Numerical Studies of Electro-Osmotic flows of Viscoelastic fluids

A.M. Afonso¹, F.T. Pinho² and M.A. Alves¹

 ¹ Departamento de Engenharia Química, CEFT, Faculdade de Engenharia da Universidade do Porto, Portugal, {aafonso, mmalves}@fe.up.pt
 ² Departamento de Engenharia Mecânica e Gestão Industrial, CEFT, Faculdade de Engenharia da Universidade do Porto, Portugal, fpinho@fe.up.pt

Introduction

- Electro-Osmotic Flow (EOF): Theory
- 2 Governing Equations
 - EOF of Viscoelastic Fluid
 - Electrokinetics

3 Numerical Solutions

- Channel flows
- Complex geometries

Introduction

• Electro-Osmotic Flow (EOF): Theory

2 Governing Equations

- EOF of Viscoelastic Fluid
- Electrokinetics

3 Numerical Solutions

- Channel flows
- Complex geometries

• Electro-Osmotic Flow (EOF): Theory

2 Governing Equations

- EOF of Viscoelastic Fluid
- Electrokinetics

3 Numerical Solutions

- Channel flows
- Complex geometries

• Electro-Osmotic Flow (EOF): Theory

2 Governing Equations

- EOF of Viscoelastic Fluid
- Electrokinetics

3 Numerical Solutions

- Channel flows
- Complex geometries

Electro-Osmotic Flow (EOF)

Surface charge

Surface charge:

- Solution of ions
- Overall charge neutrality

Electric Double Layer (EDL):

- Mobile diffusive layer
- Immobile layer (Stern Model)
- Debye layer: $\lambda_D = \frac{1}{\kappa} = \sqrt{\frac{\epsilon k_B T}{2n_o e^2 z^2}}$

Electro-Osmotic Velocity:

- Apply an external potential Electric force $\mathbf{F} = \rho_e \mathbf{E}$
- Viscous forces drag the solution.

Electro-Osmotic Flow (EOF)

Electric Double Layer (EDL)

Surface charge:

- Solution of ions
- Overall charge neutrality

Electric Double Layer (EDL):

- Mobile diffusive layer
- Immobile layer (Stern Model)
- Debye layer: $\lambda_D = \frac{1}{\kappa} = \sqrt{\frac{\epsilon k_B T}{2n_o e^2 z^2}}$

Electro-Osmotic Velocity:

- Apply an external potential Electric force $\mathbf{F} = \rho_e \mathbf{E}$
- Viscous forces drag the solution.

Electro-Osmotic Flow (EOF)

Electro-Osmotic Velocity

Surface charge:

- Solution of ions
- Overall charge neutrality

Electric Double Layer (EDL):

- Mobile diffusive layer
- Immobile layer (Stern Model)
- Debye layer: $\lambda_D = \frac{1}{\kappa} = \sqrt{\frac{\epsilon k_B T}{2n_o e^2 z^2}}$

Electro-Osmotic Velocity:

- Apply an external potential Electric force $\mathbf{F} = \rho_e \mathbf{E}$
- Viscous forces drag the solution.

Electro-Osmotic Flows (EOF)

Aplications

Aplications:

 micro flow injection analysis, microfluidic chromatography, microreactors, microenergy, microelectronic cooling systems and micro-mixing.

Interesting Flow Instabilities:

• Newtonian fluids^[1].

• Viscoelastic fluids^[2].

^{1]}Park, Shin,Huh and Kang, *Physics of Fluids*. (2005)

^[2]Bryce and Freeman, Lab Chip. (2010)

A.M. Afonso, F.T. Pinho and M.A. Alves

Electro-Osmotic Flows (EOF)

Electrokinetic Instabilities (Newtonian)

Aplications:

 micro flow injection analysis, microfluidic chromatography, microreactors, microenergy, microelectronic cooling systems and micro-mixing.

Interesting Flow Instabilities:

- Newtonian fluids^[1].
- Viscoelastic fluids^[2].

^[1]Park, Shin, Huh and Kang, *Physics of Fluids*. (2005).

^[2]Bryce and Freeman, Lab Chip. (2010).

A.M. Afonso, F.T. Pinho and M.A. Alves

Electro-Osmotic Flows (EOF)

Electrokinetic Instabilities (Viscoelastic)

Aplications:

 micro flow injection analysis, microfluidic chromatography, microreactors, microenergy, microelectronic cooling systems and micro-mixing.

Interesting Flow Instabilities:

Outflow v Dyed Fluid v Hoating Reservoir

- Newtonian fluids^[1].
- Viscoelastic fluids^[2].

^[1]Park, Shin, Huh and Kang, *Physics of Fluids*. (2005).

^[2]Bryce and Freeman, Lab Chip. (2010).

A.M. Afonso, F.T. Pinho and M.A. Alves

Mass & Momentum Conservation

Mass Conservation:

 $\nabla \cdot \mathbf{u} = 0$

Momentum Conservation:

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \nabla \cdot \boldsymbol{\tau} - \rho_e \nabla \left(\phi + \psi\right)$$

Constitutive Equation:

$$f(\tau_{kk})\boldsymbol{\tau} + \lambda \boldsymbol{\tau} = 2\eta \mathbf{D}$$
 $\boldsymbol{\nabla} = \frac{D\boldsymbol{\tau}}{Dt} - \boldsymbol{\tau} \cdot \boldsymbol{\nabla} \mathbf{u} - \boldsymbol{\nabla} \mathbf{u}^T \cdot \boldsymbol{\tau}$

Phan-Thien & Tanner (PTT) $f(au_{kk}) = 1 + rac{arepsilon\lambda}{\eta} au_{kk}$

Upper Convected Maxwell (UCM) $\varepsilon = 0 \ \Rightarrow \ f(\tau_{kk}) = 1$

Constitutive Equation

Mass Conservation:

 $\nabla \cdot \mathbf{u} = 0$

Momentum Conservation:

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \nabla \cdot \boldsymbol{\tau} - \rho_e \nabla \left(\phi + \psi \right)$$

Constitutive Equation:

$$f(\tau_{kk})\boldsymbol{\tau} + \lambda \boldsymbol{\tau} = 2\eta \mathbf{D}$$
 $\boldsymbol{\nabla} = \frac{D\boldsymbol{\tau}}{Dt} - \boldsymbol{\tau} \cdot \boldsymbol{\nabla} \mathbf{u} - \boldsymbol{\nabla} \mathbf{u}^T \cdot \boldsymbol{\tau}$

Phan-Thien & Tanner (PTT) $f(\tau_{kk}) = 1 + \frac{\varepsilon \lambda}{\eta} \tau_{kk}$

Upper Convected Maxwell (UCM) $\varepsilon = 0 \implies f(\tau_{kk}) = 1$

Constitutive Equation

Mass Conservation:

 $\nabla \cdot \mathbf{u} = 0$

Momentum Conservation:

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \nabla \cdot \boldsymbol{\tau} - \rho_e \nabla \left(\phi + \psi \right)$$

Constitutive Equation:

$$f(\tau_{kk})\boldsymbol{\tau} + \lambda \boldsymbol{\tau} = 2\eta \mathbf{D}$$
 $\boldsymbol{\nabla} = \frac{D\boldsymbol{\tau}}{Dt} - \boldsymbol{\tau} \cdot \boldsymbol{\nabla} \mathbf{u} - \boldsymbol{\nabla} \mathbf{u}^T \cdot \boldsymbol{\tau}$

Phan-Thien & Tanner (PTT) $f(\tau_{kk}) = 1 + \frac{\varepsilon \lambda}{\eta} \tau_{kk}$

Upper Convected Maxwell (UCM) $\varepsilon = 0 \ \Rightarrow \ f(\tau_{kk}) = 1$

Electric Body Force

Mass Conservation:

 $\nabla \cdot \mathbf{u} = 0$

Momentum Conservation:

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \nabla \cdot \boldsymbol{\tau} - \rho_e \nabla \left(\phi + \psi \right)$$

Nernts-Plankt Equations

$$\nabla^2 \phi = 0$$

$$\nabla^2 \psi = -\frac{ez}{\epsilon} (n^+ - n^-)$$

$$\rho_e = ez (n^+ - n^-)$$

$$\frac{\partial n^{\pm}}{\partial t} + \mathbf{u} \cdot \nabla n^{\pm} = \nabla \cdot (D^{\pm} \nabla n^{\pm}) \pm \nabla \cdot \left[D^{\pm} n^{\pm} \frac{ez}{k_B T} \nabla \Phi \right]$$

Nernts-Plankt Equations (NP)

Mass Conservation:

 $\nabla \cdot \mathbf{u} = 0$

Momentum Conservation:

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \nabla \cdot \boldsymbol{\tau} - \boldsymbol{\rho}_{e} \nabla \left(\boldsymbol{\phi} + \boldsymbol{\psi} \right)$$

Nernts-Plankt Equations

$$\nabla^2 \phi = 0$$

$$\nabla^2 \psi = -\frac{ez}{\epsilon} (n^+ - n^-)$$

$$\rho_e = ez (n^+ - n^-)$$

$$\frac{\partial n^{\pm}}{\partial t} + \mathbf{u} \cdot \nabla n^{\pm} = \nabla \cdot (D^{\pm} \nabla n^{\pm}) \pm \nabla \cdot \left[D^{\pm} n^{\pm} \frac{ez}{k_B T} \nabla \Phi \right]$$

Poisson-Boltzmann Equations (PB)

Mass Conservation:

 $\nabla \cdot \mathbf{u} = 0$

Momentum Conservation:

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \nabla \cdot \boldsymbol{\tau} - \rho_e \nabla \left(\phi + \psi \right)$$

Poisson-Boltzmann Equations (PB)

$$\nabla^2 \phi = 0$$
$$\nabla^2 \psi = -\frac{2n_o ez}{\epsilon} \sinh\left(\frac{ez}{k_B T}\psi\right)$$
$$\rho_e = 2n_o ez \sinh\left(\frac{ez}{k_B T}\psi\right)$$

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation for the extra-stress tensor^[3].
- $\sinh \text{ linearization}^{[4]}: \sinh(X) = \sinh(X)^n + (X^{n-1} X^n) \cosh(X)^n$

^[1]Oliveira, Pinho and Pinto, JNNFM (1998); ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

^[3] Afonso, Pinho and Alves, JNNFM (2009); ^[4] Chun, Lee and Lee, KARJ (2005)

A.M. Afonso, F.T. Pinho and M.A. Alves

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation for the extra-stress tensor^[3].
- $\sinh \text{ linearization}^{[4]}: \sinh(X) = \sinh(X)^n + (X^{n-1} X^n) \cosh(X)^n$

^[1]Oliveira, Pinho and Pinto, JNNFM (1998). ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

^[3] Afonso, Pinho and Alves, JNNFM (2009); ^[4] Chun, Lee and Lee, KARJ (2005)

A.M. Afonso, F.T. Pinho and M.A. Alves

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation for the extra-stress tensor^[3].
- $\sinh \text{ linearization}^{[4]}: \sinh(X) = \sinh(X)^n + (X^{n-1} X^n) \cosh(X)^n$

^[1]Oliveira, Pinho and Pinto, JNNFM (1998). ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

^[3] Afonso, Pinho and Alves, JNNFM (2009); ^[4] Chun, Lee and Lee, KARJ (2005)

A.M. Afonso, F.T. Pinho and M.A. Alves

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation for the extra-stress tensor^[3].
- $\sinh \text{ linearization}^{[4]}: \sinh(X) = \sinh(X)^n + (X^{n-1} X^n) \cosh(X)^n$

^[1]Oliveira, Pinho and Pinto, JNNFM (1998); ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

^[3] Afonso, Pinho and Alves, JNNFM (2009); ^[4] Chun, Lee and Lee, KARJ (2005)

A.M. Afonso, F.T. Pinho and M.A. Alves

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation for the extra-stress tensor^[3].
- $\sinh \text{ linearization}^{[4]}: \sinh(X) = \sinh(X)^n + (X^{n-1} X^n) \cosh(X)^n$

^[1]Oliveira, Pinho and Pinto, JNNFM (1998); ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

^[3] Afonso, Pinho and Alves, JNNFM (2009); ^[4] Chun, Lee and Lee, KARJ (2005

A.M. Afonso, F.T. Pinho and M.A. Alves

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation for the extra-stress tensor^[3].
- $\sinh \text{ linearization}^{[4]}: \sinh(X) = \sinh(X)^n + (X^{n-1} X^n) \cosh(X)^n$

^[1]Oliveira, Pinho and Pinto, JNNFM (1998); ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

^[3] Afonso, Pinho and Alves, JNNFM (2009); ^[4] Chun, Lee and Lee, KARJ (2005

A.M. Afonso, F.T. Pinho and M.A. Alves

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation for the extra-stress tensor^[3].
- $\sinh \text{linearization}^{[4]}: \sinh(X) = \sinh(X)^n + (X^{n-1} X^n) \cosh(X)^n$

^[1]Oliveira, Pinho and Pinto, JNNFM (1998); ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

^[3]Afonso, Pinho and Alves, JNNFM (2009); ^[4]Chun, Lee and Lee, KARJ (2005)

A.M. Afonso, F.T. Pinho and M.A. Alves

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation for the extra-stress tensor^[3].
- $\sinh \text{linearization}^{[4]}: \sinh(X) = \sinh(X)^n + (X^{n-1} X^n) \cosh(X)^n$

^[1]Oliveira, Pinho and Pinto, JNNFM (1998); ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

^[3] Afonso, Pinho and Alves, JNNFM (2009); ^[4] Chun, Lee and Lee, KARJ (2005)

A.M. Afonso, F.T. Pinho and M.A. Alves

Channel Flow - Computational Domain

Computational meshes

	nº cells	$\triangle x_{min}$	$\Delta y_{min} \times 10^{-4}$	
M1	1800	0.2	8	
M2	3600	0.2	4	
M3	7200	0.2	2	

Channel Flow - Mesh convergence

Computational meshes

	n⁰ cells	$\triangle x_{min}$	$\Delta y_{min} \times 10^{-4}$	
M1	1800	0.2	8	
M2	3600	0.2	4	
M3	7200	0.2	2	

Channel Flow - Mesh convergence

A.M. Afonso, F.T. Pinho and M.A. Alves

8

4

2

Channel Flow - Mesh convergence

A.M. Afonso, F.T. Pinho and M.A. Alves

Computational meshes

	n⁰ cells	$\triangle x_{min}$	$\Delta y_{min} \times 10^{-4}$
M1	1800	0.2	8
M2	3600	0.2	4
M3	7200	0.2	2

Numerical Solutions Channel Flow - NP/PB equations

A.M. Afonso, F.T. Pinho and M.A. Alves

Numerical Solutions Channel Flow - NP/PB equations

Analytical Solution

$$\frac{u(y)}{u_{sh_0}} = \frac{1}{\beta} \left(1 - \frac{\sinh(\bar{\kappa}y)}{\cosh(\bar{\kappa})} - (1 - \beta) \left[\Omega(1) - \frac{\sinh(\bar{\kappa}y)}{\cosh(\bar{\kappa})} \Omega(y) \right] \right) \qquad \beta = \frac{\eta_s}{\eta_0} = \frac{\eta_s}{\eta_p + \eta_s}$$

$$D(y) = \sum_{n=0}^{\infty} \left[\frac{\left(\frac{1}{3}\right)_n \left(\frac{1}{2}\right)_n \left(\frac{2}{3}\right)_n}{\left(\frac{3}{2}\right)_n \left(\frac{3}{2}\right)_n} \frac{\left(-\frac{27}{2}\beta\varepsilon De_{\kappa_0}^2 \left(\frac{\sinh(\bar{\kappa}y)}{\cosh(\bar{\kappa})}\right)^2\right)^n}{n!} \right] \qquad De_{\kappa_0} = u_{sh_0}\kappa\lambda$$

A.M. Afonso, F.T. Pinho and M.A. Alves

AERC 2010, Gothenburg, Sweden

10/18

Channel Flow - NP/PB equations and Analytical solution (PTT model)

$$\Omega(y) = \sum_{n=0}^{\infty} \left\lfloor \frac{\left(\frac{1}{3}\right)_n \left(\frac{1}{2}\right)_n \left(\frac{2}{3}\right)_n}{\left(\frac{3}{2}\right)_n \left(\frac{3}{2}\right)_n} \frac{\left(-\frac{27}{2}\beta\varepsilon De_{\kappa_0}^2 \left(\frac{\sinh(\bar{\kappa}y)}{\cosh(\bar{\kappa})}\right)^2\right)}{n!}\right)}{n!}\right\rfloor$$

A.M. Afonso, F.T. Pinho and M.A. Alves

Cross Slot: geometry

Computational mesh (same refinement of M1)

n [♀] cells		
12801	4	4

A.M. Afonso, F.T. Pinho and M.A. Alves

Cross Slot: meshes

Cross Slot: meshes

Computational mesh (same refinement of M1)

	nº cells	$\Delta x_{min} \times 10^{-4}$	$\Delta y_{min} \times 10^{-4}$
MCS	12801	4	4

Cross Slot: meshes

Computational mesh (same refinement of M1)

n cells	$x_{min} \times 10^{-4}$	$\Delta y_{min} \times 10^{-4}$
MCS 12801	4	4

Pure newtonian EOF: external potential

Numerical Solutions Pressure profiles in the Cross-slot

Numerical Solutions Effect of Debye Layer size ($\kappa H = 100$)

Numerical Solutions Effect of Debye Layer size ($\kappa H = 50$)

Numerical Solutions Effect of Debye Layer size ($\kappa H = 20$)

Numerical Solutions Effect of Debye Layer size ($\kappa H = 10$)

Numerical Solutions Effect of Debye Layer size ($\kappa H = 5$)

Creeping flow of pure Viscoelastic EOF using UCM ($\varepsilon = 0$)

$De_{\kappa} = \lambda U \kappa$	$De_H = \frac{\lambda U}{H}$
0	0
1	0.01
2	0.02
3	0.03
4	0.04
4.88	0.0488
4.9	0.049
5	0.05
10	0.1

Creeping flow of pure Viscoelastic EOF using UCM ($\varepsilon = 0$)

$De_{\kappa} = \lambda U \kappa$	$De_H = \frac{\lambda U}{H}$
0	0
1	0.01
2	0.02
3	0.03
4	0.04
4.88	0.0488
4.9	0.049
5	0.05
10	0.1

Creeping flow of pure Viscoelastic EOF using UCM ($\varepsilon = 0$)

$De_{\kappa} = \lambda U \kappa$	$De_H = \frac{\lambda U}{H}$
0	0
1	0.01
2	0.02
3	0.03
4	0.04
4.88	0.0488
4.9	0.049
5	0.05
10	0.1

Creeping flow of pure Viscoelastic EOF using UCM ($\varepsilon = 0$)

$De_{\kappa} = \lambda U \kappa$	$De_H = \frac{\lambda U}{H}$
0	0
1	0.01
2	0.02
3	0.03
4	0.04
4.88	0.0488
4.9	0.049
5	0.05
10	0.1

Creeping flow of pure Viscoelastic EOF using UCM ($\varepsilon = 0$)

$De_{\kappa} = \lambda U \kappa$	$De_H = \frac{\lambda U}{H}$
0	0
1	0.01
2	0.02
3	0.03
4	0.04
4.88	0.0488
4.9	0.049
5	0.05
10	0.1

Creeping flow of pure Viscoelastic EOF using UCM ($\varepsilon = 0$)

$De_{\kappa} = \lambda U \kappa$	$De_H = \frac{\lambda U}{H}$
0	0
1	0.01
2	0.02
3	0.03
4	0.04
4.88	0.0488
4.9	0.049
5	0.05
10	0.1

Creeping flow of pure Viscoelastic EOF using UCM ($\varepsilon = 0$)

$De_{\kappa} = \lambda U \kappa$	$De_H = \frac{\lambda U}{H}$
0	0
1	0.01
2	0.02
3	0.03
4	0.04
4.88	0.0488
4.9	0.049
5	0.05
10	0.1

Creeping flow of pure Viscoelastic EOF using UCM ($\varepsilon = 0$)

$De_{\kappa} = \lambda U \kappa$	$De_H = \frac{\lambda U}{H}$
0	0
1	0.01
2	0.02
3	0.03
4	0.04
4.88	0.0488
4.9	0.049
5	0.05
10	0.1

Creeping flow of pure Viscoelastic EOF using UCM ($\varepsilon = 0$)

$De_{\kappa} = \lambda U \kappa$	$De_H = \frac{\lambda U}{H}$
0	0
1	0.01
2	0.02
3	0.03
4	0.04
4.88	0.0488
4.9	0.049
5	0.05
10	0.1

Stability Maps: $De.vs.\kappa H$

Conclusions

Numerical solutions

- Excellent agreement with analitical solutions;
- Sharp refinement near the EDL (Alternative: Viscoelastic

Helmholtz-Smoluchowski Velocity at the wall (Slip velocity)^[1]);

Elastic instabilities

- Elastic instabilities present in the viscoelastic EOF flow in Cross-Slot geometry;
- The critical Deborah number increased with Debye layer relative size (κH);
- No steady assymetric flow ^[2] were obtained, rounded corners are needed;

 $^{1]}$ Park and Lee, JCIS (2009) $^{[2]}$ Poole, Alves and Oliveira, PRL (2007)

Conclusions

Numerical solutions

- Excellent agreement with analitical solutions;
- Sharp refinement near the EDL (Alternative: Viscoelastic Helmholtz-Smoluchowski Velocity at the wall (Slip velocity)^[1]);

Elastic instabilities

- Elastic instabilities present in the viscoelastic EOF flow in Cross-Slot geometry;
- The critical Deborah number increased with Debye layer relative size (κH);
- No steady assymetric flow ^[2] were obtained, rounded corners are needed;

^[1]Park and Lee, JCIS (2009)^[2]Poole, Alves and Oliveira, PRL (2007)

- Excellent agreement with analitical solutions;
- Sharp refinement near the EDL (Alternative: Viscoelastic Helmholtz-Smoluchowski Velocity at the wall (Slip velocity)^[1]);

Elastic instabilities

- Elastic instabilities present in the viscoelastic EOF flow in Cross-Slot geometry;
- The critical Deborah number increased with Debye layer relative size (κH);
- No steady assymetric flow ^[2] were obtained, rounded corners are needed;

^[1]Park and Lee, JCIS (2009)^[2]Poole, Alves and Oliveira, PRL (2007)

- Excellent agreement with analitical solutions;
- Sharp refinement near the EDL (Alternative: Viscoelastic Helmholtz-Smoluchowski Velocity at the wall (Slip velocity)^[1]);

Elastic instabilities

- Elastic instabilities present in the viscoelastic EOF flow in Cross-Slot geometry;
- The critical Deborah number increased with Debye layer relative size (κH);
- No steady assymetric flow ^[2] were obtained, rounded corners are needed;

^[1]Park and Lee, JCIS (2009)^[2]Poole, Alves and Oliveira, PRL (2007)

- Fundação para a Ciência e a Tecnologia (FCT), Portugal:
 - Projects PTDC/EQU-FTT/70727/2006 and PTDC/EQU-FTT/71800/2006;
 - Scholarship SFRH/BD/28828/2006 (A.M. Afonso).

Thanks!

Questions?

<ロ><0</p>