RECENT DEVELOPMENTS AND CHALLENGES IN TURBULENCE MODELING FOR VISCOELASTIC FLUIDS

P. R. Resende
Centro de Estudos de Fenómenos de Transporte, Universidade do Porto, Portugal

F. T. Pinho
Centro de Estudos de Fenómenos de Transporte, Universidade do Porto & Universidade do Minho, Portugal

K. Kim
Korea Institute of Energy Research, Daejeon, Republic of Korea

B. A. Younis
Dep. Civil and Environmental Engineering, University of California, Davis, USA

R. Sureshkumar
Dep. Energy, Environmental and Chemical Engineering, Washington University of St. Louis, St Louis, MO, USA

Conference on “Complex Flows of Complex Fluids”
17th-19th March 2008
University of Liverpool, United Kingdom
• Brief review of existing RANS models for FENE-P

• Governing equations for FENE-P in RANS/RACE form
 (Reynolds decomposition)

• Development of closures for RANS/RACE of FENE-P
 (2007 (LDR) and 2008 (LDR & HDR) closures)

• Some results (2007 models only)

• Conclusions and future prospects
Governing equations: turbulent flow & FENE-P

Reynolds decomposition

\[\hat{B} = B + b' \quad \text{where} \quad \overline{b'} = 0 \]

- Instantaneous quantities
- Overbar or upper-case letters - time-averaged quantities
- Lower-case letters - fluctuating quantities

Continuity (incompressible):

\[\frac{\partial \hat{U}_i}{\partial x_i} = 0 \]

Momentum \(\mathcal{M}(\hat{U}_{ij}) \):

\[\rho \frac{\partial \hat{U}_i}{\partial t} + \rho \hat{U}_k \frac{\partial \hat{U}_i}{\partial x_k} = - \frac{\partial \hat{p}}{\partial x_i} + \eta_s \frac{\partial^2 \hat{U}_i}{\partial x_k \partial x_k} + \frac{\partial \hat{\tau}_{ik,p}}{\partial x_k} \]

Rheological constitutive equation: FENE-P

\[\hat{\tau}_{ij} = 2\eta_s \hat{S}_{ij} + \hat{\tau}_{ij,p} \]

\[f\left(\hat{C}_{kk}\right) = \frac{L^2 - 3}{L^2 - \hat{C}_{kk}} \quad f\left(L\right) = 1 \]

Recent developments and challenges in turbulence modeling of viscoelastic fluids
Resende, Pinho, Kim, Younis & Sureshkumar
CEFT-FEUP Centro de Estudos de Fenómenos de Transporte, Universidade do Porto
Complex Flows of Complex Fluids, Liverpool, UK
Recent developments and challenges in turbulence modeling of viscoelastic fluids

Solution of governing equations

Direct Numerical Simul.

- Sureshkumar, Beris, Handler (1997) PoF, v9, 743
- Den Toonder, Hulsen, Kuiken, Nieuwstadt (1997) JFM 337, 193
- Dimitropoulos, Sureshkumar, Beris (1998) JNNFM v79, 433
- Dimitropoulos, Sureshkumar, Beris, Handler (2001) PoF v13, 1016
- Ptasinski et al (2003) JFM v490, 251
- Yu, Kawaguchi (2003) IJHFF v24, 491
- Yu, Li, Kawaguchi (2004) IJHFF v25, 961
- Dimitropoulos et al (2005) PoF v17, 011705
- Li, Gupta, Sureshkumar, Khomami (2006) JNNFM v139, 177
- Li, Sureshkumar, Khomami (2006) JNNFM v140, 23
- Benzi, Angelis, L’vov, Procaccia, Tiberkevich (2006) JFM v551, 185
- & others — see recent review

Physical understanding

Too costly for engineering calculations

Turbulence model development

- LES
- RANS/RACE

Recent developments and challenges in turbulence modeling of viscoelastic fluids

Resende, Pinho, Kim, Younis & Sureshkumar

CEFT-FEUP Centro de Estudos de Fenómenos de Transporte, Universidade do Porto

Complex Flows of Complex Fluids, Liverpool, UK
Time-averaged governing equations: RANS and RACE

Continuity: \[
\frac{\partial U_i}{\partial x_i} = 0
\]

Momentum balance:
\[
\rho \frac{\partial U_i}{\partial t} + \rho U_k \frac{\partial U_i}{\partial x_k} = - \frac{\partial p}{\partial x_i} + \eta_s \frac{\partial^2 U_i}{\partial x_k \partial x_k} - \frac{\partial}{\partial x_k} \left(\rho u_i u_k \right) + \frac{\partial \tau_{ik,p}}{\partial x_k}
\]

Rheological constitutive equation: FENE-P
\[
\bar{\tau}_{ij,p} = \eta_p \left[f(C_{kk}) C_{ij} - f(L) \delta_{ij} \right] + \frac{\eta_p}{\lambda} f(C_{kk} + c_{kk}) c_{ij}
\]

RACE
\[
\nabla \cdot C_{ij} + u_k \frac{\partial c_{ij}}{\partial x_k} - \left(c_{kj} \frac{\partial u_i}{\partial x_k} + c_{ik} \frac{\partial u_j}{\partial x_k} \right) = - \frac{\bar{\tau}_{ij,p}}{\eta_p}
\]

Closures required
Existing models for FENE-P: Li et al (2006)

\[
\rho \frac{\partial U_i}{\partial t} + \rho U_k \frac{\partial U_i}{\partial x_k} = -\frac{\partial p}{\partial x_i} + \eta_s \frac{\partial^2 U_i}{\partial x_k \partial x_k} - \frac{\partial}{\partial x_k} \left(\rho u_i u_k \right) + \frac{\partial \tau_{ik,p}}{\partial x_k}
\]

Reynolds stress

\[
-uv = v_{T,v} \frac{dU}{dy}
\]

\[
v_{T,v} = \phi v_{T,N}
\]

\[
v_{T,N} = \kappa u_\tau y
\]

\[
\phi = \left[a(DR) y + b(DR) \right]
\]

0 equation model (shear stress only)

\[
\int_0^{R_e} \tau_{xy,p} dy = \int_0^{R_e} M_{xy} dy + \int_0^{R_e} NLT_{xy} dy
\]

\[
I_{M_{xy}} = a' + b' DR + c' DR^2
\]

\[
I_{NLT_{xy}} = a'' + b'' DR + c'' DR^2
\]

\[
DR = 80 \left\{ 1 - \exp \left[-0.025(We_\tau - 6.25) \left(\frac{Re_\tau}{125} \right)^{-0.225} \right] \right\} \left[1 - \exp(-0.0275L) \right]
\]
Existing models for FENE-P

FENE-P and based on DNS

Leighton, Walker and Stephens (2002) APS meeting?

- Reynolds stress transport model
- Slow pressure-strain redistribution term is modified by polymer (limits energy redistribution)
- New term in RS equation: interaction of $\tau'_{p,ij}$ & turbulence
- New term in C_{ij} equation (NLT_{ij})
- Additional diffusive flux terms not modeled

Shaqfeh (2006) AIChE Conference

- $k-\varepsilon v^2-f$ extension model of Durbin (1995)
- Simplified model: $\bar{\tau}_{p,ij}$ proportional to mean strain (elongation)
- Coefficient has laminar and turbulent contribution
- Laminar part proportional to $\partial U/\partial y$
- Turbulent part proportional to k
- Modifies pressure strain (v^2 equation)
- One transport equation for C_{kk}
DNS cases: channel flow

Fully-developed channel flow

\[u \]

\[2, y \]

\[1, x \]

\[2h \]

\[We_\tau = \frac{\lambda u_\tau^2}{v_0} \]

\[Re_\tau = \frac{hu_\tau}{v_0} \]

\[Re_\tau = 395, \beta = 0.9, L^2 = 900 \]

Low Drag Reduction

\[We_\tau = 25, DR = 18\% \]

High Drag Reduction

\[We_\tau = 100, DR = 37\% \]

- 2007 models (Pinho et al JNNFM 2008 & unpublished) - Only LDR
- 2008 model (under develop.)- Recalculated DNS + LDR & HDR
- Closures valid for 1st & higher order turbulence models
Recent developments and challenges in turbulence modeling of viscoelastic fluids

Resende, Pinho, Kim, Younis & Sureshkumar

CEFT-FEUP Centro de Estudos de Fenómenos de Transporte, Universidade do Porto

Complex Flows of Complex Fluids, Liverpool, UK
Recent developments and challenges in turbulence modeling of viscoelastic fluids

Function $f(C_{kk})$

Function: $f(C_{kk}) = \frac{L^2 - 3}{L^2 - (C_{kk} + c'_{kk})}$

$C_{kk} > \sqrt{c'_{kk}^2}$

$f(C_{kk})b_{lm}d_i \approx f(C_{kk})b_{lm}d_i$

$f(C_{kk})b_{ij} \approx f(C_{kk})\bar{b}_{ij} = 0$

This will be used frequently
Time-average evolution equation for the conformation: RACE

\[
\lambda \nabla C_{ij} + \lambda \left[u_k \frac{\partial c_{ij}}{\partial x_k} - \left(c_{kj} \frac{\partial u_i}{\partial x_k} + c_{ik} \frac{\partial u_j}{\partial x_k} \right) \right] = - \left[f(C_{kk}) C_{ij} - f(L) \delta_{ij} \right]
\]

\[
\nabla C_{ij} + u_k \frac{\partial c_{ij}}{\partial x_k} - \left(c_{kj} \frac{\partial u_i}{\partial x_k} + c_{ik} \frac{\partial u_j}{\partial x_k} \right) + D_{ij} = - \frac{\tau_{ij,p}}{\eta_p}
\]

- Oldroyd derivative
- Mean flow distortion
- Exact and large

:turbulent distortion:
- originates in distortion of Oldroyd derivative- not negligible
- Must be modeled

- originates in advective term, negligible
- no need for modeling

\[D_{ij} = \frac{\tau_{ij,p}}{\eta_p} \]

\[\tau_{ij,p} \]

Added for stability
Should be negligible
Recent developments and challenges in turbulence modeling of viscoelastic fluids

Resende, Pinho, Kim, Younis & Sureshkumar

CEFT-FEUP Centro de Estudos de Fenómenos de Transporte, Universidade do Porto

Complex Flows of Complex Fluids, Liverpool, UK
Recent developments and challenges in turbulence modeling of viscoelastic fluids

Resende, Pinho, Kim, Younis & Sureshkumar

CEFT-FEUP Centro de Estudos de Fenómenos de Transporte, Universidade do Porto

Complex Flows of Complex Fluids, Liverpool, UK
Approximate equation for NLT_{ij}

$$NLT_{ij} = c_{kj} \frac{\partial u_i}{\partial x_k} + c_{ik} \frac{\partial u_j}{\partial x_k}$$

$$\mathcal{L}(\hat{C}_{kj}) \frac{\partial u_i}{\partial x_k} + \mathcal{L}(\hat{C}_{ik}) \frac{\partial u_j}{\partial x_k}$$

SIMPLER THAN EXACT EQUATION:

$$f(\hat{C}_{mm}) c_{kj} \frac{\partial u_i}{\partial x_k} + f(\hat{C}_{mm}) c_{ik} \frac{\partial u_j}{\partial x_k} + C_{kj} f(\hat{C}_{mm}) \frac{\partial u_i}{\partial x_k} + C_{ik} f(\hat{C}_{mm}) \frac{\partial u_j}{\partial x_k} + \frac{\partial C_{kj}}{\partial x_k} \frac{\partial u_i}{\partial x_k} + \frac{\partial C_{ik}}{\partial x_k} \frac{\partial u_j}{\partial x_k} + u_{i} \frac{\partial C_{kj}}{\partial x_k} + u_{n} \frac{\partial C_{ik}}{\partial x_k}$$

$$- \lambda \left[\frac{\partial U_{i}}{\partial x_{n}} \left(c_{j} \frac{\partial u_{i}}{\partial x_{k}} + c_{i} \frac{\partial u_{j}}{\partial x_{k}} \right) + \frac{\partial U_{i}}{\partial x_{n}} \frac{\partial u_{i}}{\partial x_{k}} + \frac{\partial U_{i}}{\partial x_{n}} \frac{\partial u_{j}}{\partial x_{k}} + C_{i} \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{k}} \right]$$

$$- \lambda \left[C_{j} \frac{\partial u_{i}}{\partial x_{n}} \frac{\partial u_{i}}{\partial x_{k}} + C_{i} \frac{\partial u_{i}}{\partial x_{n}} \frac{\partial u_{j}}{\partial x_{k}} + \frac{\partial u_{i}}{\partial x_{n}} \frac{\partial u_{i}}{\partial x_{k}} + \frac{\partial u_{j}}{\partial x_{n}} \frac{\partial u_{j}}{\partial x_{k}} + C_{i} \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{k}} \right] = 0$$

Recent developments and challenges in turbulence modeling of viscoelastic fluids

Resende, Pinho, Kim, Younis & Sureshkumar

CEFT-FEUP Centro de Estudos de Fenómenos de Transporte, Universidade do Porto

Complex Flows of Complex Fluids, Liverpool, UK
Simplifications for modeling NLT_{ij}

$$f' c'_{jk} \frac{\partial u_i}{\partial x_k} + f' c'_{ik} \frac{\partial u_j}{\partial x_k} \approx f(C_{mm}) \left(c_{kj} \frac{\partial u_i}{\partial x_k} + c_{ik} \frac{\partial u_j}{\partial x_k} \right) = f(C_{mm})^{NLT}_{ij}$$
Previous models for NLT_{ij} - 2007 1st model

First model

Exact equation is too complex.

Alternative model based on:

1) Identification of possible dependencies from inspection of exact equation

2) Simplicity, but capturing main features

3) $We=25$ (DR=18%)

$$f\left(C_{mm}\right)^{NLT}_{ij} = \frac{\lambda}{\mu} \text{function}\left(S_{ij}, W_{ij}, C_{ij}, \varepsilon^N_{ij}, \frac{\partial u_i u_j}{\partial x_k}, \frac{\partial C_{ij}}{\partial x_k}, \frac{\partial NLT_{ij}}{\partial x_n}, M_{ij}, u_i u_j\right)$$

$$f\left(C_{mm}\right)^{NLT}_{ij} = f_{\mu_1} \left[\frac{C_{E_3}}{v_0^2} \frac{u_i u_j^2}{C_{kk}} + \frac{C_{\alpha_{14}}}{v_0} (u_i W_{kn} C_{nj} + u_j W_{kn} C_{ni} + u_k W_{jn} C_{nk}) \right]$$

2 coefficients

$C_{E_3} = 0.00035; C_{\alpha_{14}} = 0.00015$

1 damping function

$$f_{\mu_1} = \left(1 - \exp\left(-y^+ / 26.5\right)\right)^2$$

Pinho, Li, Younis, Sureshkumar (2008) JNNFM, in press
Modeling NLT_{ij} 1- 2008 model and 2nd 2007 model

1) $CT_{ij} = u_k \frac{\partial c_{ij}}{\partial x_k} \approx 0$ suggests $u_n \frac{\partial c_{ij}}{\partial x_k} \approx 0$

2) Homogeneous turbulence (negligible turbulent diffusion): $u_n \frac{\partial u_j}{\partial x_k} \approx 0$

3) Invariance laws $U_n \left(\frac{\partial c_{kj}}{\partial x_n} \frac{\partial u_i}{\partial x_k} + \frac{\partial c_{ik}}{\partial x_n} \frac{\partial u_j}{\partial x_k} \right) = 0$

4) Homogeneous isotropic turbulence

$\frac{\partial u_i}{\partial x_k} \frac{\partial u_j}{\partial x_l} = \frac{8}{3} k \left[\delta_{ij} \delta_{kl} - \frac{1}{4} \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right) \right]$

Taylor’s longitudinal micro-scale $\varepsilon = 20 \frac{\nu k}{\lambda_f^2}$

$C_{mn} \left(\frac{\partial u_j}{\partial x_n} \frac{\partial u_i}{\partial x_k} + \frac{\partial u_i}{\partial x_n} \frac{\partial u_j}{\partial x_k} \right) + C_{jn} \frac{\partial u_k}{\partial x_n} \frac{\partial u_i}{\partial x_k} + C_{in} \frac{\partial u_k}{\partial x_n} \frac{\partial u_j}{\partial x_k} \approx C \varepsilon_n \int_{N_2} \frac{4}{15} \frac{\varepsilon}{\beta \times W e_{\tau_0} \times \nu_T} C_{mn} \delta_{ij}$

Hinze (1975); Mathieu & Scott (2000)
5) *ad-hoc* + symmetry, invariance, permutation, realizability

\[
\frac{\partial U_k}{\partial x_n} \left(c_{jn} \frac{\partial u_i}{\partial x_k} + c_{in} \frac{\partial u_j}{\partial x_k} \right) + \frac{\partial U_j}{\partial x_n} c_{kn} \frac{\partial u_i}{\partial x_k} + \frac{\partial U_i}{\partial x_n} c_{kn} \frac{\partial u_j}{\partial x_k} \approx \left[\frac{\partial U_j}{\partial x_k} \frac{\partial U_m}{\partial x_n} \right] c_{N_3} \frac{u_i u_m}{\nu_0 \sqrt{2 S_{pq} S_{pq}}} + \left[\frac{\partial U_i}{\partial x_k} \frac{\partial U_m}{\partial x_n} \right] c_{kn} \frac{u_j u_m}{\nu_0 \sqrt{2 S_{pq} S_{pq}}}
\]

\[
C_{kj} f(\hat{C}_{mm}) \frac{\partial u_i}{\partial x_k} + C_{ik} f(\hat{C}_{mm}) \frac{\partial u_j}{\partial x_k} \approx C_{kj} f(C_{mm}) \frac{\partial u_i}{\partial x_k} + C_{ik} f(C_{mm}) \frac{\partial u_j}{\partial x_k} = 0
\]

\[
C_{N_2} \left[C_{kj} f(C_{mm}) \frac{\partial U_i}{\partial x_k} + C_{ik} f(C_{mm}) \frac{\partial U_j}{\partial x_k} \right]
\]

6) Decoupling 3rd order correlation

\[
c_{jn} \frac{\partial u_k}{\partial x_n} \frac{\partial u_i}{\partial x_k} + c_{in} \frac{\partial u_k}{\partial x_n} \frac{\partial u_j}{\partial x_k} + c_{kn} \frac{\partial u_j}{\partial x_n} \frac{\partial u_i}{\partial x_k} + c_{kn} \frac{\partial u_i}{\partial x_n} \frac{\partial u_j}{\partial x_k} \approx -C_{N_4} f_{N_1} \left[C_{jn} \frac{\partial U_k}{\partial x_n} \frac{\partial U_i}{\partial x_k} + C_{in} \frac{\partial U_k}{\partial x_n} \frac{\partial U_j}{\partial x_k} + C_{kn} \frac{\partial U_j}{\partial x_n} \frac{\partial U_i}{\partial x_k} + C_{kn} \frac{\partial U_i}{\partial x_n} \frac{\partial U_j}{\partial x_k} \right]
\]
Closure for NLT_{ij}-2008 model

$\text{We}=25$ (LDR) & 100 (HDR)

Modified term & reprocessed DNS data

\[
f(C_{mm}) \frac{NLT_{ij}}{\lambda} = f(C_{mm}) \frac{C_{ij}f(C_{mm})}{\lambda \text{We}_{\tau_0}} - C_{N_2} \left[C_{kj} \frac{\partial U_i}{\partial x_k} + C_{ik} \frac{\partial U_j}{\partial x_k} \right] \\
+ C_{N_3} \frac{C_{kn}}{\nu_0 \sqrt{2S_{pq} S_{pq}}} \left[\frac{\partial U_j}{\partial x_m} \frac{\partial U_m}{\partial x_n} + \frac{\partial U_i}{\partial x_m} \frac{\partial U_m}{\partial x_n} \right] \\
- C_{N_4} f_{N_1} \left[C_{jn} \frac{\partial U_k}{\partial x_n} \frac{\partial U_i}{\partial x_k} + C_{in} \frac{\partial U_k}{\partial x_n} \frac{\partial U_j}{\partial x_k} + C_{kn} \left(\frac{\partial U_j}{\partial x_n} \frac{\partial U_i}{\partial x_k} + \frac{\partial U_i}{\partial x_n} \frac{\partial U_j}{\partial x_k} \right) \right] \\
+ C_{N_5} f_{N_2} \frac{4}{15} \frac{\varepsilon}{\beta v_s \text{We}_{\tau_0}} C_{mm} \delta_{ij}
\]

\[
f_{N_1} = \left[1 - 0.8 \exp(-y^+/30) \right]^2 \\
f_{N_2} = \left[1 - \exp(-y^+/25) \right]^4
\]

$C_{N_1} = 12.7$ \quad $C_{N_4} = 1.11$
$C_{N_2} = 0.32$ \quad $C_{N_5} = 1.13$
$C_{N_3} = 0.024$

Recent developments and challenges in turbulence modeling of viscoelastic fluids
Resende, Pinho, Kim, Younis & Sureshkumar
CEFT-FEUP Centro de Estudos de Fenómenos de Transporte, University of Porto
Complex Flows of Complex Fluids, Liverpool, UK
2007 models for NLT_{ij}: First versus second model

$We=25$, $DR=18\%$
Performance of the 2008 NLT_{ij} closure: xx and yy

xx

NLT_{xx}
- DNS
- Model
- DNS
- Model

- $We=25$, $DR=18$
- $We=100$, $DR=37$

yy

NLT_{yy}
- DNS
- Model
- DNS
- Model

- $We=25$, $DR=18$
- $We=100$, $DR=37$

Recent developments and challenges in turbulence modeling of viscoelastic fluids
Resende, Pinho, Kim, Younis & Sureshkumar
CEFT-FEUP Centro de Estudos de Fenómenos de Transporte, Universidade do Porto
Complex Flows of Complex Fluids, Liverpool, UK
Performance of the 2008 NLT_{ij} closure: trace and xy

Recent developments and challenges in turbulence modeling of viscoelastic fluids

Resende, Pinho, Kim, Younis & Sureshkumar

CEFT-FEUP Centro de Estudos de Fenómenos de Transporte, Universidade do Porto

Complex Flows of Complex Fluids, Liverpool, UK
Modeling the Reynolds stress

Major issue: what model to use for Reynolds stresses?

1) Reynolds stresses: Prandtl-Kolmogorov model (k-ε closure)

\[-u_iu_j = 2\nu T S_{ij} - \frac{2}{3}k\delta_{ij}\]

with \[\nu T = C_\mu f_\mu \frac{k^2}{\varepsilon^N + \varepsilon^V}\]

2) Dissipation of turbulent kinetic energy: \(\varepsilon^N\)

\[
2\nu \frac{\partial u_i}{\partial x_m} \frac{\partial}{\partial x_m} \left(\rho \frac{Du_i}{Dt} \right) + 2\nu \frac{\partial u_i}{\partial x_m} \frac{\partial}{\partial x_m} \left(\rho u_i \frac{\partial U}{\partial x_k} \right) + 2\nu \frac{\partial u_i}{\partial x_m} \frac{\partial}{\partial x_m} \left(\rho \frac{\partial u_i u_k}{\partial x_k} \right) + 2\nu \frac{\partial u_i}{\partial x_m} \frac{\partial}{\partial x_m} \left(\frac{\partial p'}{\partial x_i} \right) - 2\rho \nu \frac{\partial u_i}{\partial x_m} \frac{\partial}{\partial x_m} \left(\frac{\partial^2 u_i}{\partial x_i \partial x_k} \right) - 2\nu \frac{\partial u_i}{\partial x_m} \frac{\partial}{\partial x_m} \left(\frac{\partial \tau'_{ik,p}}{\partial x_k} \right) = 0
\]

New term (will be considered in the future)

As for Newtonian fluids, most terms in \(\varepsilon^N\) are approximated
Transport equation for turbulent kinetic energy

\[
\frac{Dk}{Dt} = -\rho u_i u_k \frac{\partial U_i}{\partial x_k} - \rho u_i \frac{\partial k}{\partial x_i} - \frac{\partial p'u_i}{\partial x_i} + \eta_s \frac{\partial^2 k}{\partial x_i \partial x_i} - \eta_s \frac{\partial u_i}{\partial x_k} \frac{\partial u_i}{\partial x_k} + \frac{\partial \tau_{ik,p}}{\partial x_k} \frac{\partial u_i}{\partial x_k} - \tau_{ik,p} \frac{\partial u_i}{\partial x_k}
\]

When \(We \) increases (\(DR \uparrow \))

- \(P_k \) decreases
- \(\varepsilon^N \) decreases
- \(Q^V \) increases in buffer \(l. \), but remains small
- \(\varepsilon^V \) increases in inertial \(l. \)

Need to model well \(\varepsilon^V \)

\(Q^V \) is small

Need to modify model of \(\varepsilon^N \)
Zoom of balance of k: inertial sub-layer
Assumptions for viscoelastic stress work: ε^V

$$\varepsilon^V \equiv \frac{1}{\rho} \tau_{ik,p} \frac{\partial u_i}{\partial x_k} = \eta_p \left(C_{ik} f \left(C_{mm} + c_{mm} \right) \frac{\partial u_i}{\partial x_k} + c_{ik} f \left(C_{mm} + c_{mm} \right) \frac{\partial u_i}{\partial x_k} \right)$$

$C_{ik} f \left(C_{mm} + c_{mm} \right) \frac{\partial u_i}{\partial x_k} \ll c_{ik} f \left(C_{mm} + c_{mm} \right) \frac{\partial u_i}{\partial x_k}$

Except in viscous sublayer and buffer, but here ε^V is not important
Further assumptions for viscoelastic stress work: ε^V

\[
f'c'_{ik} \frac{\partial u_i}{\partial x_k} \approx C_{\varepsilon^V} \times f(C_{mm}) c_{ik} \frac{\partial u_i}{\partial x_k}
\]

$C_{\varepsilon^V} \approx O(1)$

at $We_{\tau_0} = 25$

but larger as DR increases

\[\text{This is } NLT_{ii}\]
Viscoelastic stress work model

\[\varepsilon^V \approx \frac{\eta_p}{\rho \lambda} C_{\varepsilon^V} f(C_{mm}) c_{ik} \frac{\partial u_i}{\partial x_k} = C_{\varepsilon^V} \left(\frac{W e_{\tau_0}}{25} \right)^n \frac{\eta_p}{\rho \lambda} f(C_{mm}) \left(\frac{N L T_{ii}}{2} \right) \]

\[W e_{\tau_0} = 25 \rightarrow 1.27 \]
\[W e_{\tau_0} = 100 \rightarrow 1.56 \]

\[C_{\varepsilon^V} = 1.27 \]
\[n = 1.15 \]

\[\varepsilon^V \left(R e_{\tau_0} \right)^2 \]
versus
\[C_{\varepsilon^V} \frac{R e_{\tau_0} (1 - \beta)}{W e_{\tau_0}} f(C_{ii}) N L T^*_{jj} \]

Previous model: \(C_{\varepsilon^V} = 1.076 \)
(\(W e_{\tau_0} = 25 \) only)

Pinho, Li, Younis, Sureshkumar (2008) JNNFM, in press
Recent developments and challenges in turbulence modeling of viscoelastic fluids

Viscoelastic turbulent transport: \(Q^v \)

\[
Q^v \equiv \frac{\partial \tau_{ik,p}^v}{\partial x_k} = \frac{\eta_p}{\lambda} \frac{\partial}{\partial x_k} \left[C_{ik} f(C_{mm} + c_{mm}) u_i \right] + \frac{c_{ik} f(C_{mm} + c_{mm}) u_i}{\lambda}
\]

\[
\frac{f(C_{mm}) C_{U_{ik}}}{\lambda} = f_{\mu_2} \left(\frac{25}{W_{e_0}} \right)^{0.53} \left[-C_{\beta_1} \left(u_i u_m \frac{\partial C_{kj}}{\partial x_m} + u_j u_m \frac{\partial C_{ik}}{\partial x_m} \right) - \frac{C_{\beta_1}}{\lambda} \right] f(C_{mm}) \left[\pm \sqrt{u_j^2 C_{ik} \pm u_i^2 C_{jk}} \right]
\]

\[
f_{\mu_2} = 1 - \exp(-y^+ / 26.5)
\]

\[
C_{\beta_1} = 1.1; C_{\beta_7} = 0.3
\]

\[
C_{FU_{ik}} = C_{ik} f(C_{mm} + c_{mm}) u_i
\]

\[= \frac{C_{FU}}{2} \frac{\lambda}{W_{e_0}} f(C_{mm}) C_{kn} \frac{\partial u_i u_i}{\partial x_n}
\]

Closure development followed similar procedures as that for \(NLT_{ij} \)
Final equations for channel flow: RANS and RACE

Momentum:
\[
\frac{d}{dy} \left[\eta_s \frac{dU}{dy} + \overline{\tau}_{p,xy} - \rho uv \right] - \frac{dp}{dx} = 0
\]

\[
\overline{\tau}_{xy,p} = \frac{\eta_p}{\lambda} f \left(C_{kk} \right) C_{xy}
\]

\[
f \left(C_{kk} \right) C_{xy} = \lambda C_{yy} \frac{dU}{dy} + \lambda NLT_{xy}
\]

\[
f \left(C_{kk} \right) C_{yy} = \lambda NLT_{yy} + 1
\]

\[
f \left(C_{kk} \right) C_{xx} = 2 \lambda C_{xy} \frac{dU}{dy} + \lambda NLT_{xx} + 1
\]

\[
f \left(C_{kk} \right) C_{zz} = \lambda NLT_{zz} + 1
\]

Reynolds stress:
\[-\rho uv = \rho \nu_T \frac{dU}{dy} \quad \text{with} \quad \nu_T = C_\mu f_\mu \frac{k^2}{\tilde{\varepsilon}^N + \varepsilon^V} \quad \text{and} \quad f_\mu = \left[1 - \exp \left(\frac{-y^+}{26.5} \right) \right]^2\]
Recent developments and challenges in turbulence modeling of viscoelastic fluids

Resende, Pinho, Kim, Younis & Sureshkumar

CEFT-FEUP Centro de Estudos de Fenómenos de Transporte, Universidade do Porto

Complex Flows of Complex Fluids, Liverpool, UK

k and ε transport equations: modified Nagano & Hishida

Based on Newtonian model of Nagano & Hishida (1984)

\[
0 = \frac{d}{dy} \left[\left(\eta_s + \frac{\rho f_T v_T}{\sigma_k} \right) \frac{dk}{dy} \right] + P_k - \rho \tilde{\varepsilon}^N - \rho D^N + \eta_p \frac{d}{dy} \left[\frac{f(C_{mm}) C u_{nm}}{\lambda} \right] - \eta_p \frac{f(C_{mm}) NLT_{nn}}{\lambda} \frac{d\sqrt{k}}{dy}^2
\]

\[
\sigma_k = 1.1 \\
\varepsilon^N = \tilde{\varepsilon}^N + D^N \\
D^N = 2\eta_s \left(\frac{d\sqrt{k}}{dy} \right)^2
\]

\[
0 = \frac{d}{dy} \left[\left(\eta_s + \frac{\rho f_T v_T}{\sigma_\varepsilon} \right) \frac{d\tilde{\varepsilon}^N}{dy} \right] + \rho f_1 C_{\varepsilon_1} \frac{\tilde{\varepsilon}^N P_k}{\rho k} - \rho f_2 C_{\varepsilon_2} \frac{\varepsilon^{N_2}}{k} + \rho E + E_{\tau_p}
\]

\[
\sigma_\varepsilon = 1.3 \\
f_1 = 1 \\
f_2 = 1 - 0.3 \exp \left(-R_T^2 \right)
\]

\[
C_{\varepsilon_1} = 1.45 \\
C_{\varepsilon_2} = 1.90 \\
E = \frac{\eta_s}{\rho} v_T \left(1 - f_\mu \right) \left(\frac{d^2 U}{dy^2} \right)^2
\]

\[
E_{\tau_p} = 0
\]
Predictions $U^+: Re_{\tau_0} = 395; We_{\tau_0} = 25; \beta=0.9, L^2=900$
Predictions NLT_{ii}: $Re_\tau = 395; \ We_\tau = 25; \ \beta = 0.9, L^2 = 900$

Models fitted to DNS

Code diverges

Models modified with simulations

Model 2

Coefficients C_{N_1} & C_{N_2} reduced by 4

Coefficient C_{N_3} increased 60%

Coefficient C_{N_5} reduced 30%
Predictions k & ε^N: $Re_\tau = 395$; $We_\tau = 25$; $\beta = 0.9$, $L^2 = 900$
Recent developments and challenges in turbulence modeling of viscoelastic fluids

Resende, Pinho, Kim, Younis & Sureshkumar
CEFT-FEUP Centro de Estudos de Fenómenos de Transporte, Universidade do Porto
Complex Flows of Complex Fluids, Liverpool, UK

Predictions $u'v'$ & $\tau_{p,xy}$: $Re_{\tau_0} = 395$; $We_{\tau_0} = 25$; $\beta=0.9$, $L^2=900$
Conclusions and Acknowledgments

- Closures for Low DR and High DR
- Closures for NLT_{ij}, ε^V and Q^V (in fact for ε_{ij}^V and Q_{ij}^V)
- Developed simple low Reynolds k-ε model works reasonably well
- Need to incorporate with better Reynolds stress closures:
 - k-ω, modified k-ε or k-ω, Menter’s SST or Durbin’s $v2$-f
 - or RS transport (deficiencies in base model are imp.)
- Need to extend models to Maximum DR, β & L^2
- DNS in other canonical flows required for extension of turb. models

Acknowledgments - Funding

Fundação Calouste Gulbenkian: Project 72259
Fundação para a Ciência e Tecnologia
Project “Turbopol” POCI/EQU/56342/2004