Congreso de Métodos Numéricos en Ingenieria 2009
Barcelona, 29 junio al 2 de julio 2009
(©SEMNI, Espana 2009

TWO-FLUID ELECTRO-OSMOTIC FLOWS OF
VISCOELASTIC FLUIDS

Alexandre M. Afonso!*, Manuel A. Alves' and Fernando T. Pinho?

1: CEFT
Departamento de Engenharia Quimica
Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias
4200-465 Porto, Portugal
e-mail: {aafonso, mmalves}@fe.up.pt, web: http://www.fe.up.pt/~ceft/

2: CEFT
Departamento de Engenharia Mecanica
Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
e-mail: fpinho@fe.up.pt web: http://www.fe.up.pt/~ceft/

Key words: Electro-osmotic flows; two-fluid pump; viscoelastic fluids.

Abstract. Electro-osmotic flows (EOF) in microchannel systems have been studied ex-
tensively over the past decade, because they enable precise liquid manipulation in complex
microchannel networks. Fluid pumps are indispensable elements in such microchannel
networks,and promising candidates are electro-hydrodynamic pumps using ion-dragging
effects via the so-called electro-osmosis, and travelling-wave-induced flow [1] due to the
stmplicity in producing small-sized pumps. This paper presents an analytical model that
describes a two-fluid electro-osmotic flow of stratified viscoelastic fluids. This is the princi-
ple of operation of an EO two-fluid pump, recently presented [1, 2/, in which an electrically
nonconducting fluid is transported by the interfacial dragging viscous force of a conduct-
ing fluid that is driven by electro-osmosis. The electric potential in the conducting fluid
and the analytical flow solution of the steady two-fluid electro-osmotic stratified flow in
a planar microchannel are presented by assuming a planar interface between the two wvis-
coelastic immuscible fluids. The effects of fluid rheology, dynamic viscosity ratio, holdup
and interfacial zeta potential are analyzed to show the viability of this technique, where
an enhancement of the flow rate is observed as the shear-thinning effects are increased.
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1 Introduction

Electro-osmotic flows (EOF) in microfluidic devices have been studied extensively over
the past decade [1-5|, because they enable precise liquid manipulation and are easily
scalable to nanosized systems. The major applications of EO pumps are micro flow in-
jection analysis, microfluidic liquid chromatography systems, microreactors, microenergy
systems and microelectronic cooling systems. Fluid pumps are important elements in
such microchannel networks, and promising candidates are electro-hydrodynamic pumps
using ion-dragging effects via the so-called electro-osmosis, and traveling-wave-induced
flow [1] due to the simplicity in producing small-sized pumps. A comprehensive review
on electrokinetic pumps has been recently published by Wang et al [5].

Some of the above studies were focused on the transport of fluids with high electrical
conductivity. For nonpolar fluids, such as oil, EOF pumping cannot be used, due to the
low fluid conductivity |2]|. To overcome this limitation, Brask et al |1]| proposed an idea
that allows the use of EOF as a driving mechanism, using an electric fluid with high
conductivity to drag the low conductivity nonpolar fluid. Their study [1]|, analyzed the
performance of the pump by equivalent circuit theory and computational fluid dynamic
simulations.

The theoretical study of electro-osmotic flows of non-Newtonian fluids is recent and has
been limited to simple inelastic fluid models, such as the power-law, due to the inherent
analytical difficulties introduced by more complex constitutive equations. Examples are
the recent works of Das and Chakraborty [6] and Chakraborty [7], who presented explicit
relationships for velocity, temperature and concentration distributions in electro-osmotic
microchannel flows of non-Newtonian bio-fluids described by the power-law model. Other
purely viscous models were analytically investigated by Berli and Olivares [8], who consid-
ered the existence of a small wall layer depleted of additives and behaving as a Newtonian
fluid (the skimming layer), under the combined action of pressure and electrical fields,
thus restricting the non-Newtonian behaviour to the electrically neutral region outside the
Electrical Double Layer (EDL).Very recently these studies were extended to viscoelastic
fluids by Afonso et al |9], who presented analytical solutions for channel and pipe flows
of viscoelastic fluids under the mixed influence of electrokinetic and pressure forces, us-
ing two constitutive models: the PTT model (Phan-Thien and Tanner [11]), with linear
kernel for the stress coefficient function and zero second normal stress difference [12], and
the FENE-P model, based on the kinetic theory for Finitely Extensible Non-linear Elas-
tic dumbbells with a Peterlin approximation for the average spring force (cf. Bird et al
[13]). Their analysis [9] was restricted to cases with small electric double-layers, where
the distance between the walls of a microfluidic device is at least one order of magni-
tude larger than the EDL, and the fluid had a uniform distribution across the channel.
When the viscoelastic flow is induced by a combination of both electric and pressure
potentials, in addition to the single contributions from these two mechanisms there is
an extra term in the velocity profile that simultaneously combines both forcings, which
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is absent for the Newtonian fluids where the superposition principle applies. This extra
term can contribute significantly to the total flow rate, depending on the value of the
relative microchannel ratioand appears only when the rheological constitutive equation
is non-linear. Afonso et al [14] extended this study to the flow of viscoelastic fluids under
asymimetric zeta potential forcing.

The analytical solution of the steady two-fluid electro-osmotic stratified flow in a planar
microchannel is presented here by assuming a planar interface between the two viscoelastic
immiscible liquids. The PTT fluid [11] obeys the simplified model, with a linear kernel
for the stress coefficient function [12] and has a zero second normal stress difference. The
PTT model also includes the limiting case for Upper-Convected Maxwell (UCM) fluids.
The remaining of the paper starts with the flow problem definition, then is followed by the
presentation of the set of governing equations and by the discussion of the assumptions
made to obtain the analytical solution. Using this solution, the effects of the various rel-
evant dimensionless parameters upon the flow field characteristics are discussed in detail.

2 Flow geometry and definitions

The flow under investigation is the steady, fully-developed flow of two incompressible and
immiscible viscoelastic fluids as show schematically in Figure 1(a). This type of flow can
be found in some EOF pumps |1]|, where the nonconducting fluid at the upper section
of the system is dragged by an electrically conducting fluid at the bottom section, as
illustrated in 1(b).

77777777777/ //77Z/z/z72727278 b I I
Fluid A

y T y —> Nonconducting Fluid
g
X

Fluid B —> Conducting Fluid
(a) 1 (b)

zzzzzz7z7zzzz7z7zzzzzzzzzzzz b

Figure 1: (a) Illustration of the coordinate system and (b) schematic of the two-fluid EOF pump.

The migration of ions naturally arises due to the interaction between the dielectric bottom
wall and the conducting fluid. There is also dielectric interaction at the liquid-liquid
interface leading to the formation of a second EDL in the conducting fluid next to the
interface. Concerning the wall-fluid interface, the charged bottom wall of the channel
attracts counter-ions to form a layer of charged fluid near the wall and repels the co-
ions. A very thin layer of immobile counter-ions covers the bottom wall, known as the
Stern layer, and is followed by a thicker more diffuse layer of mobile counter-ions, these
two layers near the wall forming the EDL. The global charge of the conducting fluid
remains neutral, but since the EDL is thin the core of the conducting fluid is essentially
neutral. Applying a DC potential difference between the two electrodes at the inlet
and outlet of the bottom channel section, generates an external electric field that exerts
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a body force on the counter-ions of the EDL, which move along the bottom channel
dragging the neutral conducting fluid core above. A similar situation arises at the fluid-
fluid interface. There, the neutral conducting fluid (Fluid B) drags the nonconducting
fluid (Fluid A) by the hydrodynamic viscous force at the interface (cf. Figure 1(a)). The
pressure difference that can be independently applied between the inlets and outlets of
both the upper and lower channels can act in the same or in the opposite directions of
the electric field. Alternatively, the streamwise electric potential difference may not be
imposed independently, but results from the accumulation of ions at the end of the channel
due to the flow forced by an imposed pressure difference. This particular case is known as
the streaming potential and implies a specific relationship between the imposed favorable
pressure gradient and the ensuing adverse external electric field [15], a case which will not
be analysed in this paper for conciseness.

To analyse this system, a two-dimensional Cartesian orthonormal coordinate system (z,
y) is used with the origin located at the fluid-fluid interface, as shown in Figure 1(a). We
assume a stratified viscoelastic flow and a planar interface, a condition satisfied when the
contact angle between fluids A and B is close to 90° [2]. The thickness of the conducting
fluid is H; and that of the non-conducting fluid is H,. The width w is assumed very large,
such that w > Hs + H; = H.

The holdup of the conducting fluid (Fluid B), Rp, is here defined as the ratio of the cross
section area occupied by the conducting fluid to the cross section area of the channel, i.e.,

H, H,
P 1
B =fvm i M
Similarly, the hold up of nonconducting fluid (Fluid A) is defined as
H, H,
=1-Rp=—"—=—= 2
fia M= m - H @)

The electrical double layer forms near the bottom channel wall in contact with the con-
ducting fluid (Fluid B) and has a zeta potential denoted by ¢;. A second EDL can form in
Fluid B in contact with fluid A and has an interfacial zeta potential ({;) that depends on
the properties of the two fluids and varies with the pH value, the concentration of ions in
the conducting fluid and the presence of ionic surfactants |2]. This interface zeta potential
influences the potential distribution in the EDL regions, hence the electroosmotic force
distribution and therefore the flow.

3 Theoretical model of the two-fluid electroosmotic viscoelastic flow

The basic field equations describing this fully-developed flow of incompressible fluids are
the continuity equation,

V:u=0 (3)
and the modified Cauchy equation,
—Vp+V-14+pE=0 (4)
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where u is the velocity vector, p is the pressure and 7 is the polymeric extra-stress
tensor. The p.E term of equation (4) represents a body force per unit volume, where
E is the applied external electric field and p. is the net electric charge density in the
fluid. This term is null for the non-polar fluid A. The main simplifying assumptions
and considerations in the current analysis are: (i) the two fluids are viscoelastic (but the
Newtonian fluid is also included as limiting case); (ii) fluid properties are assumed to be
independent of local electric field, ion concentration and temperature (this is certainly
true for dilute solutions 2], but we make this assumption for our fluids); (iii) the flow is
steady and fully developed with no-slip boundary conditions at the channel walls; (iv) the
two fluids are immiscible and there is stratification with a planar interface between fluids
where an EDL can form; (v) a pressure gradient can simultaneously be imposed along the
channel and (vi) standard electrokinetic theory conditions apply [10].

3.1 PTT model constitutive equations

The polymer extra-stress 7 is described by an appropriate constitutive equation, and in
this work we consider the viscoelastic model of Phan-Thien and Tanner [11, 12| (PTT
model) of equation (5) derived from network theory arguments

F(rap)T + M = 27D (5)

Here D = (vuT + vu) /2 is the rate of deformation tensor, A is the relaxation time of

the fluid, n is the viscosity coefficient and 7T represents the upper-convected derivative of
7, defined as

¥:D—t—vuT.T—T.Vu. (6)

The stress coefficient function, f(74), is given by the linear form [11]

flmie) =1+ %Tkk (7)

where 75, represents the trace of the extra-stress tensor and the maximum elongational
viscosity is inversely proportional to a dimensionless parameter €. For ¢ = 0 the UCM
model is recovered which has an unbounded elongational viscosity. For fully-developed
flow conditions, for which u = {u(y), 0,0}, the extra-stress field for the PTT model can
be obtained from equations (5-7), leading to

f(Thr) T = 2>‘7Twy (8)

f(Tkk>Tmy = 775/ (9)

where 74, = 7., since 7,, = 0 [16, 17|, and 7 is the transverse velocity gradient (y =
du/dy). Then, upon division of equation (8) by equation (9) the specific function f(7..)

5



A .M. Afonso, M.A. Alves and F.T. Pinho

cancels out, and a relation between the normal and shear stresses is obtained,

A
Tox = 2—7'§y (10)
n

3.2 Electric double layers in the conducting fluid (Fluid B)

The potential field within the conducting fluid B, can be expressed by means of a Pois-
son—Boltzmann equation:

V2 = —% (11)

where 1 denotes the electric potential and € is the dielectric constant of the fluid. The
net electric charge density, p., can be described as

ez
. = —2n,ez sinh 12
p ssint (1570 (12)
where n, is the ion density, e is the elementary electric charge, z is the valence of the ions,
kg is the Boltzmann constant, and 7" is the absolute temperature. In order to obtain the
velocity field for fluid B, we first need to determine the net charge density distribution
(pe). The charge density field can be calculated by combining equation (11), that reduces

to dzw
Pe
- _Fe 13
a0 ; (13)
under fully developed flow conditions, with equation (12) to obtain the well-known Pois-
son—Boltzmann equation
d*>)  2ngez ez
ey inh (= 14
a2 e o (kBT ) (14)

The electroosmotic flow is primarily caused by the action of an externally applied electric
field on the charged species that exist near the bottom channel wall and in the vicinity of
the interfacial surface. The distribution of the charged species in the domain is governed
by the potentials at the wall and at the interface, and then by the externally applied
electric field. When the Debye thicknesses are small and the charges at the wall and at
the interface are not large, the distribution of the charged species is governed mainly by the
(1 potential at the wall and by (; at the interface, and is affected very little by the external
electric field (standard electrokinetic theory). Thus, the charge distribution across fluid
B, can be determined independently of the externally applied electric field. Indeed, the
effect of fluid motion on the charge redistribution can be neglected when the fluid velocity
is small, i.e., when the inertial terms in the momentum equation are not dominant (they
are null under fully developed conditions) or when the Debye thickness is small. Then,
for small values of 1, the Debye—Hiickle linearization principle (sinhz ~ z) can also be
used, which means physically that the electric potential energy is small compared with
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the thermal energy of ions, and the Poisson-Boltzmann equation can be transformed into
the following form:

d*y 9
where k2 = % is the Debye—Hiickel parameter, related with the thickness of the Debye

layer as £ = £ (normally referred to as the EDL thickness). This approximation is valid
when the Debye thickness is small but finite, i.e., for 10 < H; /¢ < 103,

Equation (15) can be integrated subjected to the following boundary conditions: zeta
potential at the bottom wall v,—_p, = (; and zeta potential at the interface ,—o = .
The potential field becomes

(y) = G (Pre™ — Woe ) (16)

for —H; < y < 0. Denoting R, = (;/(; as the ratio of zeta potentials, then ¥, =
rHy _ e*"iH — . . .
% and Uy, = :;ﬁll_ie;,{ll. When R; = 1 the symmetric potential profile is that
obtained by Afonso et al [9] whereas for vanishing zeta potential at the interface, R, = 0,
one obtains that defined by Afonso et al [14]. Finally the net charge density distribution,

equation (12), together with the Debye-Hiickle linearization principle leads to
pe = —€r*(y (\Ifle“y — \1126_“7’) = —erx?(1Q () (17)

where the operator QO (y) = \Ifile(’“”y)i + \If’ée(_“y)i is a hyperbolic function of the transverse
variable y, and depends on theratio of zeta potentials, ¢, and on the thickness of the
Debye layer.

3.3 Momentum equation of the two-fluid flow

3.3.1 Conducting fluid (Fluid B)

For the conducting fluid (Fluid B), the momentum equation (4), reduces to,

drB

= P = e =+ e GEQL () (18)

where £, = —d¢/dz and p, = dp/dx. The electric potential of the applied external field,
¢, is characterized by a constant streamwise gradient. Equation (18) can be integrated
to yield the following shear stress distribution

Toy = Py + RGBS (y) + Cp (19)

where Cp is an integration coefficient, that will be determined in section 3.3.3 from a
boundary condition at the fluid-fluid interface. It is clear that in contrast to pure Poiseuille
flow the shear stress distribution is no longer linear on the transverse coordinate. Using

7
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the relationship between the normal stress and the shear stress, equation (10), an explicit
expression for the normal stress component is obtained,

A 2
Th = 25 (pay + erQLEQT (y) + Cp) (20)
For simplicity subscript B will be removed from the rheological parameters of Fluid B

(ng =1, eg = ¢ and Agp = A). Combining (9), (19) and (20) we come to the expression
for the velocity gradient

2
.B
77 n 77

E, C =
(6 St + 8 4 &y) (21)
n n n

Equation (21) can be integrated subject to the no-slip boundary condition at the wall

(uf?y:_H1 = 0) leading to

2 E:c 2 - 2
uf = C—WB (y + Hy) (1+25A2 (%) ) + {%} 14 6eX? <C—173> Q1,(y) +2CTBs/\2 {%} (v* + HY)

2
+ 2eX? {#] K (C;f <6\If1\112f€(y + Hi) + 39 1(y)> [eE;C1] K (égil(y) + 31’11’2Qi1(y)>>

2 | eExCy
vy ] o) (1 woot () o 2] 2 4 ) +Q4M07f (0520 - 91,1<y>)) (22)

n
eE: (1 2 P,z 1 1 [pTz]
Sl ]2 ] {wawan (12 - 12) + 595,00 - 195100 + =[] (210) +207, () - 291, )

+ 6e2? {
n

where the operator Q7 (y) = (k)Y QF(y) — (=10 (kH,)Y ™Y QF (—H,). This equa-
tion is valid for —H; <y < 0.

It is often more convenient to work with the dimensionless form of equation (22). In-
troducing the normalizations § = y/H, = y/ (RgH) and k£ = kRpH, the dimensionless
velocity profile in the conducting fluid can be written as

uB

_ D D
:cB@+1)<1+2dj’f 6) <1+60§;5 6)9 (y) +205= *””1“2( +1)

sDe

Ush

+2Cp

3 1 _
<6‘If Uor(g+1)+ Q2 1y )) —2eDe? (593 1Y)+ 3\111‘112(21y1(y)>

sDe

+ %I‘ 7 —1) (1 + 602BED6 + EDe”r2 7+ 1)> —1205=

n GEDe"
K,

=I (Q1 2(y) — Ql_l(y)) (23)

—o [ _ eDe?
(‘1’1\1’252 (312 -1)+ 592,2(9) - ZQL(y)> -6 -

T2 (91 4(0) + 200, (n) — 207 5(0))

where Cp = CnB IELBH and De, = ’\“gh Ak, 18 the Deborah number based on the
relaxation time of the conducting fluid (Fluid B), on the EDL thickness and on the
Helmholtz-Smoluchowski electro-osmotic velocity, defined as ug, = —Eﬁ% . The dimen-

_ (RpH)’ pa

< E. lepresents the ratio of pressure to electro-osmotic
x

sionless parameter I' =
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driving forces. Note that for simplicity the above terms were based on the zeta potential
at the bottom wall (¢|y=n, = (1), but could be based on the interfacial zeta potential
using the ratio of zeta potentials: wg, = uspi/Re, I' = RcI'; and De,, = De,,;/R.

The flow rate can be determined from integration of the velocity profile of equation (22).
Here, this integration was already carried out using the normalized velocity profile, equa-
tion (23), leading to the following expression for the normalized volumetric flow rate

— 0 B +
_ Coudy De2 _ D Q7 ,(0
gf = & _lmmy —CBRBH <1+2€_§~023> — RpH (1+66 e”oB> ( 1100 —Ql(—1)>

Ush Ush R

K

1 4 eDe? 2 2 eDe?
RpHT r2 1+6C
+23(5_2 +3<+B ))
1, De? QF
- = (3F2+2n(6\111\1125+3( 2.1 ()—Q (— 1))))
2 3 2r
Q0
—2RBHsDei( 3’_( ) _ 19 +3\1/1\1/2< >>
9r 3
_ eDe2 1
~ 1205 HCp “Z5T (£ (90,00 - 27,0) - i<>)+<n+1m (1) 1)
eDe2 1 + _ e + _2
+6RpH—=T E(9272(0)—92’1(0))+n92 (—1)+ZQ2 (—1)+§\1/1x1/25
eDe? 1 _ 20— —
~ 6RpH—~T? (% (23500) = 207,00 — 2 (21200 - 91, 0)) ) + (RO (-) - 2R +1) Qj(—1))>

3.3.2 Nonconducting fluid (Fluid A)

The derivation of the analytical solution follows the same steps as for the conducting fluid,
with the necessary adaptations. For the nonconducting fluid (Fluid A), the momentum
conservation equation (4), reduces to
dr
zy
=9, 25
o P (25)
since, as explained, the external electrical field forcing vanishes for this fluid. Equation
(25) can be integrated to yield the following shear stress distribution

7';; =p.y+Ca (26)

where C4 is a boundary coefficient for the shear stress on Fluid A at the fluid-fluid
interface, to be quantified in section 3.3.3. Using the relationship between the normal
and shear stresses - equation (10), the following explicit expression for the normal stress
component is obtained,

A
T =272 (pay + Ca)” (27)
A
Combining equations (9), (26) and (27) the velocity gradient is given by
A C . C
v 1+ 2640 ( y+ —A) ] (p—’y - —A) (28)
nA nA nA YR
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Equation (28) is integrated subject to the no-slip boundary condition at the upper wall
(u|“4y:H2 = 0) and leads to

C Ca\2 , Ca
A_tA 2 A Pz 3 3
u Ho) | 142540 [ =2 + 26405 =2 | 22 ~H
T 2)< . A<m> ) M [m} "= 1)

[l (o () i vom)

valid for 0 < y < H,.Introducing the normalizations § = y/Hs = y/RaH and fx =
kR4 H, the dimensionless velocity profile can be written as

+

A De — 1 eaD
L —Cam—1) <1+2(JZL> +20, 2”_6“?2 @ —1) (30)
Ugh, /{A 15} “A
11 2 eaDe? , lsADeA 2 /9
+IoTa (-1 <1+60 —rA  ZATRAD2 (2 4]
50 = 1) (1 6T 4 B 57 )
where C 4 %: }zAf B = na/np is the dynamic viscosity ratioand De, 4 = ’\"‘gﬁ = A qUshK
is the Deborah number based on the ralaxation time of fluid A, on the EDL thickness and
(RaH)* p

on the Helmholtz-Smoluchowski electro-osmotic velocity. The parameter I'y = —=2 o B

represents the ratio of pressure to electro-osmotic driving forces. The expression for the
normalized volumetric flow rate of fluid A is

4w [Purdy T D
QA:u_:u AR H<1+2MCA>
Ush Ush fiA

L1,
50

eaDeé? ,

B2R%

1
+ §RAH (31)

r2 (CA+ 2EAD€ )

) —TaRaH (1 +6C,
60 )

3.3.3 Fluid A- Fluid B interface conditions

In deriving the shear stress profiles, equations (19) and (26), and all the subsequent
quantities like velocity and flow rates, two integration coefficients appeared, C'4 and Cp,

which have to be determined from the boundary conditions at the fluid-fluid interface:

A _ B A __ ..B
Tryjly=0 = Tay|y=o AN Uj,_o = Ui _q-

Using the relationships between the shear stresses at the interface, equations (19) and
(26), and those for the dimensionless velocity profiles, equations (23) and (30), we arrive
at a set of two equations for variables C'4 and C'p,

CA _ RA 10 . EAQ—F(O)

U bl 1 a3 1 CL3 a1 (32)
=A\l=% T35ty a1t —7 El

10
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where a = ay —a? /3, by = a3 —ajas/3 +2a3 /27, the coefficients a;, ay and a3 are given by

"2 "2 — "
%—Q %R2 =4I — QREE—Q‘QM(O) — 3B—*§Qf(0)

a; = A
aq
5 EQ
%EADAe2A <%> + Rg EQ R2 (6ABH + QQ 1(0>)
as = . (33)
Qy
2 — EZ EZ _ _
. A= 3EATAOL(0) + 353 (27 (0))” — 6RZZAT (21,(0) — 01, (0)
Qy
1 2F 2\ _ 1_ 3 - R4 ()+
L0 (1 T%) = JRZAT (14 T2) = L5 (97, (0) — 597 (0))
as = a
72 _ - _ —
N BRZZAT (—ABR? + 105,(0) — 193, (0) — 5 (Q215(0) 4 207, (0) — 21 ,(0)))
Qy
_ — "2 _
07 (0) (T3 — §54T401 (0) + 3 (2 (0))°) + B2 (305,(0) + 34B95,(0)
_ -
ay = 4 + R2 and R, = = i‘; is a dimensionless number that relates the rheological

propert1es of the two fluids.

4 Results and discussion

In the previous section, general equations were derived for steady fully developed two-
fluid electro-osmotic stratified flow of PTT viscoelastic fluids under the mixed influence of
electrokinetic and pressure gradient forces. The different influences of the driving forces
(I'), fluid rheology (R.), dynamic viscosity ratio (), fluids holdup (R4 and Rp) and of
the ratio of zeta potentials (R¢) on the velocity profile have been identified in equations
(29), (22) and (32) and in this section we discuss in detail some limiting cases in order to
understand the system fluid dynamics.

The following set of two-fluid systems is included in the general solution: (a) Newtonian-
Newtonian fluid system; (b) viscoelastic-Newtonian fluid system; (¢) Newtonian-viscoelastic
fluid system; and (d) viscoelastic - viscoelastic fluid system. Cases (c¢) and (d) are not
discussed in this work, due to space limitations, althougth the derived equations also
include these cases. Case (a) was studied in detail elsewhere [2|, but this situation is
revisited here as a starting point and for comparison with case (b), i.e., in the following
we analyse in detail the pumping of a Newtonian fluid by another Newtonian fluid, and,
alternatively, by a viscoelastic fluid.

11
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4.1 Newtonian-Newtonian EOF pump configuration

For the Newtonian-Newtonian flow configuration, both the conducting and nonconducting
fluids are Newtonian, with zero relaxation times. The Deborah numbers vanish (De,, =
De,a = 0), and the velocity profile system equations and the dimensionless boundary
condition coefficients, provided by equation (32), simplify to

[ 2 =CuG-1) +3TA P - 1) for 0<y<1
“—izCB@H)—Q;l(y) +3T @ —1)  for —1<y<0
) Q11 (0+3Ta—3T+507 (0 ) &, 34
Oa = i (B0 01 (0) 39
On— Q1 (0)+3Ta—5T+50Q7(0)
5=
\ (ﬁ+g§)

For small relative microchannel ratio, K — 1, the double layer thickness is of the same
order of magnitude as the Fluid B thickness and the region of excess charge is distributed
over the entire fluid. This situation is not fully compatible with this solution for which
the Debye-Hiickel approximation was invoked, which requires %,,;,, = 10. In this work
and as a typical example, we set £ = 20 in all figures.

) B=1;k=20;R=0;R,=0.5 . B=1;r=20;R=0;R,=1/2
— e"°De=0 i Fluid B
T L e — Fluid A
50-5- r=-2 7
=,
0
B T 5'4'3'2'1('Jirz
e ) (b)

Figure 2: Effect of the driving forces (I' = —2, -1, 0, 1 and 2) on dimensionless (a) velocity profiles and
(b) volumetric flow rate for Newtonian-Newtonian flow configuration. Symbols represent the data from
Afonso et al [14] for (8 =1, R¢ =0 and I' = 0).

For I' = 0, i.e., when the flow is driven only by electro-osmosis, the velocity profile is a
function of the wall distance, of the relative microchannel ratio, k, of the ratio of zeta
potentials, R, and of the dynamic viscosity ratio as shown earlier by Gao et al [2]. Also,
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for a single fluid situation (8 = 1) and in the absence of interface zeta potential (R, = 0)
the solution simplifies to the particular case obtained by Afonso et al [14] (no zeta potential
in the upper wall and no pressure gradient, cf. Figure 2a). The corresponding effect of
the ratio of pressure gradient to electro-osmotic driving forces on the dimensionless flow
rate is obvious (cf. Figures 2(b)), increasing with favorable pressure gradients (I' < 0),
whereas decreasing for flows with adverse pressure gradients (I' > 0). Obviously, the flow
rate for fluid B is higher because for identical fluids heights fluid B is being forced also
by electro-osmosis.

=0; K=20; R(= 0;R,=1/2 =0; k=20; R(= 0;R.,=1/2
1 1.2
— £*°De=0 i Fluid B
T L — Fluid A
9505; B=10?
=

LsL B=100 oz2f

4 o — = ! . . ool i i
0.5 1 40 10° 10" 10° 10" 10 10°

Wa " (a) B

Figure 3: Effect of the dynamic viscosity ratio (3 = 1072, 1071, 1, 10 and 100) on dimensionless (a)
velocity profiles and (b) volumetric flow rate for Newtonian-Newtonian flow configuration.

Figure 3 shows the different influences of the dynamic viscosity ratio (8 = n4/np) on the
dimensionless velocity profile (a) and on the volumetric flow rate (b). When the dynamic
viscosity ratio decreases the dimensionless velocity increases (cf. Figure 3(a)). So, if the
viscosity of the conducting fluid is much higher than the viscosity of the nonconducting
fluid, an increase in the dimensionless volumetric flow rate is expected, as can be observed
in Figure 3(b).

A major effect on the valocity profile is that due to non-zero interfacial zeta potential,
as presented in the profiles of Figures 4. When (; > 0, a favorable eztra drag forcing
term arises in the velocity profile at the interface of the two-fluids, leading to a significant
increase in the volumetric flow rate, even for (; < (;. When (; < 0, the adverse localized
electrostatic force decreases the pumping action and the corresponding dimensionless flow
rate (cf. Figure 4(b)).

Another important effect is due to the holdup of the nonconducting fluid. When the height
of the nonconducting fluid is larger than the height of the conducting fluid (R4 > Rp),
the normalized velocities of both fluids increase, as observed in Figure 5(a). This suggests
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B=1;k=20;I=0; R,=1/2 r=0;R=20;B=1;R,= 1/2
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Figure 4: Effect of the ratio of zeta potentials (R, = —0.2, -0.1, 0, 0.1 and 0.2) on dimensionless (a)
velocity profiles and (b) volumetric flow rate for Newtonian-Newtonian flow configuration.

B=1;k=20;T=0; R,= 0 r=0;k=20;R=0;p=1
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Figure 5: Effect of the nonconducting fluid holdup (R4 = 1/3, 1/2 and 2/3) on dimensionless (a) velocity
profiles and (b) volumetric flow rate for Newtonian-Newtonian flow configuration.
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that to obtain higher volumetric flow rates in fluid B, the holdup of the conducting
fluid B should be kept small (cf. Figure 5(b)). In fact, as the Helmholtz-Smoluchowski
electro-osmotic velocity is independent of the thickness of fluid B, as R4 — 1 the fluid
interface palne will tend to coincide with the regions of higher velocity. This conclusion
also suggests that a better configuration for an EOF pump would be with the conducting
fluid in contact with both the upper and lower walls, with the non conducting fluid in
the middleand being dragged like a solid body, i.e., a solid lubrificated by a thin layer of
conducting fluid in motion.

B=1;I=0;R=20; R=0; R,= 1/2 r=0;k=20; R=0;p=1
1 20
— 0.5 _ .
T e De=2 o | Fluid B
mg i 8o.sDeK= 1 | e Fluid A
B £*De=0.5
£*°De,=0.25

Figure 6: Dimensionless profiles of (a) velocity and (b) volumetric flow rate as function of \/¢De,.

4.2 Newtonian-Viscoelastic EOF pump configuration

For the Newtonian-Viscoelastic flow configuration, the conducting fluid is viscoelastic
dragging the nonconducting Newtonian fluid. The Deborah number of the conducting
fluid is non-zero (De,, # 0 and De, 4 = 0), and the velocity profile and the nondimensional
boundary condition coefficients are given by

(

g—"‘:m(——l) STa@ 1)  for 0<7<1

Bq. (23
L C —RA1<\/ by 1/1+£+\3/—b—1— ﬁ+£_a_1>_E_AQ+(O) (35)
Rp B 2 27 2 4 27 3 B8 51
+

3 3/ g b? 3
b b, e b e a
CB_ 2 1 27+\/ 2 1 T3
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where a = ay — a?/3, by = a3 — ajaz/3 + 2a3/27 and the coefficients a1, as and a3 are
given by
3

a; = —§F — 29;1(0)
1 ®2 [(p+1 3. r, _
ay = 22D (T) +T2+ (6AB/-@ + 59271(0)) — 6% (9172(0) — 9171(0)) (36)

=2
agz—ir(ur?)—} "

3D (Ql_,l(o> _ @QT(O)) — R (%le(o) + 3ABQ;1(0)>

5
.1 1 r, _
+3r (—ABFL2 + 59272(0) - ZQ;I(O) - = (215(0) + 207, (0) — 29;2(0)))

Figures 6 (a) and (b) present the dimensionless velocity and volumetric flow rate profiles
as a function of /eDe,, respectively. We can see that increasing the elasticity of the
conducting fluid, more than doubles the velocities due to shear-thinning effects within the
EDL layer thus raising the velocity value of the bulk transport in the core of the channel.
This also helps to increase the shear rates near the bottom wall and at the two fluids
interface, increasing the dragging of the nonconducting fluid by the hydrodynamic viscous
forces at the interface. Consequently there is a significant increase in the dimensionless
volumetric flow rate (cf. Figure 6(b)).

As we can also see in Figure 6 (a), in the absence of pressure gradient the EDL acts like
a plate in pure Couette flow, transmitting a constant shear stress across the channel.

B=1; k=20; R=0;R,=0.5 B=1;Kr=20; R=0;R,= 1/2

1 8
I 0.5 _ Fluid B
= | e’ De=2
T | k L N —— Fluid A
2 -
X osf- 6l 0.5 -
= T r=o e’De=2
> |
or T e"°De=0
5o
| .G‘O
2k -
05 - S
N N N N e St S S
abL 0 ] L1 L1 ] ] ;.L N
4 5 4 3 2 1 0 1 r 2
(a) (b)

Figure 7: Effect of the driving forces (I' = —2, -1, 0, 1 and 2) on dimensionless (a) velocity profiles and
(b) volumetric flow rate for Newtonian-Viscoelastic flow configuration.

Figure 7 shows the dimensionless velocity profiles (a) and volumetric flow rate (b) at
VeDe,, = 2 (for comparison the Newtonian results of Figures 2 are also presented) to

16



A .M. Afonso, M.A. Alves and F.T. Pinho

illustrate the effect of I'. A favorable pressure gradient (I' < 0) helps increase the flow
rate and makes velocity profiles fuller. By using pressure, the dragging effect at the
interface is helped by the pressure forcing which affects directly the two fluids. The
beneficial shear-thinning effect is clear in the large increase in the flow rate of Figure
7(b).

r=0;k=20;R=0;R,=1/2 r=0;k=20; R=0;R,=1/2

£*°De,=2

Fluid B

p=10?

-05F

Figure 8: Effect of the dynamic viscosity ratio (3 = 1072, 1071, 1, 10 and 100) on dimensionless (a)
velocity profiles and (b) volumetric flow rate for Newtonian-Viscoelastic flow configuration.

As for the Newtonian-Newtonian flow configuration, decreasing ( leads to an increase in
velocity profiles and the volumetric flow rate, which is further increased by shear-thinning
effects (cf. Figure 8(a) and (b) and compare with Figure 3). When using a viscoelastic
fluid as conducting fluid it is natural to have a more viscous fluid than the Newtonian
nonconducting fluid, which leads to an optimal flow situation.

The effects of the fluid A holdup (R4) and of the ratio of zeta potentials (R.) are similar
to what was seen before, but now the viscoelastic flow exhibits a shear-thinning viscosity
and the velocities have increased significantly near the bottom wall (see the higher values
of u/usp) leading to higher volumetric flow rates of Figures 9 and 10, than in the corre-
sponding constant viscosity case.

5 Conclusions

An analytical solution of the steady two-fluid electro-osmotic stratified flow in a planar
microchannel is presented by assuming a planar interface between the two viscoelastic
immiscible fluids. The PTT fluid model [11, 12] was used, and the effects of fluid rheology,
viscosity ratio, fluid holdup and interfacial zeta potential were analyzed to show the
viability of this technique.
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Figure 9: Effect of the ratio of zeta potentials (R, = —0.2, -0.1, 0, 0.1 and 0.2) on dimensionless (a)
velocity profiles and (b) volumetric flow rate for Newtonian-Viscoelastic flow configuration.
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Figure 10: Effect of the nonconducting fluid holdup (R4 = 1/3, 1/2 and 2/3) on dimensionless (a)
velocity profiles and (b) volumetric flow rate for Newtonian-Viscoelastic flow configuration.
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The flow can be induced by a combination of both electrical and pressure potentials, but
in addition to the single contributions from these two mechanisms, when the conducting
fluid is viscoelastic, there is an extra term in the velocity profile that simultaneously
combines both effects, which is absent from conducting Newtonian fluids where the linear
superposition principle applies. Hence, for non-linear viscoelastic fluids the superposition
principle is not valid.

This work demostrated that higher volumetric flow rates of a nonconducting Newtonian
fluid can be acheived in EOF pumping when the conducting fluid is viscoelastic rather
than Newtonian, due to the increasing of the shear-thinning effects.
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