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Introduction 

Many flows of practical relevance tend to develop 

elastic instabilities that are often a limitation in 

processing operations. Nowadays, considerable 

effort is expended in developing microfluidic 

devices which involve the flow of non-Newtonian 

fluids, and geometries with intersection of ducts 

are common (i.e. “cross-slot” flows). A numerical 

investigation of fully-developed flows of 

viscoelastic fluids through a 3D planar cross-slot 

is presented in this study. Our motivation here is 

to investigate 3D flow behaviour in which after the 

first instability the flow becomes deformed and 

asymmetric, but remains steady. A second 

instability occurs at higher strain rates and leads 

to a velocity field fluctuating non-periodically in 

time. Our 3D results reveal that, as occurred for 

the 2D cases, asymmetric flows do arise under 

perfectly symmetric flow conditions. The results 

are consistent with the recent experimental study 

of Arratia et al. [1] and the 2D simulations of 

Poole et al. [2]. Detailed simulations are 

conducted for varying aspect ratio (AR) of the 3D 

geometry encompassing both square and 

rectangular cross-sections.  

 

Governing Equations and Numerical Method  

The basic equations for the three-dimensional 

(3D), incompressible and isothermal, laminar fluid 

flow problem to be solved are those expressing 

conservation of mass and linear momentum:  
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where ρ is the fluid density (assumed constant) 

and ui the velocity component along the 

Cartesian directions xi. Einstein’s summation for 

repeating indices is assumed in all equations. The 

dependent variables are the velocity components, 

pressure p and the extra stress components ijτ , 

which need to be specified by means of a 

rheological constitutive equation. In this work two 

types of constitutive equations are considered. 

The first is the Newtonian model, 
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where sη  is the solvent viscosity. As a second 

type of constitutive equation adequate for 

modelling viscoelastic flow behaviour, the FENE-

CR model [3] is adopted, which is expressed by 

the following differential transport-like equation for 

ijτ :  
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The function f  is expressed by: 
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where λ  is the constant zero-shear rate 

relaxation time, pη  the contribution of the 

polymer to the total shear viscosity 0 s pη η η= +  

(also taken as constant) and 2L  the extensibility 

parameter that measures the elongational 

viscosity. The relevant dimensionless parameters 

are: 2L , the extensibility parameter of the FENE-

CR model; 0sβ η η= , the solvent viscosity ratio; 

0Re Udρ η= , the Reynolds number (neglected 

in this study, i.e. creeping flow is assumed); and 

De U dλ= , the Deborah number. A fully 

implicit finite-volume method is used to solve the 

previous equations which have been described in 

great detail in previous works [see e.g. 4]. 

Boundary conditions are required for the 

dependent variables at the boundary faces of 

computational domain and we impose fully-

developed velocity (average velocity U) and 

stress profiles at inlet, Neumann boundary 

conditions at the outlets and no-slip conditions at 

the walls.       

 

Flow Geometry and Computational Mesh  

The cross-slot geometry is shown in Fig. 1, where 

details of the relevant parameters are provided. 

Flow enters from the left and right “arms” and 

leaves from top and bottom channels, with widths 

d and lengths 10d. The top and bottom channels 

are sufficiently long for the outlet flow to become 

fully-developed; thus avoiding any outlet condition 

effect upon the flow in the central region of the 

cross-slot, which is the main focus of attention 

here. The aspect ratio of the cross-slot is 

connected to 3D effects and is here defined 

as AR H d= , where H represents the depth of 

the geometry, which was varied between three 

values of AR = 1 (cubic cross-section), 2 and 4.  
 

 

Figure 1. Schematic of cross-slot 3D geometry. 

 

The mesh used in the numerical simulations is 

composed of 78125 cells which results in 781250 

degrees-of-freedom. A similar mesh was 

employed in [5] where a related study with the 

UCM model was reported.  

 

Results and Discussion 

In order to quantify the degree of flow asymmetry 

we employ the same non-dimensional flow-rate 

imbalance parameter, ( )1 2DQ Q Q Q= −  

defined by Poole et al. [2],  where the flow rates 

1Q  and 2Q  are indicated in Fig.1. The total flow 

rate in each incoming channel is Q Ud=  and it 

is subsequently divided at the cross-slot region 

into two equal or unequal flow rates such that 

1 2Q Q Q= + . For a symmetric flow 1 2Q Q=  and 

DQ = 0, while for an asymmetric flow  1 2Q Q≠  

and DQ ≠ 0 (completely asymmetric flow 

DQ = ± 1). In Fig. 2 we compare the streamline 

patterns at the cross-slot center plane (z = 0) for 

increasing values of Deborah number, and fixed     

L
2 = 100 and β = 0.1, with variation of the aspect 

ratio (AR).   
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Figure 2. Predicted streamline plots at the center plane. 

 

As a limiting case we have AR � ∞ which 

corresponds to a two-dimensional (2D) flow 

already investigated in a previous work [6]. In 

such a limiting 2D geometry the flow becomes 

increasingly asymmetric but remains steady for  

Deborah number above a critical value, which is 

Decr ≈ 0.46, for the parameters L2 = 100 

and β = 0.1 here employed until Deborah number 

of 1.0 is reached, when unsteadiness sets in. 

With the 3D geometry for AR = 1 the flow patterns 

remains perfectly symmetric without signs of 

bifurcation, until the onset of an elastic instability 

that leads to the flow becoming periodic for De ≥ 

0.52. At the two values of aspect ratio AR = 2 and 

4 we found the existence of two flow instabilities: 

� Steady asymmetric flow: 

� AR = 2 → Decr ≈ 0.49; 

� AR = 4 → Decr ≈ 0.44. 

� Periodic flow (time-dependent instability): 

� AR = 2 → De ≥ 0.73; 

� AR = 4 → De ≥ 1.0. 

The situation is exemplified in Fig. 2: with the 

aspect ratio of AR = 2, the results start from      

De = 0 (Newtonian – symmetric flow), 0.48 (just 

before bifurcation), 0.49 (just after bifurcation) and 

0.73 (just after periodic flow). It is clear that in this 

geometry the asymmetry of the flow is triggered 

by elasticity, since the simulations are for 

creeping flow (Re = 0), and the point of Decr 

defines the first transition point from a symmetric 

to an asymmetric state. In addition, the results in 

Fig. 2 show that an increase in the aspect ratio 

(AR) tends to accentuate the steady bifurcation 

phenomenon, that is, the end walls bring a 

stabilising influence to this flow which increases 

as the distance between those walls gets smaller. 

On the other hand, the unsteady instability occurs 

at progressively lower De values as the AR of the 

cross-slot decreases. The 3D nature of the flow is 

exemplified in Fig. 3 which presents projected 

streamline patterns in planes close to the walls at        

2/1|/| →Hz  (AR = 1), 1 (AR = 2) and 2 (AR = 

4), for the same cases of Fig. 2. By contrasting 

these two figures it is possible to have an 

impression of the 3D effects that go on along the 

depth of the cross-slot. 

Due to the 3D nature of the flow all cases which 

exhibit the bifurcation phenomenon present a 

more accentuated asymmetry in the streamline 

plots at the center plane (z = 0), while near the 

walls the streamline flow patterns appear much 

more symmetric. We can thus conclude from    

Fig. 3 that the cross-slot end walls tend to 

stabilize the asymmetric flow for aspect ratios   
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AR = 2 and 4, and that for AR = 1 the asymmetric 

flow does not even appear. Instead, the only 

evidence is of periodic instability, as previously 

discussed.  

 

  

  

  

  

  
Figure 3. Predicted streamline plots near the walls. 

 

Concluding Remarks 

3D effects have important implications on the 

onset of either steady or unsteady flow 

bifurcations in cross-slot geometries. The effect of 

the end walls, which is enhanced by decreasing 

the aspect ratio, tends to stabilise the first steady, 

critical transition point. With AR = 1, no bifurcation 

to asymmetric flow is observed. On the other 

hand, the critical unsteady-flow transition is 

observed at lower De when AR is reduced. 

Therefore, 3D flow are more prone to go through 

a symmetric-steady to unsteady transition rather 

than symmetric to asymmetric-steady transitions 

as in 2D flows.       
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