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• Overview of the direct numerical simulations

• Added dissipation due to polymer additives in forced HIT

• Effect of polymer additives on the turbulence energy cascade

• The inter-scale energy cascade caused by the polymers

• Summary
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50 < Reλ < 70

DNS of statistically steady viscoelastic turbulence

 Numerical method
• Pseudo-spectral solver for velocity with 2/3rd de-aliasing 
• Kurganov-Tadmor solver for conformation tensor
• Third-order Runge-Kutta in time
• FENE-P model for the polymer stress
• Alvelius (1999) forcing on first 4 waveno.
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T [p]
ij ≡ µ[p]

τ

�
L2 − 3

L2 − Cii
Cij − δij

�

β = 0.8

L = 100, 3% <
�

Cii/L < 39%

DNS parameters:
• N=1923 (statistically steady)
• Polymer concentration: 

• Relaxation time: 

• Max. polymer extension:
• Reynolds number:

τ = [0.1, 0.125, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0]

De ≡ τ/(�/u�) = [0.3, . . . , 1.8]

Wi ≡ τ/(ν/ε[N ])1/2 = [1.6, . . . , 10.4]{



 Added dissipation due to polymer 
additives in forced HIT
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Added dissipation due to polymer additives
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Cε

Added dissipation due to polymer additives - II

Recall: In Newtonian turbulent flows the rate of dissipation is inversely 
proportional to turnover time for a given turbulent kinetic energy
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εk = Cεu
�3/� ∼ u�2

�/u�

yond some R� . However, the numerical value of D� is not
the same in the two groups. To compare them meaningfully
with experiments,4 the scales L and u used there have to be
redefined slightly. The redefinition leads to D��0.73 for
square grids of round bars, and is in rough agreement with
the D� for the upper curve in Fig. 1. It was noted in Ref. 4
that D� assumes different values for grids of different con-
figurations, especially for the active grids of Gad-el-Hak and
Corrsin.10

Yeung and Zhou used a stochastic forcing confined to
the lowest two or three wavenumber shells, while Wang
et al. and Cao et al. maintain the energy of a few lowest
modes according to the k�5/3 energy spectrum. It is hearten-
ing to note that the forced data of Wang et al. and of Yeung
and Zhou agree with each other, but one cannot dismiss the
fact that they both differ from the forced calculations of
Jimenez et al. and the decay data of Wang et al. The former
maintained the energy peak essentially at k�1, and intro-
duced negative viscosity for k�3 in order to compensate for
the energy decay. In all the forced cases, it might be said that
the resolution of the large-scale is a major factor: there is no
perceptible gap between the large-scale and the box-size.
The energy in the decay data of Wang et al. did not peak at
the lowest wavenumber but was shifted to the right, suggest-
ing that the large-scale resolution might be better. Yet, the
decay data agree with one set of forced data—though it
should be said that there are only three R� values for the
former, and that they do not totally preclude the possibility
of further decrease with increasing R�— but not with the
other two. It is not clear why this is so.

Despite this lack of clarity, the principal message of Fig.
1 is that D asymptotes to a constant value, but that D� can

perhaps be manipulated moderately—even in isotropic
turbulence—by adjusting in some manner the forcing
scheme or the large structure. Some preliminary calculations
of Juneja �private communication� suggest that the same de-
gree of manipulation might also be possible by varying the
initial conditions. At present, we do not know enough to say
precisely how this can be done in a controlled way. To re-
solve this issue, one ought to implement systematic changes
in the forcing scheme, the large-scale structure, and initial
conditions. That the large structure does influence the con-
stant D� is clear from experiments in homogeneously
sheared flows; in Ref. 5, it is shown that D��D�(S), S
being a non-dimensional shear parameter.

One is now left with the question as to whether the na-
ture of forcing at the large scale, and the resulting differences
in the structure of the large scale, affect other aspects of
turbulence as well. We have examined various small-scale
statistics from the sources cited here. There seems to be no
perceptible difference in this regard. But the scaling
range—as determined, for example, by Kolmogorov’s 4/5-
ths law11—does depend on the nature of forcing: it can be
extended or contracted depending on how one deals with the
energy level of the lowest few wavenumbers.
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FIG. 1. The variation of the quantity ���L/u3 with the Taylor microscale
Reynolds number, R� , in simulations of homogeneous and isotropic turbu-
lence in periodic box. The symbols, described on the figure, correspond to
different sources of data noted in Table I.
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Reλ

Sreenivasan (1998) Cε

Previous slide: 
• Decrease in kinetic energy
• Increase in turnover time
• Thus decrease in dissipation
• What about       ? 

Cε ≈ 0.4
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Added dissipation due to polymer additives - III
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Newtonian reference

Cε ≡
εk �

u�3

CεT ≡ εT �

u�3

 
• The polymer `hampers’ the 

effectiveness of turbulence in 
dissipating kinetic energy

• However, the polymer additives 
efficiently transfer kinetic to 
elastic energy and dissipate it

• Overall there is `drag’ increase

De ≈ 0.6

De ≈ 1.0



8

 Effect of polymer additives on the 
turbulence energy cascade 



f(k) = −T (k) + T [p](k) + 2ν[s]k2E(k)
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Effect of polymer additives on the energy cascade

Lin equation for statistically steady homogeneous viscoelastic turbulence
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Kinetic to elastic energy
transfer spectrum

Dissipation spectrum

Non-linear transfer 
spectrum

External force
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 The inter-scale energy cascade 
caused by the polymers
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The inter-scale energy transfer caused by the polymers  
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The tampering 
of the energy 

cascade 

seems related 
to 

 small-scale 
polymer energy 

feedback
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Summary



Summary

• Polymers offer an additional energy dissipation mechanism causing
`drag increase’

• Little change on energy cascade flux, w.r.t eddy turnover time even when 
polymers dissipate 80% of the total power input but no high waveno. 
energy feedback from polymers

• For higher Wi, polymers remove more energy at large scales than they 
dissipate and feedback the deficit at small scales

• Changes in cascade flux relative to turnover time seems to be closely 
related to high waveno. energy feedback from polymers
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