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Abstract  
The present numerical study is an introductory computer 

simulation work on the characteristics of incompressible 

fluid flow in curved ducts of square cross section. Here, 

the fluid is assumed Newtonian and the conditions of Bara 

et al [3], Mees et al [4] and Helin et al [7] were 

considered, in order to make comparison of results. Good 

agreement between the velocity profiles were found, 

especially for the lower Reynolds number (Re) 

considered. As Re was increased to 532 and 583, 

differences were observed at the end part of the curve. 

Those differences were higher for Re=583 and other 

solutions were presented to match the results of Bara et al 

[3]. 

 

Introduction  
Fluid flows in curved ducts can be found in many 

industrial and engineering applications, such as in most 

fluid transport systems within the chemical, food and 

manufacturing industries, in environmental engineering, 

in waste heat recovery systems, in air-conditioning, 

refrigeration and power production system ducts and in 

bio-engineering (e.g., human organs – arteries, lungs, 

catheter, etc.). Since the early XX
th

 century this type of 

flow arose a particular interest in the scientific 

community. This interest comes from the centrifugal 

induced secondary flows first reported by Dean in 1927 

that straight channels do not show. Although this 

secondary flows may have undesirable effects (e.g., 

increase in pressure drop; degradation of long chain 

molecules of polymeric fluids by the high shear stress), it 

can also be beneficial as it improves heat and mass 

transfer (e.g., in thermal homogeneity and membrane 

separation, respectively), enhance cross-sectional mixing 

(e.g., homogeneity of a mixture along the cross-section of 

the channel) and reduction in axial dispersion (e.g., 

diffusion of a solute in a flowing liquid). [1, 2].  

The secondary flow in a curved channel, also known as 

Dean flow, is induced by unbalanced centrifugal forces, 

as consequence of a non-uniform axial velocity 

distribution, and results in a pressure gradient normal to 

the streamwise direction. This pressure gradient (the 

pressure is higher at the outer wall than at the inner, 

bottom and top walls, where there is slow moving fluid) 

generates a secondary flow from the outer to the side and 

inner walls and finally towards the centre of the channel 

which then feeds the outer wall region. Thus, the flow is 

characterized by two symmetrical vortices that occupy the 

entire cross-section of the channel and its magnitude is 

measured by the Dean number (Dn). The Dean number is 

defined by the ratio of the square root of the product of 

inertial and centrifugal forces to the viscous force [3]: 
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  is the curvature ratio [3]. U is the average 

velocity at inlet, a is the side of the square cross section 

and R is the radius of curvature of the channel. However, 

as Re is increased, in the laminar regime, the flow 

becomes more complex and a second symmetrical pair of 

counter-rotating vortices appears near the outer wall [3]. 

Mees et al [4] showed that at Dn = 453 a third pair of 

counter-rotating vortices appears, Winters [5] presented 

multiple solutions within certain ranges of values of Re, 

and Soh [6] showed that the inlet conditions affect the 

flow downstream. More recently, Helin et al [7], 

following the same geometry of Bara et al [3], presented 

results of the development of the flow considering a 

viscoelastic fluid. Many works dealing with flows in 

curved channels have been published [1, 2], for different 

cross-sections, values of Re (or Dn), curvature ratios, fluid 

models, etc., using both numerical and experimental 

approaches, and thus showing how complex this kind of 

flow can be. However flows in curved channels of 

complex fluids are not yet completely understood, and 

even for Newtonian fluids the results obtained by 

different investigations are not always in agreement thus 

justifying the present contribution. 

 

Governing Equations  
Here we consider three-dimensional, laminar, isothermal, 

steady flow of an incompressible Newtonian fluid. The 

governing equations, which describe the behaviour of the 

flow, are presented in general form: 

i) Mass conservation: 

0.u  

ii) Momentum conservation: 
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where u is the velocity vector (with u, v and w 

components for the x, y and z directions, respectively), ρ 

is the fluid density, t is the time, p the pressure and τtot the 

extra stress tensor. 

iii) Constitutive equation: 

   2
T

     u u D    

which is Newton’s law for viscosity, where η is the 

constant fluid viscosity and  
T

u is the transpose of the 

velocity gradient tensor. 

 

Numerical Method  
The numerical solution of the governing equations is 

obtained by the Finite Volume Method, which maps the 

computational domain in cells (control volumes) and 

discretizes the equation in time and space, resulting in a 



linearized set of algebraic equations solved by adequate 

conjugate gradient solvers and the SIMPLEC algorithm. 

The geometry is a three-dimensional curved channel with 

square cross-section. To generate the mesh the channel is 

divided into three blocks (Figure 1-a)): 

i) Block I: a straight channel of width 1a  and 

length 20Le a  at the entrance; 

ii) Block II: a connecting 180º curved channel, with 

internal radius 1 14.6R a  and external radius 

2 15.6R a  (these dimensions are the same as 

those of Bara et al [3], Mees et al [4] and Helin et 

al [7] 
 1 2

15.1
2

R R
R


  ); 

iii) Block III: and a straight channel at the exit, 

having the same dimensions as the inlet channel. 

The origin of the Cartesian coordinates system (x, y, z) is 

at the bottom corner of the first block of the curved 

channel (Figure 1-b)). A non-uniform spaced mesh has 

been used and its geometrical characteristics are presented 

in Table 1. This table shows the number of cells in each 

block for each direction, the total number of control 

volumes (NCV) and the factor of compression/expansion 

(f) for each direction. The value of this factor defines the 

size of the smallest cell and is such that guarantees 

smooth transition between cell dimensions. Thus, when 

the mesh is uniform it takes the value of one, and when 

the mesh is non-uniform, as the case here, the 

compression factor in the x direction is about 4.8% in 

Block I and the expansion factor is about 5% in Block III. 

 
Table 1 – Geometrical characteristics of the computational mesh 

Mesh 

 NX × NY × NZ  
x

f  
y

f  
z

f  

Block I 30 × 20 × 20  0.95212 1.00000 1.00000 

Block II 161× 20 × 20  1.00000 1.00000 1.00000 

Block III 30 × 20 × 20  1.05029 1.00000 1.00000 

NCV 88400    

 

A no-slip condition is applied at all walls (u = v = w = 0) 

and a uniform velocity profile is imposed at the inlet of 

the entrance channel. Its length is such as to guarantee 

that the flow is fully developed when entering the curved 

part of the channel. At the exit of the outlet channel a zero 

axial-gradient condition was imposed. The simulations 

were done using the entire domain of the channel, due to 

the possibility of occurrence of asymmetries in the flow.  

 

Results and Discussion 
The results are presented mainly for three different Re 

numbers: Re = 486, Re = 532 and Re = 583, which 

correspond to Dn = 125, Dn = 137 and Dn = 150, 

respectively. The same conditions from Bara et al [3], 

which were later considered by Mees et al [4] and Helin 

et al [7], were also assumed here. Figure 2 exhibits 

contour and vector plots of the distribution of 

dimensionless streamwise velocity and the secondary 

 
Figure 1 – Geometrical characteristics of the channel (geometry 

not to scale). 
 

velocity field at the entry to the curve. At this position the 

maximum of the velocity is located at the centre of the 

channel, which corresponds approximately to a parabolic 

velocity profile along the symmetry plane of the cross-

section. Theoretically this velocity for fully-developed 

flow in a straight square duct is 2.096 and numerically we 

obtained 1.978, 1.959 and 1.939 for Re = 486, Re = 532 

and Re = 583 in the curved duct, respectively. 

 
Figure 2 – Contours and vector plots of dimensionless axial and 

secondary velocity at the entry to the curved channel. 

 

At the beginning of the curve, the flow tends, in the first 

place, to run as in a straight channel due to its inertia until 

it finds the outer wall. As the fluid moves along the curve, 

the centrifugal force maintains the maximum velocity 

towards the outer wall as illustrated in Figure 3, which 

shows contours of axial velocity along the curve mid-

plane (z=0.5) and also axial velocity contours and 

secondary velocity vector plots in the cross-section at 90º 

(middle of the curve), for different values of Re. This 

figure demonstrates that, at 90º, the secondary flow is 

already established and the two symmetrical counter-

rotating vortices are clearly observed. Looking to the 

vector plots in Figure 3, and as shown previously [3,7] at 

this location of the channel there is still no sign of an 

additional pair of vortices, except for Re=583 which 

shows, near the outer wall and between the large vortices, 



the early development of an additional pair of smaller 

vortices. This could probably be predicted with a refined 

mesh near the outer wall  

The development of the streamwise velocity profiles 

along the symmetry plane of the channel is plotted in 

Figure 4. In this figure the results are compared with those 

of Bara et al [3]. For Re= 486, at the beginning of the 

curve (20º), the velocity profile is already asymmetric and 

the maximum velocity is located near the outer wall due 

to the inertia of the incoming flow. At 40º, the maximum 

velocity has decreased and started to move back to the 

centre of the channel and the velocity near the inner wall 

increase, as a result of the redistribution of momentum 

induced by the secondary flow that is gradually setting in. 

At 60º the transfer of momentum continues and the 

velocity near the inner wall and centre slightly increase. 

However, at position between 80º and 100º the flow is 

already developed, and no change in velocity profile is 

verified until the end of the curve. Up to 80º, for Re=532 

the flow develops in the same way as for Re=486. After 

100º the velocity profile shows that the maximum velocity 

moves back toward the centre of the channel, which 

confirms the early development of the additional vortices 

near the outer wall, and the flow does not reach a fully 

developed regime as it progresses along the curve. For 

Re=583 the flow development is approximately the same 

up to 60º, but then the development of the additional pair 

of vortices occurs at an earlier position (80º), and 

downstream of 140º the maximum velocity peak is 

located near the centre of the channel. Once again, the 

curved channel length (a 180º curve that is L = πR ) is not 

sufficient for the flow to develop completely before 

exiting through the outlet channel. 

Now, comparing results with those obtained by Bara et al 

[3], it can be seen in Figure 4 that they are not completely 

in agreement. At Re=486 (Figure 4 a)) our results were 

practically the same as those of Bara et al [3]. This is also 

verified at Re=532 (Figure 4 b)) but only up to 140º. At 

160º and 180º a slight difference is observed and a better 

agreement is obtained when our predictions use a 

somewhat higher Reynolds number of Re=556. At 

Re=583 the discrepancy between results becomes larger 

and is observed upstream of that for Re=532. At θ=100º 

and for higher angles there is a better match between our 

predictions and those of Bara et al [3] if the Reynolds 

number is increased to Re=600.  

 

Conclusions  
The purpose of this work was to verify the major 

characteristics of an incompressible Newtonian fluid flow 

in a curved duct of square cross section, already reported 

by many authors [1-7], as an introduction to a deeper 

investigation of this kind of flows in the future. Thus, the 

same conditions assumed by Bara et al [3] were also 

considered here. 

It was verified that at 90º only for the higher Re= of 580 

signs of an additional pair of counter-rotating vortices 

appear near the outer wall. 

a)  

b)  

c)  
Figure 3 – Counters of axial velocity in the central plane of the 

channel (left) and the cross-section (right top) and velocity 

vectors in the cross-section (right bottom) at position of 90º for: 

a) Re=486 (Dn=125), b) Re=532 (Dn=137) and c) Re=583 

(Dn=150). 

 

In general, the evolution of velocity profiles in the 

channel is very similar for the different Re. At the 

beginning of the curved channel the maximum velocity is 

rapidly shifted towards the outer wall; further downstream 

the maximum velocity peak decreases and starts to move 



back to the centre of the channel, because the secondary 

flow sets in and there is a tendency for the flow to recover 

a more fully profile shape. For Re=482 the flow is fully 

developed before the maximum velocity reaches the 

centre of the channel, and the flow is characterised by a 

secondary flow consisting of one pair of counter-rotating 

vortices. On the other hand, for Re=583 the maximum 

velocity (which was located near the wall at the initial 

stages of the curve) almost reaches the centre of the 

channel due to the appearance of an additional pair of 

vortices. 

The velocity profiles at the central plane of the channel 

were compared with those presented by Bara et al [3]. 

Although good agreement was found for Re=480, the 

same was not verified for higher Re. At Re=532, the 

disparity between the results is small and is only observed 

at the end of the curve. However, for Re=580 the 

differences tend to increase and occur earlier in the flow. 

In order to match the results to those of Bara et al [3] it 

was necessary to use higher values of Re for the Re=532 

and 583 cases of Bara et al [3]. 
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Figure 4 – Comparison of the predicted velocity profiles at the central plane of the channel for: a) Re=486 (+); b) Re=532 (+) and 556 (●); 

c) Re= 583 (+) and 600 (●), against the results of Bara et al [3] (lines) for Re= 486 (a)), 532 (b)) and 583 (c)). 
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