TRANSITIONS IN SOME STAGNATION FLOWS OF VISCOELASTIC FLUIDS AT LOW REYNOLDS NUMBERS

Alexandre M. Afonso

CEFT, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal, E-mail: aafonso@fe.up.pt

Daniel O. Cruz

Departamento de Engenharia Mecânica, Universidade Federal do Pará Campus do Guamá, Belém, Pará, Brazil, E-mail: <u>doac@ufpa.br</u>

Manuel A. Alves

CEFT, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal, E-mail: mmalves@fe.up.pt

Fernando T. Pinho

CEFT, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal, E-mail: fpinho@fe.up.pt

Flow Instabilities and Turbulence in Viscoelastic Fluids Leiden, Holland July 19-23, 2010

OUTLINE

- Objective
- Experimental and numerical results
 - Cross slot
 - Flow focusing
- Some analytical thoughts: Stagnation + "vortex" flow
- Closure

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

OBJECTIVE

- Elastic instabilities (Re=0): enhanced mixing or upper limit in devices
- Transition from steady symmetric to steady asymmetric flow is our main interest

- When it occurs and what are the effects of solvent, inertia and extensional viscosity. Brief review in some simple flows
- Some findings about the asymmetric flow: decoupling into simpler flows
- Results: mostly numerical (some experiments) and analytical (work in

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

REVIEW

Viscoelastic instabilities in shear flows

Shaqfeh. Ann. Rev. Fluid Mech 28 (1996) 129

Taylor-Couette flow Larson et al., JFM 218 (1990) 573 **Cone-plate flow** McKinley et al., JNNFM 40 (1991) 201 Lid driven cavity flows Pakdel & McKinley, PRL 77 (1996) 2459

Underlying mechanism McKinley et al, JNNFM 67 (1996) 19

Pakdel & McKinley, PRL 77 (1996) 2459

$$\left(\frac{\lambda U}{\mathcal{R}}\frac{\tau_{11}}{\tau_{12}}\right) \ge M_{crit}^2$$

curved streamlines

Instability growth to elastic turbulence

Larson, Nature 405 (2000) 27 Groisman & Steinberg, Nature 405 (2000) 53

Microfluidics & viscoelasticity

Squires & Quake, Rev. Mod. Phys. 77 (2005) 977 Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

NUMERICAL METHODS: SOLUTION OF THE GOVERNING EQUATIONS

- Finite-volume method (in-house code)
- Collocated block-structured mesh
- Non-orthogonal coordinates (Cartesian velocity and stress tensor)
- Diffusion: central differences (2nd order in uniform mesh)
- SIMPLEC algorithm
- Rhie-and-Chow to couple velocity and pressure
- Special scheme to couple velocity and extra stress

Oliveira et al. JNNFM, 79 (1998) 1-43.

- Advection: CUBISTA high-resolution scheme (based on QUICK, 3rd order) Alves et al. IJNMF, 41 (2003) 47-75.
- Standard formulation and log-conformation formulation (allows higher De) Fattal & Kupferman JNNFM, 123 (2004) 281-285. More details for FVM: Afonso et al. JNNFM 157 (2009) 55-65

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP Leiden, Holland, 19-23th July 2010

5

CROSS SLOT

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

2D CROSS SLOT WITH UCM: EFFECT OF INERTIA

Poole et al., PRL 99 (2007) 164503

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

2D CROSS SLOT: OLDROYD-B — SOLVENT AND INERTIA

10

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

2D CROSS SLOT: SPTT — EFFECT OF EPSILON

β=1/9

Poole et al., SoR 2007

Increasing ε Increases De_{CR} Decreases degree of asymmetry (ε <0.04) Increases degree of asymmetry and extension in De (ε >0.04) Asymmetric stable flow disappears for ε >0.08

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

FLOW FOCUSING (extensional flow "without" shear)

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

FLOW FOCUSING

Oliveira et al. JNNFM 160 (2009) 31-39

Operational Variables Q_1, Q_2 $Q_3 = 2 \times Q_2 + Q_1$

Dimensionless Variables

$$FR = \frac{Q_2}{Q_1}$$
$$VR = \frac{U_2}{U_1} \quad (= FR)$$
$$Re = \frac{\rho U_2 D}{\eta_0}$$
$$El = \frac{\Delta U_2}{Re}$$
$$De = \frac{\Delta U_2}{D}$$

All dimensions kept constant in experiments and calculations

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

FLOW FOCUSING: PAA125

 $Q_1 = 0.01 \text{ ml/h}$

Viscoelastic Experimental

Q2 = 0.05 ml/h, *VR* = 5 *Re* = 0.23, *De* = 0.38

Q2 = 0.1 ml/h, VR = 10 *Re* = 0.45, *De* = 0.723

Oliveira et al. JNNFM 160 (2009) 31-39

Q2 = 0.2 ml/h, VR = 20 *Re* = 0.87, *De* = 1.41

Microfluidic flows of viscoelastic fluids V BCR 2010 Sousa, Afonso, Oliveira, Alves & Pinho - CEFT/FEUP Rio de Janeiro, Brazil, 14-16th July 2010

FLOW FOCUSING: VISCOELASTIC

Oliveira et al. JNNFM 160 (2009) 31-39

FLOW FOCUSING: EFFECT OF VR

Oliveira et al. JNNFM 160 (2009) 31-39

20

FLOW FOCUSING: EFFECT OF β

Oliveira et al. JNNFM 160 (2009) 31-39

2

increases De_c decreases degree of asymmetry $\varepsilon \ge 0.04$ steady asymmetry disappears (Transition directly to unsteady flow)

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

Similar levels of normal stresses achieved near critical conditions Extensional properties decisive for onset of flow asymmetry

 y/D_1

STAGNATION FLOW Symmetry & asymmetry Some observations from numerics on cross flow

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

CRITICAL FLOW - SYMMETRIC FLOW

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

SMALL DIFFERENCE BETWEEN TWO ASYMMETRIC FLOWS

De = 0.315 - De = 0.314

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

STAGNATION + VORTEX FLOW An analytical solution

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

GENERAL SOLUTION & CONSTANT SOLUTION

$$\begin{aligned} \tau_{xx} + De\bigg[(b_{u}y + ax) \frac{\partial \tau_{xx}}{\partial x} + (b_{v}x - ay) \frac{\partial \tau_{xx}}{\partial y} - 2(a\tau_{xx} + b_{v}\tau_{xy}) \bigg] &= 2a \\ \tau_{xy} + De\bigg[(b_{v}x - ay) \frac{\partial \tau_{xy}}{\partial x} + (b_{u}y + ax) \frac{\partial \tau_{xy}}{\partial y} - (b_{u}\tau_{xx} + b_{v}\tau_{yy}) \bigg] &= b_{u} + b_{v} \\ \tau_{ij} &= (\tau_{ij}) \Big|_{const} + (\tau_{ij}) \Big|_{homogeneous} \\ \tau_{yy} + De\bigg[(b_{v}x - ay) \frac{\partial \tau_{yy}}{\partial x} + (b_{u}y + ax) \frac{\partial \tau_{yy}}{\partial y} - 2(b_{u}\tau_{xy} - a\tau_{yy}) \bigg] &= -2a \end{aligned}$$

$$\frac{\partial \tau_{ij}}{\partial x_k} = 0 \implies \quad \tau_{xx} = -\frac{2\left[a + 2a^2De + b_v \left(b_u + b_v\right)De\right]}{-1 + 4\left(a^2 + b_u b_v\right)De^2}$$

$$\tau_{xy} = -\frac{b_u + b_v + 2a(b_u - b_v)De}{-1 + 4(a^2 + b_u b_v)De^2} \quad \tau_{yy} = \frac{2[a - 2a^2De - b_u(b_u + b_v)De]}{-1 + 4(a^2 + b_u b_v)De^2}$$

This solution absorbs the constants on the rhs of constitutive equation

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

HOMOGENEOUS SOLUTION (I)

$$\tau_{xx} + De\left[\left(b_{u}y + ax\right)\frac{\partial\tau_{xx}}{\partial x} + \left(b_{v}x - ay\right)\frac{\partial\tau_{xx}}{\partial y} - 2\left(a\tau_{xx} + b_{v}\tau_{xy}\right)\right] = 0$$

$$\tau_{xy} + De\left[\left(b_{v}x - ay\right)\frac{\partial\tau_{xy}}{\partial x} + \left(b_{u}y + ax\right)\frac{\partial\tau_{xy}}{\partial y} - \left(b_{u}\tau_{xx} + b_{v}\tau_{yy}\right)\right] = 0$$

$$\tau_{yy} + De\left[\left(b_{v}x - ay\right)\frac{\partial\tau_{yy}}{\partial x} + \left(b_{u}y + ax\right)\frac{\partial\tau_{yy}}{\partial y} - 2\left(b_{u}\tau_{xy} - a\tau_{yy}\right)\right] = 0$$

Solution hypothesis (1): $\tau_{ij}(x,y) = \tau_{ij}(\phi)$ with $\phi = kx + Ty$

$$\begin{split} m\phi De\sqrt{a^{2} + b_{u}b_{v}} & \frac{d\tau_{xx}}{d\phi} = (-1 + 2aDe)\tau_{xx} + 2b_{v}De\tau_{xy} \\ m\phi De\sqrt{a^{2} + b_{u}b_{v}} & \frac{d\tau_{xy}}{d\phi} = b_{u}De\tau_{xx} + b_{v}De\tau_{yy} \\ m\phi De\sqrt{a^{2} + b_{u}b_{v}} & \frac{d\tau_{yy}}{d\phi} = -(1 + 2aDe)\tau_{yy} + 2b_{u}De\tau_{xy} \end{split} \qquad \begin{aligned} k &= \frac{Tb_{v}}{-a \pm \sqrt{a^{2} + b_{u}b_{v}}} \\ m &= \pm 1 \\ \end{split}$$

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

HOMOGENEOUS SOLUTION (2)

Solution hypothesis (2): $au_{ij}(\phi) = lpha_{ij}\phi^q$

as in stagnation flow 1,2

¹ Renardy JNNFM 138 (2006) 204-205

² Becherer, Morozov, van Saarloos JNNFM 153 (2008) 183-190

$$-\left[\left(-1+2aDe-mqDe\sqrt{a^{2}+b_{u}b_{v}}\right)\alpha_{xx}+2b_{v}De\alpha_{xy}\right]\phi^{q}=0$$

$$\left[b_{u}De\alpha_{xx}+b_{v}De\alpha_{yy}-\left(1+mqDe\sqrt{a^{2}+b_{u}b_{v}}\right)\alpha_{xy}\right]\phi^{q}=0$$

$$\left[2b_{u}De\alpha_{xy}-\left(1+2aDe+mqDe\sqrt{a^{2}+b_{u}b_{v}}\right)\alpha_{yy}\right]\phi^{q}=0$$

$$\alpha_{xx}=\frac{2b_{v}De\alpha_{xy}}{-1+2aDe-mqDe\sqrt{a^{2}+b_{u}b_{v}}}\qquad \alpha_{yy}=\frac{2b_{u}De\alpha_{xy}}{-1+2aDe+mqDe\sqrt{a^{2}+b_{u}b_{v}}}$$

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

HOMOGENEOUS SOLUTION (3)

Back-substituting, three possible values of q and three possible stress fields

$$\alpha_{yy} = \frac{b_u \alpha_{xy}}{a - \sqrt{a^2 + b_u b_v}}$$

Homogeneous solution is sum of all

Momentum not yet enforced

No boundary conditions imposed

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

MOMENTUM EQUATION (I)

$$\frac{\partial}{\partial y} \left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} \right) - \frac{\partial}{\partial x} \left(-\frac{\partial p}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} \right) = 0$$

Case I

 $b_u = b_v$

$$b_u = \frac{a^2}{b_v}$$
 —

singularities at all De

Stagnation + "vortex" flow

$$u = ax + b_u y$$

 $v = -ay + b_v x$

possible forms to obey simultaneously momentum & UCM

$$b_u = \frac{1 - 4a^2 De^2}{4b_v De^2}$$

 $b_u = \frac{1 - 9a^2 De^2}{9b_u De^2}$

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

MOMENTUM EQUATION (2)

Case 3

After substitution of stresses all terms in equation are multiplied by (1+m). Since m=-1, momentum is automatically satisfied

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

STRESS FIELD

$$\tau_{xx} = \frac{b_v \alpha_{xy1}}{-a + \sqrt{a^2 + b_u b_v}} \phi^{\frac{2}{a} - \frac{1}{m D e \sqrt{a^2 + b_u b_v}}} - \frac{b_v \alpha_{xy3}}{a + \sqrt{a^2 + b_u b_v}} \phi^{-\frac{2}{a} - \frac{1}{m D e \sqrt{a^2 + b_u b_v}}} - \frac{2\left(a + 2Dea^2 + b_u b_v De + b_v^2 De\right)}{4a^2 De^2 - 1 + 4b_u b_v De^2}$$

$$\tau_{xy} = \alpha_{xy1} \phi^{\frac{2}{a} - \frac{1}{m D e \sqrt{a^2 + b_u b_v}}} + \alpha_{xy3} \phi^{-\frac{2}{a} - \frac{1}{m D e \sqrt{a^2 + b_u b_v}}} - \frac{b_u + b_v + 2aDe(b_u - b_v)}{4a^2 De^2 - 1 + 4b_u b_v De^2}$$

$$\tau_{yy} = \frac{b_u \alpha_{xy1}}{a + \sqrt{a^2 + b_u b_v}} \phi^{\frac{2}{a} - \frac{1}{m D e \sqrt{a^2 + b_u b_v}}} + \frac{b_u \alpha_{xy3}}{a - \sqrt{a^2 + b_u b_v}} \phi^{-\frac{2}{a} - \frac{1}{m D e \sqrt{a^2 + b_u b_v}}} - \frac{2\left(-a + 2Dea^2 + b_u b_v De + b_u^2 De\right)}{4a^2 De^2 - 1 + 4b_u b_v De^2}$$

$$with \ \alpha_{xy1} = \alpha_{xy1} \left(a, b_u, b_v\right), \alpha_{xy3} = \alpha_{xy3} \left(a, b_u, b_v\right) \ \text{such as}$$

$$\alpha_{xy1} = \frac{\alpha_1 \left(-a + \sqrt{a^2 + b_u b_v}\right)}{b_v} \qquad \alpha_{xy3} = \frac{\alpha_3 \left(a + \sqrt{a^2 + b_u b_v}\right)}{b_v}$$

$$a = 1, b_u = 0, b_v = 0 \Rightarrow \text{Becherer et al. JNNFM 153 (2008) 183$$

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids 40

STREAMLINES AND STRESSES (I)

2

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids 9 bv De4

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids 43

STREAMLINES AND STRESSES (3)

(2)
$$De < \frac{1}{\sqrt{9a^2}}$$
 $b_u = \frac{1 - 9a^2 De^2}{9b_v De^2}; a = -21; b_v = 5; De = \frac{1}{3\sqrt[2]{a^2}} - 0.001$

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids V = 0.000025 46

STREAMLINES AND STRESSES (4)

47

Leiden, Holland, 19-23th July 2010

STREAMLINES AND STRESSES (5)

 $De < De_c$ Vortex enclosing stagnation point is not possible.

$De > De_c$ Vortex enclosing stagnation point is possible.

Transitions in some stagnation viscoelastic flows at Re=0 Afonso, Cruz, Alves & Pinho - CEFT/FEUP Flow Instabilities and turbulence in viscoelastic fluids 48

Leiden, Holland, 19-23th July 2010

STREAMLINES AND STRESSES (6)

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids 49

STREAMLINES AND STRESSES (7)

(4)
$$De > \frac{1}{\sqrt{9a^2}}$$
 - Circular vortex **1**

$$3 \sqrt{b_u^a} = \frac{1 - 9a^2 De^2}{9b_v De^2}; a = -1; b_v = 0.23999; De = \frac{1}{3\sqrt{a^2}} + 0.01$$

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

CLOSURE

- Steady symmetric to steady asymmetric is a purely elastic instability. Inertia and solvent delays and eliminates this transition.
- This transition exists with bounded extensional viscosity, but is weakened with $m{arepsilon}$
- Steady asymmetric flow is a combination of a planar stagnation and a vortex
- Analytical solution obtained enforcing UCM constitutive equation and momentum. It shows closed vortex cannot exist below De<1/(3a)

- Behavior of the solution currently under investigation: need to impose BC
- Need for stability analysis on the analytical solution.

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids

ACKNOWLEDGEMENTS

- Fundação para a Ciência e a Tecnologia & Feder: PTDC/EQU-FTT/71800/2006, PTDC/EQU-FTT/70727/2006, PTDC/EME-MFE/70186/2006
- CNpQ 200120/2009-3

Transitions in some stagnation viscoelastic flows at Re=0 Flow Instabilities and turbulence in viscoelastic fluids