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SUMMARY

Two different techniques for the implementation of the linear and nonlinear slip boundary conditions into a
finite volume method based numerical code are presented. For the linear Navier slip boundary condition, an
implicit implementation in the system of equations is carried out for which there is no need for any relax-
ation, especially when handling high slip coefficients. For three different nonlinear slip boundary conditions,
two different methods are devised, one based on solving a transcendental equation for the boundary and the
other on the linearization of the slip law. For assessment purposes, comparison is made between these new
methods and the usual iterative process. With these new methods, the convergence difficulties, typical of
the iterative procedure, are eliminated, and for some of the test cases, the convergence rate even increased
with the slip velocity. The details of these implementations are given first for a simple geometry using
orthogonal meshes and Cartesian coordinates followed by their generalization to non-Cartesian coordinates
and nonorthogonal meshes. The developed code was tested in the benchmark slip-stick and 4:1 contraction
flows, evidencing the robustness of the proposed procedures. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most of the literature related to the computation of the Navier–Stokes equations with slip bound-
ary conditions is based on the finite element method (FEM). Some works present the variational
and FEM studies of the Stokes and Navier–Stokes equations with free slip boundary conditions
(see [1, 2] and the literature cited therein). Others give friction an important role and investigate the
effects of slip and leak boundary conditions [3, 4].

This paper concerns friction slip models. Even though a number of difficulties have been reported
in the FEM literature on handling friction slip models [3], some recent techniques, such as the
penalty approach [4], seem to work well, at least when applied to Stokes flow. However, other
contributions using linear and nonlinear slip models in the context of FEM [5–7] frequently refer
the need to use relaxation in order to obtain convergence.

To our best knowledge, numerical codes based on the finite volume method (FVM) comprising
slip boundary conditions are scarce, and a comparison between FEM and FVM shows that the solver
for the Navier–Stokes equations is often quite different: whereas FEM is usually built in the varia-
tional formulation of the boundary value problem and iteratively couple the equations, on the basis
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of projection [8], penalty or augmented-Lagrangian [4] methods, amongst others, the FVM uses the
integral formulation of the Navier–Stokes equations together with one of the various SIMPLE-based
[9] methods to develop and couple pressure and velocity fields along iterations [10]. Although the
SIMPLE method is a disguised version of a projection method, results about the implementation
of slip boundary conditions making use of FEM and projection methods could not be found in the
literature, except for the case of an explicit implementation of slip boundary conditions. This makes
it rather difficult to compare the implementation techniques of the slip models.

The aim of this paper is then to present a detailed description of two new different implementa-
tions of slip boundary conditions within an FVM approach. These methodologies do not need the
use of relaxation and work well for all the slip boundary conditions. In addition, two other spe-
cific methods, one for the linear Navier slip law and the other for the nonlinear Navier slip law, are
also presented.

The remainder of this paper is organized as follows. The next section presents the governing equa-
tions and is followed, in Section 3, by a detailed description of the implementation of slip velocity
in a 2D flow using Cartesian coordinates. In Section 3, we first compare ‘the classical’ fully explicit
method (which is applied to the four different slip boundary conditions, namely the linear and espe-
cially three nonlinear slip boundary conditions) with the fully implicit method for the linear Navier
slip law, and then present two new different methods able to deal with all the slip laws studied here.
The first of these two methods only works for orthogonal meshes, whereas the second method is
able to handle both orthogonal and nonorthogonal meshes. The description of the four methods is
followed by the presentation and discussion of results using reference cases for validation, prior to
the closure of the paper.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

The governing equations for incompressible fluids are the continuity,

r � uD 0 (1)

and momentum equations,

@�u
@t
C �r � uuD�rpCr � � (2)

where u is the velocity vector, � is the fluid density (assumed to be constant), p is the pres-
sure and � D �s C �p is the extra stress tensor. The extra stress tensor is divided into solvent
�s D �s.ruC

�
ru/T

�
(with �s the solvent viscosity) and polymer �p contributions, the latter given

here by the following differential constitutive equation, called the simplified Phan-Thien–Tanner
model (sPTT) [11, 12]:

f .t r�p/�p C �

�
@�p

@t
C u.r�p �

�
.ru/T .�p C �p .ru

��
D �p.ruC

�
ru/T

�
(3)

where f .t r�p/ is a function depending on the trace .t r/ of the polymeric stress tensor .�p/, � is the
relaxation time and �p is the zero shear polymer viscosity. In the literature, there are two possible
functions for f .t r�p/. The original linear function, presented by Phan-Thien and Tanner[11],

f .t r�p/D 1C
"�

�p
t rŒ�p� (4)

and the exponential proposed later by Phan-Thien [12], which is given by

f .t r�p/D exp

�
"�

�p
t rŒ�p�

�
(5)

In any case, the parameter " is related to the elongational behavior of the modeled fluid (" is
inversely proportional to the extensional viscosity).
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The Upper-convected Maxwell (UCM) model can be derived from the sPTT model by mak-
ing �s D " D 0, and the Oldroyd-B model is obtained when " D 0 and �s ¤ 0. The
generalized-Newtonian fluid model assumes � D �s C �p D 2�. P�/S in Equation (2), where �. P�/
is a viscosity function that depends on the second invariant . P�/ of the rate of deformation tensor
S D .ruC

�
ru/T

�
=2 with P� D

p
2S W S ).

A fully implicit finite volume numerical method is used to solve Equations (1)–(3), which are
transformed to generalized coordinates. The method is based on a time marching pressure-correction
algorithm formulated with a collocated variable arrangement. The governing equations are inte-
grated in space over the control volumes (cells with volume VP ) forming the computational mesh
and in time over a time step (�t ). The volume integration benefits from Gauss theorem, and the
subsequent surface integrals are then discretized with the help of the midpoint rule so that sets of
linearized algebraic equations are obtained, having the following general form:

aPuP D

6X
FD1

aFuFC Su (6)

for the velocity components u, v and w, and

a�P�P D

6X
FD1

a�F�FC S� (7)

for the extra stress components �xx , �xy , �x´, �y´, �yy and �´´. In these equations, aP, aF, a�P and
a�F are the coefficients accounting for convection and diffusion influences, Su and S� are source
terms encompassing all contributions not included in the coefficients, the subscript P denotes the
cell under consideration and subscript F its corresponding neighboring cells. The central coeffi-
cients of the discretized equations, aP and a�P, are generally given by the sum of neighbor cell
coefficients in addition to the time-dependent term in the corresponding governing equation (the
time is used here with the purpose of inertial under-relaxation because the interest is only in steady
state solutions). As follows, the central coefficient for the momentum equation is given by

aP D
�VP

�t
C

6X
FD1

aF (8)

but for the sPTT stress equations, an additional term is included, resulting from the f .t r�/ term
in Equation (3), which tends to promote stability by increasing the numerical value of the aP
coefficient,

a�P D
�VP

�t
C VP

�
1C

"�

�p
t rŒ�p�

�
C

6X
FD1

a�F (9)

The linear set of equations given by Equation (6) are sequentially solved for the Cartesian
velocity components by means of a preconditioned biconjugate gradient solver (the precondi-
tioner used is LDU decomposition special for indirect addressing). The newly computed velocity
field usually does not satisfy the continuity equation (i.e., Equation (1)), which needs to be cor-
rected by an adjustment of the pressure differences that drive them. This is accomplished by
means of a pressure-correction field obtained from a discrete Poisson equation, derived from a dis-
cretized form of the continuity equation (Equation (1)) in combination with the momentum equation
(Equation (2)). This pressure-correction equation is then solved by a symmetric conjugate gradient
method. The correction of the velocity field follows the SIMPLEC strategy of Van Doormal and
Raithby [13], and we may now solve sequentially the implicitly discretized constitutive equations
for �xx , �xy , �x´, �y´, �yy and �´´ (Equation (7)). This system of equations is solved with the help
of the biconjugate gradient method.

Most important from the standpoint of accuracy is the representation of the convective terms in
the constitutive equations, which relies on the SMART scheme of Gaskell and Lau [14]. A schematic
view of the numerical procedure can be seen in Figure 1, and a detailed description of the code can
be found in [10].
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Figure 1. Schematic of the numerical procedure.

2.1. Boundary conditions

The slip boundary conditions used in this work are the linear [15] and nonlinear [16] Navier slip
laws as well as the Hatzikiriakos [17] and asymptotic [18] slip laws, which are presented next.

Let ut and �t be the velocity and stress tangent (to the wall) vectors, respectively. It is required
that the absolute value of the slip velocity must be a function of the absolute value of the tangent
stress vector as in Equation (10),

kutk D kf .�t /k (10)

where k.k stands for the usual l2 norm and f ../ represents any real linear or nonlinear function of
the tangent stress vector (�t ). It is also required that the tangent velocity vector, ut , should point
in the opposite direction to the tangent stress vector �t , that is, the relationship between these two
quantities is given by

ut D�kf .�t /k k�tk
�1 �t (11)

where the functionkf .�t /k takes the form in Equation (12) for each of the various slip laws

kf .�t /k D

8̂<
:̂

linear Navier kl k�tk (a)
nonlinear Navier knl k�tk

m (b)
Hatzikiriakos kH1 sinh.kH2 k�tk/ (c)
asymptotic kA1 ln.1C kA2 k�tk/ (d)

(12)

and the parameters kl , knl , kH1, kH2, kA1, kA2 andm are the corresponding slip coefficients. The
interested reader is referred to [19] for more details about these models.

3. NUMERICAL IMPLEMENTATION OF SLIP BOUNDARY CONDITIONS

3.1. Discretization

To better understand the implementation of slip boundary conditions, a simple 2D channel flow with
Cartesian coordinates and orthogonal meshes is used, as illustrated in Figure 2. At the boundary
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Figure 2. Simple geometry: flow between parallel plates (zoomed view of the computational cells near
the wall).

(the wall at the north cell face), the velocity is tangent to the wall (x-direction), and the tangent
stress vector is determined as

�t D .1� n˝ nT /.�nT / (13)

where nD .n1, n2, n3/ is the normal vector to the wall and 1 is the identity matrix.
The main key for this new implementation of slip boundary conditions is the local assumption of

a Couette flow in the vicinity of the wall [10]. If so, the tangent stress vector at the upper wall (for
this simple geometry) can be written as

�t D

�
	. P�/

du

dy

�
wall

(14)

for all the constitutive equations studied here.
On the basis of this, what distinguishes one viscoelastic model from another (with

respect to the wall boundary treatment) is only the viscosity function 	. P�/wall, which
is given by 	. P�/wall � �. P�wall/ for the generalized Newtonian fluids and is given by

	. P�/wall � �s C
�p

1C.˛�1/2=3˛
(with ˛ �

�

 C
p

2 � 1

	1=3
and ��1C27".� P�/2wall ) [20] for the

PTT model.
Under these flow conditions, the slip law takes the form

uws D knl

�
�	. P�/

du

dy

�m
wall

(15)

for the nonlinear Navier slip law. The linear law is recovered formD 1 in which case knl � kl . The
Hatzikiriakos and asymptotic slip laws are given by Equations (16) and (17), respectively.

uws D kH1 sinh

�
�kH2	. P�/

du

dy

�
wall

(16)

uws D kA1 ln

�
1� kA2	. P�/

du

dy

�
wall

(17)

If we assume a one-sided first-order approximation for the derivative du
dy

at the wall appearing

in Equations (15)–(17), then du
dy
' uws�uP

�yf
, where ws stands for ‘wall slip’, uP is the velocity at

the center of the control volume adjacent to the wall and �yf is half the cell width, as shown in
Figure 2. On the basis of this, Equations (15)–(17) can be written in their discretized form as
functions of the difference uws � uP ,

uws D fd .uws � uP/�

8̂̂̂
<
ˆ̂̂:

Navier knl

�
��. P�/
�yf

.uws � uP/
	m

(a)

Hatzikiriakos kH1 sinh
�
�kH2�. P�/

�yf
.uws � uP/

	
(b)

asymptotic kA1 ln
�
1� kA2�. P�/

�yf
.uws � uP/

	
(c)

(18)
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where fd . / represents the discretized version of the slip laws.
The discretization of the continuity equation (Equation (1)) in a computational cell P (Figure 2)

results in the balance of mass fluxes for this cell. These fluxes are normal to the cell faces; there-
fore, the slip boundary condition has no direct influence on this equation, because the walls are
impermeable.

The momentum equation (Equation (2)) is directly affected by the slip boundary condition
through the termr��. Notice that the discretization of this term will also change with the assumption
of a Couette flow in the vicinity of the wall (Equation (14)) as shown in Appendix A.

3.2. Explicit and implicit implementations of the Navier slip law

3.2.1. Explicit formulation. For the implementation of the slip boundary conditions with an explicit
slip formulation, a SIMPLE-type [9] method is used as an example. It can be easily adapted to other
algorithms such as the SIMPLEC, SIMPLER or PISO.

Let i represent the number of the outer iteration (iteration between the linearized momentum
equation and the pressure-correction equation), then the discretized slip boundary condition at
iteration i is given for the linear Navier slip law by

uiws D kl

�
�	. P�/i�1wall

ui�1ws � u
i�1
P

�yf

�
(19)

where 	. P�/i�1wall , u
i�1
ws , ui�1P pertain to the previous iteration.

The proposed modified SIMPLE algorithm (SIMPLE-SLIP-Explicit (SSE)) is given in Figure 1
with the following additional step:

(a) Compute slip velocity with the discretized slip model given by Equation (19).
This slip velocity value uiws goes straight to the source term Su of Equation (6) (see Appendix A

for more details).
At each iteration i , the boundary condition is updated with the velocity from the previous iteration

i � 1. To achieve convergence, the variation of this boundary condition along the iterative process
must be stable in some sense (sudden changes in the boundary condition along the iterative process
will not allow the overall convergence, and for a well-posed problem, we want the flow to depend
continuously on the boundary data).

The example illustrated in Figure 3 shows a case where convergence is not achieved for a situa-
tion where the linear Navier slip boundary condition was employed. There, we can see the evolution
of the velocity at the center of a control volume with the north face coinciding with a wall, as in

0i
wsu =

i
P 0.9u =

( )
( )

1
p

2 0 0.9 1.8

i i i
ws ws

f

k
u u u

y

μ+ = − −
Δ

= − − =

i+1
P 0.92u =

( )2 2 1.8 0.92

1.76

i
wsu + = − −

= −

i 1i + 2i +

Figure 3. Example of the iterative procedure used for the explicit formulation of slip velocity.
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Figure 2. The fluid movement is from left to right (with imposed velocity of 1 m/s), but at itera-
tion i C 2, the calculations are made assuming the fluid is slipping at the wall from the right to the
left, whereas just next to the wall, the fluid flows in the opposite direction. Because of this incon-
sistency, non-physical characteristics appear, and the process either diverges or converges to an
unacceptable solution.

The relationship uws < uP seems to be the key to the convergence of the process, but this is
difficult to guarantee when calculating the slip velocity with the values from the previous iteration.
A possible remedy is the classical use of under-relaxation uiws D Ru

i�1
ws C .1�R/u

i
ws with R < 1

when updating the slip velocity in step (a) (Flowchart illustrated in Figure 1), but for high slip
coefficients and nonlinear slip laws, this does not work.

Remark: This method can also be applied to any of the other slip laws studied here, provided the
right-hand side of Equation (19) is evaluated with the values from the previous iteration, i � 1, by
uiws D fd .u

i�1
ws � u

i�1
P /.

3.2.2. Implicit formulation. To eliminate the convergence issues of the explicit method, a fully
implicit formulation can be implemented, but only the linear Navier slip law allows a fully implicit
method without the use of other techniques (such as a deferred correction). The idea is to evaluate
Equation (19) assuming all variables come from the present iteration. Equation (19) can then be
rewritten as

uiws D kl

�
�	. P�/iwall

.uiws�u
i
P/

�yf

	
,uiws D

a

aC 1
uiP with aDkl

 
�
�. P�/iwall
�yf

!
(20)

This ensures that the slip velocity is always smaller than the velocity at the center of the adjacent
computational cell, so the continuity/monotonicity we searched for is preserved.

The dependency of uiws on uiP leads to modifications in Equations (6) and (8) with the central
coefficient aP (Equation (8)) now being given by

aP D aEC aW C aSC
aN

aC 1
C
�VP�

0
P

�t
(21)

These equations differ from those for no slip velocity (Equations (6) and (8)), in that the term aNuN
in Equation (6) does not exist and the coefficient aN in Equation (8) is now multiplied by 1

aC1
;

therefore, in Equation (21), aP is smaller when compared with the aP of Equation (8). Even though
this implicit implementation brings a less diagonally dominant system of equations, the required
conditions for convergence and stability are maintained, such as aP>

P
aF.

With this implicit implementation, there is no need to specify the value of uws along the iterative
process and no need to use under-relaxation to solve the discrete system of equations that results
from the discretization of the momentum equation. When convergence is achieved, the slip velocity
can be calculated with Equation (20) at each of the wall computational cells.

The iterative procedure, here called SIMPLE-SLIP-Implicit (SSI) scheme, is given by the scheme
of Figure 1 with the following additional step:

(c) After convergence, compute the slip velocity with the discretized slip model uiws D
a
aC1

uiP,
for all boundary wall computational cells.

Notice that lim.�yf ! 0/ 1
aC1
D 0, and this means that the refinement of the mesh near the wall

does not improve the convergence of the iterative matrix solver.
For a formulation with a second-order approximation of the derivative du

dy wall
(derivative of the

slip law), see Appendix B.

3.3. Semi-implicit implementation of slip laws (orthogonal meshes)

As mentioned before, the fully implicit formulation can only by applied to the linear Navier
slip law. To implement the other slip laws implicitly, we devised the method described in the
following text.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 72:724–747
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Consider again the geometry of Figure 2. The idea behind this new method is to assume the slip
velocity implicit on both sides of the equation for each of the wall boundary cells at each iteration i ,

uiws D fd .u
i
ws � u

i�1
P / (22)

and then use a numerical scheme to find the roots of the ensuing transcendent equation. It can be
proved analytically that with this method, uiws < u

i�1
P for all the slip boundary conditions studied

here (Appendix C ). In particular, we have the bounds ŒaI b� for the solution uiws that are given
by Equations (23), (24) and (25) for the nonlinear Navier, Hatzikiriakos and asymptotic slip laws,
respectively:

ŒaI b�� Œ0I ui�1P � (23)

ŒaI b��



kH1kH2	. P�/

i�1
wall=�yf

kH1kH2	. P�/
i�1
wall=�yf C 1

I ui�1P

�
(24)

ŒaI b��

8<
:

Œ0I ui�1P � if kA1 > 1h
0I

kA1kA2�. P�/
i�1
wall CkA1�yf

kA1kA2�. P�/
i�1
wall C�yf

ui�1P

i
if kA1 < 1

(25)

Here, the bisection method was used to find the roots of the transcendent equation (Equation (22)),
starting in the range of Equations (23)–(25) and stopping after n iterations such that .b � a/=2n is
below a given error.

The canonical equation used to compute the velocity field is still Equation (6) with the central
coefficient given by Equation (8).

With this method, the new iterative algorithm (SIMPLE-SLIP-Semi-Implicit-transcendent
(SSSIT)) follows the SIMPLE scheme, shown in Figure 1, with the following additional step:

(a) Compute slip velocity with the discretized slip model uiws D fd .u
i
ws � u

i�1
P / by applying the

bisection method.

3.4. Semi-implicit implementation of slip laws (orthogonal and nonorthogonal meshes)

The SSSIT algorithm solves the convergence problems for linear and nonlinear slip laws but only
works for orthogonal meshes. A new semi-implicit method is now devised, which is able to deal
with both orthogonal and nonorthogonal meshes, which is inspired on the linearization used with
the Navier slip law (fully implicit formulation).

The slip velocity uws can usually be written as a function of the difference .uws � uP/ by
uws D fd .uws � uP/. If we multiply this function by the ratio uws�uP

juws�uPj
, then our slip law can

be rewritten as

uws D fd .uws � uP/
uws � uP

juws � uPj
(26)

and, if along the iterative procedure only the slip velocity in the numerator is taken from the present

iteration uiws�u
i�1
P

jui�1ws �u
i�1
P j

, then the general slip boundary condition becomes

uiws D
c

cC 1
ui�1P (27)

with c D fd .u
i�1
ws � u

i�1
P /=jui�1ws � u

i�1
P j. Because c

cC1
< 1, we guarantee once again the

continuity/monotonicity of the slip velocity. The specification of c for each of the slip laws studied
here is straightforward.

Notice that although
��.uiws � uiP/=juiws � uiPj��D 1, along the calculations

��.uiws � ui�1P /=

jui�1ws � u
i�1
P j

��¤ 1. This ratio should tend to 1 as convergence is approached or else the slip veloc-
ity vector will not be pointing on the correct direction. This is another criterion that should be
checked for convergence.
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The canonical equation used to compute the velocity field is again Equation (6) with the central
coefficient given by Equation (8), and the iterative procedure (SIMPLE-SLIP-Semi-Implicit (SSSI))
follows the SIMPLE scheme, shown in Figure 1, with the following additional two steps:

(a) Compute slip velocity with the discretized slip model of Equation (27).
(b) Check for convergence in the residuals of the system of equations and for

��.uiws � ui�1P /=

jui�1ws � u
i�1
P j

��! 1. If convergence is not achieved, then proceed to the beginning of the iter-
ation. (The nonlinear Navier slip law can be treated as a special case of this method. For more
details, see Appendix D.)

The generalization to nonorthogonal meshes is straightforward but takes some more work. Let
ut D .u1t , u2t , u3t / and �t D .�1t , �2t , �3t / be respectively the tangent (to the wall) velocity and
stress vectors, both with Cartesian components. By Equation (11) and assuming Couette flow near
the wall, we obtain the following general formula for all slip laws:

uws D˙f
�����
�
	. P�/

du
dn

�
wall

����
� �

	. P�/du
dn

�
wall���	. P�/du

dn

���
wall

, (28)

where the ˙ depends on the sign of du
dn , and du

dn D
�
du1t
dn I

du2t
dn I

du3t
dn

	
with ujt , j D 1, 2, 3, the

components of the tangent vector at the wall.
The discretization of these derivatives is given by�u1t � u1tP

ın
I
u2t � u2tP

ın
I
u3t � u3tP

ın

	
(29)

where ın is the distance between the wall and P0 (as given in Figure 4) and ujtP D ujP�nju.n, j D
1, 2, 3, are the components of the tangent velocity vector at the center of the adjacent cell P.

The velocity at P0 is not known (Figure 4), so it is assumed that uP D uP0 . This introduces an
error in the calculations that will diminish as the mesh quality and refinement are improved.

Considering that 	. P�/wall is a positive scalar and that only the slip velocity on the last term of
Equation (28) is evaluated implicitly, then Equation (28) can be rewritten as

.u1, u2, u3/
i
ws D

d

d C 1
.u1tPI u2tPI u3tP/

i�1 (30)

with

d �

8̂̂<
ˆ̂:

Navier knl kgk
m�1 .	. P�/i�1wall /

m=ın (a)

Hatzikiriakos kH1 sinh.kH2
��	. P�/i�1wallg

��/	. P�/i�1wall=
��	. P�/i�1wallg

�� ın (b)

asymptotic kA1 ln.1C kA2
��	. P�/i�1wallg

��/	. P�/i�1wall=
��	. P�/i�1wallg

�� ın (c)

(31)

and g D .u1t � u1tPI u2t � u2tPI u3t � u3tP/
i�1=ın.

Figure 4. Projection of the velocity vector in the center of the computational cell into the tangent and normal
part (left, orthogonal mesh; right, nonorthogonal mesh).
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Notice that ujws < ujtP seems to be sufficient to obtain a stable computation. In our tests, this
procedure worked well, except for very high slip coefficients with the Hatzikiriakos law, where
convergence was difficult. More details on this issue can be found in the following section.

(a) (b)

(c)

(e)

(d)

Figure 5. Comparison between analytical (lines) and numerical (symbols) solutions for a fully developed
channel flow using linear and nonlinear slip laws with different slip coefficients: (a) nonlinear Navier slip
law with knl D 1E � 5; (b) nonlinear Navier slip law with knl D 1E � 4; (c) zoomed view of the nonlinear
Navier slip law with knl D 1E�5; (d) Hatzikiriakos slip law; and (e) asymptotic slip law. U is the imposed

mean velocity, and H is half the channel width.
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Remark 1
All the previous methods are easy to implement in an iterative procedure. Besides the fully implicit
method used for the linear Navier slip model, all other methods in this work are semi-implicit and
therefore suffer from stability problems. Another option would involve the explicit inversion of
Equations (15)–(17) to express du

dy
as a (nonlinear) function of uws . Such expression could then

be substituted into the discretized momentum equation leading to a fully implicit nonlinear for-
mulation. The resulting set of nonlinear equations could then be linearized by means of a Newton
algorithm, which generally converges much faster than a Picard iteration. In this way, the boundary
condition would become a natural part of the fully nonlinear model, and the problems with mono-
tonicity around the walls would be avoided. It should also be noticed that a semi-implicit advection
discretization would enhance the stability of the algorithm. These enhancements would require a
huge modification of the original modeling code, thus we adopted a simpler approach that allowed
to achieve convergence for the studies performed.

4. RESULTS AND DISCUSSION

To assess the performance of the numerical implementations, the slip models studied here were
first compared with analytical solutions for fully developed channel flow with wall slip and subse-
quently tested for the slip-stick and 4:1 contraction flow problems. The analysis is carried out first
for Newtonian fluids and subsequently for viscoelastic fluids.

4.1. Newtonian fluids

Figure 5(a) and (b) compares predictions by the nonlinear Navier slip law (including the particu-
lar case of the linear Navier slip law (m D 1 )) for different values of the model parameters (slip
coefficient and exponent) with the corresponding analytical solutions. The comparison between the
analytical and numerical solutions for the Hatzikiriakos and asymptotic slip laws can be seen in
Figure 5(d) and (e), respectively. The accuracy of the results is quite good as can also be assessed
by a zoom of Figure 5(a), shown in Figure 5(c), but more specifically by Figures 6 and 7(a), which
plot the relative error in the prediction of the slip velocity as a function of the mesh size for the
linear and nonlinear Navier slip laws, respectively. Figure 6 shows that the accuracy and the order
of convergence of the solution both increase with the slip coefficient. For instance, for the linear
law, the order of convergence increases from 2.14 with kl D 10E�6 [m.(Pa.s)�1] to 2.6 for kl D 1

Figure 6. Variation of the relative error in slip velocity with mesh spacing4y for the linear Navier slip law
with different slip coefficients and three different meshes (Re D 0.003) using the totally implicit scheme

(p stands for the order of convergence).
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(a) (b)

Figure 7. Variation of the relative error in slip velocity with mesh spacing4y for the nonlinear Navier slip
law with different slip coefficients and three different meshes (Re D 0.003). (a) nD 1.5 SSSIT; (b) nD 1.5

SSSI. p stands for the order of convergence.

Table I. Uniform meshes used in the channel flow simulations.

x y �x=H D�y=H

Mesh 1 25 5 0.2
Mesh 2 50 10 0.1
Mesh 3 100 20 0.05

x stands for the number of cells in the x direction, and y stands for the
numbers of cells in the y direction.

[m.(Pa.s)�1]. This is so because increasing the slip coefficient leads to higher slip velocities; the
velocity profile tends to a plug thus reducing the role of diffusion and increasing that of convection
where a third-order accurate scheme [21] is used. Note also that here the error committed in the
evaluation of the tangent stress is equal to the error for the slip velocity because the slip velocity
depends linearly on the tangent stress junumws �uws j=juws jDj�

num
12
��12j=j�12j.

These features are observed regardless of the numerical method used to obtain the solution as can
be confirmed in Figure 7(a) and (b), where the order of convergence and error are shown for the
predictions obtained with the nonlinear Navier law using the numerical methods SSSIT and SSSI,
respectively. Our calculations with the two methods show that the order of convergence increases
with the slip coefficient.

Comparing both methods, we found that the order of convergence is larger for the method SSSIT,
where at each iteration the ‘numerically correct’ slip solution is determined by the bisection method,
whereas for method SSSI, the solution is only approximated using values from the previous iteration.

After the code assessment, the next step was to compare the various explicit and implicit/
semi-implicit schemes using the channel flow of Figure 2 (with the Mesh 2 of Table I), at two
different Reynolds numbers of 0.003 and 10 for the four different implementations of slip boundary
conditions proposed: (1) totally explicit (SSE), (2) totally implicit (SSI), (3) semi-implicit tran-
scendent (SSSIT) and (4) semi-implicit (SSSI). The linear Navier slip model was chosen for the
comparison because all the schemes work with it, and the nonlinear Navier slip model was chosen
to compare schemes (3) and (4).

Linear slip model

Figure 8 plots the number of iterations required for convergence and shows that for the implicit
procedure (SSI) and this specific geometry and flow, the larger the slip velocity, the quicker is the

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 72:724–747
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Figure 8. Graph representing a comparison for the number of iterations needed to achieve convergence using
the schemes: implicit (SSI), explicit (SSE), semi-implicit transcendent (SSSIT) and semi-implicit SSSI (for

the linear Navier slip law) with the simple geometry of Figure 2 (Mesh 2).

convergence. This is so because for large slip, the analytical solution is the plug flow, and the guessed
initial velocities are very close to the converged values, so only a few iterations are needed to obtain
convergence. For the remaining schemes, similar results were obtained in terms of number of itera-
tions. It should also be noticed that the error for the totally explicit scheme (SSE) was larger than for
any other method, because for high slip coefficients the required relaxation factor was sometimes of
the same order as the tolerance used to stop the numerical simulation.

From these results, one can conclude that for the linear slip law, the best method is the implicit
procedure (SSI).

Nonlinear slip models

The advantages of the semi-implicit procedures (SSSIT and SSSI) can be seen with the nonlinear
laws. Table II shows the number of iterations needed to obtain convergence for Re D 0.003, 10.
The results for the totally explicit method are not shown because convergence was impossible. This
results are for a simple geometry, but for a more complex geometry, the capability of the explicit
procedure is expected to decrease.

From Table II, it can be seen that for the nonlinear Navier slip law, the number of iterations for
methods SSSIT and SSSI was the same. For method SSSI, we found that when d=.d C 1/ Ð 1

(Equation (30)), the code was not able to get out of a periodic sequence where the velocity equals
the tangent stress, and to remedy this issue and obtain convergence, a classic relaxation for the slip
velocity was used.

For the asymptotic slip law, the schemes SSSIT and SSSI were both efficient, and a similar
number of iterations were required for convergence. It should be noticed that when starting the
outer iterations, the slip velocity was initialized as 90% of the velocity in the center of the nearest
computational cell. Starting with null slip velocity and a constant non-zero velocity at the center of
the adjacent computational cells may lead to divergence.

For the Hatzikiriakos slip law, several convergence issues occur, especially for high slip coeffi-
cients. For both the SSSIT and SSSI methods, the main problem is due to the hyperbolic function,
which either gives very high values at the beginning of the calculations leading to d=.d C 1/ Ð 1
(SSSI) or gives values that cannot be computed by the CPU (SSSIT).

We tried to solve the problem by controlling the growth of the hyperbolic function by limiting
the maximum value of the sinh function argument; however, for high velocities, this algorithm does
not seem to solve the problem, because convergence could only be obtained for mean velocities
below 3 [m.s�1] (Re D 0.0091). The problem seems to be velocity value and not the Reynolds
number itself as one could increase the Reynolds number by imposing a mean velocity smaller
than 3 [m.s�1].

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 72:724–747
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We also tried to initiate the calculations for the Hatzikiriakos model using the converged results
from the linearized version of this model, but convergence was poorly enhanced, and the series
expansion of the function did not solve the problem either.

For the Hatzikiriakos slip law, with the scheme SSSIT, only the first two trials converged. So, the
chosen method for this slip law is method SSSI, but even here computations are limited to smaller
imposed velocities as with higher imposed velocities the sinh function overflows.

4.2. Non-Newtonian fluids

4.2.1. Slip-stick. The simplified PTT model was selected for testing the slip-stick problem in a
straight channel (cf. Figure 9) using orthogonal and skewed meshes and the linear and nonlinear slip
laws. This flow comprises two regions: the initial part (region I) is unbounded (the upper boundary
imposed is a symmetry plane), and the second region (region II) has a solid wall. A symmetry plane
was considered at the bottom boundary in both regions. The inlet velocity is a plug profile, and
the mesh used has the properties indicated in Table III and Figure 9. The meshes (orthogonal and
non-orthogonal) are those of Oliveira et al. [10] and correspond to their mesh 7, with a skewness of
30° for the non-orthogonal grid.

Tests were made for different values of the slip coefficients (Table III), at constant Reynolds num-
ber Re D �UH=� D 20 and a varying Deborah number De D �U=H 2 ¹0.25I 0.5I 1.0I 2.0º with
" D 0.25. Convergence could be achieved for all cases when the mesh was orthogonal and for all
the slip laws, whereas for the skewed mesh, convergence was only possible for a Deborah num-
ber of up to 2. As expected, an easier convergence could be seen for high slip velocities (high slip
coefficients), because the slip velocity numerically smoothes the singularity at the wall.

In Figure 10, one can see the effect of slip in the flow variables u, �xx , �xy and �yy along the line
y=H D 0.9975 (near the wall). As expected, near the singularity, the variation of all variables tend
to smooth with the slip coefficient, and this is especially clear with the stresses that develop because
of the extensional nature of the flow in the vicinity of the singularity. As the fluid moves away from
the singularity, the stresses start to redevelop for shear flow. As the slip coefficient increases, the slip
velocity increases, and the shear rate tends to zero. This reduces the transverse transfer of momen-
tum by molecular diffusion, and flow redevelopment is slowed down. This can be seen especially
for the case of �xx with kl D 1E�4 [m.(Pa.s)�1] (Figure 10(b)).

symmetry plane
wall

h

5h 10h

U

region IIregion I

x

y

regionI:  nºcellsXdirection=70;  nºcellsYdirection=60
regionII: nºcellsXdirection=100; nºcellsYdirection=60

Figure 9. Schematic representation of the slip-stick geometry.

Table III. Slip constants used in the simulation of the slip-stick flow for the different slip models.

Linear Navier kl D 1.0E�a, a 2 ¹1I 2I 3I 4I 5I 6º [m.(Pa.s)�1]

Nonlinear Navier knl 2 ¹1.0E�5I 1.0º [m.(Pa.s)�1]

Hatzikiriakos kH1 D 1.0 [m.s�1] kH2 2 ¹1.0E�5I 1.0º[m.s�1]

Asymptotic kA1 D 1.0 [Pa�1] kA2 2 ¹1.0E�5I 1.0º [Pa�1]
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(a) (b)

(c) (d)

Figure 10. Variation of: (a) u, (b) �xx , (c) �xyand (d) �yyalong the slip-stick region near the wall
y=H D 0.9975. Four different slip constants were used kl 2 ¹1E � 6, 1E � 5, 1E � 4, 1E � 3º and

De D 2, Re D 20 .

250H

2100H

2H

1H

1U

2U

1

2

3

4 5

Figure 11. Schematic of the 4:1 contraction geometry.

4.2.2. Contraction flow. The second benchmark flow problem tested for viscoelastic fluids (under
the influence of slip) was the planar 4:1 contraction flow.

The geometry for this problem is given in Figure 11 and was divided into five blocks (Table IV)
with only half of the channel being considered because of symmetry. On the basis of the work of
Oliveira et al. [10], Alves et al. [22] and Ferrás et al. [23], we built three different meshes with
consistent mesh refinement between consecutive meshes (MC1, MC2 and MC3 as in Table IV). The
notations nx and ny are used to represent the number of cells in the x and y directions, respectively,
and fx and fy are the corresponding contraction/expansion ratios that allow the concentration of
cells in zones were high gradients are expected to occur. The most refined mesh (MC3) has almost
200,000 cells.

The simulations were performed for the sPTT model with a constant Reynolds number Re D
�U2H2=� D 0.04 and a varying Deborah number De D �U2=H2 2 ¹0I 1I 2I 3I 4I 5º with " D 0.25
and viscosity ratio ˇ D �s

�0
D �s

�sC�p
D 1

9
.

The method that was tested was the SSSI because of its good results in the previous geometries,
and the chosen viscoelastic model was again the linear PTT model.

For the linear Navier slip law, we could obtain convergence only up to a De number of 5. As
expected, convergence is reduced with the mesh refinement. It should be noticed that for the no-slip

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 72:724–747
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Kl=0 [m(Pa.s)-1] Kl=1 [m(Pa.s)-1]

Figure 12. Vortex size for the 4:1 contraction flow of a PTT fluid for two different slip coefficients kl D 0
and kl D 1.

velocity boundary condition, no restrictions were found in theDe number for this specific geometry
and constitutive equation [22].

On the basis of the results obtained for the linear Navier slip law, it is expectable that the other
nonlinear slip laws will again suffer from poor convergence. Because the Hatzikiriakos slip law is the
most difficult slip law to compute, we also tested the limits on the De number for the Hatzikiriakos
slip law. We could obtain convergence up to De D 1 with kH1 D 1 and kH2 D 1E�4.

We could also find that the presence of slip velocity leads to an increase of the vortex size
(Figure 12; see [23] for more details).

5. CONCLUSIONS

Several new explicit, implicit and semi-implicit numerical techniques were developed to implement
slip boundary conditions into a FVM-based code. These implementations are ‘stable’ for the linear
and nonlinear Navier and asymptotic slip laws. However, the Hatzikiriakos slip model leads to unsta-
ble behavior for high slip coefficients leading to divergence of the code. Some ad hoc procedures
were presented to attenuate this divergence, but these never solved completely the problem that is
rooted on the sinh function and the corresponding computer overflow it creates. The predictions
given by the numerical code were compared with the analytical solutions, and excellent agreements
were obtained for Newtonian fluids. Finally, the implementations were tested with viscoelastic flu-
ids in the slip-stick and planar 4:1 contraction benchmark flows, evidencing the robustness of the
proposed numerical procedures.

APPENDIX A: DISCRETIZATION OF THE MOMENTUM EQUATION FOR A
SIMPLE 2D GEOMETRY

The continuity and momentum equations can be written in Cartesian coordinates as Equations (A.1)
and (A.2), respectively,

@u

@x
C
@u

@y
D 0 (A.1)

@.��/

@t
C
@.u�/

@x
C
@.v�/

@y
D�

@p
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@

@x

�
�s
@�

@x
C �‰x

�
C

@

@y

�
�s
@�

@y
C �‰y

�
(A.2)

where � D u and ‰ D x in the x-momentum equation, and � D v and ‰ D y in the y-momentum
equation. The discretization of the continuity equation in a computational cell P (Figure 2) results in
the balance of mass fluxes for this cell. These fluxes are normal to the cell faces; therefore, the slip
boundary condition has no direct influence on this equation (because the walls are impermeable).
The momentum equation is directly affected by the slip boundary condition, and for that reason, its
discretization is briefly explained in the succeeding text. The interested reader should consult [9,10]
for more details.
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In the momentum equation (Equation (A.2)), the discretization of the transient, convective and
pressure gradient terms is not directly affected by the implementation of slip velocity, but the
diffusive term is affected, as explained next.

The discretization of the transient term using a first-order scheme is given by Equation (A.3). The
variable � is evaluated at the center of the cell P, meaning that this term is not directly affected by
the slip velocity (the superscript ‘0’ indicates the previous time step, and compass notation is used,
i.e., e stands for ‘east’, w for ‘west”, n for ‘north’ and s for ‘south’ cell faces).Z e

w

Z n

s

Z t1

t0

@.��/

@t
dtdxdy D

Z e

w

Z n

s

.��/� .��/0dxdy � Œ.��/P � .��/
0
P��VP (A.3)

For the fully implicit method in time used here, all other terms are evaluated at the present
time step.

Discretization of the convective terms results in Equation (A.4) for the x- and y-momentum
equations. Although the variable of interest �n (cf. Figure 1) appears in Equation (A.4), for imper-
meable walls, this wall-normal convective term has no contribution from the slip boundary condition
(Fn D�y�v D 0 ).Z e

w

Z n

s

Z t1

t0

@.u�/

@x
C
@.v�/

@y
dtdxdy � .Fe�e � Fw�w/�t C .Fn�n � Fs�s/�t (A.4)

The discretization of the diffusive term for the PTT fluid together with the assumption of
Equation (14) leads to the following expression to be incorporated the x- and y-momentum
equations:
�
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(A.5)
Notice that the terms for the north cell face ..../n at Equation (A.5) came from Equation (14) (the

north cell face is a boundary face). The slip velocity is then carried via
�
@	
@y

	
n�wall

. Different one-

sided approximations to the derivatives can be used, such as the first-order scheme of Equation (A.6)
or the second-order accurate scheme of Equation (A.7). Assuming uniform meshes, the first and
second-order approximations are respectively given by�

@�

@y

�
wall
D
�wall � �P

�yf
CO.4y/ (A.6)

�
@�

@y

�
wall
D
8�wall � 9�PC �S

6�yf
CO.4y/2 (A.7)

Assuming square computational cells and the use of central differences to discretize all
diffusion-related derivatives (except at the boundaries), the first term in Equation (A.5) becomes
Equations (A.8) and (A.9) for the first-order and second-order approximations, respectively,


	. P�/wall

�yf
�nC

.�s/s

�y
�S �

�
	. P�/wall

�yf
C
.�s/s

�y

�
�PC .�‰y/s

�
�x�t (A.8)



8	. P�/wall

6�yf
�nC

�
	. P�/wall

6�yf
C
.�s/s

�y

�
�S �

�
9	. P�/wall

�yf
C
.�s/s

�y

�
�PC .�‰y/s

�
�x�t (A.9)

After grouping all the terms, the discretized momentum equation is rewritten in the standard com-
pact form (where we have now substituted the general variable � by the specific variable u, because
we are analyzing the x-momentum equation)

aPuP D aEuEC aWuWC aSuSC aNuNC
�VP.��/

0
P

�t
C
ıp

ı‰
C Sstress„ ƒ‚ …

source terms

(A.10)
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where ıp
ı‰

represents a general discretization of the pressure gradient, and aE, aS and aW are given
by Equations (A.11), (A.12) and (A.13), respectively,

aE D a
c
EC a

d
E D a

c
EC

.�s/e�y

�x
.first and second order/ (A.11)

aS D a
c
SC a

d
S D

´
acSC

.�s/s�x
�y

.first order/

acSC
�
�. P�/wall
6�yf

C .�s/s
�y

	
�x .second order/

(A.12)

aW D a
c
WC a

d
W D a

c
WC

.�s/w�y

�x
.first and second order/ (A.13)

with the superscripts c and d referring to the convective and diffusive contributions, respectively.
To account for the slip boundary condition, which affects aNuN, the coefficient aN is given by
Equations (A.14) and (A.15) for the first-order and second-order accurate discretization schemes,
respectively,

aN D
	. P�/wall�x

�yf
(A.14)

aN D
8	. P�/wall�x

6�yf
(A.15)

Finally, the central coefficient aP is given as in the standard procedure [9] by

aP D aEC aWC aSC aNC ˛
.�s/n�x

6�y
C
�VP�

0
P

�t
(A.16)

with ˛ D 0 and ˛ D 1 for the first-order and second-order approximations, respectively.

APPENDIX B: SECOND-ORDER DISCRETIZATION OF THE LINEAR NAVIER SLIP LAW

The implicit calculation of the second-order accurate linear Navier slip law is given by
Equation (B.1)

uiws D
9kl	. P�/wall

6�yf C 8kl	. P�/wall
uiP �

kl	. P�/wall

6�yf C 8kl	. P�/wall
uiS (B.1)

with the restrictions of Equation (B.2)8<
:
uiP <

kl�. P�/wall
kl�. P�/wall�6�yf

uiS if kl	. P�/wall � 6�yf > 0

uiP >
kl�. P�/wall

kl�. P�/wall�6�yf
uiS if kl	. P�/wall � 6�yf < 0

(B.2)

which are imposed by the need to ensure that uiws < uiP. Under these conditions, the momentum
equation for the control volume P is

aPuP D aEuEC aWuWC aSuSC
�VP.��/

0
P

�t
C
ıp

ı‰
C Sstress„ ƒ‚ …

source terms

(B.3)

with aS given by

aS D a
c
SC

.�s/s�x

�y
�

kl	. P�/wall

8kl	. P�/wallC 6�yf
uiS (B.4)
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and aP by

aP D aEC aWC aSC aN �
8kl	. P�/wall

8kl	. P�/wallC 6�yf
C
�VP�

0
P

�t
(B.5)

Equation (B.4) shows that aS can become negative, therefore violating the requirement for
positive coefficients [9] needed to obtain physically realistic solutions, and this is an important
limitation. The condition for positive values of aS cannot be given because it depends on several
physical parameters that we do not control.

APPENDIX C: EXISTENCE AND UNIQUENESS OF THE DISCRETIZED SLIP VELOCITY

Hatzikiriakos slip law

We postulate that the relationship between uiws and ui�1P must be

uiws D kH1 sinh

�
kH2	. P�/

�yf
.ui�1P � uiws/

�
(C.1)

with uiws < ui�1P (the physics of the problem requires the slip velocity to be smaller than the
velocity at center of the adjacent computational cell) and that uiws and ui�1P are both positive or
both negative.

Let us assume, without loss of generality, that they are both positive. It must be proved that

9.uiws/
1 W uiws D kH1 sinh

�
kH2	. P�/

�yf
.ui�1P � uiws/

�
^ 06 uiws 6 ui�1P ,

8kH1, kH2, 	. P�/, ui�1P 2RC0 (C.2)

Proof
Existence. Because 0 6 uiws 6 ui�1P , then 9ı 2 R W 0 6 ı 6 ui�1P , in such a way that uiws can be
written like uiws D u

i�1
P � ı. The problem can now be stated as

9.ı/1 W ıC kH1 sinh

�
kH2	. P�/

�yf
ı

�
� ui�1P D 0^ 06 ı 6 ui�1P , 8kH1, kH2, 	. P�/, ui�1P 2RC0

(C.3)

Let f .ı/ D ı C kH1 sinh
�
kH2�. P�/
�yf

ı
	
� ui�1P , because f .ui�1P /f .0/ < 0 and f ./ is a real-

valued continuous function on the interval Œ0I ui�1P �, the intermediate value theorem implies that
9ı W f .ı/D 0.

Uniqueness. Rolle theorem states that for a continuous function in some interval ŒaI b�,
f W ŒaI b�!R, between two zeros (say x and y) that belong to that interval, there exists a value
� 2 �xI yŒ W f 0.�/ D 0 (if f 0.�/ ¤ 0, then there could exist at most one zero). Because
f 0.ı/¤ 08ı 2R,

f 0.ı/D 1C kH1cosh

�
kH2	. P�/

�yf
ı

�
kH2	. P�/

�yf
> 0 (C.4)

Rolle theorem implies that ı is unique. The existence and uniqueness of uiws is now proved. �

More can be said about the bottom bound of uiws . Because

sinh
�
kH2�. P�/
�yf

.ui�1P � uiws/
	
> kH2�. P�/

�yf
.ui�1P � uiws/, then

uiws >
kH1kH2	. P�/

kH1kH2	. P�/C�yf
ui�1P (C.5)

and the initial range for the bisection method is given by

kH1kH2	. P�/

kH1kH2	. P�/C�yf
ui�1P I u

i�1
P

�
(C.6)
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Asymptotic slip law

As for the Hatzikiriakos slip model, first the intermediate value theorem will be used to prove the
existence of the solution, and then, with the Rolle theorem, we will prove its uniqueness.

Consider the function f .uiws/ given by

f .uiws/D u
i
ws � kA1ln

�
1C

kA2	. P�/

�yf
.ui�1P � uiws/

�
(C.7)

Because f .ui�1P /f .0/ < 0 and f ./ is a real-valued continuous function on the interval Œ0I ui�1P �,
the intermediate value theorem implies that 9uiws W f .u

i
ws/D 0.

Because f 0.uiws/ > 0 for uiws 2 Œ0I u
i�1
P �, by Rolle theorem, the solution is unique.

Using the identity ln.x/ < x 8x 2R, it can be seen that,

uiws <
kA1kA2	. P�/C kA1�yf

kA1kA2	. P�/C�yf
ui�1P (C.8)

The initial range for the bisection method is then given by8<
:

Œ0I ui�1P � if kA1 > 1h
0I

kA1kA2�. P�/CkA1�yf
kA1kA2�. P�/C�yf

ui�1P

i
if kA1 < 1

(C.9)

APPENDIX D: IMPLEMENTATION OF THE NONLINEAR NAVIER SLIP LAW

The discretized form of the nonlinear Navier slip law (Equation (18a)) can be linearized assuming
that only the slip velocity of the linear part comes from the actual iteration as

uiws D knl

�
	. P�/i�1

�yf

�m
.ui�1P � uiws/.u

i�1
P � ui�1ws /

m�1

This way, we can solve for the slip velocity variable uiws and obtain

uiws D
l

1C l
ui�1P with l D knl

�
	. P�/i�1

�yf

�m
.ui�1P � ui�1ws /

m�1.
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NOMENCLATURE

aE , aW ,aN ,aS East, west, north and south neighbor coefficients for the discretized
momentum equation

aF Neighbor coefficients for the discretized momentum equation
a�F Neighbor coefficients for the discretized constitutive equation
aP Central coefficient for the discretized momentum equation
a�P Central coefficient for the discretized constitutive equation
f ./ Function used to represent the slip laws
fd ./ Function used to represent the discretized form of the slip laws
i Iteration number
kl Slip coefficient for the Navier slip law
knl Slip coefficient for the nonlinear Navier slip law
kH1, kH2 First and second slip coefficients for the Hatzikiriakos slip law
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kA1, kA2 First and second slip coefficients for the asymptotic slip law
m Exponent of the nonlinear Navier slip law
nD .n1, n2, n3/ Normal (to the wall) velocity vector
p Pressure
S Deformation tensor
Su Source term for the momentum equation
S� Source term for the stress equation
t Time
t r Trace of the stress tensor
u Velocity vector
uF Velocity vector at the center of the neighbor cells
uP Velocity vector at the center of the control volume
u0P Velocity from the previous time step
ut Tangent (to the wall) velocity vector
.u1t , u2t , u3t / Components of ut
uws Slip velocity
.u1tPI u2tPI u3tP/ Components of the tangent (to the wall) velocity vector utP at the

center of the control volume P
VP Cell volume
P� Shear rate
ın Distance between the wall and the center of the adjacent control

volume
�t Time step
�yf Control volume half height
" Parameter related to the elongational behavior of the fluid (PTT

constitutive equation)
�../ Viscosity function
�s Solvent viscosity
�p Zero shear polymer viscosity
� Relaxation time (PTT constitutive equation)
	../wall Viscosity function at the wall
� Density
� Stress tensor
�s Solvent stress tensor
�p Polymeric stress tensor
�P Stress variable at the center of the control volume
�xx , �xy , �x´, �y´, �yy , �´´ Components of the stress tensor
�t Tangent (to the wall) stress vector
.�1, �2, �3/ Component of �t
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