocity profile is that due to non-zero
interfacial zeta potential, as presented in the profiles of Fig. 4.
When fi=f1 > 0 , a favorable extra Coulombic forcing term arises
in the velocity profile at the interface of the two fluids, leading to
a significant increase in the volumetric flow rate. When fi < 0,
the adverse localized electrostatic force decreases the pumping ac-
tion and the corresponding dimensionless flow rate (cf. Fig. 4b).
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Another important effect is due to the holdup of the non-con-
ducting fluid. When the height of the non-conducting fluid is larger
than the height of the conducting fluid ðRA > RBÞ, the normalized
velocities of both fluids increase, as observed in Fig. 5a. This sug-
gests that to obtain higher volumetric flow rates in Fluid A, the
holdup of the conducting Fluid B should be kept small (cf.
Fig. 5b). In fact, as the Helmholtz–Smoluchowski electro-osmotic
velocity is independent of the thickness of Fluid B, as RA ! 1 the
fluid interface plane will tend to coincide with the regions of high-
er velocities. This conclusion also suggests that a better configura-
tion for an EOF pump would be a three layer fluid flow, with the
conducting fluid in contact with both the upper and lower walls,
and the non-conducting fluid in the middle being dragged like a so-
lid body, that is, a solid lubrificated by thin layers of conducting
fluid in motion.
4.2. Newtonian–viscoelastic EOF pump configuration

For the Newtonian–viscoelastic fluid flow configuration, the
conducting fluid is viscoelastic dragging the non-conducting New-
tonian fluid. The Deborah number of the conducting fluid is non-
zero (Dej – 0 and DejA ¼ 0), and the velocity profile and the non-
dimensional boundary condition coefficients are given by

uA
ush
¼ sA yA � 1ð Þ þ 1

2b CA y2
A � 1

� �
for 0 6 yA 6 1

Eq:ð24Þ for � 1 6 y 6 0

(
ð36Þ

Fig. 6a and b presents the dimensionless velocity and volumet-
ric flow rate profiles as a function of

ffiffiffi
e
p

Dej, respectively. We can
see that increasing the elasticity of the conducting fluid, more than
doubles the velocities due to shear-thinning effects within the EDL
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layer, thus raising the velocity value of the bulk transport in the
core of the channel. This also helps to increase the shear rates near
the bottom wall and at the two fluids interface, increasing the drag
force of the non-conducting fluid by the hydrodynamic viscous
forces at the interface. Consequently, there is an increase in the
dimensionless volumetric flow rate (cf. Fig. 6b). Fig. 6a also shows
that in the absence of pressure gradient (and Rf ¼ 0) the EDL acts
like a plate in pure Couette flow, generating a nearly constant shear
stress across the channel.

Fig. 7 shows the dimensionless velocity profiles (a) and volu-
metric flow rate (b) at

ffiffiffi
e
p

Dej ¼ 2 (for comparison, the Newtonian
results of Fig. 2 are also presented) to illustrate the effect of C . A
favorable pressure gradient ðC < 0Þ leads to an increase of the flow
rate and makes velocity profiles fuller. By using also pressure forc-
ing, which affects directly the two fluids, the flow rate quickly in-
creases. The beneficial shear-thinning effect is clear in the large
increase in the flow rate of Fig. 7b as compared to Fig. 2b, but
the impact is stronger with the fluid B, where the shear-thinning
is stronger, whereas the large viscosities in Fluid A limit the flow
rate enhancement. As for the Newtonian-Newtonian fluid flow
configuration, decreasing b leads to an increase in velocity profiles
and the volumetric flow rate, which is further increased by shear-
thinning effects (cf. Fig. 8a and b and compare with Fig. 3). When
using a viscoelastic fluid as conducting fluid, it is natural to have
a more viscous fluid than the Newtonian non-conducting fluid,
which leads to an optimal flow situation.

The effects of the Fluid A holdup ðRAÞ and of the ratio of zeta
potentials ðRfÞ are similar to what was described before, but now
the viscoelastic flow exhibits a shear-thinning viscosity and the
velocities have increased significantly near the bottom wall (see
the higher values of u=ush) leading to the higher volumetric flow
rates of Figs. 9 and 10, than in the corresponding constant viscosity
case.
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5. Conclusions

An analytical solution of the steady two-fluid electro-osmotic
stratified flow in a planar microchannel is presented assuming a
planar interface between the two viscoelastic immiscible fluids.
The PTT fluid model was used, and the effects of fluid rheology, vis-
cosity ratio, fluid holdup, and interfacial zeta potential were ana-
lyzed to show the viability of this pumping technique.

The flow can be induced by a combination of both electrical and
pressure potentials, but in addition to the single contributions
from these two mechanisms, when the conducting fluid is visco-
elastic, there is an extra term in the velocity profile that simulta-
neously combines both effects, which is absent from conducting
Newtonian fluids, in which the linear superposition principle ap-
plies. This work demonstrated that higher volumetric flow rates
of a non-conducting Newtonian fluid can be achieved in EOF
pumping when the conducting fluid is viscoelastic rather than
Newtonian, due to the increase of the shear-thinning effects.
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