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Abstract 

Based on arguments of homogeneous isotropic turbulence a closure was developed to model the Reynolds 

average cross correlation between fluctuating conformation and rate of strain tensors appearing in the polymer 

stress equation of the  viscoelastic  fluids, dilute polymeric solution, based in FENE-P constitutive equation. The 

closure was calibrated against two sets of DNS data pertaining to the low Reynolds number range and the 

comparisons between the closure and DNS data demonstrate good agreement. 
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1 Introduction 
The addition of small amounts of additives that impart viscoelastic properties to fluids is an effective way to 

reduce drag and heat transfer as has been demonstrated extensively over the last fifty years [1]. One of the 

requirements for the extensive use of these viscoelastic fluids in practical engineering applications is the 

existence of a capability to predict accurately their flow characteristics, which so far does not exist. The DNS 

predictions of viscoelastic turbulent flows by Dimitropoulos et al. [2], Housiadas et al. [3] and Li et al. [4], 

amongst others, give insight on the physics of drag reduction (DR) by polymer additives, while providing useful 

data for developing adequate turbulence models. The rheological description of the dilute polymer solutions in 

these works was assigned to the Finitely-Extensible-Nonlinear-Elastic constitutive equation with Peterlin's 

approximation (FENE-P), even though some research has also been carried out with the Oldroyd-B and Giesekus 

models. The use of DNS for engineering calculations is prohibitively expensive and one must resort to such 

techniques as large-eddy simulation (LES) or Reynolds-average Navier-Stokes (RANS) methods, in their various 

forms. The latter method is implicitly adopted in this work and follows, with the necessary adaptations, the work 

developed by Pinho and co-workers [5-7] for a modified Generalized Newtonian fluid model.  

In the context of single point closures, such as the k − ε  or second order full Reynolds stress models, the 

Reynolds- average evolution equation for the conformation tensor (Cij) contains a new term that requires 

adequate closure so that the average polymer stress contribution to the turbulent momentum balance can be 

calculated. This new term, henceforth designated by NLTij, is the cross-correlation between the fluctuating 

conformation and velocity gradient tensors arising in the distortion term of Oldroyd's upper convective 

derivative. Additionally, Pinho et al [8] have also shown that the trace of NLTij also appears in the closure for the 

viscoelastic stress work appearing in the transport equations of turbulent kinetic energy and of the Reynolds 

stresses. Hence, an essential step in devising turbulence models for viscoelastic fluids described by the FENE-P 

rheological equation of state is the development of a closure for NLTij, which constitutes the aim of this work. 

The closure is developed from the exact equation of NLTij using both physical insight and physical arguments 

together with appropriate DNS data to justify some of the options and to calibrate the model coefficients. Once 

the model has been formulated its predictions are compared with DNS data to assess its quality. The DNS data 

pertains to the low drag reduction technique and are part of the large sets of data produced by Li et al [4] and 

Kim et al [9] for the low drag reduction regime (DR< 30%) of FENE-P fluids in fully-developed turbulent 

channel flow. Two sets of data are used characterized by the following parameters: a Reynolds number 

of
  
Reτ 0

= 395 , a solvent to total zero-shear-rate viscosities ratio of 
 
β = 0.9  and a maximum extension  L

2 = 900 . 

The Weissenberg numbers are 
  
Weτ 0

= 25  and
  
Weτ 0

= 100 , corresponding to drag reductions of 18% and 37%, 

respectively.   
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The paper is organised as follows: the Reynolds-average governing equations for the turbulent flow of FENE-P 

fluids are presented in section 2. Section 3 derives the exact equation for the NLTij term appearing in the 

evolution equation of the conformation tensor that requires modelling. Then, section 4 proceeds with the 

development of an adequate closure for NLTij and the final form of the model is tested against the DNS data in 

Section 5. The paper closes with the main conclusions and recommendations for future work. 

2 Governing equations and non-dimensional numbers 
In what follows capital letters and overbars denote time-average quantities, whereas small letters and primes 

denote fluctuations.  The equations are written in the indicial notation of Einstein, with 
 
δ
ij
 = 0 when i≠ j and 

 
δ
ij
= 1 for i= j. Solving a turbulent flow problem for an incompressible FENE-P fluid requires the solution of the 

continuity and momentum equations (1) and (2), respectively.  

 
∂Ui

∂xi
= 0  (1) 

 ρ ∂Ui

∂t
+ ρUk

∂Ui

∂xk
= − ∂p

∂xi
+ ηs

∂2Ui

∂xk∂xk
− ∂

∂xk
ρuiuk( )+

∂τ ik ,p

∂xk
 (2) 

where τ ik ,p  is the time-averaged polymer stress, Ui is the mean velocity, p is the mean pressure, ρ is the fluid 

density and - ρuiuk  is the Reynolds stress tensor. The fluid rheology is described by the FENE-P model, where 

the extra stress is the sum of a Newtonian solvent contribution of viscosity ηs  with a polymeric contribution, as 

in equation (3) below. This total extra stress has already been incorporated into the momentum equation (2). 

 τ ij = ηs

∂Ui

∂x j

+ ∂UJ

∂xi









 + τ ij,p  (3) 

The time-averaged polymer stress τ ij,p  results from Reynolds-averaging the FENE-P stress equation relating the 

instantaneous stress and conformation tensors and is given by equation (4). The conformation tensor (Cij ) is 

given by its Reynolds average evolution equation (5), where the first- term inside brackets on the left-hand-side  

is Oldroyd's upper convected derivative ofCij .  

 τ ij ,p =
ηp

λ
f Ckk( )Cij − f L( )δ ij

  +
ηp

λ
f Ckk + ckk( )cij  (4) 

 
∂Cij

∂t
+Uk

∂Cij

∂xk
− C jk

∂Ui

∂xk
− Cik

∂U j

∂xk







+ uk

∂cij
∂xk

− ckj
∂ui

∂xk
+ cik

∂u j

∂xk









 = −

τ ij ,p

ηp

 (5) 

The functions appearing in these equations are  

 f Ckk( )= L2 − 3

L
2 − Ckk

and f L( )= 1  (6) 

As mentioned in the introduction, L2 , denotes the maximum molecular extensibility and the other parameters of 

the model are the relaxation time of the polymer λ  and its viscosity coefficientηp . To calculate the polymer 

stress it is necessary to quantify the three terms with overbars in equations (4) and (5). Housiadas et al. [3] and Li 

et al [4] have shown that the term CTij = −uk

∂cij
∂xk

 is negligible in comparison with the other terms of 

equation (5), and Pinho et al [8] have demonstrated that it is also adequate to neglect f Ckk + ckk( )cij  in equation 

(4). Hence, it is only necessary to develop a closure for the term accounting for interactions between the 

fluctuating components of the conformation and velocity gradient tensors that originate from Oldroyd's upper 

convected derivative. Such term is called NLTij = ckj
∂ui

∂xk
+ cik

∂u j

∂xk
, following the nomenclature of [3,4]. 

The non-dimensional numbers appearing throughout the paper are defined as follows: the Reynolds number 

Reτ0
≡ huτ ν0  is based on the friction velocity ( uτ ), the channel half-height (h) and the zero shear-rate 

kinematic viscosity of the solution, which is the sum of the kinematic viscosities of the solvent and polymer 

(ν0 = ν s + ν p ). The Weissenberg number is given by Weτ0
≡ λuτ

2 ν0  and β  ( β ≡ ν s ν0 ) is the ratio between 

the solvent viscosity and the solution viscosity at zero shear rate.  
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3 Exact and approximate equations for NLTij 

Denoting by operator 
 
L Ĉkj( ) the instantaneous evolution equation of Ĉkj , an exact expression for NLTij was 

derived by Pinho [10] as

 

L Ĉkj( )∂ui

∂xk

1

f Ĉmm( )+ L Ĉik( )∂u j

∂xk

1

f Ĉmm( ). This equation is very long and complex, so 

an alternative approach was suggested by Pinho [10]. It is the equation resulting from 

 

L Ĉkj( )∂ui

∂xk
+ L Ĉik( )∂u j

∂xk
, 

and the result is equation (7). 

 

  

f öC
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n
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= 0

 (7) 

Equation (7) is exact, but does not contain directly NLTij. To obtain this quantity it is necessary to approximate 

the term enclosed in the rectangle as follows: 

 f Ĉmm( )ckj ∂ui

∂xk
+ f Ĉmm( )cik ∂u j

∂xk
≈ f Cmm( ) ckj

∂ui

∂xk
+ cik

∂u j

∂xk









 = f Cmm( )NLTij  (8) 

This approximation is corroborated by the DNS data in Fig. 7-b) of Pinho et al [8] for some of the terms of NLTij. 

A reassessment for 18% drag reduction in Figure 1 (a) and for the new data at DR=37% in Figure 1(b) is not so 

favourable. Nevertheless, they confirm that the exact and approximate terms are proportional and can be made 

equal by the introduction of a coefficient. Further investigations are under way to address this issue. 
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Fig.1. Comparison between the triple correlation of the fluctuations, l.h.e of eq. (8), (symbols: ○
  
fc '

1k
∂u

1
' ∂x

k
; 

∆ 
  
fc '

3k
∂u

3
' ∂x

k
 and □

  
fc '

2k
∂u

2
' ∂x

k
) and the relation of the NLTij, l.h.e of eq. (8), (lines: ── 

  
f (C

kk
) NLT

11
2  ─ ─ 

  
f (C

kk
) NLT

22
2  ---

  
f (C

kk
) NLT

33
2 ) for the channel flow of a FENE-P with Reτ = 395 , 

L2 = 900  and β = 0.9 : (a)W eτ = 25 , DR=18%; b)W eτ = 100 , DR=37%. 

In Fig. 2 the time-averaged trace of the conformation tensor (Ckk ) is compared with its rms value ( ckk
2 ) for 

DR= 18% and 37%.  Near the walls, where the molecules are more stretched and consequently traces are larger 

and modify f Ĉkk( ) from its equilibrium value of 1, ckk
2 << Ckk and consequently it is justifiable to neglect the 

rms in comparison with the time-average value. In the channel centreline region ckk
2  approachesCkk , but both 
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tend to small values which do not affect f Ĉkk( ), again justifying the neglect of the rms in comparison withCkk  

when calculating f(Ckk), as found previously by Pinho et al [8]. As drag reduction increases the molecules 

become more stretched and Fig 1 shows that the difference in magnitudes of these two quantities increase and 

that on the centreline region ckk
2  remains lower thanCkk , further justifying the simplification. Given the form 

of function f Ĉkk( ) this implies that its fluctuations are small and the function can come out of time-averages. A 

second implication is that it is justifiable to consider
  
f öC

mm( )≈ f C
mm( ).  
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Fig.2. Transverse profiles of Ckk  (○) and ckk
2

 (∆) for the channel flow of a FENE-P with Reτ = 395 , 

L2 = 900  and β = 0.9 : (a)W eτ = 25 , DR=18%; b)W eτ = 100 , DR=37%. 

4 Development of a model for NLTij  
For the development of this model based on the approximately exact equation of NLTij some of the terms in 

equation (7) will be neglected and this is based on inspection of DNS data and physical insight. Some of the 

assumptions will require future confirmation on the basis of DNS data, but they are adopted here as a first 

approximation. 

The first assumption is that terms containing the cross-correlation between velocity fluctuations and gradients of 

the fluctuating conformation tensor (terms like un ∂cij ∂xk( )) are negligible, regardless of the indices. This is 

arguably correct and needs future checking, but is inspired and suggested by the neglect of term CTij by [3,4,8].  

The second assumption is the use of arguments of homogeneous turbulence so that we can neglect contributions 

bearing similarities with terms related to the turbulent diffusion of turbulent kinetic energy. Again, this requires 

future confirmation, at least for some terms, and is probably valid for some other terms. Hence, 

 

  

u
n

∂u
j

∂x
k

= 0 and u
n

∂u
i

∂x
k

= 0  (9) 

Invariance laws require that convective terms are null except as part of a material derivative which is not the case 

here. Hence, 
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∂c
kj

∂x
n

∂u
i

∂x
k

+
∂c

ik

∂x
n

∂u
j

∂x
k













+ u
n

∂c
kj

∂x
n

∂u
i

∂x
k

+ u
n

∂c
ik

∂x
n

∂u
j

∂x
k

≈ 0  (10) 

Based on these assumptions, equation (7) simplifies to equation (11), 
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To model equation (11) we start with the four terms on the left-hand-side (l.h.s), that involve the cross-

correlation between two fluctuating rates of strain and which are modelled as in Eq. (12). 

 

  

C
kn

∂u
j
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n

∂u
i

∂x
k

+
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i

∂x
n

∂u
j
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≈ Cε
F

4

15
× ε

β ×Weτ 0
× ν

s

C
mm

× f
F 2

× δ
ij
 (12) 

To arrive here use was made of Eq. (13), the relation between fluctuating strain rates for homogeneous isotropic 

turbulence [10], where 
 
λ

f
 is Taylor's longitudinal micro-scale. This is a length scale associated with streamwise 

gradients of fluctuating streamwise quantities, whereas for the gradients of cross-stream quantities Taylor's 

transversal length scale (
 
λ
g
) is used, which is related to 

 
λ

f
 by

  
λ

g

2 = λ
f

2
2 . 

 

  

∂u
i

∂x
k

∂u
j
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l

= 8

3

k

λ
f

2
δ
ij
δ
kl

− 1

4
δ
ik
δ

jl
+ δ

il
δ

jk( )







  (13) 

Eq. (13) has four possible outcomes if homogeneous isotropic turbulence conditions are invoked:  

 (1) when i= j= k= l,

  

∂u
i

∂x
k

∂u
j

∂x
l

= 4

3

k

λ
f

2
 (14-a) 

 (2) when i= j and k= l, with i≠ k,

  

∂u
i

∂x
k

∂u
j

∂x
l

= 8

3

k

λ
f

2
 (14-b) 

 (3) when i= l and k= j, withi≠ k,

  

∂u
i

∂x
k

∂u
j

∂x
l

= − 2

3

k

λ
f

2
 (14-c) 

 (4) zero otherwise (14-d)   

In Eq. (14) k is the turbulence kinetic energy and at high Reynolds numbers homogeneous isotropic turbulence, 

Taylor's longitudinal microscale is related to the dissipation of turbulent kinetic energy ( ε ) via Eq. (15). 

 

  

ε = 20
νk
λ

f

2
 (15) 

The final outcome of these mathematical manipulations is the model of Eq. (12), where parameter 
 
Cε

F

was 

introduced to care for the modelling simplifications, whereas the damping function 
  
f
F 2

 accounts for low 

Reynolds number effects near the wall. The quantification of the parameter and the formulation of the function 

were carried out against the DNS data in order to construct the best possible closure of NLTij and they are listed 

in Table 1. 

Modelling of the term in Eq. (16) was found to be most difficult and in the end an ad-hoc approach was adopted 

as a first approximation, even though based on some physical arguments. On the one hand the cross correlation 

between the fluctuating conformation and strain rate tensors was decoupled as in Eq. (17), which introduced a 

length scale L that was taken as a viscous length scale L ≈ ν0 uium  for convenience. In this approach we 

found it convenient to use Reynolds shear stresses when modelling normal components of NLTij, so in the end 

the approximation of Eq. (17) transformed a second order tensor into a fourth order tensor. Hence, the remaining 

variables appearing in the final expression of the model must comply with symmetry and invariance properties 

of the original exact term and the outcome was the model on the r.h.s of Eq. (18). Other physical arguments 

behind the model developed for this term were considerations of increased anisotropy of the Reynolds stress and 

conformation tensors with drag reduction which were taken into account. In the end this modelled term did not 

require a damping function, simply the parameter 
  
C

F 3
 that took the value listed in Table 1.  
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Invoking the previously adopted assumptions, the model for the terms containing 

  

f öC
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i

∂x
k

and 
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j
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k

 

should have been zero as suggested by Eq. (19), because the time average of the fluctuating rate of strain is null.  
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However, there were advantages in modelling them as in Eq. (20) where the fluctuating quantities were simply 

substituted by time-average quantities. In retrospect this outcome is logical and is equivalent to considering that 

the velocity fluctuations are of the order of the mean velocity (
   
O(u) : O(U ) ), which is the case in the near wall 

region. It is also here that the mean velocity gradient, mean conformation tensor and function 
 
f C

mm( ) become 

larger and where the modelled term is important. 
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To deal with the four triple correlations we followed on the steps of classical turbulence modelling and 

constitutive equation modelling, where to a first approximation a n
th
-order correlation can be decoupled into the 

product of lower order correlations. Here, there was a direct transformation of all fluctuating quantities into time-

averaged quantities and there was also the need to account for low Reynolds number effects via a second 

damping function fF1.  
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 (21) 

An alternative modelling of this term could have been done, based on a decoupling from the third order 

correlation to the product of the time-average conformation tensor with the double correlation of the fluctuating 

rates of deformation, so leading into a second set of terms equal to the l.h.s. of Eq. (12). This was seen to bring 

no advantage to the model of NLTij, and consequently the model of Eq. (19) was adopted instead. 

Finally, to obtain a well- behaved model of NLTij, i.e., a model that compared well with the DNS data, there was 

the need to add an extra term to correct some misbehaved behaviours. This is also a situation frequently found in 

turbulence modelling, because the assumptions invoked often over-simplify the physics. The added term is given 

in Eq. (22). 
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Putting together all terms, the model for NLTij is 
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where the numerical values of the parameters obtained in the calibration are listed in Table 1. With the exception 

ofCF 3 , and less so ofCF1 , the other parameters are of order 1, an indication of the goodness of some of the 

approaches used.  

Table 1. Values of the model parameters and damping functions of the model NLTij. 

  
C

F1
 

  
C

F 2
 

  
C

F 3
 

  
C

F 4
 

 
Cε

F

 

12.65 0.32 0.024 1.106 1.1275 

 

The damping functions required to reproduce the near wall behaviour vary as usual for Newtonian fluids from 

zero at the wall to 1 far from the wall and are given by Eqs. (24) and (25). 

 

  

f
F1

= 1− 0.8exp − y+

30





















2

 (24) 

 

  

f
F 2

= 1− exp − y+

25





















4

 (25) 

It is worth mentioning here that the model was initially developed and calibrated against data for 18% drag 

reduction. When the data for 37% drag reduction became available it was only necessary to make minor 

adjustments to two of the numerical coefficients, which is a good sign regarding the robustness of the model. 

However, both sets of data pertain to the low drag reduction regime and it remains to seen whether the model 

works well in the high and maximum drag reduction regimes 

For the comparison of this model with DNS channel flow data under fully-developed conditions it is 

advantageous to present the corresponding simplified component equations. These are Eqs. (26) to (29) for 

NLT11, NLT22, NLT33 and NLT12 where indices 1, 2 and 3 indicate the streamwise, transverse an spanwise 

directions, respectively. 
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 (29) 

5 Assessment of the performance of the model against DNS data 
The model of NLTij was tested initially only against the set of data for 18% drag reduction (

  
Weτ 0

= 25 ), the other 

parameters being
 
Reτ 0

= 395 ,   L
2 = 900  and

 
β = 0.9 . Subsequently, the 37% drag reduction data became 

available, corresponding to 
  
Weτ 0

= 100  the other parameters being equal, and it was only necessary to make 

minor adjustments to the numerical values of the coefficients in order to optimize the model. For two of the 

terms of the model the parameters had to be changed by a factor of 4, the ratio of Weissenberg numbers, an 

indication that something was missing from the original model and this was corrected. No changes were needed 

to the formal part of the model so these minor adjustments of the coefficients were a good sign that at least for 

channel flow, and in this low drag reduction regime, the present model describes well qualitatively and 

quantitatively the behaviour of NLTij. As will be seen next, this does not mean that there is an exact match 

between the DNS data and the model predictions.  

Figures 2 (a) to 2-(d) compare the DNS channel flow data for the non-zero components of the NLTij tensor with 

the model predictions of Eqs. (26) to (29). The quantities appearing in these equations also pertain to the same 

two DNS data sets, so only the model for NLTij is being tested here. The quantities plotted are non-dimensional 



II Conferência Nacional de Métodos Numéricos em Mecânica de Fluidos e Termodinâmica 

Universidade de Aveiro, 8-9 de Maio de 2008 

 8

using the normalization of the original DNS data [4]. This required the normalisation of Eqs. (26) to (29) carried 

out in the following way: the velocity scale is always the friction velocity, leading to the use of superscript + as 

in ui = ui

+uτ , but for the spatial coordinates either the channel half-height ( xi = xi
*h ) or the viscous length are 

used ( xi = xi
+ ν0 uτ ), leading to superscripts * and +, respectively.  The two normalizations are used in the 

original DNS data. When mixing the two types of normalization, i.e. wall/ viscous and physical quantities, the 

superscript used is *, as in NLTij = NLTij

*
uτ h . Note that the ordinate scales of the figures are different in order 

to maximize the space available. 

Careful inspection of Figure 3 shows that the model predicts better the data for DR=18% than for DR=37%. This 

is not surprising because the model was developed and tuned with the first set of data and essentially confirmed 

with the second set. No major effort at optimization in regard to both sets was carried out, as we think it is 

preferable at this stage to extend the model to higher drag reductions and make it general to the three drag 

reduction regimes than to fine tune a model which is not yet general. In assessing the model performance we 

must distinguish between the viscous sublayer region and the buffer and log-law regions. NLTij in the viscous 

sublayer is not important because the exact terms in the governing equations are much larger, as shown by Li et 

al [4] and Pinho et al [8]. Therefore, the discrepancies in the wall region seen in Figure 3 are essentially of no 

consequence. The buffer and log-law regions are those that matter and here Figure 3 shows that the model 

performs well. It slightly overpredicts NLT11 and it predicts well NLT22, with a slight under-predicted location of 

its peak value (closer to the wall that it should). For NLT33 predictions are good at DR=18% but the model 

underpredicts at DR= 37% and for NLT12 the model behaves very well for DR=18% but overpredicts at 

DR=37%.  
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Fig.3. Comparison between the DNS data and the model for NLTij for
 
Reτ 0

= 395 ,   L
2 = 900  and 

 
β = 0.9  for 

  
Weτ 0

= 25  (18% DR) and 
  
Weτ 0

= 100  (37% DR): (a) NLT11; (b) NLT22; (c) NLT33; (d) NLT12. 

As drag reduction increases, the model captures well the shift away from the wall of the peak of the various 

components of NLTij. In the context of a two-equation turbulence model, such as the k-ε model, the most 

important component of NLTij is actually NLT22 because this is the main term in the τ 22,p  governing equation. In 

the governing equations of the other stresses, such as τ11,p  the other exact terms of τ11,p  far outweigh NLT11, 

even though NLT11 is the largest component of NLTij.  

Pinho et al [8] have also shown that the major impact of NLTij is not its direct contribution to the calculation of 

the polymer stress, but its role in the model developed for viscoelastic stress work appearing in the transport 

equation of turbulence kinetic energy, which relies exclusively on the trace of NLTij. Hence, in the context of a k-

ε turbulence closure, it is extremely important for the model developed for NLTij to be able to predict accurately 

its trace, NLTkk. The comparison of the DNS data and model prediction for the trace of NLTij is plotted in Figure 
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4. As can be seen, the quality of the predictions is better than that of NLT11, the largest term of the trace by far, 

because the underprediction of NLT33 partially compensates for the overprediction of NLT11.  
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Fig.4. Comparison between the DNS data and the model for the trace of NLTij for 
 
Reτ 0

= 395 ,   L
2 = 900  and 

 
β = 0.9  as a function of drag reduction: 

  
Weτ 0

= 25  (18% DR) and 
  
Weτ 0

= 100  (37% DR). 

Future developments and improvements of this model are possible and should probably take into consideration 

the increased anisotropy of turbulent quantities as the Reynolds stress and rate of dissipation tensors, with drag 

reduction. The present model was developed with a clear assumption of turbulence isotropy.  

6 Conclusions 
Based on arguments of homogeneous isotropic turbulence a model was developed to close the Reynolds-

averaged non-linear term of the polymer stress equation of dilute FENE-P fluids. This term is known as NLTij 

and prior to the model development the quasi-exact equation for NLTij was written down. To help the 

development of the closure, use was made of two sets of DNS data pertaining to channel flow of FENE-P fluids 

for the low drag reduction regime (
 
Reτ 0

= 395 ,  L
2 = 900 and 

 
β = 0.9  for 

  
Weτ 0

= 25  (drag reduction of 18%) 

and 
  
Weτ 0

= 100  (drag reduction of 37%). These data allowed first the simplification of the exact equation, by 

showing that some terms are negligible and later they where used to calibrate the model and quantify the 

parameters introduced.  

The comparison between the model predictions, based on DNS data of the independent variables of the model 

equations (24) to (27) and the DNS data of NLTij was good. The model captured all features of the individual 

components of the tensor, and in particular the effects of increased drag reduction to increase the individual 

components of  NLTij and the shift away from the wall of the location of their peak values. 

The next stage is to incorporate this closure into single point RANS turbulence models in order to assess the 

overall behaviour of the turbulence model, which requires the development of closures for new terms appearing 

as a consequence of the fluid visco-elasticity and simultaneously to extend the closure of NLTij to higher drag 

reductions in particular in the high and maximum drag reduction regimes.  
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