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50 < Reλ < 70

[c = 20p.p.m. → 2 p.p.m.]β = 0.8

DNS of statistically steady viscoelastic turbulence

 Numerical method
• FENE-P model for the polymer stress

• Pseudo-spectral solver for velocity with 2/3rd de-aliasing 
• Kurganov-Tadmor solver for conformation tensor
• Third-order Runge-Kutta in time
• Alvelius (1999) forcing on first 4 waveno.
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T [p]
ij ≡ µ[p]

τ

�
L2 − 3

L2 − Cii
Cij − δij

�

L = 100, 3% <
�

Cii/L < 39%

DNS parameters:
• N=1923 (statistically steady)
• Solvent/total viscosity ratio: 

• Relaxation time: 

• Max. polymer extension:
• Reynolds number:

τ = [0.1, 0.125, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0]

De ≡ τ/(�/u�) = [0.3, . . . , 1.8]

Wi ≡ τ/(ν/ε[N ])1/2 = [1.6, . . . , 10.4]{



 Added dissipation due to polymer 
additives in forced HIT

4



0 1 2 3 4 5 6 7 8 9 10 11
20

40

60

80

100

120

140

160

180

200

Wi

(%)

Added dissipation due to polymer additives

5

Turnover time ≡ �/u�

ET ≡ Ek + Ep

Ek ≡ 3u�/2

Newtonian reference

Wi

De ≈ 0.9
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u! = "1/4#1/4 ! C1/4vrms
3/4 "1/4L−1/4. "4#

Reference 32 proposed the following relation based on frac-
tal theory with d=7 /3:

A! ! AL$!

L
%2−d

! AL
L1/3#1/12

"1/4

! ALL1/3C1/12vrms
1/4 L−1/12"−1/4. "5#

Substituting Eqs. "4# and "5# into Eq. "3# and invoking
ve=$vrms and C=%C! we obtain

$ ! %1/3C!
1/3. "6#

From Eq. "6# it is possible to determine % via the measured
values of $. In the water flow %=1 by definition and with
$w!0.77 we obtain C!!0.46. Therefore, with $p=0.7 we
obtain %p=0.72 implying that 72% of the energy input is
dissipated by viscous eddies, while 28% is dissipated by the
polymers. This value is consistent with our estimates of %
=0.7 in the same Deborah number range, obtained using an-
other setup of eight counter-rotating disks.10,18

As it is widely accepted, the most important dimension-
less number that characterizes the effects of polymers in tur-
bulence is the Deborah number De=&R /&!, the ratio of the
polymer characteristic time scale to the Kolmogorov time
scale. The relaxation time &R of the polymers can be esti-
mated by using the models of Zimm or Carreau for Polyox
WSR 301 "4'106 g /mol#. We estimate the characteristic
time scale to be &R!0.001 to 0.1 s. Estimating &! to be of
order O"0.1#s, our De is between 0.01 and 1. We also esti-
mate the Lumley scale, defined as rL=&#T&p

3, Ref. 33. Again,
assuming that the relation #T(u3 /L is valid for the order of
magnitude estimate we obtain rL!"3'10−4#– "3
'10−1# mm, which is smaller or equal to the Kolmogorov
length scale.

Figure 5 shows the plot of % versus De in which we add
our experimental estimate to the data from numerical and
experimental studies.6,9,10,18 At De=0 the trend line has to
cross unity "clear water#, and at large Deborah numbers we
assume the relation to level off asymptotically. It opens an
interesting question for future research whether there is a
relation between this asymptotic trend and the maximum
drag reduction asymptote known from wall-bounded turbu-
lent flows. We do not show the numerical results5,33 in Fig. 5,
because their configurations are different—either with re-
spect to the forcing "former#, or with respect to polymer
concentration "latter#. Reference 33 use Oldroyd-B-type
models of dilute polymers and keep the energy content of the
large scales constant. Reference 5 model discrete dumbbells
and the feasible number density was at the time 1
dumbbell/!3. Both report higher values for %.

V. SUMMARY AND CONCLUSIONS

The propagation of the TNTI in grid-stirred turbulent
flows was studied in water and dilute polyethylene oxide
solutions by using PIV. Several effects of polymer additives
on the large and small scale flow properties and the relation
between them were singled out.

The interface propagation in polymer solutions follows
the same law "&Kt# that was theoretically predicted and veri-
fied for clear water in previous experimental studies. How-
ever, we found that the turbulent front propagates faster in
polymer solution than in water due to a higher grid action,
Kp)Kw. The polymer flow thus extracts more power from
the external forcing and changes the energy-containing
scales. The integral velocity and length scales of the flow are
observed to increase by about 60 and 30%, respectively.

On a qualitative level we observe differences in the large
scale shape of the TNTI: in agreement with predictions based
on a simple model,29 the aspect ratio of interfacial wedges
was observed to be increased by polymers. This effect is also
reflected in changes in the structure and entrainment ability
of the flow.

We found that polymers reduce the entrainment constant
$. The measured values $w=0.8 and $p=0.7 for water and
polymer are interpreted with a similarity analysis; we infer
that in our experiment a fraction % of the input energy of
about 30% is dissipated by polymers, while the rest is dissi-
pated by the smallest scales of turbulence. This is shown to
be consistent with the dependence of % on the Deborah num-
ber as obtained through a compilation of different results
from literature. Despite the fact that the smallest scales of
turbulence dissipate only a part of the input energy through
viscosity, the values of total dissipation and Re are higher
than the respective values for water. This alteration of the
energy-containing scales reflects the somewhat surprising
finding that polymers are responsible for an increased en-
trainment flux but at the same time lead to a decreased en-
trainment constant $.

Our work might be relevant for other applications of

FIG. 5. "Color online# Dependence of %=#" /#i on the Deborah number. '
marks the numerical results "Ref. 6#, a triangle marks the result of Ouellette
et al. "Ref. 34; see also Ref. 9#, + is for Ref. 18, and the circle denotes the
present estimate. The error bars display the experimental uncertainty in the
case of the present experiment and the variation of concentration in case of
the experiment of Ref. 9, respectively.

035107-5 On turbulent entrainment and dissipation Phys. Fluids 21, 035107 !2009"
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Added dissipation due to polymer additives

Recall: In Newtonian turbulent flows the rate of dissipation is inversely 
proportional to turnover time for a given turbulent kinetic energy
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εk = Cεu
�3/� ∼ u�2

�/u�

yond some R� . However, the numerical value of D� is not
the same in the two groups. To compare them meaningfully
with experiments,4 the scales L and u used there have to be
redefined slightly. The redefinition leads to D��0.73 for
square grids of round bars, and is in rough agreement with
the D� for the upper curve in Fig. 1. It was noted in Ref. 4
that D� assumes different values for grids of different con-
figurations, especially for the active grids of Gad-el-Hak and
Corrsin.10

Yeung and Zhou used a stochastic forcing confined to
the lowest two or three wavenumber shells, while Wang
et al. and Cao et al. maintain the energy of a few lowest
modes according to the k�5/3 energy spectrum. It is hearten-
ing to note that the forced data of Wang et al. and of Yeung
and Zhou agree with each other, but one cannot dismiss the
fact that they both differ from the forced calculations of
Jimenez et al. and the decay data of Wang et al. The former
maintained the energy peak essentially at k�1, and intro-
duced negative viscosity for k�3 in order to compensate for
the energy decay. In all the forced cases, it might be said that
the resolution of the large-scale is a major factor: there is no
perceptible gap between the large-scale and the box-size.
The energy in the decay data of Wang et al. did not peak at
the lowest wavenumber but was shifted to the right, suggest-
ing that the large-scale resolution might be better. Yet, the
decay data agree with one set of forced data—though it
should be said that there are only three R� values for the
former, and that they do not totally preclude the possibility
of further decrease with increasing R�— but not with the
other two. It is not clear why this is so.

Despite this lack of clarity, the principal message of Fig.
1 is that D asymptotes to a constant value, but that D� can

perhaps be manipulated moderately—even in isotropic
turbulence—by adjusting in some manner the forcing
scheme or the large structure. Some preliminary calculations
of Juneja �private communication� suggest that the same de-
gree of manipulation might also be possible by varying the
initial conditions. At present, we do not know enough to say
precisely how this can be done in a controlled way. To re-
solve this issue, one ought to implement systematic changes
in the forcing scheme, the large-scale structure, and initial
conditions. That the large structure does influence the con-
stant D� is clear from experiments in homogeneously
sheared flows; in Ref. 5, it is shown that D��D�(S), S
being a non-dimensional shear parameter.

One is now left with the question as to whether the na-
ture of forcing at the large scale, and the resulting differences
in the structure of the large scale, affect other aspects of
turbulence as well. We have examined various small-scale
statistics from the sources cited here. There seems to be no
perceptible difference in this regard. But the scaling
range—as determined, for example, by Kolmogorov’s 4/5-
ths law11—does depend on the nature of forcing: it can be
extended or contracted depending on how one deals with the
energy level of the lowest few wavenumbers.
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Previous slide: 
• Decrease in kinetic energy
• Increase in turnover time
• Thus decrease in dissipation
• What about       ? 

Cε ≈ 0.4
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Newtonian reference

Cε ≡
εk �

u�3

CεT ≡ εT �

u�3

 
• The polymer `hampers’ the 

effectiveness of turbulence in 
dissipating kinetic energy

• However, the polymer additives 
efficiently transfer kinetic to 
elastic energy and dissipate it

• Overall there is `drag’ increase

De ≈ 0.6

De ≈ 1.0
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 Effect of polymer additives on the 
turbulence energy cascade 



f(k) = −T (k) + T [p](k) + 2ν[s]k2E(k)
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Effect of polymer additives on the energy cascade

Lin equation for statistically steady homogeneous viscoelastic turbulence
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Kinetic to elastic energy
transfer

Solvent dissipation

Non-linear transfer

External force
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 The inter-scale energy cascade 
caused by the polymers



The inter-scale energy transfer caused by the polymers 
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kλ

Wi

Circles: maximum 
energy returned to  

turbulence from 
polymers 

(up to 10% of total 
energy dissipated)
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How do the geometrical statistics 
look like?



Q - R : Invariants of velocity derivative tensor
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Newtonian Wi = 3

Q - R : Invariants of velocity derivative tensor
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Newtonian Wi = 10

Q - R : Invariants of velocity derivative tensor
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λ1 : λ2 : λ3

a = λ1/λ2

λ1 + λ2 + λ3 = 0

Qs- Rs : Invariants of rate of strain tensor
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2:1 :−3
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Summary



Summary

• Polymers offer an additional energy dissipation mechanism causing 
`drag increase’

• Little change on energy cascade flux, w.r.t eddy turnover time even when 
polymers dissipate 80% of the total power input but no high waveno. 
energy feedback from polymers

• For higher Wi, polymers remove more energy at large scales than they 
are able to dissipate and feedback the deficit at small scales

• Changes in cascade flux relative to turnover time seems to be closely 
related to high wavenumber energy feedback from polymers

• Massive changes in geometrical statistics for large Wi 
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