MICROFLUIDIC FLOWS OF VISCOELASTIC FLUIDS

Patrícia C. Sousa

CEFT, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal, E-mail: deq06010@fe.up.pt

Alexandre M. Afonso

CEFT, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal, E-mail: aafonso@fe.up.pt

Mónica S. N. Oliveira

CEFT, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal, E-mail: monica.oliveira@fe.up.pt

Manuel A. Alves

CEFT, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal, E-mail: mmalves@fe.up.pt

Fernando T. Pinho

CEFT, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal, E-mail: fpinho@fe.up.pt

V Brazilian Conference on Rheology

Rio de Janeiro, RJ

July 14-16, 2010

OUTLINE

- Definition, applications and our motivation and past work
- Non-dimensional numbers
- Experimental methods
- Governing equations and numerical methods
- Results
 - Hyperbolic channel: single and series (fluidic diode)
 - Flow focusing
 - Cross slot
 - Mixing-separating channel
 - 2D 4:1
- Closure

Microfluidic flows of viscoelastic fluids V BCR 2010

DEFINITION AND APPLICATIONS

- Fluid mechanics at the micro-scale: 100 nm 500 μm nanofluidics: 10 nm - 1 μm
- Handles nano- & picolitre of fluid, miniaturization, coupling w/ electronics
- Applications: inkjet printing, analytical chemistry, micro-rheology, biology, DNA separation and sequencing, medicine, control systems, heat dissipation of micro-electronics, fuel cells, energy & display technology

Inkjet printing, spray drying, precise reactant delivery

Drop fission

Link et al. PRL 92 (2004) 54503

Microfluidic flows of viscoelastic fluids V BCR 2010

RELEVANT PAST WORK

Viscoelastic instabilities in shear flows

Shaqfeh. Ann. Rev. Fluid Mech 28 (1996) 129

Taylor-Couette flow Larson et al., JFM 218 (1990) 573 Cone-plate flow McKinley et al., JNNFM 40 (1991) 201 Lid driven cavity flows Pakdel & McKinley, PRL 77 (1996) 2459

Underlying mechanism McKinley et al, JNNFM 67 (1996) 19

Pakdel & McKinley, PRL 77 (1996) 2459

Instability growth to elastic turbulence

Groissman & Steinberg, Nature 405 (2000) 53 Larson, Nature 405 (2000) 27

Microfluidics & viscoelasticity

Squires & Quake, Rev. Mod. Phys. 77 (2005) 977 Sousa, Afonso, Oliveira, Alves & Pinho - CEFT/FEUP Rio de Janeiro, Brazil, 14-16th July 2010

Microfluidic flows of viscoelastic fluids V BCR 2010

EXPERIMENTAL METHODS: MICROFABRICATION BY SOFT LITHOGRAPHY

1. Silicon Wafer

Xia & Whitesides, (1998) Ann. Rev. Mat. Sci. 28,153-184

- 2. Spin coat photoresist SU-8 and prebake
- 3. Spin coat barrier coat (CEM-BC7.5) and contrast enhancer (CEM 388SS) (vertical walls).
- 4. Chrome Mask over coated wafer
- 5. UV Exposure cross-link SU-8
- 6. Wash barrier coat and contrast enhancer
- 7. Post-bake and develop SU-8
- 8. Pour PDMS over substrate and cure (80°C, 25 mins)
- 9. Peel off substrate
- 10. Treat surfaces with air plasma, seal with glass slide

Needs access to fairly clean environment

Microfluidic flows of viscoelastic fluids V BCR 2010 Sousa, Afonso, Oliveira, Alves & Pinho - CEFT/FEUP Rio de Janeiro, Brazil, 14-16th July 2010

MICROGEOMETRIES

Planar hyperbolic contraction- sudden expansion

Abrupt contraction-expansion (CR=ER=16)

Hyperbolic contraction ($\epsilon_{\rm H}$ = 2)

Accuracy of dimensions to within 5% Near vertical walls: tapering angle $87^{\circ} < \alpha < 92^{\circ}$

Microfluidic flows of viscoelastic fluids V BCR 2010

SEM Images

EXPERIMENTAL METHODS: FLOW VISUALIZATION & MICRO-PIV

Streakline imaging

I μm fluorescent particles Mercury lamp Long exposure I 0X lens (NA=0.3, measurement depth= 30 μm

μΡΙν

500 nm fluorescent particles Double-pulsed laser, Volume illumination Double-frame camera 20X lens (NA=0.5, measurement depth= 12 μm 32x32 pixel interrogation, 50& overlap

Microfluidic flows of viscoelastic fluids V BCR 2010

GOVERNING EQUATIONS (I)

Microfluidic flows of viscoelastic fluids V BCR 2010

GOVERNING EQUATIONS (2)

• Scalar (energy, species):
$$\frac{\partial(\rho\phi)}{\partial t} + \frac{\partial(\rho u_i\phi)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\Gamma \frac{\partial\phi}{\partial x_i}\right) + S$$

Modifications for standard conformation and log-conformation

$$\rho \frac{\partial u_i}{\partial t} + \rho u_k \frac{\partial u_i}{\partial x_k} = -\frac{\partial p}{\partial x_i} + \eta_s \frac{\partial^2 u_i}{\partial x_k \partial x_k} + \frac{\eta_p}{\lambda} \frac{\partial A_{ik}}{\partial x_k}$$

$$\tau_{ij,p} = \frac{\eta_p}{\lambda} \Big(A_{ij} - \delta_{ij} \Big)$$

$$\lambda \overset{\nabla}{A}_{ij} = -Y (\overset{\bullet}{A}_{kk}) (A_{ij} - \delta_{ij})$$

$$Y(A_{kk}) = 1 + \varepsilon (A_{kk} - 3)$$

Microfluidic flows of viscoelastic fluids V BCR 2010

$$\frac{\partial \Theta_{ij}}{\partial t} + u_k \frac{\partial \Theta_{ij}}{\partial x_k} - \left(R_{ik} \Theta_{kj} - \Theta_{ik} R_{kj} \right) - 2E_{ij} = -\frac{Y \left(e^{\Theta_{kk}} \right)}{\lambda} \left(e^{-\Theta_{ij}} - \delta_{ij} \right)$$

Fattal & Kupferman JNNFM, 123 (2004) 281-285.
$$\Theta_{ij} = \log A_{ij} \qquad \text{More details for FVM:}$$
Afonso et al. JNNFM 157 (2009) 55-65

Sousa, Afonso, Oliveira, Alves & Pinho - CEFT/FEUP Rio de Janeiro, Brazil, 14-16th July 2010

NUMERICAL METHODS: SOLUTION OF THE GOVERNING EQUATIONS

- Finite-volume method (in-house code)
- Collocated block-structured mesh
- Non-orthogonal coordinates (Cartesian velocity and stress tensor)
- Diffusion: central differences (2nd order in uniform mesh)
- SIMPLEC algorithm
- Rhie-and-Chow to couple velocity and pressure
- Special scheme to couple velocity and extra stress

Oliveira et al. JNNFM, 79 (1998) 1-43.

- Advection: CUBISTA high-resolution scheme (based on QUICK, 3rd order) Alves et al. IJNMF, 41 (2003) 47-75.
- Standard formulation and log-conformation formulation (allows higher De) Fattal & Kupferman JNNFM, 123 (2004) 281-285.

More details for FVM: Afonso et al. JNNFM 157 (2009) 55-65

Microfluidic flows of viscoelastic fluids V BCR 2010 Sousa, Afonso, Oliveira, Alves & Pinho - CEFT/FEUP Rio de Janeiro, Brazil, 14-16th July 2010

HYPERBOLIC SINGLE CHANNEL FLOW Newtonian & Viscoelastic

Microfluidic flows of viscoelastic fluids V BCR 2010

HYPERBOLIC CONTRACTION: NEWTONIAN FLUIDS (I)

Centre plane (y=0): experimental versus numerical

HYPERBOLIC CONTRACTION: VISCOELASTIC FLUIDS (I)

0.3% PEO

Hencky Strain $e_{H} = 2$

Q = 1 ml/h, Re = 13.2 De = 1.13 Q = 3 ml/h, Re = 39.6 De = 3.40

Q = 5 ml/h, Re = 66.0 De = 5.66

Q = 7 ml/h, Re = 92.3 De = 7.93

Q = 9 ml/h, Re = 119 De = 10.2 Q = 11 ml/h, Re = 145 De = 12.5

Microfluidic flows of viscoelastic fluids V BCR 2010

HYPERBOLIC FLUID RECTIFIER

Microfluidic flows of viscoelastic fluids V BCR 2010

Microfluidic flows of viscoelastic fluids V BCR 2010

HYPERBOLIC FLUIDIC DIODE: NEWTONIAN FLUID (I)

Sousa et al. JNNFM 165 (2010) 652-671

Microfluidic flows of viscoelastic fluids V BCR 2010

HYPERBOLIC FLUIDIC DIODE: NEWTONIAN FLUID (2)

No fluidic rectification effect

Microfluidic flows of viscoelastic fluids V BCR 2010

HYPERBOLIC FLUIDIC DIODE: VISCOELASTIC FLUID (I)

Sousa et al. JNNFM 165 (2010) 652-671

0.1% aqueous solution of PEO (M_w=8x10⁶ g mol⁻¹)

Microfluidic flows of viscoelastic fluids V BCR 2010

HYPERBOLIC FLUIDIC DIODE: VISCOELASTIC FLUID (2)

Sousa et al. JNNFM 165 (2010) 652-671

Rectifier effect: more resistance in forward

Microfluidic flows of viscoelastic fluids V BCR 2010

CROSS SLOT

Microfluidic flows of viscoelastic fluids V BCR 2010

2D CROSS SLOT WITH UCM: CAUSES OF INSTABILITY

Poole et al., PRL 99 (2007) 164503

Microfluidic flows of viscoelastic fluids V BCR 2010

2D CROSS SLOT WITH UCM: EFFECT OF INERTIA

Poole et al., PRL 99 (2007) 164503

V BCR 2010

2D CROSS SLOT: OLDROYD-B — SOLVENT AND INERTIA Poole et al., SoR 2007 $\beta = 1/9$ Increasing Re Increases Decr Decreases degree of asymmetry For Re > 2 unsteady asymmetric flow Re=4 0.75 0.5 0.25 Re=2 Re=0 Re=1 0.72 --0.25 -0.5 ð -0.75 Re=3 0.71 0.3 0.4 0.5 0.6 0.7

Microfluidic flows of viscoelastic fluids V BCR 2010

Microfluidic flows of viscoelastic fluids V BCR 2010

2D CROSS SLOT: SPTT — EFFECT OF EPSILON

 $\beta = 1/9$

Poole et al., SoR 2007

Increasing ε Increases De_{CR} Decreases degree of asymmetry (ε <0.04) Increases degree of asymmetry and extension in De (ε >0.04) Asymmetric stable flow disappears for ε >0.08

<u>Qualitatively as</u> in flow focusing

Microfluidic flows of viscoelastic fluids V BCR 2010

FLOW FOCUSING (Alternative extensional flow)

Microfluidic flows of viscoelastic fluids V BCR 2010

FLOW FOCUSING

Oliveira et al. JNNFM 160 (2009) 31-39

Operational Variables Q_1, Q_2 $Q_3 = 2 \times Q_2 + Q_1$

Dimensionless Variables

$$FR = \frac{Q_2}{Q_1}$$

$$VR = \frac{U_2}{U_1} \quad (= FR)$$

$$Re = \frac{\rho U_2 D}{\eta_0}$$

$$De = \frac{\lambda U_2}{D}$$

$$El = \frac{De}{Re}$$

All dimensions kept constant in experiments and calculations

Microfluidic flows of viscoelastic fluids V BCR 2010

FLOW FOCUSING: 3D EFFECTS & NEWTONIAN (2)

Oliveira et al. JNNFM 160 (2009) 31-39

FLOW FOCUSING: VISCOELASTIC INSTABILITIES Oliveira et al. JNNFM 160 (2009) 31-39 UCM, 2D, Re=0 *De* = 0.1 VR = 200.6 Δ Δ Δ Δ Δ Δ Time-dependent Flow 0.5 Δ Δ Δ Δ Δ ××× Asymmetric ξ 1.0 **Ext.** 0.9 0.4 Flow × 0000 Xoec≈0.33 0.8 De0.7 8 0.3 0.6 0 0.5 0.4 0.3 0.2 0.2 🖯 0 0 Ο 0 0 0.1 Symmetric 0.0 Shea -0.1 Flow -0.2 *De* = 0.34 -0.3 0.10 0 0 0 VR = 200 0 -0.4 -0.5 -0.6 -0.7 цQ 1D 0 -0.8 -0.9 100 10 -1.0 Rot VR 1 - Rξ= 1 + R $tr\tilde{\mathbf{W}}^2$ Astarita, JNNFM 6 (1979) 69 Thompson et al., JNNFM 86 (1999) 375 R = $tr\mathbf{D}^2$ Mompean et al., JNNFM 111 (2003) 151 **Microfluidic flows of viscoelastic fluids** Sousa, Afonso, Oliveira, Alves & Pinho - CEFT/FEUP **V BCR 2010** Rio de Janeiro, Brazil, 14-16th July 2010

FLOW FOCUSING: EFFECT OF VR

Oliveira et al. JNNFM 160 (2009) 31-39

FLOW FOCUSING: EFFECT OF β

Oliveira et al. JNNFM 160 (2009) 31-39

decreases degree of asymmetry $\varepsilon \ge 0.04$ steady asymmetry disappears

(Transition directly to unsteady flow)

Similar levels of normal stresses achieved near critical conditions Extensional properties decisive for onset of flow asymmetry

Microfluidic flows of viscoelastic fluids V BCR 2010

FLOW FOCUSING: NUMERICAL VERSUS EXPERIMENTS (PAA 125) $Q_1 = 0.01 \text{ ml/h}$ Oliveira et al. JNNFM 160 (2009) 31-39

Q2 = 0.05 ml/h, *VR* = 5 *Re* = 0.23, *De* = 0.38

Q2 = 0.1 ml/h, VR = 10 *Re* = 0.45, *De* = 0.723

Q2 = 0.2 ml/h, VR = 20 Re = 0.87, De = 1.41

Microfluidic flows of viscoelastic fluids V BCR 2010

FLOW FOCUSING: UCM VERSUS OLDROYD-B

Oliveira et al. JNNFM 160 (2009) 31-39

 $Q_1 = 0.01 \text{ ml/h}$

Microfluidic flows of viscoelastic fluids V BCR 2010

3D CROSS SLOT Uniaxial and biaxial

Microfluidic flows of viscoelastic fluids V BCR 2010

3D CROSS SLOT: FLOW CONFIGURATIONS

Afonso et al., JNNFM 165 (2010) 743-751

Planar extension

Uniaxial extension

Q5

l_o=4:2

 $m = -\frac{1}{2}$

Microfluidic flows of viscoelastic fluids V BCR 2010

MIXING SEPARATING CHANNEL

Microfluidic flows of viscoelastic fluids V BCR 2010

MIXING-SEPARATING FLOW: FLOW CONFIGURATION

MIXING-SEPARATING FLOW: VISCOELASTIC CREEPING FLOW (I) Afonso et al., J Eng. Math (2010) in press $R_r=0.85$ R_r increases with De $1.7 < \theta < 2$ Steady bistable bifurcation

Dec varies slightly with heta

04

02

Purely elastic instability and supercritical behavior never seen before, probably because of inertia

06 De

08

Microfluidic flows of viscoelastic fluids V BCR 2010

 $\theta = 1.4$

 $\theta = 1$

0

0

 $\theta < 1.7$

R_r decreases with **De**

PLANAR SUDDEN CONTRACTION Very high Deborah number flows

Microfluidic flows of viscoelastic fluids V BCR 2010

Benchmark flow case (25 years ago)

V BCR 2010

Microfluidic flows of viscoelastic fluids V BCR 2010

CLOSURE

- Microfluidics: low Re & large De (contrasts with macro fluid dynamics)
- Need to micro-fabrication of high quality: requires clean environments
- Elastic instabilities observed & calculated at $Re \approx 0 \longrightarrow improved mixing$
- Distinct transitions: steady symmetric to steady asymmetric; steady asymmetric to unsteady flow; steady symmetric to unsteady
- Log-conformation allows numerical calculations at very high De/Wi flows
- Rich transitions in plane sudden contraction: path to elastic turbulence?
- Other challenges: complex fluids with electrokinetic effects, surface tension gradients, surface patterning

ACKNOWLEDGEMENTS

- Centro de Estudos de Fenómenos de Transporte
- Departamento de Engenharia Química at FEUP
- Fundação para a Ciência e a Tecnologia & Feder: PTDC/EQU-FTT/71800/2006, PTDC/EQU-FTT/70727/2006, PTDC/EME-MFE/70186/2006, PPCDT & POCI/ EME/59338/2004, REEQ/262/EME/2005, REEQ/928/EME/2005
- Hatsopoulos Microfluidics Laboratory at MIT: Gareth McKinley, Chris Pipe, Soulages
- Dr. Rob Poole at University of Liverpool
- Prof. Paulo Oliveira at Universidade da Beira Interior