IMPROVED PREDICTIONS OF LOW AND MODERATE DRAG REDUCTION IN TURBULENT CHANNEL FLOW OF FENE-P FLUIDS USING $k-\varepsilon$ MODEL

P. R. Resende
Centro de Estudos de Fenómenos de Transporte, Universidade do Porto, Portugal

F. T. Pinho
Centro de Estudos de Fenómenos de Transporte, Universidade do Porto, Portugal

K. Kim
Dep. Mechanical Engineering, Hanbat National University, Daejeon, South Korea

R. Sureshkumar
Dep. Energy, Environmental and Chemical Engineering, Washington University of St. Louis, St Louis, MO, USA

B. A. Younis
Dep. Civil and Environmental Engineering, University of California, Davis, USA

Vth Annual European Rheology Conference
15th-17th April 2009
Cardiff, UK
Motivation and DNS cases: channel flow of FENE-P

Objective: modifications to existing \(k-\varepsilon \) model + performance

Pinho, Li, Younis & Sureshkumar (2008) JNNFM
A low Reynolds number turbulence closure for viscoelastic fluids

Turbulence modeling: Step 1) a priori DNS closure development
Step 2) building closures into the model

Fully-developed channel flow

$$\begin{align*}
W_{e_\tau} &= \frac{\lambda u_{\tau}^2}{\nu_0} \\
Re_{\tau} &= \frac{hu_{\tau}}{\nu_0}
\end{align*}$$

DNS test/calibration cases (FENE-P model)

$$Re_{\tau} = 395, \beta = 0.9, L^2 = 900$$

Low Drag Reduction

$$W_{e_\tau} = 25, DR = 18\%$$

High Drag Reduction

$$W_{e_\tau} = 100, DR = 37\%$$

Continuity: \[\frac{\partial U_i}{\partial x_i} = 0 \]

Momentum balance:
\[\rho \frac{\partial U_i}{\partial t} + \rho U_k \frac{\partial U_i}{\partial x_k} = - \frac{\partial \overline{p}}{\partial x_i} + \eta_s \frac{\partial^2 U_i}{\partial x_k \partial x_k} - \frac{\partial}{\partial x_k} \left(\overline{\rho u_i u_k} \right) + \frac{\partial \overline{\tau_{ik,p}}}{\partial x_k} \]

Rheological constitutive equation: **FENE-P**
\[\overline{\tau}_{ij,p} = \frac{\eta_p}{\lambda} \left[f(C_{kk}) C_{ij} - f(L) \delta_{ij} \right] + \frac{\eta_p}{\lambda} f(C_{kk} + c_{kk}) c_{ij} \]

\[\nabla C_{ij} + u_k \frac{\partial C_{ij}}{\partial x_k} - \left(\frac{c_{kj}}{\partial x_k} + \frac{c_{ik}}{\partial x_k} \right) = - \frac{\overline{\tau}_{ij,p}}{\eta_p} \]

Improved predictions of low and high DR

Closures required

Resende, Pinho, Kim, Sureshkumar and Younis

CEFT-FEUP Centro de Estudos de Fenómenos de Transporte

AERC 2009, Cardiff, UK
Conformation (RACE) equation

\[\lambda \frac{\partial C_{ij}}{\partial t} + \lambda M_{ij} \nabla \left[u_k \frac{\partial u_i}{\partial x_k} - \left(c_{kj} \frac{\partial u_i}{\partial x_k} + c_{ik} \frac{\partial u_j}{\partial x_k} \right) \right] = -\left[f(C_{kk})C_{ij} - f(L)\delta_{ij} \right] - \frac{f(C_{kk} + c_{kk})c_{ij}}{NLT_{ij}} \]

\[f(C_{mm}) \frac{NLT_{ij}}{\lambda} = f_{\mu_i} \left[\frac{C_{E3} u_i u_j}{v_{0}^2} \right] + \frac{C_{\alpha_{14}}}{v_{0}} \left(u_i u_k W_{kn} C_{nj} + u_j u_k W_{kn} C_{ni} + u_k u_i W_{jn} C_{nk} \right) \]

New model (a priori DNS at BSR 2008 meeting)

\[f(C_{mm}) \frac{NLT_{ij}}{\lambda} = f(C_{mm}) \frac{f(C_{mm})}{\lambda} \left(f_{N_1} C_{ij} f(C_{mm}) - f_{N_2} \left[c_{kj} \frac{\partial U_i}{\partial x_k} + c_{ik} \frac{\partial U_j}{\partial x_k} \right] \right) \]

\[+ f_{N_3} \left[\frac{C_{km}}{v_{0} \sqrt{2 S_p q_p}} \left(u_i u_m \frac{\partial U_j}{\partial x_k} \frac{\partial U_m}{\partial x_n} + u_j u_m \frac{\partial U_i}{\partial x_k} \frac{\partial U_m}{\partial x_n} + u_k u_m \frac{\partial U_j}{\partial x_k} \frac{\partial U_i}{\partial x_n} + u_k u_m \frac{\partial U_j}{\partial x_k} \frac{\partial U_i}{\partial x_n} \right) \right] \]

\[- f_{N_4} \left[c_{km} \frac{\partial U_k}{\partial x_n} \frac{\partial U_i}{\partial x_k} + c_{jn} \frac{\partial U_k}{\partial x_n} \frac{\partial U_j}{\partial x_k} + \frac{C_{kn}}{v_{0} \sqrt{2 S_p q_p}} \left(\frac{\partial U_k}{\partial x_n} \frac{\partial U_i}{\partial x_k} \frac{\partial U_j}{\partial x_n} + \frac{\partial U_k}{\partial x_n} \frac{\partial U_i}{\partial x_k} \frac{\partial U_j}{\partial x_n} \right) \right] + f_{N_5} \frac{4}{15} \frac{\varepsilon}{\beta v_{s}} C_{mm} \delta_{ij} \]

\[f_{N_1} = f(W_{E_{\tau_0}}, y^+) \]
Reynolds stress model: eddy viscosity model

Prandtl-Kolmogorov model (k-ε closure)

$$-u_i u_j = 2v_T S_{ij} - \frac{2}{3} k \delta_{ij}$$

$$v_T = C_\mu f_\mu \frac{k^2}{\langle \varepsilon \rangle^N + \varepsilon^V}$$

Dissipation of k by solvent

Viscoelastic stress work

New model

$$v_T = v_T^N - v_T^P$$

$$v_T^N = C_\mu f_\mu \frac{k^2}{\langle \varepsilon \rangle^N}$$

$$\frac{k^2}{\langle \varepsilon \rangle^N} \propto l u'$$

$$v_T^P = C_\mu^P f_\mu^P C_{kk} \frac{k^2}{\langle \varepsilon \rangle^N}$$
Transport equation for k and viscoelastic stress work (ε^V)

$$\rho \frac{Dk}{Dt} = -\rho u_i u_k \frac{\partial U_i}{\partial x_k} - \rho u_i \frac{\partial k'}{\partial x_i} - \frac{\partial p'u_i}{\partial x_i} + \eta_s \frac{\partial^2 k}{\partial x_i \partial x_i} - \eta_s \frac{\partial u_i}{\partial x_k} \frac{\partial u_i}{\partial x_k} + \frac{\partial \tau'_{ik,p} u_i}{\partial x_i} - \tau'_{ik,p} \frac{\partial u_i}{\partial x_k}$$

0 P_k Q^N D^N $-\varepsilon^N$ Q^V $-\varepsilon^V$

exact unchanged exact

\[\varepsilon^V \equiv \frac{1}{\rho} \tau'_{ik,p} \frac{\partial u_i}{\partial x_k} \approx \frac{\eta_p}{\rho \lambda} \left[c_{ik} f \left(C_{mm} + c_{mm} \right) \frac{\partial u_i}{\partial x_k} \right] \]

\[f' c'_{ik} \frac{\partial u_i}{\partial x_k} \approx f_{e^V} \times f \left(C_{mm} \right) c_{ik} \frac{\partial u_i}{\partial x_k} \]

Model is the same, except for NLT_{ii} and corrective f_{e^V}

\[0 = \frac{d}{dy} \left[\left(\eta_s + \frac{\rho f_T v_T}{\sigma_k} \right) \frac{dk}{dy} \right] + P_k - \rho \varepsilon^N - \rho D^N + \frac{\eta_p}{\lambda} \frac{d}{dy} \left[f \left(C_{mm} \right) C_{nk} \left(FU \right)_n + CU_{mm} \right] - \eta_p \frac{f \left(C_{mm} \right) NLT_{nn}}{2} \]
Transport equation for ε^N

Exact equation: not used, this equation is completely modeled

\[
2v \frac{\partial u_i}{\partial x} \frac{\partial}{\partial x_i} \left(\rho \frac{Du_i}{Dt} \right) + 2v \frac{\partial u_i}{\partial x} \frac{\partial}{\partial x_i} \left(\rho u_i \frac{\partial U}{\partial x_i} \right) + 2v \frac{\partial u_i}{\partial x} \frac{\partial}{\partial x_i} \left(\rho \frac{\partial u_i}{\partial x_i} \right) + 2\nu \frac{\partial u_i}{\partial x} \frac{\partial}{\partial x_i} \left(\frac{\partial p'}{\partial x_i} \right) - 2\rho \nu \frac{\partial u_i}{\partial x} \frac{\partial}{\partial x_i} \left(\frac{\partial \varepsilon'_i}{\partial x_i} \right) - 2\nu \frac{\partial u_i}{\partial x} \frac{\partial}{\partial x_i} \left(\frac{\partial \tau'_i}{\partial x_i} \right) = 0
\]

Polymer modifies ε^N equation (neglected by Pinho et al (2008) but considered in new model)

- Need to reduce ε^N as polymer drag reduction increases
- Extra term should be a destruction term, like to the classical destruction term, i.e., proportional to ε^2/k
Transport model equation for ε^N

$$0 = \frac{d}{dy} \left[\left(\eta_s + \frac{\rho f_T v_T}{\sigma_\varepsilon} \right) d\tilde{\varepsilon}^N \right] + \rho f_1 C_{\varepsilon_1} \frac{\tilde{\varepsilon}^N}{\rho} \frac{P_k}{k} - \rho f_2 C_{\varepsilon_2} \frac{\varepsilon^{N^2}}{k} + \rho E + E_{\tau_p}$$

with $E_{\tau_p} = 0$

Destruction term

Low Re correction
(Nagano & Hishida, 1984)

New model

$E_{\tau_p} \neq 0$

Modeled as an extra destruction related to polymer extension and viscoelastic stress work

$$E_{\tau_p} = - \left\{ f_{E_{\tau p1}} (\varepsilon^V) + f_{E_{\tau p2}} \left[C_{nn} f (C_{ii}) \right]^2 \varepsilon^N \right\} \frac{\tilde{\varepsilon}^N}{k} \propto \frac{\varepsilon \times \varepsilon^N}{k} \sim \frac{u^{14}}{l^2}$$

$$f_{E_{\tau p1}}, f_{E_{\tau p2}} = f_{E_{\tau p}} (We, y^+)$$
Reference cases 1: $Re_{x_0} = 395; \beta = 0.9, L^2 = 900$

Mean velocity

\[u' = 11.7 \ln y' - 17.0 \]
\[u' = 2.5 \ln y' + 5.5 \]

k^+

- DNS - Mansour ($We = 0$)
- DNS - $We = 25$
- DNS - $We = 100$
- $We = 25$ - Old (Pr = variable)
- $We = 0$ - New
- $We = 25$ - New
- $We = 100$ - New

Improved predictions of low and high DR

CEFT-FEUP Centro de Estudos de Fenómenos de Transporte

Resende, Pinho, Kim, Sureshkumar and Younis

AERC 2009, Cardiff, UK
Reference cases 2: $Re_{\tau_0} = 395; \beta=0.9, L^2=900$

ϵ^{N^+}

- DNS- Mansour (We= 0)
- DNS- We= 25
- DNS- We= 100
- We= 25- Old (Pr= variable)
- We= 0- New
- We= 25- New
- We= 100- New

NLT^*_ii

- DNS- We= 25
- DNS- We= 100
- We= 25- Old (Pr= variable)
- We= 0- New
- We= 25- New
- We= 100- New
Reference cases 3: $Re_0 = 395; \beta = 0.9, L^2 = 900$

Improved predictions of low and high DR

Resende, Pinho, Kim, Sureshkumar and Younis

CEFT-FEUP Centro de Estudos de Fenómenos de Transporte

AERC 2009, Cardiff, UK
Parametric study 1: $Re_{\tau_0} = 395; \beta=0.9, L^2=900$

Mean velocity

- $u^* = 11.7 \ln y^* - 17.0$
- $u^* = 2.5 \ln y^* + 5.5$

k^+

- We_{τ_0}, DR [%]
 - 0
 - 14 9.3
 - 19.2 15.6
 - 25.0 19.7
 - 42.4 27.6
 - 63.5 33.5
 - 100 39
 - 153 43.8

We_{τ},DR

$We_{\tau} = We_{\tau_0} - DR$
Parametric study 2: $Re_{\tau_0} = 395; \beta=0.9, L^2=900$

Improved predictions of low and high DR

Resende, Pinho, Kim, Sureshkumar and Younis

AERC 2009, Cardiff, UK
Parametric study 3: $Re_{\tau_0} = 395; \beta = 0.9, L^2 = 900$

$\overline{u'n'}^+$

$\overline{\tau^+_{xy,p}}$

$We_{\tau, DR}$

$We_{\tau, DR}$
Conclusions, Future Work and Acknowledgments

- Closure for elastic contribution to ν_T
- Closure for elastic term (E_{tp}) in ε^N equation: destruction of ε^N
- $k-\varepsilon$ model works well at Low DR and High DR (45%)

- Need to extend models to Maximum DR, & β & L^2
- To solve the existing deficiencies:

 improve k, improve polymer and Reynolds stress predictions

Acknowledgments - Funding

Fundação para a Ciência e Tecnologia
FCT Scholarship SFRH/BD/18475/2004