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Abstract The present work investigates the lower boundary condition for flows over
a steep, rough hill. Simple asymptotic arguments together with the mixing-length hypo-
thesis are used to derive a local analytical solution that is tested against three different flow
conditions. In all, 36 velocity profiles are compared with the proposed expression. The exper-
iments were carried out in a water channel and velocity measurements were made through
laser Doppler anemometry. The extent of separated flow was made to vary as a function of
the roughness and the Reynolds number. The analysis includes regions of attached as well
as separated flow. In particular, the solution of Stratford is studied at the points of separation
and re-attachment and found to apply equally well in rough walls.

Keywords Hill - Law of the wall - Roughness - Separation

1 Introduction

Turbulent flows over steep hills have always presented considerable difficulties for their ana-
lytical treatment. The presence of large regions of reverse flow very often means that many
of the classical theories and procedures are rendered non applicable. In particular, methods
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290 J. B. R. Loureiro et al.

that rely on asymptotic solutions developed in terms of local scaling parameters based on the
wall shear stress fail completely in the vicinity of a separation point.

In problems where hill perturbation effects are small enough, asymptotic expansion meth-
ods can be used to derive linearized equations of motion (Jackson and Hunt 1975; Sykes 1980;
Huntetal. 1998). By dividing the flow into distinct characteristic regions, the relevant dynam-
ical processes that govern the problem can be modelled so that analytical expressions for the
local mean velocity, pressure and Reynolds stress profiles can be obtained. For arbitrary hill
shapes, these expressions can be quite evolving. Hence, a common practice has been to offer
analytical solutions for hills that follow a Witch of Agnesi profile.

When the perturbation effects of the hill are strong enough to provoke a region of sepa-
rated flow on its lee side, the fundamental hypotheses of linearized theory break down. The
implication is that numerical models that consider the time averaged equations of motion
have to be used. Indeed, many studies have been carried out over the last 20 years with the
express purpose of analyzing the performance of several turbulence closures to model flow
over steep hills. The recent and impressive advances in computing power have meant that sim-
ulations including first-order mixing-length schemes through second-order closure schemes
have become commonplace (Castro and Apsley 1997; Ying and Canuto 1997; Hewer 1998;
Ross et al. 2004). Even studies using much more demanding techniques such as large-eddy
simulations have become quite frequent (Brown et al. 2001; Allen and Brown 2002; lizuka
and Kondo 2004).

An issue that has thus increased in importance is that of obtaining high-order closures
that are capable of accurately modelling flows with separation and reattachment over hills.
Procedures that specify the lower boundary condition based on logarithmic profiles need
also to be reviewed since the physical arguments that imply their existence are violated
near a separation point. The specification of the lower boundary condition is a particu-
larly sensitive subject regarding the numerical prediction of flow properties. Kim and Patel
(2000) have remarked that accurate predictions of a reverse flow region require the use of
a low-Reynolds number model that can resolve the flow in the viscous sublayer. However,
in atmospheric flows the Reynolds number is high and the presence of a rough wall means
that there is no viscous sublayer. The implication is that the use of wall-functions becomes
mandatory.

For flow over a smooth surface, Loureiro et al. (2007a) investigated the behaviour of four
different near-wall formulations for separating flows: the classical logarithmic expression,
and the expressions of Mellor (1966), Nakayama and Koyama (1984) and Cruz and Silva
Freire (1998, 2002). The last three formulations have been specially advanced to deal with
adverse pressure gradient flows: they reduce to the relevant wall laws at the appropriate lim-
iting cases. Under attached flow conditions, they reduce to the classical logarithmic law of
Prandtl (1925). Thus, u.(= /Ty /p) becomes the appropriate scaling velocity. Approaching
a separation point, the proposed expressions reduce to Stratford’s square-root law so that
Upy(= ((v/,o)axp)l/S) is the relevant scaling velocity.

The purpose of the present work is to investigate the lower boundary condition for sep-
arating flows over a rough hill. In particular, we concentrate on a parametric study of the
near-wall formulation of Cruz and Silva Freire (1998, 2002)—previously derived for flow
over a smooth surface—as it is applied to flow over a rough surface. Two new datasets from
experiments conducted in a water channel are presented to characterize two-dimensional
separated flow over a rough hill. For the first dataset, flow conditions and hill shape are the
same as those of Loureiro et al. (2007a,b). However, the extent of separated flow is observed
to be very much reduced due to the effects of the roughness. For the second dataset, the
oncoming flow velocity is increased 10 fold. The magnitude of the separation region is then
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observed to increase significantly, but is still smaller than that reported by Loureiro et al.
(2007a,b).

The experimental characterization of separating flow over rough surfaces is a subject
that has long been recognized as deficient. The two reference datasets presented here are
expected to provide an important complement to the data of Loureiro et al. (2007a,b), help-
ing to establish rigorous conditions to which analytical solutions and numerical simulations
of the problem can be tested. In addition, an important modification on the treatment of the
lower boundary condition is introduced here. A new parametrization scheme is introduced
to the additive parameter in the law of the wall so that the classical logarithmic and squared-
rooted laws are recovered far away and near to a separation point. The new parametrization
is defined in terms of u,, 9, p and zp.

2 Scaling Laws

This section briefly reviews some basic arguments regarding the specification of the lower
boundary condition for separating flow as well as for flow over a rough surface. Before tack-
ling the rough surface problem, a short review on the smooth wall problem is presented. The
purpose in doing this is to make the reader familiar with the flow structures near and far away
from a separation point.

Asymptotic expansion methods have been used abundantly in the past to split the attached
turbulent boundary layer into regions where dominant physical effects can be isolated and
local solutions found. These methods naturally uncover the relevant scaling parameters of
the flow and the functional nature of solutions. The works of Yajnik (1970) and Mellor
(1972) have centered their arguments on the two-layered flow structure of Prandtl (1925) and
Karman (1930). The result is the establishment of a flow model where the sum of the viscous
and turbulent stresses is considered to remain invariant across the entire near-wall region,
the inner region (of thickness § = order(v/u,)). In the adjacent outer layer (of thickness
8 = order((u«/u.)L), L =external flow reference length, u, = external mean velocity), the
solution is a small perturbation to the external potential flow.

Sychev and Sychev (1987) offer a different interpretation to the flow asymptotic struc-
ture. In their analysis, an additional intermediate layer is considered (of thickness § =
order((u,/ ue)2L)), where a balance of inertia forces, the pressure gradient and turbulent
friction forces occurs. Thus, they argue that the inclusion of this new layer is essential to
explain flow separation under an adverse pressure gradient. In fact, the two-layered struc-
ture (8, 8) does not permit turbulent friction forces to act on the velocity defect region to a
first-order approximation. Also, in the inner region, it does not permit the pressure gradient
to act on the dominating friction forces. These two difficulties must then be remedied by the
inclusion of a third layer (5).

In view of the above arguments, near-wall solutions for flows subject to pressure gradients
can be obtained if a balance between friction forces and the pressure gradient is considered to
exist in some region of the flow. This region corresponds to an intermediate limit process so
defined as to match the outer limit of the inner solution with the inner limit of the intermediate
solution of Sychev and Sychev’s flow structure. Thus, we may write for this region

uoZu — 3 (pw'w’) = By p. €]
The above equation is the basis of the following discussion.
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2.1 Attached Flow Over a Smooth Wall

In the sense of Kaplun (1967) (see also Lagerstrom and Casten 1972; Cruz and Silva Freire
1998)—and under some appropriate intermediate limit process—Eq. 1 contains the approxi-
mate equations for two distinct limiting conditions: flow very near to a wall and flow approach-
ing the intermediate region (Sychev and Sychev 1987).

2.1.1 Viscous Region

Approaching the wall, the turbulent term in Eq. 1 tends to zero (3, (pu’w’) = 0), the implica-
tion being that just the viscous and pressure terms become significant. Then, for flows under
a zero-pressure gradient (9, p = 0), a double integration of Eq. 1 yields the linear solution

ut =71, )

with ut = u/uy, 77 = z/(v/uy).
The assumption implicit in the linear solution is the very existence of a near-wall viscous
region. Surfaces with a well-defined viscous sublayer are termed smooth surfaces.

2.1.2 Fully Turbulent Region

Moving away from the wall, the viscous term becomes negligible (uafu ~ 0) and the turbu-
lent term dominates Eq. 1. Then, by summoning the mixing-length hypothesis, the solution
for zero-pressure gradient flows can be obtained from a double integration as

ut =% izt + A, 3)

where »(=0.4) and A(=5.0) are parameters that have to be found experimentally. In fact,
the value of A is fixed through the empirically verified hypothesis that the logarithmic and
linear profiles intercept at z+ = 11.

The immediate implication of the linear and logarithmic solutions is that, for flow over a
smooth surface, the near-wall relevant scales for velocity and length are u, and v/u,.

2.2 Separated Flow Over a Smooth Wall
At a separation point, where u,, = 0 and d, p # 0, the approximate solutions given by Eqs.
2 and 3 break down. Hence, more appropriate solutions need to be considered to incorporate
the pressure effects and the condition t,, = 0.
2.2.1 Viscous Region (Goldstein’s Solution)
In the viscous sublayer, Goldstein (1948) showed the local solution to be

ul = (1/2) z")%, )

where u? = u/uyy, 2P = z/(v/upy), tpy = ((v/p)dyp)'/>. The Goldstein’s solution can
be simply obtained by a double integration of Eq. 1 in the viscous sublayer (3, (pu’w’) ~ 0)
near a separation point (3, p # 0, 7, = 0).
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2.2.2 Fully Turbulent Region (Stratford’s Solution)

Stratford (1959) considered the limiting solution for distances away from the wall, approach-
ing the intermediate region of Sychev and Sychev (1987). Again, neglecting the viscous term
in Eq. 1 and using of the mixing length hypothesis, the no-slip boundary condition and the
fact that at a separation point 7, = 0 gives

ul = 2%~ H(")'?, 5)

with u? and z” defined according to Eq. 4.

The implication is that the relevant velocity and length scales for flows at a separation
point are u p, and v/u,.

Strictly speaking, the no-slip condition should not have been used by Stratford, for Gold-
stein’s solution is the solution that is supposed to be valid at the wall. Equation 5 should then
include an integration constant. Stratford also incorporated an empirical factor, § = 0.66, to
Eq. 5 to correct pressure rise effects on x.

2.3 Extended Solution for Attached and Separated Flows Over a Smooth Wall
(Fully Turbulent Region)

All approximate solutions derived so far have been obtained from local equations reduced
from Eq. 1. Therefore, the global solution of Eq. 1 should also reduce, under the relevant
limiting processes, to the local approximate solutions.

A double integration of Eq. 1 in the fully turbulent region (pafu ~ () furnishes (see e.g.,
Cruz and Silva Freire 1998)

w =2 Ay 7 e In (VB = 1)/ (VB + 1) + C, ©)
with Ay = p~ 1y + (o~ 10, p)z.

Equation 6 must be viewed with much discretion, for depending on the relative values
of t,, and (9, p)z the discriminant A,, might become negative, thus rendering the solution
undetermined. Furthermore, the argument of the logarithmic term cannot become negative.
In Cruz and Silva Freire (1998), three different cases have been identified and explicitly
quoted.

In general, however, Eq. 6 can be seen as a generalization of the classical law of the wall
for separating flows. In the limiting case (dxp)z < Ty, Eq. 6 reduces to the logarithmic
expression

ut =%_1lnz++bm, (7a)
b =22~ "+ 27 In((u}), 4ud)e*©). (7b)

Near a point of separation Stratford’s solution is recovered.

In principle, Eq. 6 can be used indistinctly in all flow regions—including regions of
reversed flow—provided the domain of validity of its discriminant is respected and appro-
priate integration constants are determined. Equation 6 cannot be written in terms of the sim-
ilarity variables u, and up, for in situations where any of these two parameters approaches
zero, a singularity occurs. Thus, it will be kept in its present form.

Other different treatments of the lower boundary condition can be found in the litera-
ture to model separating flows. For two-dimensional, smooth, steep hills, Loureiro et al.
(2007a) have investigated the performance of the formulations introduced by Mellor (1966),
by Nakayama and Koyama (1984) and by Cruz and Silva Freire (1998).
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2.4 Attached Flow Over a Rough Wall (Fully Turbulent Region)

The effects of roughness on a boundary layer are dramatic. Provided the characteristic size
of the roughness elements are large enough, a regime can be established where the flow is
turbulent right down to the wall (fully rough flow). One important consequence is that the
viscous sublayer is completely removed so that the linear and Goldstein’s solutions do not
apply anymore. The roughness also distorts the logarithmic profile acting as if the entire flow
is displaced downwards.

The manner in which the logarithmic law is expressed to describe flow over a rough surface
depends on the field of application. In meteorology, the common practice is to write

ut =x""In((z = d)/z0), 8)

where z is the distance above the actual ground surface.

The specification of the lower boundary condition on rough walls depends thus on two
unknown parameters: the aerodynamic surface roughness, zo, and the displacement height,
d. Many works have attempted to relate the magnitude of d and zo to geometric properties
of the surface. Garratt (1992) mentions that the simple relation d/h, = 2/3 (h. = height of
canopy) seems to offer good results for much of natural vegetation of interest. However, since
d is known to depend strongly on the way roughness elements are packed together, much
discretion must be considered in using this relation. Garratt (1992) also mentions that many
texts suggest considering zo/ h. = 0.1; typical natural surfaces satisfy 0.02 < zo/h, < 0.2.

2.5 Separated Flow Over a Rough Wall (Fully Turbulent Region)

The arguments that lead to Stratford’s law are based on the fundamental hypothesis that near
a separation point a fully turbulent region can be identified in the flow. This consideration
remains valid for flow over a rough surface. The direct implication is that the procedure
that resulted in the derivation of Eq. 5 can be repeated for flow over rough surface but
with 2z = (z — d)/zo and up, = ((zg/p)axp)l/z. The integration constant must also be
determined so as to correctly account for the roughness effects.

2.6 Extended Solution for Attached and Separated Flows Over a Rough Wall
(Fully Turbulent Region)

The derivation of Eq. 6 disregards any detail of the wall roughness. This equation is, in fact,
supposed to be valid not in the region adjacent to the wall where the complicated flow around
the individual roughness elements is apparent, but, instead, in a region where the flow sta-
tistics are spatially homogeneous. Hence, inasmuch as for the classical law of the wall, the
characteristics of the rough surface must enter the problem through the integration constant
C. In addition, the coordinate system must be displaced by d. The immediate conclusion is
that Eq. 6 can be used to model separating flow over a rough surface provided d and C are
adequately modelled.

Parameter C is a general function of 7, d,p and zo that must be determined by a con-
sistent analysis of experimental data. However, an estimate of its functional form might be
obtained by considering the limiting behaviour of Eq. 6 as 7, > (dxp)z. The resulting
expression is

C =% [In (4u/ (0~ 0x p)z0)) - 2] ©)

This parametrization scheme is presented here for the first time.
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3 Experiments
3.1 Water Channel, Model Hill and Roughness

The formulation presented in the previous section will be tested against data obtained in a
water channel.

The general characteristics of the channel have been described in Loureiro et al. (2007a,b).
The channel is housed in the Hydraulics Laboratory of the Civil Engineering Department
of the University of Oporto. The total channel length is 17 m and the cross-sectional area is
0.40m wide by 0.60m high. The sides of the channel are made of glass and the bottom is
made of acrylic.

The water circulation system provides a maximum volumetric flow rate of 1501s~!. Dur-
ing a typical run, two pumps are used to maintain the maximum flow rate variation within +0.8
%. A set of screens and filters is used to stabilize the flow and suppress any excessive level
of turbulence. The screens and filters also control the grain-size of particles in suspension.
A magnetic flowmeter is used to keep the flow rate uncertainty within 0.0011s™!, and the
water level is controlled through a vertical steel gate. In the present measurements, two flow
rates were used: 2.65 and 26.761s~ .

The hill model was set 12m downstream of the channel entrance; its shape follows the
same Witch of Agnesi profile used by Loureiro et al. (2007a,b). The hill is thus defined by

g =Hi[l + (x/Lp)*1™" — Hy, (10)

where H (= H; — H3)(= 60 mm) is the hill height and L g (=150 mm) is the characteristic
length representing the distance from the crest to the half-height point. The maximum hill
slope is 18.6°. Coordinates x and z represent the longitudinal and vertical axes, respectively.

The roughness elements consisted of rigid rubber strips 3 mm wide by 3 mm high that were
spaced 9 mm apart, and the rough surface extended from 1.5m upstream of the hill top to
1.5m downstream. The geometric details of the hill and of the roughness are given in Fig. 1.

3.2 Instrumentation

A two-component Dantec laser Doppler anemometry(LDA) system using an Ar-ion tube
laser was operated in the forward scatter mode to measure mean and fluctuating velocity
fields. A Bragg cell unit was used to introduce a digitally-controlled electronic shift that
was necessary to resolve the direction of the flow field and give correct measurements of
near-zero mean velocities. The light beams were made to pass through a series of condi-
tioning optical elements to achieve a small measurement volume and to improve the optical
alignment. Front lenses with 500 mm focus length were mounted on the probe to accurately
position the measurement volume on the centreline of the channel. Before being collected
by the photomultipliers, the scattered light was made to pass through interference filters of
514.5 and 488 nm, so that only green and blue light were received on each photomultiplier,
respectively. Table 1 lists the main characteristics of the laser Doppler system used. The
signals from the photomultipliers were band-pass filtered and processed by a burst spectrum
analyzer operating in a single measurement per burst mode. A series of LDA biases were
avoided by adjusting the strictest parameters on the data processor. The level validation and
the signal-to-noise ratio were 8 and 5 respectively. For simultaneous measurements of longi-
tudinal and vertical velocities, a coincidence window of 5,000 us was used. For the statistics
at each point, 20,000 samples were considered.
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Fig. 1 Tllustration of model hill and details of rough surface. Dimensions are in mm. K =height of the

roughness elements, d =displacement height, z=distance from the bottom of the roughness elements

Table 1 Main characteristics of

Wavelength 514.5nm (green) 488 nm (blue)
the laser Doppler system Half-angle between beams 1.604°

Fringe spacing 9.191 um (green) 8.718 um (blue)

Beam spacing 28 mm

Beam diameter 2.2mm

Dimensions of the

measurement volume
Major axis 5.31 mm (green) 5.04 mm (blue)
Minor axis 149.0 um (green) 141.0 um (blue)

Typical uncertainties associated with the mean velocity data—U, W—are below 0.2% of
the free stream velocity, us. In regions of reverse flow, the uncertainties increase to about 0.3%
of the free stream velocity. Regarding the Reynolds stress components—u/u’, w'w’, u’w'—
uncertainties were estimated to be 2.3, 1.8 and 4.2% of the square of the friction velocity of
the undisturbed flow, respectively. In regions of reverse flow, 3.8, 3.5 and 6.9% are typical
values.

4 Results

As mentioned above, formulation of the lower boundary condition given by Eq. 6 are tested
against three different flow conditions: the smooth wall data of Loureiro et al. (2007b)—
SS—and two new datasets of flow over rough surface—RSA and RSB. Measurements were
conducted on the channel centreplane. In all, 36 stations have been considered, and are shown
in Fig. 2.
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Table 2 Properties of undisturbed profile
Property SS RSA RSB
Boundary layer thickness (8, mm) 100 90 100
External velocity (us, ms™ ) 0.0482 0.0497 0.3133
Friction velocity (i, m 5*1) (Clauser) 0.0028 0.0047 0.0204
Friction velocity (s, m s @w) 0.0023 0.0043 0.0225
Displacement height (d, mm) 0.0 2.1 2.0
Roughness length (zp, mm) 0.08 0.83 0.33
Reynolds number (Rjs) 4,772 4,425 31,023
Reynolds number (Rz) 0.22 3.88 6.65

4.1 Undisturbed Boundary Layer

In Loureiro et al. (2007b), it was shown that smooth-wall mean velocity profiles at stations
upstream of x/H = —12.5 compare very well with the mean velocity profile in the absence
of the hill at station x/H = 0. We can also anticipate that, for the rough surface data (RSB,
Table 2), measurements made at stations x/H = —17.87 and —8.27 do not differ apprecia-
bly between each other. On this evidence, the properties of the undisturbed boundary-layer
profiles are given here in terms of reference profiles considered at large upstream distances
from the coordinate system origin. The main flow parameters are shown in Table 2.

The data in Table 2 regarding u,, d and zo need explanation, as given in the follow-
ing. However, before embarking on the specifics regarding the determination of the flow
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(b) 1

T

8 T 10 100 1000
Inz+ 7+

Fig. 3 Characterization of the flow regime. (a) Mean velocity profiles, (b) skewness profiles; S, =
uB/@?)3/?

parameters, a brief discussion on whether conditions RSA and RSB yield aerodynamically
rough flows is needed.

Schlichting (1979, p. 617) offers a physical interpretation of the flow regimes in the
following terms: (i) a regime is said to be hydraulically smooth provided “the size of the
roughness is so small that all protrusions are contained within the laminar sub-layer” (0 <
kj' <5, ks‘" = (ksu4)/v, ky =sand grain roughness), (ii) in the transition regime, “protru-
sions extend partly outside the laminar sub-layer and the additional resistance, as compared
with a smooth pipe, is mainly due to the form drag experienced by the protrusions in the
boundary layer” (5 < k= < 70); (iii) in the fully rough regime, “all protrusions reach outside
the laminar sub-layer and by far the largest part of the resistance to flow is due to the form
drag which acts on them” (k;* > 70).

The classification intervals defined above are mentioned by Schlichting (1979) to have
been obtained by Nikuradse with maximum density sand. In practical applications, the typical
roughness density is much smaller, so that roughness cannot be described by the indication of
the height of a protrusion, k. Schlichting himself has proposed a scale of standard roughness
and adopted Nikuradse’s sand roughness for correlation (see e.g., his Fig. 20.24 and note the
large differences between k and k).

If Schlichting’s advice is taken into consideration, the above intervals become 0 < zar <
0.17,0.17 < z§ < 2.34 and z§ > 2.34. In the present study, z; = 3.88 (RSA) and 6.65
(RSB). Thus, in principle, both RSA and RSB qualify as fully rough surfaces. In fact, Snyder
and Castro (2002) have shown that for the type of rough wall used in laboratory simula-
tions—arrays of sharp-edged obstacles with significant separation between each other—a
fully rough regime can be obtained for a critical Reynolds number as low as unity (R, = 1).
The use of zg as the appropriate scale defining a roughness has been further emphasized by
Castro (2007).

Figure 3 shows the undisturbed mean velocity and skewness profiles in inner variables for
conditions SS, RSA and RSB. The fully rough portions of the boundary layers are identified
in Fig. 3a. Some authors have preferred to characterize the effects of wall roughness in terms
of the shift of the log-portion of the velocity profile, Au™; (for a discussion on Au™ including
its definition, see, e.g., Snyder and Castro 2002; Castro 2007). As expected, an increase in
R, results in an increase in the roughness function, Au™. In most works, values of Au™t
typically range between 5 and 10. Here, we found Aut = 7.3 (RSA) and 8.7 (RSB). Hence,
Fig. 3a undoubtedly indicates that conditions RSA and RSB correspond to aerodynamically
rough flows.

As quoted in Castro (2007), zsr and Au™ are entirely equivalent measures of the roughness
and are related via a simple algebraic expression. Arguments based on z(J)r and Au™ are given
here to favour readers inclined to any of the two possible formulations.
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Additional information on the structure of turbulent flows can be extracted from the higher
order moments of the fluctuating velocities, skewness and flatness factors. In particular, for
a smooth wall, the skewness factor of the longitudinal fluctuations (S, ) increases monotoni-
cally as the wall is approached, reaching a peak value in the viscous sublayer that is followed
by aregion of rapid decrease. According to some authors (Andreopoulos et al. 1984; Fernholz
et al. 1995) positive fluctuations of u occur more frequently than large negative fluctuations
in the viscous region as a result of the arrival of external high-speed fluid (sweep events)
(Gad-el-Hak and Bandyopadhyay 1994). Other authors (Krogstad and Antonia 1999; Flack
et al. 2007) report that S, remains negative across the entire boundary layer. For aerodynam-
ically rough flows, S, is characteristically very high and positive (= 0.5) in the near-wall
region. The data in Fig. 3b furnish therefore further evidence that conditions RSA and RSB
correspond to aerodynamically rough flows.

Research on flow over rough surfaces has always suffered from the intrinsic difficulty of
finding the wall shear stress. If surfaces have a well-defined geometry that allow pressure
taps to be fitted to the roughness elements, the method of Perry et al. (1969) can be used.
Otherwise, the two basic available indirect methods are: the graphical method of Clauser
(1954) and the hypothesis of Prandtl (1925) that across the wall layer the total shear stress
deviates just slightly from the wall shear stress.

The method of Clauser (1954) has been comprehensively reviewed by Perry and Joubert
(1963). For flows over a smooth surface, two properties of a best fitted logarithmic line can
be used to determine u., its slope and linear coefficient. On a rough surface, the logarithmic
profile is deformed by the displacement height and shifted bodily by the roughness length.
The implication is that the value of u, can only be confirmed by the slope of the logarithmic
fit. This difficulty introduces much uncertainty into the estimation process (Perry and Joubert
1963).

The practice of using the average measured shear stress profile to find u, has been
discussed by (Cheng and Castro 2002). The difficulties are also many. Clearly, the shear
stress shows an appreciable longitudinal variation depending on its distance from the wall.
In the roughness sublayer, a wavy variation in phase with the crest of the roughness ele-
ments can be observed. Farther away from the wall, in a region where the variations drop
below 10%, the inertial sublayer is defined (Oke 1987). The interesting fact reported by
Cheng and Castro (2002) is that better logarithmic fits can be found for the mean velocity
profile if spatially-averaged data in the roughness sublayer are used in preference to data
in the inertial sublayer. The best fits, however, are observed to be obtained with neither of
these values of u,, but instead with values of u, evaluated directly from the form drag of
the roughness elements. These latter values were found to be significantly higher than those
obtained from the shear stress in either of the two regions considered (Cheng and Castro
2002).

A detailed description of the fitting procedure used in the present work can be found in
Loureiro et al. (2007b). Here, only a brief explanation of aspects typically associated with
roughness will be presented.

To find u,, d and z¢ the raw undisturbed velocity profiles were subtracted 0.1 mm from
their distance to the wall. Then, a best fit logarithmic curve was searched in the near-wall
region by inspection of the maximum coefficient of determination (R;, ), R-squared (Loureiro
etal. 2007b; Bevington 1969). The process was repeated—using the same subtraction—until
the curve with the best R-squared coefficient could be identified. This curve, written in terms
of the format defined by Eq. 8, then provides u.., d (Fig. 1) and z¢ directly for the undisturbed
flow. Other statistical fitting parameters were also considered in this evaluation process.
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Fig. 4 Graphical method to find (a)
the displacement height. (a)
Velocity profile reduction
technique (z and d are plotted
in m), (b) best fitting statistics

(b)

U (m/s)
Rsq

This graphical method described above is illustrated in Fig. 4. The velocity profile plotted
in Fig. 4a corresponds to condition RSB, station x/H = —17.87(x = —1072 mm). The Ry,
values obtained for the various d attempts are plotted in Fig. 4b. The existence of a well-
defined maximum value is clear. A quick inspection of Fig. 4b reveals that the appropriate
value of d is about 2 mm, and the corresponding values of Ry, are listed in Table 3. Note that
a final decision can only be made by inspection of the fourth decimal digit of Ry,. In fact,
many authors have regarded the task of finding an accurate estimate of d as one of extreme
difficulty.

To evaluate u,. from the Reynolds shear stress profile, a near-wall region with an approxi-
mate constant distribution of —u’w’ was searched for. The friction velocity was then evaluated
from u, = vV —u'w'.

The mean velocity profiles for all undisturbed flow conditions are shown in Fig. 5. Curve
fittings provided by Eqs. 6 and 9 are also presented, and the resulting local properties esti-
mated from Eqgs. 6 and 9 are shown in Table 4. These values can be compared with the values
introduced in Table 2. In particular, the viscous region is clearly identified in Fig. Sa for the
SS-condition. Thus, the local linear behaviour of the velocity profile can be used to find u,.. A
rigorous estimate by Loureiro et al. (2007b) furnishes u,, = 0.00276(x/H = —12.5), which
compares very well with 0.002849 given in Table 4.

Table 3 Statistics for prediction

of the displacement height d (mm) Rsq
22 0.997932
2.1 0.998391
2.0 0.998485
1.9 0.998319
1.8 0.997967
Fig. 5 Undisturbed velocity (b)
profiles for all three experimental 0.4 B B e e e e
conditions according to Eqs. 6 ] r 1
and 9 (z and d are plotted in m). ] 03 ORsB & o
(a) SS and RSA, (b) RSB 0 [ 1
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Table 4 Properties of undisturbed velocity profiles according to Egs. 6 and 9

Conditions Station (x/H) Uy (m 5*1) pfl dx p (m 5*2) C (m sfl)
SS —12.50 0.002849 0.000015 0.058092
RSA —5.80 0.004736 0.000075 0.062406
RSB —17.87 0.020332 0.003347 0.269824
RSB —8.27 0.019224 0.009706 0.198584

To search for values of u, and p~'d, p in Egs. 6 and 9 global optimization algorithms
were used. In general, numerical algorithms for constrained nonlinear optimization can be
categorized into gradient based methods and direct search methods. Gradient-based methods
use first derivatives (gradients) or second derivatives (hessians), while direct search methods
(nelder mead, differential evolution, simulated annealing, random search, etc.) do not use
derivative information.

Direct search methods tend to converge more slowly, but can be more tolerant to the
presence of noise in the function and constraints. Typically, algorithms only build up a local
model of the problems. Also, many such algorithms insist on a certain decrease of the objec-
tive function, or decrease of a merit function—which is a combination of the objective and
constraints—to ensure convergence of the iterative process. Such algorithms will, if conver-
gent, only find local optima. For this reason they are called local optimization algorithms.

Global optimization algorithms, on the other hand, attempt to find the global optimum by
allowing a decrease as well as an increase of the objective/merit function. Such algorithms
are usually computationally more expensive. Here, four different methods were used for
solution search: nelder mead, differential evolution, simulated annealing and random search.
Only when all four methods furnished consistent results, with accuracy down to the sixth
decimal fraction, was the search stopped.

4.2 Flow Over the Hill

The general flow patterns on the lee side of the hill for all three experimental conditions are
shown in Fig. 6, where the extent of the regions of reverse flow is identified. The largest
separated flow region is yielded by the smooth hill, Lgs = x/H = 5.30 (Fig. 6a). The
effects of wall roughness on the same flow conditions are shown in Fig. 6b. The region of
reverse flow is substantially reduced in size (Lrs4 = x/H = 1.94) and the separation point
is slightly displaced downstream. An increase in Reynolds number by one order of mag-
nitude causes the reverse flow region to enlarge again (Fig. 6¢), but to a still smaller size
(Lrsp = x/H = 3.30) than that exhibited in Fig. 6a for a smooth surface. The separation
point is moved further downstream.

The estimated positions of the separation and re-attachment points for all three experi-
mental conditions are seen in Fig. 2.

Velocity profiles on the upstream side of the hills and on their apexes are shown in Fig. 7.
The fittings provided by Eqs. 6 and 9 are also shown. The flow properties are listed in Table 5.

Any assessment of the predictions presented in Fig. 7 suffers, of course, from all the afore-
mentioned difficulties regarding the determination of u., ,0_1 dx p, d and zp. In addition, the
identification of an appropriate coordinate system for flows over hills is a problem that poses
many difficulties. Finnigan (1983) has suggested the use of physical streamlined coordinates,
but unfortunately this is not an option for steep hills since large regions of reverse flow are
formed. In Loureiro et al. (2007b), a detailed analysis of the uncertainties associated with the
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Fig. 6 General pattern of reverse
flow region. (a) SS, (b) RSA, (¢)

RSB

Fig. 7 Velocity profiles on the
upstream slope of the hills and on
their apexes according to Egs. 6
and 9 (z and d are plotted in m).
(a) SS, (b) RSA, (c) RSB

(a) (b)
Eeeee=——r) e
=N -
z ‘N IX
05F 0,55\
0% 2 0 % T2 TE s s 10
x/H x/H
(c)z%
ELS%
:I IN
05 F ) 3
0 .
0 2 4 10
x/H
(a) (b)
X 0.08 ————1——7—
0.06 — e
004 |- /f ]
r o RSA
0.02 — S x x/H = -2.45
Fooxx AXH=0 A
ol 1 L1

Table 5 Properties of the velocity profiles on the upstream side of the hills and on their apexes according to

Eqs. 6 and 9

Conditions Station (x/H) Us (msfl) pfl dx p (ms*2) C (msfl)
SS —5.00 0.002501 0.000174 0.034182

SS —2.50 0.003073 —29x10°8 0.129097

SS 0.00 0.004246 0.013325 0.023270

RSA —2.45 0.005002 —28x107° 0.196491

RSA 0.00 0.014556 8.6 x 1077 0.449726

RSB —1.33 0.035262 1.3 x 1077 1.544860

RSB 0.00 0.041636 4.8 x 1078 2.018501
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Fig. 8 Velocity profiles near to a (a) (b)
separation point. (a) RSA, (b) 0.012 — 0.06 —
RSB r RSA 1 r RSB + g
A 2
0.008 |~ —
o 0.04 — a
2 [ , ] L 1
E 0004 -
S | | o002k -
or A xH=073 I + -0
L — — -Eq.(5 i — — — -Eq. _
Egs.((%) and (9) 0 Egs. (6) and (9)
0,004 PR U P R N
0.02 0.04 0.06 0.08 0.04 0.06 0.08 0.1
[Z_d]I/Z [Z_d]IIZ

choice of a rectangular Cartesian system has been made. Typically, the uncertainties in the
estimation of u,, through logarithmic fits are 0.4% (flat wall) and 1.5% (curved wall). In the
present work, the order of magnitude of these values should remain the same.

To find the best values of u, and p~!8, p, the same minimization procedure explained in
the previous section was used, where the values of d and z¢g were fixed from the undisturbed
profiles. No alternative parametrization for C in terms of u, p~'9, p and zo was attempted
in regions where the relation 7, >> (9, p)z was not observed to hold; throughout this work,
C was defined by Eq. 9.

The overall representation of the experimental data by Eqgs. 6 and 9 is very good on the
upwind side of the hill. For the SS-condition, well discriminated viscous and logarithmic
regions can be identified, and consequently fits to the log-portion of the velocity profiles can
be easily defined. For the rough wall, RSA and RSB-conditions, the complete absence of the
viscous region prompted us to look for fits that extended right down to the wall. The proce-
dure worked well except for profile x/H = —1.33, which exhibited a concave curvature that
made it difficult to consider the three nearest points to the wall.

At the crest, predictions for the SS-condition were difficult to obtain through Egs. 6 and
9. The strong flow acceleration enhanced the viscous effects, resulting in a linear velocity
profile that spans at least the eight points nearest to the wall (Loureiro et al. 2007b). For the
rough wall flows, however, very well-defined logarithmic profiles could be identified. The
resulting log-fits furnished very small values for the pressure gradient, of the order of 10~°
or less, an expected result due to flow symmetry.

The behaviour of the velocity profiles near to a separation point is shown in Fig. 8 for the
rough wall cases. A comparison between the experimental data and Eqs. 6 and 9, and Eq. 5 is
also presented. Condition RSA does not result in a well-defined z'/2-profile. In fact, the three
points nearest to the wall are negative, a clear indication that the region of reverse flow has
already been reached. Condition RSB, however, exhibits a reasonably well-defined Stratford
type of solution at station x/H = 1.33. Indeed, Eq. 5 shows a good agreement with the
mean velocity data at x/H = 1.33. Note that Eq. 5 implies explicitly that u,, = 0. Equations
6 and 9 resulted in the following predictions: (i) very small and negative values of u, (ii)
very large and positive values of p~'d, p. These results imply that station x/H = 1.33 is
located just past the separation point, in a region of reverse flow. Experimental evidence sug-
gests that the flow position where 1y, is zero coincides with the position where instantaneous
backflow occurs 50% of time (y = 0.5). For flow over ribbed walls, the exact location of t,
cannot be determined by direct measurement and the intermittency factor y has to be used.
For this reason, finding experimentally the exact location of zero wall shear stress is a very

@ Springer



304 J. B. R. Loureiro et al.

Table 6 Properties of the velocity profiles at the separation points according to Egs. 6 and 9, and Eq. 5

Conditions Station Eq. Uy (m sfl) p*13x p (m 5*2) C(m sfl)
(x/H)
RSA 0.73 (6) —0.001140 0.003361 —0.015761
RSA 0.73 (5) 0.0 0.002819 —0.010639
RSB 1.33 (6) —0.008088 0.088580 —0.096933
RSB 1.33 5) 0.0 0.049461 —0.047103
Fig. 9 Velocity profiles on the (a) (b)
lee side of hills according to Egs. 008 T T
6 and 9 (z and d are plotted in m). r B, E
(a) SS, (b) RSA, (¢c) RSB 0.06 »..."'» A
004 - S e s -
0.02 £ : y RSA -
L o g7 xxH=029 ]
o L 2 AxH=073 _|
o x/H=131
+ s« xH=250 -
02 Lol bl b1y
8 -7 -6 -5 4 3 2 -1
In [z - d]
KK“‘{‘
031 wh=133 J“ﬁ‘
F o+ XH=230 o 4. 1
@ 02| v xH=3.06 i -
E | a xH=4.03 ; * ]
S 01k ¥ :;‘ -
r y}/w‘ b
0 = -
O'IV‘X‘I‘I‘I‘I‘I‘A
8 7 6 5 4 3 2 -1
In[z-d]

difficult task. In any event, station x/H = 1.33 provides data that approximate very well the
z!/2-profile of Stratford.

At a separation point, and, for that matter, in regions of reverse flow, the present calcu-
lations have shown that a very small value of zp must be adopted. This is a very intuitive
result since in regions of dead fluid the details of the surface should not matter at all in drag
prediction. In the present work we have taken zp = 010~ m.

The flow properties near to a separation point for conditions RSA and RSB are shown in
Table 6. In reducing the data through Eq.5, the constant 8(=0.66) has not been considered.

The adequacy of Eqgs. 6 and 9 in regions of reverse flow is shown in Fig. 9. For the
SS-conditions, the low velocities in the vicinity of the wall result in a thick viscous-dom-
inated sublayer, and the flow is then best represented by a Goldstein’s solution (Loureiro
etal. 2007b). A log-portion of the velocity profile can be identified, nevertheless, as shown in
Fig. 9a. The resulting predictions of u.. (Table 7) show a general good agreement as compared
with the data of Loureiro et al. (2007b).

For the rough wall cases, the fits provided by Eqgs. 6 and 9 are very good. The destruction
of the viscous sublayer results in profiles that agree very well with the proposed expressions.

@ Springer



Flow Over Rough Hills 305

Table 7 Properties of the velocity profiles on the lee side of hills according to Egs. 6 and 9

Conditions Station (x/H) us(ms—1) o Yo p (ms™2) C(ms™1)
SS 1.25 —0.000471 0.000056 —0.009265
SS 2.50 —0.001820 0.001334 —0.033696
SS 3.75 —0.001982 0.001862 —0.035886
SS 5.00 —0.001324 0.001078 —0.023114
RSA 0.29 0.007467 0.012388 0.020048
RSA 1.31 —0.001325 —33x 1077 —0.018955
RSA 2.50 —0.000556 0.001229 —0.007083
RSB 2.30 —0.007836 0.025849 —0.116808
RSB 3.06 —0.008588 0.027181 —0.130875
RSB 4.03 —0.007782 0.0262271 —0.115451
Fig. 10 Velocity profiles (a) (b) '

downstream of hills according to j ‘S'S‘ T T ‘RNSA' L
Eqgs. 6 and 9 (z and d are plotted 0.06 - 006 |- 7

inm). (a) SS, (b) RSA, (¢c) RSB 1 [oxnsie P
- 004 ¢ wH=656 . —

w xH=1247

I RSB ¥
0.3 | * XH=567 -
L+ wH=927 K

v X/H=15.66 40
2 a wH=21.67 g

U (m/s)
[=]

4.3 Flow Downstream of the Hill

The velocity profiles downstream of the hill are shown in Fig. 10. Close to the reattach-
ment points (x/H = 5.80 (SS), 2.50 (RSA), 4.63 (RSB)) the velocity profiles should again
approach a Stratford’s solution. The predictions of Eqs. 6 and 9, however, furnish very good
fits. At all other stations, log-regions can be identified. For the SS-condition, predictions of
u, agree with the results of Loureiro et al. (2007b) to within 10%. The fits to the rough wall
cases are not good at x/H = 6.56 (RSA). All other results seem consistent (Table 8).

4.4 Skin Friction

The friction-velocity consolidated results are shown in Fig. 11. In all flow regions the fits
provided by Eqs. 6 and 9 resulted in consistent results. For the SS-condition, an independent
assessment based on the results of Loureiro et al. (2007b) could be performed. For the rough
surface cases, an assessment based on the classical law of the wall can be made for the far
fields upstream and downstream of the hill. In regions close to separation or reattachment
points (or regions of reverse flow), however, no standard method can be used to check u,.
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Fig. 11 Friction-velocity (a) (b)
according to Egs. 6 and 9. (a) SS, 0.006 —— T 002177
(b) RSA, (c) RSB I ss ] I )
’ - -+ 0015 P
o 0.004] i
E oo 001~
5 [ 0.005
or L
L i ok
-0.002 [~ | | | | T r
PR IR N R B 0,005 L—
20 -10 0 10 20 30 210 -
x/H
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Table 8 Properties of the velocity profiles downstream of hills according to Eqs. 6 and 9

Conditions Station (x/H) Us (ms*l) pfl oxp (msfz) C (ms*l)
SS 6.67 0.000129 478 x 1074 —0.000473
SS 10.00 0.001822 5.13x 1073 0.027606
SS 15.00 0.002298 1.15x 107 0.087586
SS 20.00 0.002561 420% 1078 0.106459
RSA 3.65 0.002464 2.90 x 1078 0.076842
RSA 5.05 0.003279 —6.87 x 107 0.104649
RSA 6.56 0.003997 1.06 x 1073 0.139854
RSA 12.47 0.004818 1.91 x 1078 0.162068
RSB 5.67 0.001461 2.99 x 1073 0.000560
RSB 9.27 0.014979 6.34 x 1078 0.692543
RSB 15.67 0.021243 4.10x 1079 1.037510
RSB 21.67 0.022275 433 x 1079 1.129398

In any event, the fact that Eqs. 6 and 9 have been derived from the first principles through
asymptotic arguments and the mixing-length hypothesis—together with the very good fitting
statistics—makes us believe that the present results are consistent.

5 Final Remarks

The present work has experimentally investigated the role of surface roughness on the behav-
iour of flow past a steep hill. Particular attention was dedicated to the study of the character-
istics of the recirculation region. A neutrally stratified flow over a steep rough elevation was
simulated in a water channel environment. Measurements of mean velocity were conducted
with the aid of two-component laser Doppler anemometry. In all, 36 flow stations have been
analyzed.

The study has striven to develop a near-wall solution capable of characterizing the flow in
the following distinct regions: (i) the undisturbed region upstream of the hill, (ii) the upstream
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side of the hill, (iii) the hill apex, (iv) at a separation or reattachment point, (v) in regions of
reverse flow, vi) the undisturbed region downstream of the hill. From what has been found,
this can be achieved through Eqgs. 6 and 9. In fact, the parametrization of C is a subject
that will deserve much consideration in the future. Here, a simple expression based on limit
arguments has been proposed.

The present results allow a thorough description of the inner region of the boundary layer,
providing good quality near-wall data to serve as a test case for numerical simulations.
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