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Abstract. The flow of viscoelastic liquids through a cross-slot geometry is studied by means of 

numerical simulations. The geometry is planar and the constitutive model follows the FENE-

CR (constant shear viscosity) equation, valid for relative dilute solutions of polymeric fluids, 

under fully developed flow conditions. A fully implicit finite-volume numerical method is used 

to solve the governing equations. For Deborah numbers above a critical value (dependent on 

the extensibility parameter of the model L
2
 and the solvent viscosity ratio β) the flow becomes 

asymmetric but remains steady. This effect is solely due to the elastic nature of the flowing 

fluid, i.e. the instability is purely elastic in nature. The main objectives of the present study 

are: to examine the possible effects of rounding the corners of the geometry (curvature radius 

of R = 0.05d and 0.5d, where d is the channels’ width) for a range of values of the controlling 

non-dimensional parameters (De, L
2
 and β); to calculate the critical Deborah number of the 

symmetry-breaking bifurcation; and to document on the flow asymmetries occurring in this 

kind of geometry. Our results are in qualitative agreement with recent experimental 

observations presented by Arratia et al. (2006) and numerical results for infinite extensibility 

models (UCM and Oldroyd-B) previously published by Poole et al. (2007).  

 

Keywords: Purely elastic instabilities; Rounded corners; Viscoelastic fluid; FENE-CR model; 

Finite-volume method. 
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1. INTRODUCTION 

 

The application of numerical codes for the solution of fluid mechanics problems, in what 

is known as Computational Fluid Dynamics – CFD (Patankar, 1980; Ferziger and Peric, 

2002), has seen a significant growth and has been extended to include the simulation of 

viscoelastic flow problems. Fluids that cannot be described by the Newtonian constitutive 

equation are called non-Newtonian fluids. Further, viscoelastic fluids possess elastic 

properties as well as viscous properties and mathematical models for this type of fluids are 

constantly being developed and tested in an attempt to improve the modelling process for 

these fluids.      

Recently, there has been renewed interest to analyze the behavior of extensional flows of 

dilute polymer solutions through a cross-slot geometry. Our motivation was stimulated by the 

recent studies of viscoelastic flows through cross-slot geometry conducted by Arratia et al. 

(2006) and Poole et al. (2007). First, Arratia et al. (2006) have reported two novel flow 

instabilities of a planar extensional flow of a dilute flexible polymer solution (200 ppm of 

PAA to a viscous Newtonian solvent with 97%-glycerol aqueous solution) under steady 

forcing. They found two distinct flow instabilities at low Reynolds numbers (Re<10
-2
). The 

first instability leads to spatial symmetry breaking and bistability, while the second produces 

temporal fluctuations in the velocity field. The velocity vanishes at the stagnation point at the 

center of the cross-slot, where the strain rate is highest and the fluid is most strongly 

stretched. Later, Poole et al. (2007) simulated the flow in a complete cross-slot geometry 

using the simplest differential viscoelastic model, the upper-convected Maxwell (UCM) 

model in the absence of inertia effects (Re = 0). Their numerical prediction results were in 

qualitative agreement with the experimental observations of Arratia et al. (2006). For a 

Newtonian fluid and low Deborah numbers (De < 0.3) the flow is perfectly symmetric and 

steady, but for Deborah numbers above a critical value (De ≈ 0.31) the flow becomes 

increasingly asymmetric but remains steady. The numerical results of Poole et al. (2007) have 

demonstrated that a flow asymmetry, due solely to elastic effects (elasticity), can be 

numerically predicted in a perfectly symmetric cross-slot geometry. Finally, they concluded 

that the asymmetry is a consequence of the compressive nature of the flow upstream of the 

central-square, coupled with streamline curvature, rather than the large elongational stresses 

that also appears in the flow downstream of the central-square.     

The purpose of the present work is to analyze in more detail the purely elastic flow 

instabilities occurring in a planar cross-slot using a more realistic FENE-type model to 

represent the viscoelastic liquid (Bird et al., 1987), in the absence of inertial forces (Re = 0). 

Pure stretching is produced at opposing jets, such as when channels are arranged as the four 

“arms” of a cross. In our numerical study the fluid enters from the left and right “arms” and 

leaves from the top and bottom arms, and consequently a stagnation point occurs at the center 

where the flow is extensional (see Fig. 2(a)). To describe the rheology of the fluid we use the 

constant viscosity FENE-CR constitutive model proposed by Chilcott and Rallison (1988) in 

which the polymer architecture is modeled as a pair of beads connected by a finitely 

extensible nonlinear spring with a maximum extensibility of L
2
. In the limit when the 

extensibility parameter goes to infinity (L
2
 → ∞) the model reduces to the well-known upper-

convected Maxwell (UCM) or Oldroyd-B models which were applied in the numerical work 

of Poole et al. (2007).  In particular, we investigate the laminar flow in a cross-slot 

arrangement having both sharp and rounded corners (corner radius R) for variation of 

elasticity (De), extensibility parameter (L
2
) and solvent viscosity ratio (β). The results were 

obtained by application of the numerical simulation program (written in the Fortran language) 

developed by Oliveira et al. (1998), based on a multidimensional finite-volume formulation.    
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2. GOVERNING EQUATIONS 

 

In this section, the basic conservation equations for two-dimensional (2D), 

incompressible and isothermal, laminar flows are presented as well as the constitutive FENE-

CR model (Chilcott and Rallison, 1988). The conservation equations of mass and linear 

momentum in the absence of body forces are expressed by: 

 

 0∇ =iu  (1) 

 

and 

 

 tot

D
p

Dt
ρ = −∇ + ∇i

u
ττττ  (2) 

 

where u is the local velocity vector (with components u and v along to the Cartesian 

coordinates x and y), t the time, ρ the fluid density (assumed constant), p the pressure, 

D Dt t= ∂ ∂ + ∇iu  the substantial derivative and totττττ  is the total extra stress tensor given by 

an appropriate constitutive equation. For a homogeneous solution of a Newtonian solvent and 

an additional elastic constituent (the polymeric solute), the extra stress tensor in Eq. (2) can be 

written as the sum of two terms: tot s= +τ τ ττ τ ττ τ ττ τ τ . The term ττττ  represents the contribution from the 

polymer molecules, while the term sττττ  is the contribution from the solvent which follows the 

Newtonian constitutive equation: 

 

 ( )T 2s s sη η= ∇ + ∇ ≡u u Dττττ  (3) 

 

As constitutive equation for the extra stress we employ the FENE-CR model (Chilcott and 

Rallison, 1988) in which the polymer molecule is modeled by two beads connected by a 

nonlinear spring. In this case we have: 

 

 
( )

2 p
f

λ
η

τ

∇

 
+ =  

 
Dτ ττ ττ ττ τ  (4)  

 

with the extensibility function ( )f ττττ  expressed by: 

 

 ( )
( ) ( )2

2 3

pL tr
f

L

λ η
τ

+
=

−

ττττ
 (5) 

 

In the above equations, the Oldroyd upper convected derivative is given by:  

 

 T

t

τ∇ ∂
≡ + ∇ ∇ ∇

∂
i i iu u uτ τ − τ − ττ τ − τ − ττ τ − τ − ττ τ − τ − τ  (6) 

 

and the rate of strain tensor is denoted: 
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 ( )T1

2
= ∇ + ∇D u u  (7) 

  

where sη  is the solvent viscosity (constant), pη  the contribution of polymer to the total shear 

viscosity 0 s pη η η= +  (also taken as constant), λ the constant zero-shear rate relaxation time, 

and L
2
 the extensibility parameter that measures the size of the polymer molecule in relation 

to its equilibrium size.       

There are five non-dimensional parameters to this flow problem: the radius of curvature 

R (geometric parameter); the solvent viscosity ratio 0sβ η η= (concentration parameter); the 

Reynolds number 0Re Udρ η=  (dynamic parameter); and the extensibility parameter of the 

FENE-CR model, L
2
 , and the Deborah number, De U dλ=  (constitutive parameters).   

 

3.  NUMERICAL METODOLOGY   

 

Equations (1)-(5) are solved with a finite-volume CFD code developed by Oliveira et al. 

(1998), based on a general non-orthogonal coordinate system and the collocated mesh 

arrangement (see Fig. 1(a)). In this method all variables are calculated and stored at the centre 

of each control volume (cells), as represented schematically in Fig. 1(b). 
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Figure 1- (a) Non-staggered mesh arrangement with all variables stored at the centre of cells.  

(b) Main control volume in a non-uniform mesh. 

 

The governing equations are discretised by integration in space over control volumes 

(with volume VP) and in time over time steps (denoted by ∆t) using a fully implicit 

discretization. This process results in systems of linearised algebraic equations. The algorithm 

is explained with more detail in Oliveira et al. (1998) and only an outline is given in this 

section. The discretised constitutive FENE-CR equation at cell P is given by:   

 

  ( ) ( ) ( )
(n+1) (n+1) ( ) ( ) ( ) (n)n n HRS n P

P P F F P

F P

V
a a S S

f t

τ τ
τ τ

λ
τ

  
= + , ∇ + + 

∆  
∑τ τ τ τ ττ τ τ τ ττ τ τ τ ττ τ τ τ τu  (8) 

 

with central coefficient: 
( )

P
P P F

F P

V
a V a

f t

τ τ λ
τ

= + +
∆∑  

 

 

N 

P 

S 

E W 

(       )  

Velocity 

 (  )  

Stress 

Pressure 

f 
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where VP is the volume of cell P and the stress coefficients Fa
τ  are composed by convective 

fluxes. These convective fluxes are calculated at cell faces located between cell P and any of 

its neighbouring cells F (in this work the summations are over 4 neighbouring cells for W, E, 

S and N with compass notation: West, East, South and North, see Fig. 1(b)). The stress 

sources terms Sτ  depend simultaneously on the stress tensor ττττ  and velocity gradients∇u  

which are evaluated at the previous time level ( )n .  

In the first step of the algorithm the above set of linear equations (Eq. (8)), for the stress 

tensor, are solved sequentially by a bi-conjugate gradient method, to obtain each stress 

component ijτ  at the new time level ( 1)n + . A solution for a steady-state problem is 

effectively approached by a succession of time advancement steps where t∆  acts as an 

inertial-relaxation term.  

In the second step, the discretised momentum conservation equations is solved implicitly 

for the intermediate velocity ∗
u : 

 

 ( ) ( ) ( ) ( )( ) ( 1)

_

n n HRS nP
P P F F u u u Dif u P

F

V
a a S p S S S

t

ρ∗ ∗ + = + ∇ + ∇ + + + 
∆ 

∑ ττττu u u u ui  (9) 

 

with: P
P F

F

V
a a

t

ρ
= +

∆∑   

 

where the coefficients Fa  have convective and diffusive contributions. The velocity source 

terms uS  (on the right hand side of Eq. (9) inside curled brackets) represent the effects due to 

the pressure gradient, the elastic stress divergence term, the artificial diffusive term (explicit 

part) and the high-resolution scheme, respectively. The last term inside the curled brackets is 

the inertial term resulting from the temporal derivative. All the coefficients of the discretised 

equations are calculated using the upwind scheme for the convective terms, and the high-

resolution convective scheme CUBISTA (Alves et al., 2003) is implemented with the deferred 

correction technique (Khosla and Rubin, 1974) through the source terms HRSS .  

After updating the stress fields in the first step of the algorithm, the discretised 

momentum conservation equations (Eq. (9)) are solved sequentially, with the same solution 

method, for each velocity component (u and v). Pressure is assumed from the previous time 

step. In general, the velocity components ∗
u from solution of Eq. (9) do not satisfy the 

discretised continuity conservation equation, expressed by: 

 

 ( 1) 0n+∇ =iu  (10) 

 

The third step of the algorithm involves a correction to ∗
u  obtained from a re-arrangement of 

the continuity equation into a Poisson pressure-correction equation, having the form:  

 

 ( )p p

P P F F

F

a p a p ∗′ ′= − ∇∑ iu  (11) 

 

with: p p

P F

F

a a= ∑  
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Equation (11) is solved implicitly solved for the pressure correction p′  ( ( 1)np p p+ ∗ ′≡ − ) with 

a matrix solver based on a symmetric conjugate gradient method. This pressure correction p′  
is then added to the pressure from the previous time step and is also used to correct the 

velocity in order to satisfy the continuity equation (Eq. (10)).  

 These three steps, corresponding to a time advancement from level ( )n  to level ( 1)n + , are 

repeated until the fields ( 1)n+ττττ , ( 1)n+
u  and ( 1)np +  remain unchanged; we say that the procedure 

has then “converged” (with a relative tolerance of 10
-4
).   

 

4.  PROBLEM DESCRIPTION AND COMPUTATIONAL MESH   

 

The flow geometry is represented in Fig. 2, where some of relevant variables are 

sketched. We consider the full planar cross-slot geometry. Flow enters from left and right 

“arms” and leaves from top and bottom “arms”. All channels have a constant width of d and 

the inlet and outlet “arms” are ten channel widths (d) in length. The upstream and downstream 

lengths of the domain were sufficiently long to avoid effects of non-fully developed inlet 

conditions on the flow in the central square and ensure a fully developed outlet profile.  

In order to test if rounding corners would significantly affect the asymmetry of the flow, 

we applied two geometries with rounded-corners R/d = 0.05 and 0.5 (see Fig. 2(b)) and 

generated meshes having the same characteristics as the sharp-corner ones, to be discussed 

below.    

  

10d

1
0
d

d

y

x
Q1

Q2

Q2

Q1

Q Q

Q

Q

Inlet

Fully 

developed

Inlet

Fully 

developed

O
u
tl
et

O
u
tlet  

(a)  

 

 

 

1
0
d

10d

d

y

x

R

 

 

(b)  

 

Figure 2- (a) Sketch of the cross-slot configuration and (b) solution domain for the rounded-

corner geometry. 

 

All the calculations were carried out for Re = 0 which was imposed in the computational 

code by equating the convective terms of the momentum equation to zero. The flow 

instability is purely elastic in nature and we do not want to consider inertial effects here. 

In terms of mesh resolution, the geometry was divided into five blocks, as represented in 

Fig. 3(a), which were then used to generate the computational mesh; the numbers of cells in 

each block are presented in Table 1.    
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3- (a) Schematic definition of the blocks used to generate the mesh. Zoomed view 

( [ ]2 , 2x d d∈ − +  and [ ]2 , 2y d d∈ − + ) of mesh for (b) sharp-corner (R = 0) and rounded 

corners with (c) R = 0.05d (small curvature) and (d) R = 0.5d (large curvature).   

 

Table 1. Main characteristics of computational mesh 

 

Blocks Nx Ny fx fy 

I 50 51 0.929296 1.000000 

II 51 51 1.000000 1.000000 

III 51 50 1.000000 0.929296 

IV 51 50 1.000000 1.075369 

V 50 51 1.075369 1.000000 

NC = 12801 

 

As seen in Fig. 3, the mesh is orthogonal but non-uniform along the inlet and outlet 

channels, with increasing concentration of cells on approaching the central square (see Fig. 

3(b)-(d)). The central square ( x  and 0.5y d≤ ) was mapped with a uniform mesh having 

x 

y 

I II 

III 

IV 

V 
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cell spacing min min 0.02x y d∆ ≈ ∆ ≈  (block II in Fig. 3(a)). This two-dimensional mesh has a 

total of 12801 cells which corresponds to 76806 degrees-of-freedom. The mesh data in     

Table 1 include the total number of control volumes (NC), the number of cells along the       

x- (Nx) and y-directions (Ny), and the expansion or compression (fx or fy) geometrical factors 

in both directions.  The following boundary conditions were applied: 

(i) Inlet ( 10.5x d= ± ): fully developed velocity (with average value U) and stress 

profiles were imposed from analytical equations; 

(ii) Outlet ( 10.5y d= ± ): Neumann conditions for all dependent variables, except the 

pressure which was linearly extrapolated; 

(iii) Solid walls ( 0.5x y d= = ± ): no-slip boundary conditions with stresses from 

analytical solutions. 

All the calculations were performed with a Pentium Core 2/2.40GHz computer with 

3.37GB RAM.    

 

5.  NUMERICAL RESULTS AND DISCUSSION   

 

The main objective is to assess the effect of rounding the corners of the cross-slot 

geometry (R/d = 0, 0.05 and 0.5) and the results are presented in the following sequence: in 

subsection 5.1 we analyze the influence of elasticity by varying the Deborah number, at fixed 

values of L
2
 = 100 and β = 0.1; in subsection 5.2 we analyze the influence of solvent viscosity 

ratio, for β = 0.05, 0.1 and 0.2, at a fixed value of L
2 
= 100; and in subsection 5.3 we study the 

influence of the extensibility parameter of the FENE-CR fluid, for L
2
 = 50, 100 and 200, at a 

fixed value of β = 0.1. 

In this study, quantitative results are provided in terms of a bifurcation parameter DQ  

that quantifies the degree of asymmetry of the flow, identical to the one proposed in the work 

of Poole et al. (2007): ( )2 1DQ Q Q Q= − , with flow rates 1Q  and 2Q  as indicated in Fig. 2(a). 

The total flow rate supplied to each incoming channel is Q Ud=  and this incoming flow 

splits at the cross-slot region such that 1 2Q Q Q= + . For a symmetric flow 1 2Q Q=  giving 

0DQ = , and for an asymmetric flow 1 2Q Q≠  giving 0DQ ≠ ( 1DQ = ±  for a completely 

asymmetric flow). Two steady solutions are then possible: a bifurcated solution with more 

flow coming from the left and going through the lower channel (e.g. Fig. 5(c)); and the 

opposite situation with more flow from the left into the upper channel.            

 

5.1 Influence of elasticity (De) 

 

 As already mentioned, the Deborah number ( /De U dλ= ) is used to measure the 

influence of elasticity and represents the ratio of the relaxation time of the fluid and the 

characteristic time scale of the flow. Here, De  was varied by varying the relaxation time 

parameter λ (since we assumed d = U = 1).  

 Figure 4 shows the predicted results of the degree of asymmetry (DQ) when the Deborah 

number was varied from 0.0 (Newtonian fluid) to 1.0, at fixed values of L
2
 = 100 and β = 0.1, 

for sharp-corner (R/d = 0 – see Fig. 3(b)) and the two rounded-corners cases (R/d = 0.05 and 

0.5, see Fig. 3(c) and (d), respectively).     
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Figure 4- Effect of rounding corners (R/d = 0.0, 0.05 and 0.5) with variation of asymmetry 

parameter DQ vs. De, for L
2
 = 100 and β = 0.1.  

 

The results presented in Fig. 4 show transition from a symmetric to a asymmetric state 

when De  goes above a critical Deborah number (Decr). It is also clear from the results of    

Fig. 4 by comparing the case R = 0 with R/d = 0.05 (slightly rounded case), that both the 

critical Deborah number (Decr) and the variation of the degree of asymmetry (DQ) are 

approximately the same (R/d = 0.0 → Decr ≈ 0.46 and R/d = 0.05 → Decr ≈ 0.47, see Fig. 5(c) 

and (g), respectively). However, when the corners are markedly rounded, as seen by the 

comparison against the case having R/d = 0.5 (large curvature case), the flow instability is 

delayed to higher values of Deborah number and Decr ≈ 0.62 (see Fig. 5(k)).          

In Fig. 5 we present the predicted streamline plots for increasing, and equivalent, values 

of Deborah number for the three values of corner curvature R/d. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 
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(k) 

 
(l) 

  

Figure 5- Predicted streamline plots for: (a)-(d) sharp-corners R/d = 0.0; (e)-(h) rounded 

corner R/d = 0.05; and (i)-(l) rounded corner R/d = 0.5 (L
2
 = 100 and β = 0.1).   

 

As a consequence of the delay of the instability amongst the three curvature cases the 

velocity field is significantly altered (see Fig. 6(b)), with an anticipated reduction of the strain 

rate ( u xε = ∂ ∂� ) along the centerline of the channels, on approaching and leaving the internal 

stagnation point at the cross-slot centre, as shown in Fig. 6(a). The corresponding maximum 

Newtonian strain rate, at the stagnation point, is provided in Table 2 (ε�  is normalized with 

/U d ).  
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Figure 6- Influence of corner curvature R/d = 0 (sharp), 0.05 and 0.5 for a Newtonian flow 

along the inlet centerline channels for: (a) Strain rate profiles ( u xε = ∂ ∂� ); and (b) Velocity 

profiles.   

 

Table 2. Newtonian strain rate at the stagnation point 

 

Geometry �εεεε  

Sharp-corner -3.346 

R/d =0.05 -3.255 

R/d =0.5 -2.261 
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We can conclude from Fig. 6 that when the corner is first only slightly rounded           

(R/d = 0.05) the results remain unchanged compared with the sharp-corner case, showing a 

strain rate difference at the stagnation point of 2.7%. However, comparing the sharp-corner 

case with the larger curvature case (R/d = 0.5) we see that the difference is more significative, 

with a strain rate difference at the stagnation point of 32%.           

 

5.2 Influence of solvent concentration (β) 

 

In this subsection we look at the effect of rounding the corners when varying the solvent 

concentration β = 0.05, 0.10 and 0.20, at a fixed L
2
 = 100.  The influence of solvent viscosity 

ratio is controlled by the β parameter which measures the ratio of Newtonian solvent shear 

viscosity to the total shear viscosity of the polymer solution. In other words, this parameter 

provides a measure of polymer concentration and by decreasing β the elasticity of the fluid 

becomes more dominant. The variation of the degree of asymmetry (DQ) versus the Deborah 

number (De) is illustrated in Fig. 7. It is observed, from the results for the sharp-corner case, 

for example, that an increase of the β parameter leads to a delay of the critical bifurcation 

point. It can be also observed, for the same β parameter, that the effect of rounding corners 

yields a significant change to the critical bifurcation point once R is large.  
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Figure 7- Effect of rounding corners (R/d = 0.0, 0.05 and 0.5) on the variation of the 

asymmetry parameter, DQ vs. De, for several solvent viscosity ratios (L
2
 = 100). 

  

Quantitative results of the critical Deborah number (Decr) for each β parameter, showing 

the effect of rounding corners, are given in Table 3. As can be seen, the critical Deborah 

number (at fixed L
2
 = 100) depends both on the value of β and on the degree of corner 

curvature, once R becomes significant. As mentioned above, by increasing the value of the β 

parameter, we delay the bifurcation flow instability and therefore this parameter controls the 

point of transition between symmetric and asymmetric flow (see for example the case of 

sharp-corners).        
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Table 3. Computed values of the critical Deborah number (Decr) for selected values of the 

solvent viscosity β and L
2 
=100. 

 

β Sharp-corner R/d = 0.05 R/d = 0.5 

0.05 0.41 0.42 0.56 

0.10 0.46 0.47 0.62 

0.20 0.68 0.70 0.86 

  

5.3 Influence of extensibility parameter (L
2
) 

 

This parameter measures the extensional characteristics of the fluid and represents the 

square of the ratio between the maximum and the equilibrium lengths of the polymer 

molecules. The results show that an increase of L
2
 tends to accentuate the bifurcation 

phenomenon, that is the base flow becomes less stable, and tends to shift the occurrence of the 

transition point to asymmetry to lower Deborah numbers. The extensibility was seen to have a 

strong effect and for example, for L
2
 = 50 the flow was symmetric up to Decr ≈ 0.61, but if L

2
 

was increased to 200 the asymmetry appears at Decr ≈ 0.41. 

Results of the influence of the extensibility parameter, in terms of the variation of the 

asymmetry degree (DQ) vs. Deborah number (De), are given graphically in Fig. 8 and the 

corresponding critical Deborah numbers for each case are listed in Table 4. With the highly 

rounded geometry and the smaller extensibility parameter, the critical Deborah number has 

shifted to higher values (more than doubling the smallest Decr) and the asymmetry is 

markedly reduced.   
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Figure 8- Effect of rounding corners (R/d = 0.0, 0.05 and 0.5) on the variation of the 

asymmetry parameter, DQ vs. De, for several extensibility parameters L
2
 (β = 0.1). 

 

Table 4. Computed values of the critical Deborah number (Decr) for selected values of the 

extensibility parameter L
2
 and β

 
=0.1. 

 

L
2
 Sharp-corner R/d = 0.05 R/d = 0.5 

  50 0.61 0.63 0.85 

100 0.46 0.47 0.62 

200 0.41 0.42 0.54 
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6.  CONCLUSIONS   

 

Numerical simulations of the flow of a FENE-CR model fluid through a planar cross-slot 

geometry have been presented in the absence of inertia effects (Re = 0). Steady-state results 

were carried out in a range of De = 0 – 1 for the full domain geometry, and the effect of 

rounding corners was studied in conjunction with the influence of elasticity (controlled by 

Deborah number), of the solvent concentration (controlled by β parameter) and, finally, of the 

extensibility parameter (controlled by L
2
 parameter). It is shown that the triggering 

mechanism for the bifurcation phenomenon is not controlled by slightly rounding of the 

corners, since the extensional strain rate at the cross-slot center is not affected by such small 

level of wall curvature. The elasticity directly drives the instability of the flow and a Decr 

defines the transition point from symmetric to asymmetric flow. For De values lower than 

Decr the flow is symmetric and stable, while for values above Decr the flow becomes 

asymmetric and the DQ parameter grows for increasing De. The solvent viscosity ratio β 

which is a measure of the polymer concentration (polymer concentration 1c β∝ ), when 

reduced, leads to an anticipation of the bifurcation phenomenon (see Fig. 7). Finally, the 

extensibility parameter L
2
, which controls the extensional viscosity of the fluid, has a strong 

effect in the flow and for increasing L
2
 the critical point controlled by the Deborah number 

decreases substantially (see Fig. 8).        
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