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Introduction 

Computational rheology (CR, defined as 

numerical methods applied to flows of complex 

fluids, rather than computational rheometry) is a 

fairly recent scientific branch of the more generic 

and broader Computational Fluid Dynamics 

(CFD). It faces demanding challenges, such as 

the High Weissenberg Number Problem (HWNP), 

consisting on the loss of convergence at very low 

levels of elasticity, quantified by the Weissenberg 

number (Wi). This numerical failure at a 

moderately low Weissenberg number (Wi≈1), is 

accompanied by numerical inaccuracies and lack 

of mesh-convergent solutions, particularly when 

geometrical singularities such as corners or 

stagnation points are present, due to the 

exponential growth of the normal stresses at such 

locations. These singularities are frequent among 

the benchmark flows that have been set-up to 

help the development and assessment of the 

behaviour of the numerical techniques in CR, and 

which have been studied independently by 

several research groups, in order to obtain 

consistently highly accurate numerical solutions. 

From the proposed CR benchmark flows over the 

past years, it is now possible to conclude that the 

favourite geometries are the flow around a 

cylinder and the 4:1 contraction flow [1]. Several 

plausible explanations for the HWNP have been 

identified along the past decades. However, and 

despite some recent progress, there is not yet a 

full understanding of its origin and possible 

solution. Recent developments on the tensorial 

reformulation of the complex fluids constitutive 

equations, such as the log-conformation [2], the 

square-root-conformation [3] or the more generic 

kernel-conformation [4], allowed further insights 

into possible solutions or, at least, alleviation of 

the HWNP. In this work, we present recent results 

obtained with these new matrix transformation 

frameworks [2]. For this purpose, this work 

presents an extensive study on the viscoelastic 

flow around a confined cylinder in a planar 

channel flow [5] and the fluid flow in a 4:1 planar 

contraction [6]. 

Governing equations and numerical method 

To simulate steady incompressible flow of 

viscoelastic fluids, the mass conservation 
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and the momentum equation, 
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need to be solved, together with an evolution 

equation for the conformation tensor, A, here for 

the Oldroyd-B fluids and based on the log-

conformation formulation ( AΘ log ): 
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The fluid total extra-stress is the sum of solvent 

and polymer stress contributions. The viscosity 

ratio, , is defined as the ratio between the 

Newtonian solvent viscosity, ηs, and the total zero 

shear-rate viscosity, η
0
,  = ηs/η0 =ηs/(ηs+ηP) 

where ηP is the coefficient of viscosity of the 

polymer. 



 

 

 

A fully-implicit finite-volume method (FVM) was 

used to solve Equations (1)–(3), which is based 

on a time marching pressure-correction algorithm 

and is formulated with the collocated variable 

arrangement [7]. The numerical method used to 

solve the log-conformation evolution equation is 

explained in detail in Afonso et al [8]. The 

advective terms were discretized with the 

CUBISTA high-resolution scheme [9], formally of 

third-order accuracy. In this work we will focus on 

creeping-flow conditions, in which case the 

advective term in the momentum equation is 

neglected. 

Results and Discussion 

4:1 Contraction flow 

The planar abrupt contraction is sketched in 

Figure 1. Due to the geometrical simplicity and 

known numerical difficulties, the planar 4:1 

sudden contraction was established as a 

benchmark flow problem in 1987 [6].  

 

Figure 1. Schematic representation of the 4:1 planar 

contraction geometry. 

All steady and unsteady calculations were 

obtained with the same time step increment (t), 

 = 1/9 and were carried out at zero Reynolds 

number, Re =U2H2/η0=0 (creeping flow), where 

H2 and U2 represent the half-width of the 

downstream channel and the corresponding 

average velocity. An inlet length L1=40H2 and an 

outlet length L2=100H2 were used to ensure 

complete flow development upstream and 

downstream of the contraction (Figure 1). At the 

inlet the velocity and stress profiles are prescribed 

by the analytical solutions, whereas at the outlets 

Neumann boundary conditions are imposed for all 

computed variables, except pressure which is 

linearly extrapolated from the two adjacent 

upstream cells. The Weissenberg number is here 

defined as Wi =U2/H2. Calculations were carried 

out with a mesh, that maps the whole physical 

domain, presenting higher concentration of cells 

near the corner of the contraction and the walls 

(in such a way that (x/H2)min=(y/H2)min= 

0.0071). 

The results obtained for the time-average corner 

vortex length (XR = xR/H2), are presented in Figure 

2. A non-monotonic evolution is observed, with a 

minimum value of XR attained at Wi≈4.5 and then 

more than doubling at Wi=20 relative to the 

Newtonian value. A similar non-monotonic 

behaviour was reported by Howell [10], using a 

continuation algorithm for the discontinuous 

Galerkin finite element method. The error bars in 

Figure 2 indicate the amplitude of the XR 

oscillations.  

 
Figure 2.Time average dimensionless length of primary 

vortex as function of Wi. 

The use of the log-conformation allowed the 

computations up to Wi = 100, approximately one 

order of magnitude higher than the obtained with 

the standard version. Also, a new and rich 

sequence of flow dynamic regimes obtained at 

high Wi numbers was mapped. At high Wi, a 

growth of the flow unsteadiness results in 

asymmetric flow with alternate back-shedding of 

vorticity from pulsating upstream recirculating 

eddies. Additionally, a frequency doubling 

mechanism is also observed, which eventually 

leads to a chaotic regime at higher Wi. At 

Wi 



 

 

 

sufficiently high Weissenberg numbers, this 

process becomes more dramatic, in which the 

size of the main vortices varies substantially and 

very rapidly, a process accompanied by the 

formation of upstream secondary vortices, which 

are shed in the upstream flow direction (Figure 

3a-c). 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flow patterns for Wi=100 at different instants. 

 

Cylinder flow  

From a numerical point of view, the cylinder flow 

is considered a smooth flow, due to the absence 

of geometrical singularities. However, it also 

introduces some difficulties associated with the 

development of thin stress layers on the cylinder 

sidewall and especially along the centreline in the 

cylinder rear wake. For all these reasons this flow 

was selected as a benchmark problem in 

computational rheology [5]. Another reason for 

the success of this choice was the suitability of 

this benchmark flow to experimental 

investigations, especially for birefringence 

studies.  

The geometry of the viscoelastic fluid flow past a 

confined cylinder in a channel is shown in Figure 

4. The ratio of channel half-height h to cylinder 

radius R is set equal to 2, which corresponds to 

the 50% blockage case [5].  

 
Figure 4. Schematic representation of the cylinder geometry. 

 

 The computational domain is 200R long, with 99R 

upstream and 99R downstream of the forward 

and rear stagnation points of the cylinder, 

respectively. The downstream length is sufficient 

for the flow to become fully-developed and to 

avoid any effect of the Neumann outflow 

boundary condition upon the flow in the vicinity of 

the cylinder. Vanishing axial gradients are applied 

to all variables, including the pressure gradient, at 

the outlet plane. No-slip conditions are imposed at 

both the cylinder surface (r = R: u = 0, v = 0) and 

the channel wall (y = ± h: u = 0, v = 0). The mesh 

used has 45120 computational cells and the 

minimum normalized cell spacing along the radial 

and azimuthal directions is 0.004 and 0.0006, 

respectively. Here again, the calculations were 

carried out at a vanishing Reynolds number and 

 = 0.59. The Weissenberg number is defined as 

Wi = U/R, where U and R represent average 

velocity and the cylinder radius, respectively.  

The obtained predictions for the dimensionless 

drag coefficient (K) are presented in Figure 5. Up 

to Wi = 1 the results agree and follow the trend of 

available data [8,11], presenting a non-monotonic 

evolution with Wi and a minimum value attained 

at Wi ≈ 1.4.  Converged simulations were 

obtained up to Wi = 200, which is approximately 

two orders of magnitude higher than the limit 

achieved when using the classical extra-stress 

formulation. At those high Wi a new and rich 
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sequence of flow dynamic regimes is observed, 

showing the relevance of the front and rear 

stagnation points on the cylinder flow.  

 
Figure 5.Time average dimensionless drag coefficient as 

function of Wi. 

In addition, the flow at moderate elasticity 

(Wi = 10) is characterized by new elastic induced 

flow features, such as flow inversion near the 

cylinder walls due to elastic recoil, as observed in 

Figure 6a, and at higher Wi (Wi = 20) the 

formation of separated flow regions at the cylinder 

walls and at the channel walls downstream of the 

cylinder (Figure 6b). 

 

 

Figure 6. Flow patterns for (a) Wi = 10 and (b) Wi = 20. 

Conclusions 

For both benchmark flows, converged simulations 

were obtained up to Wi numbers at least one 

order of magnitude higher than those obtained 

with the standard extra-stress formulation: up to 

Wi = 100 on the 4:1 contraction flow and Wi = 200 

in the confined cylinder flow. Also, new and rich 

sequences of flow dynamic regimes obtained at 

high Wi were mapped for both benchmark flows. 
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