Dynamics of entry flows at high Weissenberg numbers a numerical study

A.M. Afonso¹, P.J. Oliveira², F.T. Pinho³ and M.A. Alves¹

 ¹ Departamento de Engenharia Química, CEFT, Faculdade de Engenharia da Universidade do Porto, Portugal, {aafonso, mmalves}@fe.up.pt
 ² Departamento de Engenharia Electromecânica, Universidade da Beira Interior, Covilhã, Portugal, pjpo@ubi.pt
 ³ Departamento de Engenharia Mecânica e Gestão Industrial, CEFT, Faculdade de Engenharia da Universidade do Porto, Portugal, fpinho@fe.up.pt

Introduction

- Benchmark flow description
- 2 Governing Equations
- 3 Numerical Method

4 Results

- Low Deborah number flows
- Non-linear dynamics at high Deborah number flows
- Inertial effects: constant Elasticity

Introduction

- Benchmark flow description
- 2 Governing Equations

3 Numerical Method

4 Results

- Low Deborah number flows
- Non-linear dynamics at high Deborah number flows
- Inertial effects: constant Elasticity

Introduction

- Benchmark flow description
- 2 Governing Equations

③ Numerical Method

4 Results

- Low Deborah number flows
- Non-linear dynamics at high Deborah number flows
- Inertial effects: constant Elasticity

Introduction

- Benchmark flow description
- 2 Governing Equations
- Numerical Method

Results

- I ow Deborah number flows
- Non-linear dynamics at high Deborah number flows
- Inertial effects: constant Elasticity

Introduction

- Benchmark flow description
- 2 Governing Equations
- Numerical Method

Results

- Low Deborah number flows
- Non-linear dynamics at high Deborah number flows
- Inertial effects: constant Elasticity

Creeping flow in a 4:1 planar contraction

The study of this Benchmark problem started more than 25 years ago^[1]! Is it still relevant?

^[1]O. Hassager, J. Non-Newtonian Fluid Mech. 29, 2-5, (1989).

Benchmark flow description

Creeping flow in a 4:1 planar contraction

The study of this Benchmark problem started more than 25 years $ago^{[1]}!$ Is it still relevant?

^[1]O. Hassager, J. Non-Newtonian Fluid Mech. 29, 2-5, (1989).

A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. Alves

WNMNF 2010, Northampton, MA, USA

Mass & Momentum Conservation

Mass Conservation: $\nabla \cdot \mathbf{u} = 0$

Momentum Conservation:

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \beta \eta_o \nabla^2 \mathbf{u} + \frac{\eta_o}{\lambda} (1 - \beta) \nabla \cdot \mathbf{A}$$

$$\beta \equiv \frac{\eta_s}{\eta_o} = \frac{\eta_s}{\eta_s + \eta_p} = \frac{1}{9}$$

Oldroyd-B (Str I) $\lambda \mathbf{A}^{\nabla} = (\mathbf{I} - \mathbf{A})$ ∇

$$\dot{\mathbf{A}} = \frac{D\mathbf{A}}{Dt} - (\mathbf{R}\mathbf{A} - \mathbf{A}\mathbf{R}) - 2\mathbf{E}\mathbf{A}$$
$$\tau = \frac{\eta_p}{\lambda} (\mathbf{A} - \mathbf{I})$$

Oldroyd-B (LogT)

$$\lambda \Theta = (e^{-\Theta} - \mathbf{I})$$

 $\Theta = \frac{D\Theta}{Dt} - (\mathbf{R}\Theta - \Theta \mathbf{R}) - 2\mathbf{E}$
 $\Theta = \log \mathbf{A}$

^[1]Fattal and Kupferman, JNNFM (2004)

Viscosity ratio

Mass Conservation:

 $\nabla \cdot \mathbf{u} = 0$

Momentum Conservation:

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \frac{\beta}{\eta_o} \nabla^2 \mathbf{u} + \frac{\eta_o}{\lambda} (1 - \beta) \nabla \cdot \mathbf{A}$$

$$\beta \equiv \frac{\eta_s}{\eta_o} = \frac{\eta_s}{\eta_s + \eta_p} = \frac{1}{9}$$

 $\lambda \mathbf{A} = (\mathbf{I} - \mathbf{A})$

$$\mathbf{\hat{A}} = \frac{D\mathbf{A}}{Dt} - (\mathbf{R}\mathbf{A} - \mathbf{A}\mathbf{R}) - 2\mathbf{E}\mathbf{A}$$
$$\mathbf{\tau} = \frac{\eta_p}{\lambda} (\mathbf{A} - \mathbf{I})$$

Oldroyd-B (LogT) $\lambda \Theta = (e^{-\Theta} - \mathbf{I})$ $\Theta = \frac{D\Theta}{Dt} - (\mathbf{R}\Theta - \Theta \mathbf{R}) - 2\mathbf{E}$ $\Theta = \log \mathbf{A}$

^[1]Fattal and Kupferman, JNNFM (2004)

Constitutive Equation: Standard stress/conformation tensor formulation (StrT)

Mass Conservation: Viscosity ratio $\nabla \cdot \mathbf{u} = 0$ $\beta \equiv \frac{\eta_s}{\eta_o} = \frac{\eta_s}{\eta_s + \eta_p} = \frac{1}{9}$ Momentum Conservation: $\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \beta \eta_o \nabla^2 \mathbf{u} + \frac{\eta_o}{\lambda} (1 - \beta) \nabla \cdot \mathbf{A}$ Oldroyd-B (StrT) $\lambda \mathbf{\bar{A}} = (\mathbf{I} - \mathbf{A})$ $\lambda \overline{\Theta} = \left(e^{-\Theta} - \mathbf{I} \right)$ $\overset{\mathrm{V}}{\mathbf{A}} = \frac{D\mathbf{A}}{Dt} - (\mathbf{R}\mathbf{A} - \mathbf{A}\mathbf{R}) - 2\mathbf{E}\mathbf{A}$ $\overset{\mathsf{V}}{\Theta} = \frac{D\Theta}{Dt} - (\mathbf{R}\Theta - \Theta\mathbf{R}) - 2\mathbf{E}$ $\boldsymbol{\tau} = \frac{\eta_p}{\lambda} \left(\mathbf{A} - \mathbf{I} \right)$ $\Theta = \log A$

^[1]Fattal and Kupferman, JNNFM (2004

Constitutive Equation: Log-conformation tensor formulation (LogT)

Mass Conservation: Viscosity ratio $\nabla \cdot \mathbf{u} = 0$ $\beta \equiv \frac{\eta_s}{\eta_o} = \frac{\eta_s}{\eta_s + \eta_p} = \frac{1}{9}$ Momentum Conservation: $\rho \frac{D\mathbf{u}}{Dt} = -\nabla p + \beta \eta_o \nabla^2 \mathbf{u} + \frac{\eta_o}{\lambda} (1 - \beta) \nabla \cdot \mathbf{A}$ Oldroyd-B (StrT) Oldroyd-B (LogT) $\lambda \mathbf{\bar{A}} = (\mathbf{I} - \mathbf{A})$ $\lambda \overline{\mathbf{\Theta}} = \left(e^{-\mathbf{\Theta}} - \mathbf{I} \right)$ $\overset{\mathrm{V}}{\mathbf{A}} = \frac{D\mathbf{A}}{Dt} - (\mathbf{R}\mathbf{A} - \mathbf{A}\mathbf{R}) - 2\mathbf{E}\mathbf{A}$ $\stackrel{\nabla}{\Theta} = \frac{D\Theta}{Dt} - (\mathbf{R}\Theta - \Theta\mathbf{R}) - 2\mathbf{E}$ $\boldsymbol{\tau} = \frac{\eta_p}{\lambda} \left(\mathbf{A} - \mathbf{I} \right)$ $\Theta = \log A$

^[1]Fattal and Kupferman, JNNFM (2004)

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation^[3] for the extra-stress tensor^[4];
- 1st order implicit Euler scheme for time integration.

^[1]Oliveira, Pinho and Pinto, JNNFM (1998); ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

 $^{[3]}$ Fattal and Kupferman, JNNFM (2004); $^{[4]}$ Afonso, Pinho and Alves, JNNFM (2009)

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation^[3] for the extra-stress tensor^[4];
- 1st order implicit Euler scheme for time integration.

^[1]Oliveira, Pinho and Pinto, JNNFM (1998). ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

^[3]Fattal and Kupferman, JNNFM (2004);^[4]Afonso, Pinho and Alves, JNNFM (2009)

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation^[3] for the extra-stress tensor^[4];
- 1^{st} order implicit Euler scheme for time integration.

^[1]Oliveira, Pinho and Pinto, JNNFM (1998). ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

 $^{[3]}$ Fattal and Kupferman, JNNFM (2004); $^{[4]}$ Afonso, Pinho and Alves, JNNFM (2009)

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation^[3] for the extra-stress tensor^[4];
- 1st order implicit Euler scheme for time integration.

^[1]Oliveira, Pinho and Pinto, JNNFM (1998); ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

^[3]Fattal and Kupferman, JNNFM (2004);^[4]Afonso, Pinho and Alves, JNNFM (2009)

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation^[3] for the extra-stress tensor^[4];
- 1st order implicit Euler scheme for time integration.

^[1]Oliveira, Pinho and Pinto, JNNFM (1998); ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

 $^{[3]}$ Fattal and Kupferman, JNNFM (2004); $^{[4]}$ Afonso, Pinho and Alves, JNNFM (2009)

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation^[3] for the extra-stress tensor^[4];
- 1st order implicit Euler scheme for time integration.

^[1]Oliveira, Pinho and Pinto, JNNFM (1998); ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

 $^{[3]}$ Fattal and Kupferman, JNNFM (2004); $^{[4]}$ Afonso, Pinho and Alves, JNNFM (2009)

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation^[3] for the extra-stress tensor^[4];
- 1st order implicit Euler scheme for time integration.

^[1]Oliveira, Pinho and Pinto, JNNFM (1998); ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

^[3] Fattal and Kupferman, JNNFM (2004);^[4] Afonso, Pinho and Alves, JNNFM (2009)

Numerical Method

Finite Volume Method^[1]

- Structured, collocated and non-orthogonal meshes.
- Discretization (formally 2nd order)
 - Diffusive terms: central differences (CDS)
 - Advective terms, high resolution scheme: CUBISTA^[2]
- Dependent variables evaluated at cell centers;
- Special formulations for cell-face velocities and stresses;
- Log-conformation^[3] for the extra-stress tensor^[4];
- 1^{st} order implicit Euler scheme for time integration.

^[1]Oliveira, Pinho and Pinto, JNNFM (1998); ^[2]Alves, Pinho and Oliveira, IJNMF (2003)

^[3]Fattal and Kupferman, JNNFM (2004);^[4]Afonso, Pinho and Alves, JNNFM (2009)

5/36

Computational meshes

	n ^o cells	D₀F	$ riangle x_{min}/H_2$ & $ riangle y_{min}/H_2$
M1	5282	31692	0.02
M2	10587	63522	0.014
M3	42348	254088	0.0071
M3C	84696	508176	0.0071

Computational meshes

	n ^o cells	D₀F	$ riangle x_{min}/H_2$ & $ riangle y_{min}/H_2$
M1	5282	31692	0.02
M2	10587	63522	0.014
M3	42348	254088	0.0071
M3C	84696	508176	0.0071

A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. Alves

5 / 36

Low Deborah number flows: Results

Length of primary vortex, X_R , on mesh M3

Low Deborah number flows: Results

Flow patterns on mesh M3

Low Deborah number flows: Results

Flow patterns on mesh M3

8/36

Length of primary vortex, X_R , on mesh M3C

- For De > 2.5 the flow became unsteady;
- Simulations with StrT diverged at De = 3.

A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. Alves

High Deborah number flows: Results Flow dynamics: steady flow [De < 2.5]

A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. Alves

Flow dynamics: lip vortex growth regime [2.5 < De < 4.5]

Flow dynamics: lip vortex growth regime [De = 3]

Flow dynamics: lip vortex growth regime [De = 3]

A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. Alves

(Loading movie De=3)

Flow dynamics: lip vortex growth regime [2.5 < De < 4.5]

Flow dynamics: merging vortex growth regime $[4.5 \le De < 8]$

Flow dynamics: lip vortex growth regime [De = 4.5]

(Loading movie De=4.5)

Flow dynamics: lip vortex growth regime [De = 5]

High Deborah number flows: Results Flow dynamics: lip vortex growth regime [De = 5]

(Loading movie De=5)

Flow dynamics: merging vortex growth regime $[4.5 \le De < 8]$

Flow dynamics: elastic vortex growth regime $[8 \le De < 12]$

A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. Alves

High Deborah number flows: Results Flow dynamics: elastic vortex growth regime [De = 10]

(Loading movie De=10)

Flow dynamics: elastic vortex growth regime $[8 \le De < 12]$

A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. Alves

Flow dynamics: third vortex growth regime $[12 \le De < 17.5]$

Flow dynamics: third vortex growth regime [De = 13]

Flow dynamics: third vortex growth regime [De = 13]

Flow dynamics: third vortex growth regime [De = 13]

(Loading movie De=13)

(Loading movie De=15)

Flow dynamics: third vortex growth regime $[12 \le De < 17.5]$

Flow dynamics: vortex back-schedding $[17.5 \le De \le 100]$

A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. Alves

Flow dynamics: vortex back-schedding regime [De = 20]

Flow dynamics: vortex back-schedding regime [De = 20]

(Loading movie De=20)

(Loading movie De=30)

(Loading movie De=100)

Flow dynamics: Dominant frequencies and velocity amplitude

^[1] El Hadj and Tanguy, JNNFM (1990); ^[2] Fortin and Esselaoui, IJNMF (1987).

A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. Alves IWNMNF 2010, Northampton, MA, USA

Flow dynamics: Couette correction

•
$$C_{corr}$$
 increases for $De > 20$.

A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. Alves

Inertial effects: constant Elasticity

High Deborah number flows: Results Inertial effects: *Re.vs.De*

Low De numbers

• Excellent agreement between the *StrT* and *LogT* formulations and other benchmark data.

High De numbers

- For De > 2.5 the flow became unsteady;
- Simulations with StrT diverged at De = 3;
- Vortex size, X_R, and pressure drop, C_{corr}, show the typical upturn shape seen in experimental data;
- A rich sequence of elastic transitions was mapped, such the back-shedding of vorticity from the two pulsating vortices;
- The dimensional frequency is inversely proportional to the square root of relaxation time.

Low De numbers

• Excellent agreement between the *StrT* and *LogT* formulations and other benchmark data.

High De numbers

- For De > 2.5 the flow became unsteady;
- Simulations with StrT diverged at De = 3;
- Vortex size, X_R, and pressure drop, C_{corr}, show the typical upturn shape seen in experimental data;
- A rich sequence of elastic transitions was mapped, such the back-shedding of vorticity from the two pulsating vortices;
- The dimensional frequency is inversely proportional to the square root of relaxation time.

- Fundação para a Ciência e a Tecnologia (FCT), Portugal:
 - Projects PTDC/EQU-FTT/70727/2006 and PTDC/EQU-FTT/71800/2006;
 - Scholarship SFRH/BD/28828/2006 (A.M. Afonso).

Thanks!

Questions?

<ロ><0</p>