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A B S T R A C T

The present thesis is aimed at increasing the current knowledge about
several distinct, but complementary, subjects related with complex
flows of complex fluids, and this is achieved both numerically and
analytically.

This work involved, on one side, the incorporation of new fea-
tures into an existing three-dimensional time dependent finite-volume
method (FVM), for efficient and accurate viscoelastic flow calculations
at high Weissenberg numbers and, on the other side, the investigation
of various flows with an emphasis at exploring flow instabilities linked
to viscoelasticity.

Given the hyperbolic nature of the constitutive equations used to
represent the rheological behaviour of viscoelastic fluids, and the nume-
rical problems typical of highly elastic flows, the simulations required
the use of robust numerical methods. For this purpose, a recent nume-
rical stabilization methodology, based on a logarithmic transformation
of the conformation tensor, was used.

To assess the proposed implementation, and demonstrate the en-
hanced stability, some of the benchmark flows used in computational
rheology were investigated, such as the flow around a confined cylinder
and the 4:1 contraction flow.

Other work involved, on one side, the numerical implementation of
the electrokinetic forcing term (the Poisson-Nernst–Planck equations)
in the same FVM code and, on other side, the theoretical study of
electro-osmotic flows of complex fluids. When the electrokinetic flow
was used in combination with viscoelastic fluids, new types of flow
instabilities appeared, as observed in the cross-slot flow.

Prior to the beginning of this work, there were no published analy-
tical solutions for fully-developed electro-osmotic flows of non-linear
viscoelastic fluids. In this thesis, a number of analytical solutions were
derived for pressure/electro-osmosis flows of viscoelastic fluids in a
channel under a variety of boundary conditions of practical relevance,
such as those found in electro-osmotic pumps.

These analytical solutions were also of significant importance in order
to test the proposed code implementation and demonstrate its high
stability and accuracy.

keywords

Complex fluids (viscoelastic); high Weissenberg number problem; finite
volume method; elastic instabilities; electro-osmotic flow.
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R E S U M O

Esta tese teve como objectivo aumentar o conhecimento actual sobre
vários assuntos distintos, mas complementares, relacionados com o es-
coamento de fluidos complexos (viscoelásticos), tendo sido concretizado
com recurso a ferramentas numéricas e analíticas.

Este trabalho envolveu, por um lado, a incorporação de novas fun-
cionalidades num código numérico existente, baseado no método dos
volumes finitos, para o tornar mais eficiente e preciso no cálculo do es-
coamento de fluidos viscoelásticos a elevados números de Weissenberg,
e por outro lado, a investigação de vários tipos de escoamento, com
particular ênfase na exploração de instabilidades induzidas pelas carac-
terísticas viscoelásticas dos fluidos.

Dada a natureza hiperbólica das equações constitutivas utilizadas
para representar o comportamento reológico de fluidos viscoelásticos,
e as dificuldades numéricas observadas para escoamentos a elevados
números de Weissenberg, foi necessária a utilização de métodos numéri-
cos robustos e precisos. Para este efeito, foi utilizada uma metodologia
de estabilização numérica proposta recentemente, e que se baseia numa
transformação logarítmica do tensor conformação.

Para testar a implementação proposta e demonstrar a sua elevada
estabilidade, estudaram-se alguns dos escoamentos de referência uti-
lizados em reologia computacional, tais como o escoamento em torno
de um cilindro confinado, bem como escoamentos numa contracção de
razão 4:1.

Outros trabalhos envolveram, por um lado, a implementação numérica
do termo eletrocinético (as equações de Poisson-Nernst-Planck) no
código de volumes finitos e, por outro lado, o estudo teórico dos
escoamentos electro-osmóticos de fluidos viscoelásticos. Quando o es-
coamento induzido por efeitos eletrocinéticos é usado em combinação
com fluidos viscoelásticos, surgem novos tipos de instabilidades, como
as observadas no escoamento numa junção em cruz de canais planos
(cross-slot).

Até ao início deste trabalho, não existiam soluções analíticas publi-
cadas para escoamentos electro-osmóticos de fluidos viscoelásticos, em
condições de escoamento desenvolvido. Ao longo desta tese foram de-
duzidas diversas soluções analíticas para o escoamento electro-osmótico
de fluidos viscoelásticos num canal sob distintas condições de contorno,
de relevância prática, como no caso de bombas por electro-osmose.

Estas soluções analíticas foram também de grande utilidade no teste
das implementações numéricas no código e na demonstração da sua
elevada estabilidade e precisão.

palavras-chave

Fluidos complexos (viscoelásticos); problema do elevado número de
Weissenberg; método de volumes finitos; instabilidades elásticas; escoa-
mento electro-osmótico.
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R É S U M É

La présente thèse vise l’accroître des connaissances actuelles sur plu-
sieurs sujets différents, mais complémentaires, liés à l’écoulement de
fluides complexes (viscoélastiques) et a été atteint en utilisant des outils
numériques et analytiques.

Ce travail a impliqué, d’une part, l’incorporation de nouvelles fonc-
tionnalités dans un code numérique existant basé sur la méthode des
volumes finis, pour le rendre plus efficace et précis dans le calcul
d’écoulements de fluides viscoélastiques à des nombres de Weissenberg
élevés, et d’autre part, la recherche sur les différents types d’écoulement,
avec un accent particulier sur l’exploitation des instabilités induites par
la viscoélasticité des fluides.

Compte tenu de la nature hyperbolique des équations constitutives
utilisées pour représenter le comportement rhéologique des fluides vis-
coélastiques, et les problémes numériques normalment observées aux
écoulements à des nombres de Weissenberg élevés, il a été nécessaire
d’utiliser des méthodes numériques robustes et précises. À cette fin,
on a été utilisé une méthodologie de stabilisation numérique récem-
ment proposée, qui est basée sur une transformation logarithmique du
tenseur de conformation polymérique.

Pour tester l’implémentation proposée et démontrer sa grande sta-
bilité, quelques-uns des écoulements de référence utilisés en rhéologie
computationnel on été étudiés, telles que l’écoulement autour d’un
cylindre confiné, et des écoulements dans une contraction de rapport
4:1.

D’autres travaux ont impliqué, d’une part, l’implémentation nu-
mérique du terme de force électrocinétique (équations de Poisson-
Nernst-Planck) dans le même code de volumes finis et, par ailleurs,
l’étude théorique de l’écoulement électro-osmotique des fluides vis-
coélastiques. Lorsque l’écoulement induit par l’effet électrocinétique
est utilisé en combinaison avec des fluides viscoélastiques, de nou-
veaux types d’instabilités apparaissent, comme celles observées dans
l’écoulement dans une jonction en croix de canaux plans (cross-slot).

Jusqu’au début de cette thèse, il n’y avait pas des solutions analy-
tiques publiées concernant l’écoulement électro-osmotique des fluides
viscoélastiques dans des conditions d’écoulement développées. Tout
au long de ce travail ont été dérivées plusieurs solutions analytiques
pour l’écoulement électro-osmotique de fluides viscoélastiques dans un
canal sous différentes conditions de frontière, avec pertinence pratique,
comme dans le cas des pompes par électro-osmose.

Ces solutions analytiques ont été également très utiles pour tester les
implémentations numériques et la démonstration de sa grande stabilité
et précision.

mots-clés

Fluides complexes (viscoélastiques); problème du nombre élevé de Weis-
senberg, méthode des volumes finis; instabilités élastiques; écoulement
électro-osmotique.
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Part I

PA N TA R H E I





1
I N T R O D U C T I O N

[...] The Master stood by a river and said:
’Everything flows like this,

without ceasing, day and nigth’ [...]

— Confucius (551–479 BC)

1.1 a study on complexity: complex fluids and flows

rheo (From Greek
rheos, stream, from
rhein, to flow) + logy
(Origin: Middle
English -logie, from
Old French, from
Latin -logia, from
Greek -logiā (from
logos, word, speech))
“Everything flows
and nothing abides;
everything gives way
and nothing stays
fixed.” Heraclitus of
Ephesus (540–475
BC)

Who would think that the simplicity of Heraclitus of Ephesus (540–475

BC) philosophical statement “Panta rhei” (everything flows), could lead
into an hypothesis of a study on complexity? But, as usual, simplicity
always depends on the level of abstraction imposed by the observer. So
let us start the present dissertation, descending (or ascending, following
again Heraclitus’s ideas “The road up and the road down is one and
the same”) by the road that, hopefully, will lead to a rather simple
understanding of one specific and small part of the everything flows ′

complexity.
Simple questions (with rather complex answers) such as: does every-

thing really flow? why everything flows? how everything flows? where
everything flows? when (or for how long) everything flows?, were ad-
dressed in many other historical dissertations by many other world
famous observers, such as Archimedes (200 BC), Newton (1687), Pas-
cal (1663), Bernoulli (1738), Euler (1755), Navier (1822), Stokes (1845),
Poiseuille (1841) and Maxwell (1867), among others. It is not the inten-
tion of this work to elaborate on these vast questions, although some of
the answers given by our illustrious predecessors will be used along
this dissertation.

In terms of simple questions, this contribution is somehow in between
the how and where everything flows (although the when (or for how
long) everything flows is also important). In terms of scientific (or
mathematical modelling), the area of this investigation focus on both the
complexity of the kind of everything that flows (related to the complexity
of the material that flows, specifically, complex fluids), and on the
complexity of the behaviour of the complex material that flows (related
to complex flows of complex fluids).

In the next sections, a new level of abstraction on complex fluids
and flows is presented. It is intended that, at the end of this introduc-
tory part, the reader will have a meaningful scientific and mathematic
interpretation of these rather philosophical questions.

3



4 introduction

1.1.1 Complex fluids: abstractions on Panta (everything)

Heraclitus’s “Panta
rhei”, is the motto of
a scientific subject or
discipline, the so
called Rheology.

In this section some considerations related with the kind of everything
that flows will be addressed. Since the 29

th of April 1929 (Doraiswamy,
2002), Heraclitus’s “Panta rhei”, is the motto of a scientific subject or
discipline, the so-called Rheology.

Rheology is, in fact, one of the few scientific subjects whose formal
creation can be traced back to a specific date. Strictly speaking, the
definition of Rheology is “the study of the flow and deformation of
all forms of matter” (Denn, 2004). Rheology can also be defined from
other points of view, as the scientific (through a mathematical, physical
and phenomenological stand point) and the engineering (through an
applied and industrial stand point) perspectives.

From a scientific point of view, it is related to that part in Classical
Mechanics dealing with the interaction between the applied forces
and the resulting deformations observed on the matter. Obviously, the
precise nature of these interactions will depend on both the type (or
duration) of the forces, as well as on the type of matter. Concerning
the type of matter, and given the earthian thermodynamic conditions
(standard pressure, volume and temperature), two extreme limiting
boundary states can be assumed:

the solid state of matter : in an ideal approach, a rigid solid
follows the Euclidean ideas, where a rigid body of mass does
not deform under an applied force. However, real solids, even
metals or minerals, have the capability to store energy and under
applied forces present a spring-like elastic response, through a
property known as elasticity. This phenomenon is described by
Hooke’s law, first introduced by Robert Hooke in 1678, and
further improved by the subsequent works of Thomas Young
(1807) and Augustin Cauchy (1827).

the fluid state of matter : in a non-realistic approach, follow-
ing the Pascalian definition of inviscid fluid (non viscous or fric-
tionless fluid), even a very small applied force will give rise to a
never ending flow, due to the inability of a fluid to resist forcing
(for further classical studies of this kind of fluids, please refer to
the works of Bernoulli (1738) and Euler (1755)). However, real flu-
ids, such as water or air, dissipate energy when flowing because
of a property known as the coefficient of viscosity (or simply
viscosity). Those two fluids and others found in nature, are called
Newtonian (or non-complex) fluids, defining the type of fluids
that can be described by Newton’s law of viscosity, first described
in Sir Isaac Newton’s (1687) Principia.

The principal subject in Rheology lies in the full range between these
two extremes, i.e., between the Hookean elastic solid and the Newtonian
viscous fluid models as well outside it. Indeed, these historical classical
models do not depict the full behaviour of many real fluids, such
as the observed non-linear and time dependent type of responses to
deformation, usually referred to as viscoelastic (or non-Newtonian)
behaviour. These non-classical (or complex) viscoelastic behaviours are
then the main interest of Rheology and of Rheologists.

An interesting and uncommon example of a complex fluid (or non-
Newtonian) behaviour is the pitch drop experiment, the world’s longest-
running experiment. The experiment was started in the late 1920’s by
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Thomas Parnell and continues up to this day. A sample of pitch (a The bitumen viscosity
is almost 1011 times
higher than the
viscosity of water.

highly viscous non-Newtonian fluid which resembles a solid, most
commonly bitumen) was poured into a glass funnel and let drip out
due to gravity effects. The flow is so slow, that up to the present time,
only eight drops have fallen!

Time (or timescale) is then, to some extent, the essential core of com-
plex fluids rheology. Indeed, any fluid can behave as an elastic solid or
as a Newtonian fluid, depending on the magnitude of forces and on the
deformation process that is imposed. Even argon will exhibit viscoelas-
tic behaviour if the time scale of the applied deformation is comparable
to the characteristic relaxation time of its molecular structure (Denn,
2004). In an after dinner talk at the Fourth International Congress of
Rheology, Reiner (1964) presented an interesting (and almost theologi-
cal) perspective on the relevance of timescale in Rheology, and on the
implicit liquid/solid duality that each material may exhibit. Rescuing
an Old testament famous song from the Prophetess Deborah of the book
of Judges (5:5): "the mountains flowed before the Lord", Reiner argued that,
given a divine time observer (God himself), even a mountain would
eventually flow and behave like a fluid. Obviously, in the time frame
observation of a common mortal and under the same applied forces
(or deformation), mountains behave essentially like a solid. Then, from
Reiner’s perspective, the difference between a solid and a fluid could
be defined by the magnitude of a non-dimensional number, named
appropriately as the Deborah number, defined as:

De =
material relaxation time

time of observation
=

λ

tobs
(1.1)

The Deborah number characterizes the interplay between the relax-
ation time of the material and the characteristic time of the applied
forces (or deformations). Taking the biblical example cited above, to
the divine entity the mountain Deborah number is zero (De→ 0), due
to the infinite time of observation and Newtonian fluid behaviour is
observed. In contrast, for a common mortal, the mountain Deborah
number is very large (De→∞), since the time of observation is signifi-
cantly lower than the characteristic mountain relaxation time. So, both
limiting Deborah number cases, De→ 0 and De→∞, correspond to
the two limiting situations of a Newtonian fluid and a perfectly elastic
solid. It is time, then, that provides the closure to the Panta in Heraclitus
motto, because it is the glue that brings together solid and fluids.

From an engineering point of view, both time and rheologists are
restricted to more quotidian constrains, which limit the observation time
to the representative or service time of the engineering (or industrial)
application. So, rheology is of interest not only to mathematicians,
chemists and physicists, but also to chemical, mechanical, material,
food or civil engineers (the author of this dissertation is a chemical
engineer), who have to deal with these complex fluid materials on
a daily basis. The interest on complex fluids grew fast in the 1940’s,
motivated by the discoveries during the second world war, subsequently
transformed into relevant industrial products, such as in the plastics
industry, glass technology, painting industry and ink-jet printing (much
later). Engineers deal regularly with constitutive equations, that
describe the rheological behaviour of the material as a relation between
the stress (forces per unit area) and strain (a measure of deformation
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history or rate of strain). These constitutive equations will depend on
the structure of the complex fluid, and can be represented in the form
of algebraic, differential, integral, or integro-differential equations (Bird
et al., 1987a,b).

As a conclusion to this brief introduction, a final abstraction on the
complexity of Panta (everything) is also introduced: this dissertation
will focus specifically on viscoelastic (or non-Newtonian) complex
fluids, characterizing soft materials such as polymer solutions (materi-
als containing polymer molecules which typically contain thousands
to millions of atoms per macromolecule), colloidal suspensions, gels,
emulsions, or surfactant mixtures.

1.1.2 Complex fluids and flows: abstractions on Rhei (flows)

Having started with the necessary considerations related to the kind
of everything that flows, this section addresses the abstractions on the
complexity of the behaviour of the complex material that flows, or in
other words, on the complexity of the transport (or motion) of a complex
fluid. So, here we will deal with the processes in the Mechanics of
continuum media, which involve the transfer of mass, momentum and
energy through and with matter. These processes are usually termed
Transport Phenomena, and include diffusion processes, heat transport
and fluid dynamics (Bird et al., 2002). This dissertation will focus
primarily on fluid dynamics.

Fluid dynamics studies the motion of fluids, and was founded under
the classical mechanics conservative axioms derived under the contin-
uum hypothesis (here again, given the earthly thermodynamic standard
PVT conditions, the quantum mechanics and general relativity theories
are discarded):

conservation of mass;

conservation of momentum ( Newton’s Second Law of motion);. . . These axioms are
well described by the
Reynolds transport
theorem.

conservation of energy (First Law of Thermodynamics).

From a discrete point of view and following the kinetic theory, fluid
dynamics is treated from a molecular perspective, in which a fluid
is composed by molecules that collide with each other and with the
molecules of the solid boundaries, while exhibiting random motion
(Bird et al., 2002). If a continuum assumption can be considered, fluid
dynamics can be treated from a macroscopic point of view, in which
the fact that a fluid is made of discrete molecules is ignored and
the properties of the fluid (as density or viscosity) are taken to vary
continuously from one point to another. The concept of point is here a
small control volume that contains the minimum number of molecules
such that the fluid properties become independent of the number
of molecules considered. This perspective is at the core of continuum
mechanics and, under the specific subject of Fluid dynamics, has been
used for a long time.

The history of fluid dynamics is somehow interrelated with the his-
torical definition of fluid itself (as addressed in the last Section). In the
seventeenth century, Newton (1687) presented the equations for the flux
of momentum in his Principia, where he described the universal law of
gravitation and the three laws of motion, showing that the motion of
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objects on earth and celestial bodies are governed by the same set of
natural laws. The equations of motion for a frictionless, non-viscous
fluid were presented in the eighteenth century by Bernoulli (1738) and
Euler (1755), and were extensively used in the following two centuries
by one theoretical branch of fluid dynamics called Hydrodynamics,
and from an almost empirical and experimental perspective in another
engineering branch called Hydraulics. The pioneering work of Ludwig
Prandtl (1904), showed that the approach of using the non-viscous
equations in industrial applications of the two most common and avail-
able fluids on earth (air and water) was very limited and unrealistic
in most cases. Prandtl (1904) showed, experimentally and theoretically,
the problems of neglecting viscous forces in the thin region near the
solid walls, the so-called boundary layer and he was the fundamental
contributor of the boundary layer theory. This theory was very important
in aeronautics, especially for estimating drag forces and analysing flows
with separation. On the nineteenth century Navier (1822) and Poisson
(1831) derived, from a molecular perspective, a non-linear set of differ-
ential equations that described the flow of a fluid whose stress depend
linearly on the velocity gradients. The same equations (although de-
rived independently from another perspective) were presented later
by Saint-Venant (1843) and George Stokes (1845). These equations are
today commonly referred to as the Navier-Stokes equations (although
a fairer name should be the Navier-Poisson-Saint-Venant-Stokes equa-
tions, or the easier, but fair, Navier-Saint-Venant equations), and are
considered as the theoretical foundation of modern fluid dynamics.

Stokes (1851) is also responsible for an important consideration in
fluid flow problems, when he introduced the concept of the ratio
between inertial and viscous forces, i.e., the importance of the ratio
between the change in momentum due to fluid acceleration and due
to frictional forces exerted by the fluid deformations. Actually, this
relation is well known as the Reynolds number, named after Osborne
Reynolds (1883), who extensively used it in the characterization of the
law of resistance to the flow of water in pipes and parallel channels.
The Reynolds number is a dimensionless parameter, defined as

Re =
inertial forces
viscous forces

=
ρU2L2

µUL
=
ρUL

µ
(1.2)

where µ and ρ are the fluid viscosity and density, respectively, U is the
fluid velocity and L is a characteristic length scale of the flow geometry.
For small Reynolds number flows, also called laminar flows, viscous
effects are dominant and the prevailing mechanism of momentum trans-
port is due to diffusion. For large Reynolds number flows, also called
turbulent flows, viscous effects can be neglected except close to walls
and elsewhere the dominant mechanism of momentum transport is ad-
vection. Additionally, at very high Reynolds numbers laminar flows are
unstable to infinitesimal perturbations and the flows become turbulent,
but even here viscous effects cannot be neglected close to walls, in the
boundary layers. In this case momentum transport is also occurring
by the turbulent fluctuations which is also an advection mechanism.
In the complex flows of complex fluids analysed in this dissertation,
the Reynolds numbers are usually sufficiently small so that inertial
effects can largely be neglected. Here the flows are mostly dominated
by viscous forces and (inertial) turbulence is not encountered.
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The study of flows of complex fluids (as the ones introduced in
the last section, viscoelastic fluids) really started in earnest after the
second world war and led to a new branch of fluid dynamics, which
may be called Viscoelastic (or more appropriately non-Newtonian)
fluid dynamics. This was mainly due to the growing awareness thatWilhelm Weber

(1835), a German
physicist inventor of
the first
electromagnetic
telegraph (together
with Carl Gauss),
reported, in the first
rheological
experiments on
biological specimens –
spider silk, a
power-law time
dependent stress
relaxation. Later,
Wilhelm Weber
(1841) undertook the
first attempt to
describe that complex
behaviour
theoretically.

the majority of the substances encountered in industrial applications,
natural or synthetic, were polymeric melts or solutions which do not
satisfy the Newtonian postulate of the linear relationship between the
stresses and rates of deformation.

Nevertheless, there were earlier seminal experimental and theoreti-
cal works, as those on the mechanical response of spider silk threads
performed by Wilhelm Weber (1835; 1841), considered as the first and
irrefutable example of a biological material that behaves outside the
classical extremes. Other seminal theoretical works, mostly related with
the general subject of linear viscoelasticity, were presented by Lud-
wig Boltzmann (1874), Oskar Meyer (1874), Woldemar Voigt (1889),
William Thomson (Lord Kelvin) (1865) and the interesting work of
James Clerk Maxwell (1867). Maxwell’s (1867) work on the elastic colli-
sions of gas molecules in the dynamic theory of gases is now seen as
the introduction to fluid materials that present some solid-like charac-
teristics. The relevance and actuality of that work is remarkable, and
such models as the Upper-Convected Maxwell model (UCM) are still
well established in the 21

st century works on continuum mechanics.
Related to theoretical works on non-linear viscoelasticity, the earlier
contributions at the beginning of the 20

th century by S. Zaremba (1903)
and Gustav Jaumann (1905), introduced what is now generally known
as the corotational derivative. In the middle of the 20

th century, James
Oldroyd (1950), a Professor of Applied Mathematics at the University
of Liverpool, presented a seminal work using convected coordinates
to derive permissible processes of time differentiation and time inte-
gration in constitutive modelling (Walters, 1999). Oldroyd (1950) was
also responsible for the definition of the Upper-Convected Oldroyd
model (UCO), also known as the Oldroyd-B constitutive equation, an-
other well established model nowadays. Subsequent works focused on
simple extensions of classical results obtained with Newtonian fluids, as
the theory of matched asymptotic expansions for singular perturbation
problems, using Prandtl’s boundary layer theory. Most of these works
considered inelastic fluids of variable viscosity such as Metzner’s stud-
ies seeking to extend flow correlations to fluids with non-Newtonian
viscosities (Metzner and Reed, 1955; Metzner and Otto, 1957), or the
Falkner-Skan solution for laminar boundary layer flow over a wedgeThe Falkner-Skan

(1931) equation is a
generalization of the
Blasius (1908)
equation, a simple
nonlinear boundary
layer problem
describing viscous
flow over a flat plate,
and because of its
application to fluid
flow, has fascinated
physicists, engineers,
mathematicians and
numerical analysts.

of purely viscous fluids with a power-law viscosity (Schowalter, 1960;
Acrivos et al., 1960). However, there were also early contributions using
viscoelastic constitutive equations, such as the Falkner-Skan problem
for weakly viscoelastic fluid of Denn (1967) or many others as can be
found in the first volumes of Rheology Acta and of the Journal of Rheology
(formerly called Transactions of the Society of Rheology).

Text books that deal broadly with non-Newtonian fluid dynamics,
with widely differing emphases and perspectives, include Astarita
and Marrucci (1974), Schowalter (1978), Crochet et al. (1984), Bird
et al. (1987a,b), Joseph (1990), Leonov and Prokunin (1994), Huilgol
and Phan-Thien (1997), Tanner and Walters (1998), Larson (1998, 1999)
and Owens and Phillips (2002), amongst many others. Most texts on
rheology discuss non-Newtonian fluid mechanics, but generally in the
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context of flows used for measurement of fluid properties, the so-called
rheometric flows. Viscoelastic fluid dynamics is distinct from rheology
on the simple fact that rheology focuses on the material properties
from molecular theories, while viscoelastic fluid dynamics focuses on
the flow of complex fluids that are not necessarily suitable for direct
measurement of material properties (Denn, 2004). In fact, ideally, the
rheometric flows are controllable flows, i.e., flows whose kinematics is
independent of the fluid as happens with plane Couette flow.

A photo gallery of interesting flow phenomena exhibited by non-
Newtonian fluids is presented by Boger and Walters (1993). Bird and
Curtiss (1984) presented a collection of ten strange flows of liq-
uids containing very large molecules, which presented the opposite
behaviour of the expect from the daily experience with normal fluids.
Some of the fascinating counter-intuitive flow behaviours are (see Figure
1.1 for illustration):

the weissenberg effect: this phenomenon shows a polymeric
fluid climbing a rotating rod. For a Newtonian fluid, the fluid sur-
face is depressed near the rod due to inertia, whereas a polymeric
fluid climbs the rod. This effect is due to an up/down force pro-
duced by a non-zero difference between the normal components
of the stress tensor of the fluid motion due to the turning rod.

the viscoelastic recoil: this phenomenon illustrates the fading
memory of a viscoelastic fluid. Following a fluid element while
flowing down a duct, it can be seen that once the flow is stopped,
the Newtonian fluid comes to rest, while the polymeric fluid
shows a partial recoil, in which the fluid does not return all the
way to their initial configuration (as a purely elastic band would
after being stretched in the purely elastic regime).

the die swell: is a common observed phenomenon in polymer
extrusion processes, in which the polymeric fluid swells when
emerging from a tube or slit. The swell of the polymeric fluid
jet can increase by as much as a factor of five and needs to be
properly accounted for to avoid distorted extruded material in
industry.

the siphon effect: this phenomenon is also called a tubeless siphon
or self-siphon. One can siphon polymeric fluids even if there is a
gap of several centimetres between the surface of the fluid and the
end of the aspirating tube, while for a Newtonian fluid siphons
only work as long as the suction tube is beneath the surface of
the fluid.

A final abstraction on the complexity of Rhei (flow) concludes this
section: this dissertation will be focused specifically on Laminar Vis-
coelastic Fluid Dynamics, and on the standard problem of solving
the resulting set of coupled field equations that define the continuum
constitutive equations relating the stress and the strain history, for a
specified geometry and well defined boundary conditions.

1.1.3 Challenges on Panta Rhei

Despite the historical effort on understanding the complexity of Panta
Rhei, there are still plenty of challenges to unravel. This Section presents
some abstractions on the actual challenges in order to clearly formulate
the work objectives in the next section and, hopefully, attain our goals.
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(a) the Weissenberg effect. (b) the viscoelastic recoil.

(c) the die swell. (d) the siphon effect.

Figure 1.1: Selection of some of Bird and Curtiss (1984) collection of strange

flows (reprinted with permission from the publisher).

For non-complex fluids and despite of the linearity of the relationship
between the rate of deformation and the stress field, classical fluid dy-
namics is rich in complex nonlinear problems, most of them defying the
goal of obtaining exact solutions. Somewhat surprisingly, even when
analytical techniques are applied to the Navier–Stokes equations, theIn the Millennium

Prize Problems, the
Clay Mathematics
Institute offers a
US$1,000,000 prize
for demonstration of
the existence and
uniqueness of the
solution of the
Navier–Stokes
equations.
Interestingly, one of
the seven problems
selected was solved
recently by Dr.
Grigoriy Perelman
(Poincaré conjecture)
and in March 2010
one of the
Millennium Prizes
was awarded to him,
but he refused to
receive the prize.

mathematicians have not yet been able to prove that the solution always
exist in generic three dimensional problems, and when the solution
does exist the smoothness could be questionable, i.e., the solution could
contain any singularity or discontinuity. These interrogations are usu-
ally called the Navier–Stokes existence and smoothness problems, and
remain one of the seven most important open problems in mathematics
selected by the Clay Mathematics Institute.

Due to restrictions on the purely analytical approach to solve the
full complexity of the flow dynamic problems, scientists and especially
engineers often rely on modern computational tools and particularly on
Computational Fluid Dynamics (CFD) to calculate the flow in many
geometries.

Computational Fluid Dynamics is today a well established and grow-
ing scientific branch of fluid dynamics, in which a new level of ab-
straction and simplification is introduced, with the motto “divide to
conquer” being an easy way to explain it. A very schematic view on
how the solution is determined in a simple flow problem is the fol-
lowing: the physical domain of the flow dynamic problem is “divided”
in very small sub-domains, meaning that the physical domain is “dis-
cretised” into a so-called computational grid consisting of very small
computational cells; the governing transport equations are also reformu-
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lated into a discrete formulation at each computational cell, including
the boundary regions, following some simplifications; the solution of
the resulting system of discrete equations is achieved via an iterative
algorithm, solved with the help of a computer, where the inherent
non-linearities of the algebraic equations are dealt with adequately.

Obviously, the smaller the sub-domains the better the level of the
approximation to the “true” solution of the flow dynamic problem, and
in order to achieve the invariance of the computational results with
respect to the temporal and spacial discretization, some computational
grid and time refinements are needed. The most usual types of numeri-
cal procedures to reformulate the governing transport equations in a
flow dynamic problem are:

finite difference method (FDM, Roache, 1972);

finite volume method (FVM, Patankar, 1980);

finite element method (FEM, Zienkiewicz and Taylor, 1989);

boundary element method (BEM, Becker, 1992).

There are also some recent procedures that combine some of the
above methods, such the hybrid FEM/FVM method (Sato and Richard-
son, 1994) or the spectral element method (SEM, Patera, 1984), in which
a high order finite element method is combined with spectral tech-
niques. Additionally, and instead of this Eulerian philosophy, there
are other methods that follow a Lagrangian approach, i.e., particles
are introduced into the flow and the governing equations for each
particle are solved as they evolve inside the flow domain, such the
Smoothed Particle Hydrodynamics (SPH, Monaghan, 1988), or the Lat-
tice Boltzmann methods (LBM, McNamara and Zanetti, 1988), based on
microscopic models and mesoscopic kinetic equations. The Arbitrary-
Lagrangian-Eulerian (ALE, Hirt et al., 1974) is a re-meshing technique
that combines both the Lagrangian and Eulerian philosophy.

The use of atomistic constitutive equations is extremely expensive and
with today’s resources they are restricted to very simple molecular-sized
computational domains. Some coarse-graining is required to be able to
compute macroscopic flows, and micro-macro numerical methods have Micro-macro

methods couple
mesoscopic scale of
kinetic theory to the
macroscopic scale of
continuum
mechanics, and have
been introduced in
the pioneering works
by Biller and
Petruccione (1987;
1988).

been devised to allow calculations with these mesoscale constitutive
equations. These numerical methods, reviewed by Keunings (2004), are
still computationally very expensive and difficult to perform in complex
geometries of engineering interest, especially considering the need
for very refined meshing and time stepping for accurate viscoelastic
predictions. Hence, the majority of engineering calculations, such as
those mentioned above, rely on macroscopic constitutive equations
some of which have been derived using more or less sophisticated
closures of the mesoscale models. These derived closures invariably use
decoupling and some form of pre-averaging (Bird et al., 1980; Lielens
et al., 1999) that remove or change some rheological characteristics
of the original mesoscale models (Van Heel et al., 1998; Zhou and
Akhavan, 2003). Needless to say the mesoscale closures have their own
simplifications, hence they require improvements of their own.

The above sketched solution procedure seems simple enough, and
one might expect that the flow properties can easily be calculated
with the aid of a suitable computer. However, there are numerous
complications, and the CFD field remains a treasure trove of challenging
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and important areas of research. These complications are intrinsically
related with the level of complexity on the abstractions on how a
complex fluid is flowing.

Even for simple fluids, the flow may actually be too complicated to
be solved on a computer on a suitable time scale. This is particularly
true when the complexity of the flow equipment is evident, such as in
extruders, mixers, fluidized beds, reactors, etc. Some simplifications are
necessary to handle these problems, as reducing the degrees of freedom
by reducing the number of spacial dimensions, or decrease the level of
complexity of the geometry. For instance, one can look at a flow in an
extruder as combining flows in simpler geometries such as:

die swell flow

flow around an obstacle (e .g., cylinder)

flow in a contraction

so that a method that cannot solve any of this is unlikely to be able to
solve correctly the whole problem and another complex flows.

These simpler flows were selected as Benchmark Flows and have
been studied independently by several research groups, in order to ob-
tain consistently more accurate numerical solutions. These benchmark
flows are today standard in the assessment of code performance as well
as uncertainty quantification of new numerical methods for viscoelastic
fluids.

If numerical methods are applied to flows of complex fluids, as
in the fairly recent scientific branch of CFD called Computational

Rheology, the difficulties are even more challenging and demanding.
In this thesis, Computational Rheology relates particularly to the
numerical simulation of laminar flows of viscoelastic fluids and notThe debate around

the most appropriate
designation, Deborah
or Weissenberg
number, is endless
and not terribly
helpful (McKinley,
2005) and in the
XVIth International
Workshop on
Numerical Methods
for Non-Newtonian
Fluids in 2010, Bruce
Caswell declared, in a
pacifist and ironic
tone, that the term
Deborah-Weissenberg
number is the better
one. Recently, in the
Rheology Bulletin
(2010), Roland
Keunings (cited in
Dealy 2010)
ironically comments
that “changing from
High Weissenberg

Number Problem

to High Deborah

Number

Problem (HDNP)
won’t make the
problem any simpler.”

to the direct measurement of the rheological properties of the fluid
(rheometry). However, in the broad sense Computational Rheology also
includes the use of computational tools to assist rheometry.

Historically, after a rather short initial period of optimism, in which
it was thought that the direct application of techniques developed for
the simulation of Newtonian flows would also be efficient for compu-
tational rheology, it was found that the results obtained by different
research groups suffered from a common problem, namely the loss of
convergence at very low values of Deborah or Weissenberg numbers
(Weissenberg number, We = λε̇, named after Karl Weissenberg by
White (1964), is like the Deborah number, a non-dimensional parame-
ter that measures the elasticity of a fluid and indicates the degree of
anisotropy or orientation generated by the deformation). Then, Crochet
and Walters (1983) stated, in a pessimistic tone, that the maximum limit
of elasticity achieved in the results published between the 1950’s up to
the 1980’s were so low that solutions were mere perturbations around
the Newtonian solutions. Thus, it was proved that computational rhe-
ology, particularly the numerical calculation of viscoelastic flows, was
a more complex task to deal with than the Newtonian fluid CFD, ex-
hibiting iterative problems of convergence and accuracy, and leading to
higher computation time and demanding computing resources, such as
memory and processing time. This defined and identified the infamous
puzzling problem presented to computational rheology, that became
known as the High Weissenberg Number Problem (HWNP). This prob-
lem on numerical calculations of laminar viscoelastic fluid flows can be
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better understood by consulting several reference works, particularly
Keunings (1986) and Owens and Phillips (2002), but it can shortly be
explained as the existence of a limit in the Weissenberg number above
which numerical methods diverge. The critical value of the Weissenberg
number depends on the flow geometries as well on the constitutive
equation, but geometric singularities are usually associated with more
severe problems.

Another intellectual as well practical challenging aspect of fluid
dynamics is related to Flow Instabilities. Flow instabilities (here
related to physical instabilities rather than to the non-linearities of the
mathematical approximations to the physical problem) take place in
many different situations, depending on fluid type, velocity field and
geometry, as well as the presence of other physical phenomena, such as
temperature or concentration variations, surface tension gradients and
electrokinetic body forces. One classical example of a simple fluid flow
instability is the inertial driven transition from laminar to turbulent
flow (Reynolds, 1883; Manneville, 2004).

Instabilities in viscoelastic fluids in the absence of inertial effects
and under isothermal conditions, are also a puzzling challenge. These
purely elastic instabilities, due solely to the viscoelasticity of the fluids,
depend on the corresponding flow conditions. For simple linear shear
flows instability studies have been done, such as the effects of parallel
flow superpositions presented by Ramanan and Graham (2000), the
instabilities in free-surface flows by Graham (2003), the instabilities
in square cavity flows by Kim et al. (2000) and in parallel plate flows
by McKinley et al. (1991a), and the industrially relevant extrusion in-
stabilities at high flow rates, reviewed recently by Denn (2001) and
Morozov and van Saarloos (2007). For curvilinear shear flow instabil-
ities, studies on linear stability theory were extensively reviewed by
Shaqfeh (1996), and works in the Taylor-Couette, Dean, Taylor-Dean and
cone-plate instabilities were presented by Muller et al. (1989), McKinley
et al. (1991a), Muller et al. (1993) and Larson et al. (2006). For exten-
sion dominated flows, and in particular in flows containing stagnation
points at solid-liquid and liquid-gas interfaces, as one finds in flow
around solid bodies or bubbles, or on contraction flows, instabilities
have been known to take place for quite a long time (Cable and Boger,
1978a,b, 1979; Giesekus, 1968). For interior stagnation point flows, such
as the flow in the opposed jet (Chow et al., 1988), in Taylor’s four-roll
mill (Giesekus, 1962) or in the cross-slot channel (Gardner et al., 1982),
instabilities are also observed at high Deborah number flows.

There are also some theoretical developments on the criteria for
the onset of these elastic instabilities, such as the work by Shaqfeh Microfluidics

emerged in the
beginning of the
1980’s and even
though it is still in a
state of exploratory
research, there are
practical applications
where its advantages
stand out clearly,
such as in screening
for protein
crystallization,
bioanalyses or the
manipulation of
multiphase flows.

(1996) and McKinley and co-workers (McKinley et al., 1996; Pakdel
and McKinley, 1996), that presented a dimensionless criterion for the
onset of elastic instabilities based on the local flow curvature and the
tensile stress acting along the streamlines. However, despite the recent
efforts and progress on the understanding of the complexity of these
flow instabilities, this is still a contemporary challenge to Panta Rhei.

The level of complexity also increases with the complexity of the
practical applications, as when the Navier–Stokes equations are com-
bined with the equations of energy and mass conservation, or when
New Forcing Terms are taken into account in order to deal with
other physical phenomena. Usually, these new forcing terms become
important when they scale with surface area and the fluid transport
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design strategies are scaled down to micron or sub-micron scales, as
in Microfluidic devices. At such scales, surface-dominated physical
forces/phenomena (e.g., capillary, wetting, electrokinetic effect), which
usually can be neglected in macroscale flow processes, become im-
portant and in some cases dominant (Squires and Quake, 2005). The
widespread use and low cost of microfluidic techniques is fostering a
wealth of new practical applications involving complex fluids, often
associated with complex phenomena. These are the cases of the study
on magnetohydrodynamics or electrohydrodynamics (also known as
electro-fluid-dynamics or electrokinetic phenomena) such as electro-
osmotic flow, where the Navier–Stokes equations are coupled with the
Maxwell’s and the Poisson-Nernst-Planck (PNP) (also called Smolu-Walther Nernst,

German chemist that
studied under
Ludwig Boltzmann;
Max Planck, German
physicist and
mathematician.
Planck reformulated
Nernst’s theorem,
which later came to
be known as the third
law of
thermodynamics.

chowski equation), respectively. The Poisson-Nernst–Planck equations
are a conservation of species equation used to describe the motion
of ions in a fluid medium, in which the diffusing species are also in
motion with respect to the fluid by electrostatic forces.

Electro-osmosis is a basic electrokinetic phenomenon, where the flow
is induced by a new body force term, the applied external electric field.
The interaction between the channel walls and the polar fluid creates
near-wall layers of ions, and these layers move under the action of the
applied electric field, whereas the neutral core is dragged by viscous
forces and moves as a solid body. The principle was first demonstrated
by Ferdinand Reuss (1809), in an experimental investigation using
porous clay. This was followed by the theoretical work on the Electric
Double Layer (EDL) by Hermann von Helmholtz (1879), which related
the electrical and flow parameters for electrokinetically driven flows.
In the early 1900’s Marian von Smoluchowski (1903) contributed to
the understanding of electrokinetically driven flows, especially for
conditions where the EDL thickness is much smaller than the channel
height.

For Newtonian fluids, rigorous modelling and analytical solutions
of simple shear electro-osmotic flow has been the subject of several
studies, and a thorough review on this and on various other aspects of
electro-osmosis can be found in Karniadakis et al. (2005). On the other
hand, the theoretical study of electro-osmotic flows for complex fluids
is fairly recent and most works have been restricted to simple inelastic
fluid models, such as the power-law, due to the inherent difficulties
introduced by more complex constitutive equations. It was clear that
there were no analytical solutions for fully-developed electro-osmotic
flows of quasi-linear and non-linear viscoelastic fluids, and even less so
when in combination with pressure gradient before the work done in
this thesis (Afonso et al., 2009c). Also, the numeric approach to more
complex geometry flows for complex fluids with electrokinetic effects
are scarce, and are one of the actual challenges on Panta Rhei.

To conclude this section, a final overview is presented on some of
the actual challenges on Panta Rhei that drives this thesis and more
specifically on the actual challenges on Computational Rheology:
the infamous High Weissenberg Number Problem, the eccentric purely
elastic Flow Instabilities and the puzzling increase in complexity
introduced by New Forcing Terms associated with electro-osmosis
and due to the small scale of fluid transport in microfluidic systems.
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1.2 objectives

This study aims to increase the current knowledge about several dis-
tinct, but complementary, subjects. This is accomplished in a numerical
and theoretical investigation addressing the following four main objec-
tives/questions:

obj. 1 Is it possible to develop robust and highly accurate numerical
schemes to overcome the of High Weissenberg Number Prob-
lem?

obj. 2 Is it possible to use these robust and highly accurate nume-
rical schemes to simulate complex flows of complex fluids that
originate purely elastic Flow Instabilities?

obj. 3 Is it possible to use these robust and highly accurate numerical
schemes to simulate complex flows of complex fluids driven by
New Forcing Terms, such electro-osmosis, and do these flows
lead to elastic Flow Instabilities?

obj. 4 Is it possible to obtain analytical solutions for simple flows of
complex fluids driven by New Forcing Terms, such as electro-
osmosis?

The proposed objectives 1 and 2 involved, on one side, the incorporation
of new features into an existing code for efficient and precise viscoelastic
flow calculations at high Weissenberg numbers and, on the other side,
the investigation of various flows with an emphasis at exploring flow
instabilities linked to viscoelasticity.

The in-house code used is a three-dimensional time dependent finite-
volume code developed by Oliveira et al. (1998), with improvements
described later in Oliveira and Pinho (1999a,b) and Alves (2004). The
FVM code uses collocated non-orthogonal meshes, central differences
for discretization of diffusive terms, a second order backward implicit
time discretization through the SIMPLEC algorithm (Patankar, 1980) to
ensure simultaneously the momentum balance and mass conservation.
The CUBISTA high resolution scheme, introduced by Alves et al. (2003a),
is used to discretize the advection terms of the governing equations.

Given the hyperbolic nature of the constitutive equations used to
represent the rheological behaviour of viscoelastic fluids, and given the
inherent HWNP, the simulations require the use of robust numerical
methods. For this purpose, the numerical stabilization methodology
recently proposed by Fattal and Kupferman (2004) was implemented,
the so-called matrix-logarithm or log-conformation formulation for the
viscoelastic constitutive equations, which is based on a reformulation of
the constitutive law in terms of the matrix logarithm of the conforma-
tion tensor. To test the proposed implementation and demonstrate the
enhanced stability, some of the benchmark flows used in computational
rheology will be investigated.

The proposed objectives 3 and 4 involved, on one side, the numerical
implementation of the new terms and equations related to the electroki-
netic phenomenon in the in-house FVM code and, on other side, the
theoretical study of electro-osmotic flows for complex fluids.
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To compute flows driven by electro-osmosis the Poisson-Nernst–
Planck equations were incorporated into the code to calculate the elec-
tric charge distribution required to quantify the electric field forcing of
the momentum equation. This new code feature is of extreme relevance
in microfluidics. When electro-osmosis flow is used in combination
with viscoelastic fluids, new phenomena emerges, such as new types of
flow instabilities.

Up to the beginning of this thesis, there were no analytical solutions
for fully-developed electro-osmotic flows for non-linear viscoelastic flu-
ids. In order to test the proposed code implementation and demonstrate
its high stability and accuracy, we carried out several theoretical studies
on the development of analytical solutions for channel and pipe flows
of viscoelastic fluids under the mixed influence of electro-osmosis and
pressure forces. These studies were performed for different constitutive
models and for different boundary conditions at the walls.

1.3 dissertation outline

The present dissertation falls into the category of multi-paper (or paper-
based) dissertations, built up as a collection of ten peer-review journal
papers, published (or under evaluation) in international scientific jour-
nals. A complete list of the included papers can be found in Section
Publications ( on page xi). The included papers were prepared in the
course of this PhD thesis and correspond to specific stages and parts of
the above mentioned objectives.

The present dissertation is divided in four main parts:

Part I: Introduction (Panta Rhei)

Part II: Developments on theoretical and computational rheology

Part III: (Further) Developments on theoretical and computational
rheology

Part IV: Conclusions and Outlook

The present section closes the introductory part (Part I). In Part II,
“Developments on theoretical and computational rheology”, the main
contributions of each paper will be described, on the following topics:
High Weissenberg Number Problem, purely elastic instabilities and
viscoelastic electro-osmotic flows.

The papers presented in Part III are integral versions of the work
already published or in the process of submission or review.

In Part IV, the main conclusions are presented. The outlook of the
Thesis is presented at the final section of Part IV, including suggestions
for future work.
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introduction to part ii

... all the difficulty of philosophy seems to consist in this:
from the phenomena of motions to investigate the forces of Nature,

and then from these forces to demonstrate the other phenomena.

— Sir Isaac Newton

In the present Part II of this dissertation, called “Developments on
theoretical and computational rheology”, detailed insights into the
achieved numerical and analytical developments will be presented.
Each contribution related to the work objectives, presented in Section
1.2, will be explained in detail. Given that the present dissertation falls
into the category of multi-paper dissertations, and in order to keep repe-
tition of information at a minimum level, the majority of the governing
equations, figures, tables, numerical algorithms and other published
information will be addressed in Part III of this dissertation.

Part III, called “(Further) Developments on theoretical and computa-
tional rheology” includes a complete and integral version of the papers
written during this PhD work.

Part II is further divided into three main chapters. In Chapter 2,
the High Weissenberg Number Problem is described in more detail,
with a brief historical revision. Possible causes and solutions are also
addressed, such as the encouraging results obtained by our numeric
FVM code.

Chapter 3, is reserved for the developments and achievements in
the eccentric features of elastic flow instabilities. Numerical results in
a three-dimensional cross-slot geometry and in the mixing-separating
geometry, will be also presented. These numerical results were obtained
with the code implementations presented in Chapter 2.

Finally, in Chapter 4, the analytical and numerical developments
related to the treatment of electro-osmosis will be briefly discussed.
The various analytical solutions presented in this Chapter, were useful
for testing the correct implementation of the Smoluchowski diffusion
equation. The numerical solutions revealed that a mixture of elastic/
electrokinetic instabilities are present in the flow of viscoelastic fluids
in microfluidic devices.





2
T H E INFAMOUS HIGH WEISSENBERG NUMBER PROBLEM

infamous :: having an extremely bad reputation

To err is human,
and to blame it on a computer is even more so.

— Robert Orben

The mathematical
description of the
UCM and Oldroyd-B
models, is presented
on page 91 for the
extra stress tensor
representation, τ,
and on page 70 for
the conformation
tensor representation,
A.

The bad reputation posed by the High Weissenberg Number Prob-
lem (HWNP) has long faced those who wish to perform numerical
simulations of complex flows of complex fluids. This problem was
first identified by the breakdown of the numerical schemes for macro-
scopic continuum mechanics constitutive equations, such as the Upper-
Convected Maxwell or Oldroyd-B models. This numerical failure at
moderately low Weissenberg/Deborah numbers (De ∼ 1), was accompa-
nied by numerical inaccuracies and lack of mesh-convergent solutions,
particularly when geometrical corners or stagnation point singularities Given the endless

debate around the
most appropriate use
of Deborah or
Weissenberg numbers
(see more on page 12),
we useDe
throughout this
dissertation.

are present, due to the exponential growth of the normal stresses at
such locations.

Several plausible explanations for the so-called HWNP have been
identified along the past decades. However, and despite some recent
progress, there is not yet a full understanding of its origin and possible
solution. The main arguments put forward point essentially to each one
of the following branches:

model problems : in computational rheology, the momentum and
mass conservation equations (see equations (5.14) and (5.14), on
page 91) are inherently coupled with macroscopic constitutive
equations for the extra stress, τ (or conformation tensor, A). The
adequate choice of the constitutive equation depends on the phys- The mathematical

description of the
FENE-CR model, is
presented on page 91.

ical characteristics of the real working fluid. For instance, models
presenting constant shear viscosity, such the UCM, Oldroyd-B
or FENE-CR (Chilcott and Rallison, 1988) models, should not be
used when the viscosity of the real fluid varies with the shear The mathematical

description of the
Phan-Thien-
Tanner (PTT) model,
of the FENE-P
model, based on the
kinetic theory for
finitely extensible
dumbbells with a
Peterlin
approximation for the
average spring force,
and for the Giesekus
model, is presented
on page 91.

rate, such as for shear-thickening (also termed dilatant) or shear-
thinning (known also as pseudoplastic) fluids. These types of
fluids should be described instead by the PTT (Phan-Thien and
Tanner, 1977; Phan-Thien, 1978), Giesekus (Giesekus, 1982) or
FENE-P (Bird et al., 1980) models, amongst others. Therefore, ide-
ally, for each fluid, there should be a model describing correctly
its fluid rheological properties. The development of efficient, more
realistic models is still a fertile ground in rheology (Boger and
Walters, 2000), and so far no model is physically exact. The UCM
and Oldroyd-B models are definitely not good physical models
even for dilute polymer fluids. In particular, both can be derived
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from a kinetic theory, with dumbbells modelling ensembles of
polymer molecules that are assumed to be infinitely extensible.
Some works relate this model assumption to the inherently more
severe HWNP when these models are used. However, a bad phys-
ical model can be a good mathematical model, and the UCM
and Oldroyd-B models remain, nevertheless, a good first approxi-
mation to the rheological behaviour of many viscoelastic fluids.
Indeed, they already present mathematical difficulties common
to most of the viscoelastic models and its equivalence with a
kinetic model allows also for a deep understanding of this set of
equations.

numerical problems: the inclusion of the constitutive equations
does not only increase the total number of degrees of freedom
but also modifies the mathematical type of the resulting system
of governing equations (Joseph, 1990). Several authors (Keun-
ings, 1986; Renardy, 2000; Alves et al., 2001b; Fattal and Kupfer-
man, 2004; Alves, 2004) claimed that the HWNP is related to
the numerical discretization method, because the exact form of
the constitutive equation indeed admits regular solutions at the
continuous level. Other issues related to the divergence of the
numerical methods are simply due to the fact that, for any model
under consideration, no stationary state always exists. Steady
state solutions for viscoelastic models in complex flows, as theJacques Hadamard

(1902) introduced the
mathematical concept
of well-posed
problems, in which
the mathematical
description of
physical phenomena
should present
existing unique
solutions that depend
continuously on the
data, in some
reasonable topology.

flow past submerged solid bodies (cylinders, spheres, etc) and
in contraction flows, were not computed yet at high Deborah
numbers, a situation which is very similar to what happens with
Newtonian fluids, in which the flow becomes time dependent at
high Reynolds numbers, so imposing a steady solution may result
in loss of convergence. Moreover, the evolutionary character of
the constitutive models and the hyperbolic nature of the equa-
tions are usually dependent on the positive definiteness of the
conformation tensor (Dupret and Marchal, 1986; Joseph, 1990),
and numerical discretization errors could, eventually, lead to the
loss of such positive definiteness, resulting in a loss of topological
evolutionarity that can trigger Hadamard instabilities (Joseph,
1990).

In this work the second group of arguments is favoured, subscribing
to the idea that, for defying challenging problems, the weapons should
be clever, and usually simple, approaches to numerical flow solutions.

2.1 clever approaches

For over twenty years, an abundant literature has been discussing issues
of numerical stability and seeking to devise clever numerical schemes
in order to achieve more efficient, accurate, and stable solutions.

Some of these clever approaches were not exclusively presented for
low Reynolds number, or inertialess, computational rheology, but also
for turbulent flows of Newtonian fluids. The near wall thin boundary
layers and sharp velocity gradients developed in the turbulent flow
regime, and the inherent numerical difficulties, motivated the experts
of this field to develop new numerical methods and use near-wall laws.
Numerical improvements were then introduced, such the design of
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special upwind-based finite volume schemes (Yang and Shih, 1993), the
linearization and implicit treatment of source terms (Jacon and Knight, This kind of simple

logarithm
transformation was
also used in mass
transfer problems by
Miranda and Campos
(2001) and Afonso
et al. (2009a), who
applied a scalar
logarithmic
transformation to the
solute concentration
to solve the laminar
flow and solute
transport in a parallel
plate device with
permeable walls,
improving the FDM
and allowing for the
use of a larger grid
spacing without loss
of accuracy.

1994), high-resolution central schemes for nonlinear conservation laws
(Kurganov and Tadmor, 2000), high-resolution non-oscillatory advec-
tion methods (Drikakis, 2001), and a logarithm transformation used in
turbulence modelling within the k-ε formalism (Ilinca et al., 1998). Il-
inca et al. (1998) re-wrote the k-ε model in terms of the variables log (κ)

and log (ε), so that when κ and ε are recovered they are always positive.
This transformation also results in improved accuracy in regions of
sharp gradients of turbulent quantities such as in boundary layers near
the walls and in stagnation points.

For turbulent flow of viscoelastic fluids, early attempts to perform
numerical simulations of polymer induced drag reduction were unsuc-
cessful. The difficulty resulted from the ill-posed problem identified
by Hadamard (1902), in which the cumulative errors arising from the
numerical discretization, eventually could lead to the loss of positive
definiteness of the conformation tensor, A, and trigger evolutionarity
Hadamard instabilities (Joseph, 1990). The conformation tensor is a vari-
ance–covariance, Symmetric Positive Definite (SPD) tensor, and should
remain SPD when evolving in time. To overcome these ill-posed insta- A symmetric matrix

A is positive defined
(SPD) if
X ·A ·XT > 0, for
arbitrary X.

bilities, Sureshkumar and Beris (1995) introduced an artificial stress
diffusion term into the evolution equation for the conformation tensor,
leading to successful results when used with spectral evaluation of
all variables. Vaithianathan et al. (2006) developed another method
that also guarantees positive eigenvalues of the conformation tensor
(remaining SPD), while preventing over-extension for dumbbell mod-
els, such as the Oldroyd-B, FENE-P and Giesekus models. The FDM
code was coupled with a pseudo-spectral scheme for homogeneous
turbulent shear flow, and it extended the Kurganov and Tadmor (2000)
scheme, with the resulting spectra of the numerical simulations pre-
senting no signs of aliasing errors. Recently, Housiadas et al. (2010)
presented a new numerical method for the simulation of the flow of
complex fluids with internal microstructure applied in Direct Nume-
rical Simulations (DNS) of viscoelastic turbulent channel flow. This
method was based on the log-conformation (Fattal and Kupferman,
2004) and was implemented in a full 3D spectral representation for the
spatial variables and a backward differentiation second order scheme
for time integration. Here again, numerical diffusion was added to the
hyperbolic constitutive equation for the conformation tensor via the
implementation of a second order finite difference multigrid diffusion
scheme, with the main advantage (compared with a spectral method
implementation used in Housiadas and Beris 2004) of preserving the
positive definiteness of the conformation tensor.

In the framework of laminar flow computational rheology, and specif-
ically for the inertialess (negligible inertia, Re ∼ 0) HWNP case, theoret-
ical nonlinear (energy) estimates for the stress and velocity components
in a general setting, for an Oldroyd-B fluid, where presented by Lozin-
ski and Owens (2003). They worked with the configuration tensor, The symmetric

configuration tensor,
c was defined as
c = τ+ 1

Wi I, for an
Oldroyd-B fluid.

c, and derived a method that guarantees a well-posed evolutionarity
Hadamard problem (Joseph, 1990). Alves et al. (2003a) proposed a new
high-resolution non-oscillatory advection scheme, especially designed
to be used with differential viscoelastic constitutive equations, referred
to as the Convergent and Universally Bounded Interpolation Scheme
for the Treatment of Advection (CUBISTA). This high resolution scheme
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is formally third-order accurate on uniform meshes for smooth flows,
and proved to be a good scheme to predict accurately viscoelastic flows.

Fattal and Kupferman (2004) also proposed a clever idea for viscoelas-
tic constitutive equations, based on a reformulation of the constitutive
law in terms of the matrix logarithm of the conformation tensor. Ac-This

matrix-logarithm or
log-conformation
formulation
(denomination used
henceforth), is as the
name implies, a
simple logarithmic
transformation of the
conformation tensor
in the constitutive
differential equations
of viscoelastic fluids.

cording to Fattal and Kupferman (2004), this formulation introduces a
better polynomial interpolation of the logarithm of the variables that
exhibit an exponential growth near stagnation points, with the added
advantage of preserving the positive definiteness of the conformation
tensor. From a numerical point of view, the tensor-logarithmic trans-
formation requires the determination of eigenvectors and eigenvalues
of the conformation tensor at every computational cell and instant of
time. Fattal and Kupferman (2004) also reported a breakthrough in
the HWNP in their numerical simulations with the FENE-CR model
(Chilcott and Rallison, 1988) in a two-dimensional lid-driven cavity flow.
Later, Fattal and Kupferman (2005) extended the log-conformation ap-
proach to an Oldroyd-B fluid in the same geometry using a multigrid
solver, providing the possibility to perform stable simulations at very
large values of the Weissenberg number. They also reported on a stabil-
ity condition and stated that it may be very restrictive when convection
is weak, as in creeping flows, and in the presence of large deformation
rates , as in the flow around sharp corners, showing the benefit of usingJacopo Riccati, an

Italian
mathematician,
looked at the
approximation to the
second order
differential equations,
in the
form:dy

dx
= P(x)+

Q(x)y+R(x)y2.

the tensor-logarithmic transformation.
Lee and Xu (2006) presented a class of positivity preserving discretiza-

tion schemes applied for rate-type viscoelastic constitutive equations,
using a semi-Lagrangian approach and FEM, based on the observation
that the rate-type constitutive equations can be cast into the general
form of the Riccati differential equations and demonstrated that their
method is second-order accurate for both time and space. Cho (2009)
proposed a vector decomposition of evolution equations of the confor-
mation tensor of Maxwell-type. In this transformation, the vectorized
equations were considered as the sum of dyadics of the conformationA dyad A is formed

by the dyadic product
(or external product)
of two vectors a and
b: A = a⊗ b.

tensor. This vector decomposition preserved the positive definiteness of
the conformation tensor and did not require the solution of the eigen-
value problem at every calculation step, decreasing the computation
cost. Nevertheless, in a generic 3D simulation, the vector decomposition
required the calculation of nine components instead of the six inde-
pendent components of the log-conformation tensor approach, thus
limiting its efficiency in 3D numerical calculations, when compared
with the log-conformation transformation approach.

Balci et al. (2010) proposed, very recently, a method in which the
square root of the conformation tensor is used for Oldroyd-B and FENE-
P models. They derive an evolution equation for the positive-definite
square root of the conformation, by taking advantage of the fact that
the positive definite symmetric polymer conformation tensor possesses
a unique symmetric square root that satisfies a closed-form evolution
equation. Balci et al. (2010) claimed that their method can be easily
implemented in numerical simulations, because it does not require the
determination of eigenvectors and eigenvalues of the conformation
tensor at every calculation step, resulting in significant practical advan-
tages in terms of both accuracy and stability. This square-root formalism
was very recently implemented in the in-house FVM code (Afonso et al.,
2010a), but the results are still very preliminary, therefore this topic will
be discussed later (See the Outlook section on page 267).
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If the above mentioned clever approaches were independent of the
numerical procedures used to discretize the system of governing equa-
tions, and so suitable for FVM, FEM, FDM or other procedures, a note
should be addressed on the large amount of literature on stabiliza-
tion schemes within the FEM and hybrid FEM/FVM frameworks for
viscoelastic flows. For a more detailed description of these stabiliza-
tion methods the works of Baaijens (1998); Baaijens et al. (2004) and
Coronado (2009) are recommended.

As stated earlier (Section 1.1.3), there are specific Benchmark Flows

that have been set to help the development and assessment of the
behaviour of all these numerical techniques in computational rheology,
and which have been studied independently by several research groups,
in order to obtain consistently high accurate numerical solutions. These
benchmark flows are very useful to measure the accuracy and assess
the performance of the implementation of new numerical methods.

Among the proposed benchmark flows in computational rheology
over the past years (Brown and McKinley, 1994; Hassager, 1988), it is
now possible to conclude that the favourite geometries are the flow
around a cylinder or a falling sphere and the 4:1 contraction flow
(Owens and Phillips, 2002). In the next sections these two interesting
type of flows will be reviewed in some detail.

2.2 cylinder flows

The flow around a confined cylinder in a planar Poiseuille flow is
a usual benchmark test-case in computational rheology (Brown and
McKinley, 1994). It is representative of fundamental flow dynamics of
viscoelastic fluids around submerged solid bodies and it can be encoun-
tered in many engineering processes, namely in the food industry (Xia
and Sun, 2002), in composite and textile coating operations (Liu et al.,
1998) and flows through porous media (McKinley et al., 1993).

From a numerical point of view, this flow is considered a smooth flow,
due to the absence of geometrical singularities, such as a re-entrant or
salient corner found in entry flows. However, it also introduces some
difficulties associated with the development of thin stress layers on the
cylinder sidewall and along the centreline in the cylinder rear wake,
imposing a limiting value to the critical Deborah number, Decrit, for
which steady solutions can be obtained.

For all these reasons, in the VIIIth international workshop on nu-
merical methods for non-Newtonian flows, this flow was selected as a
benchmark problem in computational rheology (Brown and McKinley,
1994). Another reason for the success of this choice was the suitability
of this benchmark flow to experimental investigations, especially for
birefringence studies.

A schematic view of the flow past a confined cylinder in a planar
channel is shown in Figure 2.1. The ratio of channel height h to cylinder
radius R is set equal to 2, which corresponds to the benchmark 50%
blockage ratio case (Brown and McKinley, 1994). The Deborah number
for this benchmark flow, based on the fluid relaxation time, λ, the mean
inlet velocity, U, and the cylinder radius, R, can be defined as

De =
λU

R
. (2.1)
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A Boger fluid is an
elastic liquid with a
constant viscosity.
The first Boger fluid
was introduced over
30 years ago by
David V. Boger in a
note entitled “A
Highly Elastic
Constant Viscosity
Fluid” (Boger, 1977).
Boger’s purpose was
to create an optically
clear, highly
viscous and highly
elastic fluid which
exhibits a nearly
constant viscosity
and which can be
processed at room
temperature.

Figure 2.1: Schematic representation of the flow past a confined cylinder geom-
etry (X = x/R)

This computational benchmark flow described by Brown and McKin-
ley (1994) was based on the experimental results of McKinley et al. (1992,
1993). The fluid used in this work was a constant viscosity Boger fluid, a
highly viscous and highly elastic polymeric solution consisting of a mix-
ture of 0.31% (w/w) Polyisobutylene (PIB) dissolved in Polybutene (PB)
and Tetradecane (C14), with a relaxation time of λ = 0.794 s. The rheo-
logical properties of this Boger fluid, also known as the Massachusetts
Institute of Technology (MIT) Boger fluid, are documented in detail by
Quinzani et al. (1990).

For the inertialess flow around a confined cylinder it is also neces-
sary to define a second dimensionless number, the ratio between the
Newtonian solvent viscosity, ηs, and the total viscosity, ηo, defined as

β =
ηs

ηo
=

ηs

ηs + ηp
, (2.2)

where ηp is the polymeric contribution to the shear viscosity.
The value β = 0.59 characterizes the MIT Boger fluid used in the

experiments of McKinley et al. (1992, 1993), and has been used since
then in most of the numerical works for this flow (Liu et al., 1998; Fan
et al., 1999; Dou and Phan-Thien, 1999; Alves et al., 2001b; Owens et al.,
2002; Kim et al., 2004; Hulsen et al., 2005; Afonso et al., 2008, 2009b).

For the cylinder problem, two possible configurations are commonly
used in computational rheology:

- the cylinder is fixed relative to the confining channel walls and a
planar Poiseuille flow emerges from an imposed pressure gradient
(the common computational benchmark flow described by Brown
and McKinley (1994));

- the cylinder moves as in the case of a cylinder falling freely along
the middle of a channel, which is equivalent to a uniform flow
approaching a fixed cylinder with channel walls moving with
the fluid (this case is a work in progress, and several contributions
were reported in the recent past).

During this work, several detailed studies (five presentations in inter-
national and national conferences and two published papers, Afonso
et al. (2008, 2009b)) were performed on both cylinder flow cases. In the
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next sections both the common computational benchmark flow and the
freely falling cylinder cases are discussed in more detail.

2.2.1 Flow around a cylinder

2.2.1.1 Brief review: experimental work

For Newtonian fluids, the first approach to solve the flow around
submerged solid bodies was made by Stokes (1851), who obtained the
analytical solution for creeping (or inertialess) flow around a sphere and
the corresponding expression for the drag force. Oseen (1910) obtained
an approximate analytical solution for the flow around a cylinder at low
Reynolds numbers, and later, Proudman and Pearson (1957) derived
the complete solution, using asymptotic expansions.

For laminar, transition and turbulent flow regimes (ranging from
Reynolds numbers from 50 to 9×103) of non-Newtonian fluids around
a cylinder, a detailed experimental study was presented by Coelho and
Pinho (2003a,b, 2004). Using 0.1 to 0.6% (w/w) aqueous solutions of
Carboxymethyl cellulose (CMC) and tylose, two cylinders with an aspect
ratio of 12 and 6 and blockages of 5 and 10%, respectively, results were
presented for the various vortex shedding regimes as a function of
the Reynolds and elasticity numbers (Coelho and Pinho, 2003a), for
the particular flow characteristics within each of those flow regimes
(Coelho and Pinho, 2003b), and for the pressure field on the cylinder
surface, such as the drag coefficient, the pressure rise coefficient and
the wake angle (Coelho and Pinho, 2004).

For low Reynolds numbers or inertialess flows of complex fluids,
and even before the establishment of the computational benchmark
flow, Dhahir and Walters (1989) performed extensive experimental drag
force measurements on a cylinder, by considering the effect of wall
confinement (using a 50% blockage ratio). Several types of fluids were
used, such as a Newtonian fluid (a mixture of corn syrup in water),
a Boger fluid (a mixture of Polyacrylamide (PAA) in water and corn
syrup), an inelastic shear-thinning solution (xanthan gum in water)
and a viscoelastic fluid with elastic and shear thinning effects (PAA in
water). The drag force on the cylinder was found to decrease for all
non-Newtonian fluids, when compared with the Newtonian case, with
the higher reduction obtained for the viscoelastic shear thinning fluid
and the lower for the Boger fluid, by approximately 55% and 20% as
compared to Newtonian fluid, respectively.

Using Laser Doppler velocimetry (LDV) and video flow visualization
McKinley et al. (1992, 1993) documented a series of flow transitions for
creeping flow past a circular cylinder confined between two parallel
channels, using a highly viscous viscoelastic PIB-based Boger fluid. For
low Deborah numbers (De < 1) the flow field remained steady and
two-dimensional, but for higher Deborah numbers (De > 1) a transition
from steady 2D to steady three-dimensional flow was reported, with
the secondary flow in the downstream wake region periodically moving
in the axial direction of the cylinder. Because this transition occurred at
low Reynolds numbers, inertial effects could be ruled out, suggesting
that these instabilities are purely elastic. The critical Deborah number
(Decrit) for the onset of these purely elastic instabilities depends on
the blockage ratio, increasing with the increase of this aspect ratio.
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McKinley et al. (1992, 1993) also described a steady to unsteady 3D
flow transition at higher Deborah numbers.

The elastic flow transitions for viscoelastic flow past a confined
circular cylinder under creeping flow conditions were also studied
experimentally in several subsequent works, such as the experiments
of Byars et al. (1995), Byars (1995), McKinley et al. (1996) and Shiang
et al. (1997, 2000). Byars (1995) examined the nonlinear dynamics of
the secondary flows for a wide range of aspect ratios and the effect of
the upstream conditions on the spatial and temporal characteristics of
the secondary flow structures. Shiang et al. (1997) also worked with
the PIB-based Boger fluid characterized by Quinzani et al. (1990), and
investigated the influence of elasticity and geometry eccentricity effects
on the dynamics and kinematics of the inertialess, viscoelastic flow
past a confined circular cylinder, using Particle image velocimetry (PIV)
to measure the whole-field of instantaneous velocity, at a fixed aspect
ratio of 16. Due to this high aspect ratio, Shiang et al. (1997) did not
observe the 3D transition from steady to unsteady flow, as reported
by McKinley et al. (1992, 1993). Shiang et al. (2000) extended the work,
using PIV and long-exposure streak line photography to investigate
creeping viscoelastic flow past a circular cylinder, with a fixed aspect
ratio of 2. The critical Deborah number determined by Shiang et al.
(2000) was Decrit ≈ 0.21, significantly lower than the values reported
by McKinley et al. (1993), Decrit = 1.3, for a channel width to cylinder
radius aspect ratio of two. Shiang et al. (1997, 2000) also identified
experimentally a periodic vortical structure for Decrit ≈ 0.66.

From these works it seems that the elastic instabilities are related to
the extension of the high molecular network and the large stresses devel-
oped in the wake of the cylinder. McKinley and co-workers (McKinley
et al., 1996; Pakdel and McKinley, 1996) proposed a criterion that de-
fines and unifies the critical conditions for the appearance of elastic
instabilities in these systems, where the streamlines have curvature. Re-
cently, a new criterion (semi-empirical) specifically for the viscoelastic
flow past a confined cylinder was presented by Dou and Phan-Thien
(2008), and the trigger mechanism for the onset of the elastic instabil-
ities was related to an inflection of the velocity profile originated by
the normal stress near the cylinder surface. This criterion is consistent
with that proposed by McKinley et al. (1996) and Pakdel and McKinley
(1996), with Decrit increasing with the aspect ratio h/R, and scaling
with O

[
1/
√
1−β

]
.

Other type of fluid that was studied in several experimental works
(and simulations, see next section 2.2.1.2), was the shear-thinning mix-
ture of 5% (w/w) PIB in C14. Baaijens and co-workers (Baaijens et al.,
1994, 1995) performed accurate measurements of the velocity and the
stress fields, using LDV and flow induced birefringence, respectively,
for several flow rates and cylinder eccentricity. Later, Baaijens et al.
(1997), changed the working fluid to a Low-density polyethylene (LDPE)
melt and the aspect ratio to 8 and also investigated the case of the flow
around an asymmetrically confined cylinder.

2.2.1.2 Brief review: numerical work

Along with the experimental work, Baaijens and co-workers (Baaijens
et al., 1994, 1995, 1997, 2004) also performed numerical predictions for
shear thinning viscoelastic flow past a confined circular cylinder under
creeping flow conditions, using a mixed FEM code. Baaijens et al. (1994)
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used a PTT model in the numerical simulations to compare with the
experimental results obtained at De = 0.216, with the numerical results
describing accurately the velocity field but failing to predict the normal
stresses in the wake of the cylinder. The use of a multimode PTT model
allowed Baaijens et al. (1995) to obtain a good agreement between the
numerical and experimental normal stress fields, including the results
for the eccentric cylinder. Later in Baaijens et al. (1997), the numerical
predictions for the wake normal stress for the LDPE fluid, were not in
agreement with the experimental works, when using a four mode PTT
model with exponential kernel for the stress coefficient function and
also a multimode Giesekus model.

For the flow of an Oldroyd-B fluid in the Stokes regime for a 50%
blockage ratio and β = 0.59 (as in the experimental work of McKinley
et al., 1993), an extensive list of investigations were performed over
the last years (e.g. Dhahir and Walters, 1989; Hu and Joseph, 1990;
Huang and Feng, 1995; Liu et al., 1998; Fan et al., 1999; Phan-Thien
and Dou, 1999; Dou and Phan-Thien, 1999; Caola et al., 2001; Alves
et al., 2001b; Oliveira, 2001a; Owens et al., 2002; Kim et al., 2004; Alves,
2004; Oliveira and Miranda, 2005; Hulsen et al., 2005; Gerritsma, 2006;
Coronado et al., 2007; Sahin and Wilson, 2007; Guénette et al., 2008;
Afonso et al., 2008; Kane et al., 2009; Afonso et al., 2009b; Damanik
et al., 2010; Jafari et al., 2010). From this vast list, three sets of works can
be selected as milestones in the process of defying the cylinder HWNP.
The main reason, besides its clear relevance, to select these specific
papers over other equally interesting works, is to helping establish an
organized review of this subject (and avoid the possible repetition with
the reviews made at the paper presented in Part III, Section 5.1). These
milestones works are:

- Fan et al. (1999) and Alves et al. (2001b). Prior to these works, there
was a significant discrepancy in the results presented by various
research groups. Surprisingly this limitation is observed even at
low De values, where all the methods converge to a stable solu-
tion. For instance, and taking as comparison the dimensionless
drag coefficient, CD, the results for De > 0.7 are not in agreement The mathematical

description of the
dimensionless drag
coefficient, CD, is
presented in equation
(5.22), on page 93. In
other notations, the
dimensionless drag
coefficient is designed
as K (see equation
(5.12), on page 74, for
a mathematical
description).

between the CD values proposed by Fan et al. (1999), Caola et al.
(2001) and Owens et al. (2002), with the exception of the results
from Alves et al. (2001b) and Fan et al. (1999), as illustrated in Fig-
ure 2.2(a). It was the first time that two different numerical codes
yield independent similar results, not only in the good agreement
for the CD values (although it is an important parameter, the
CD is not the better indicator of the quality or accuracy of the
numerical solutions, since it is an integral quantity), but also for
the unambiguous results for the profiles of normal stresses along
the centreline downstream of the cylinder, at De = 0.7, shown in
Figure 2.2(b).

- Fattal and Kupferman (2004). After the presentation of this work
on the log-conformation methodology, the scenario changed sig-
nificantly, at least in respect to the CD data. The first numerical
implementation of this method was performed in the finite dif-
ference framework by the authors (Fattal and Kupferman, 2004,
2005), later in the finite element framework in a joint work with
Hulsen (Hulsen et al., 2005) (and only two months later, by Kwon,
2004), in the finite volume method framework by Afonso et al.
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(2009b) (see more detail in the next section), and recently in the
spectral elements framework by Jafari et al. (2010).

Hulsen et al. (2005) tested the log-conformation method in the
benchmark flow of Oldroyd-B and Giesekus fluids past a confined
circular cylinder and reported an apparent unbounded conver-
gence limit for the Giesekus model, whereas for the Oldroyd-B
fluid the solution became unsteady at high Deborah numbers
while exhibiting a strong mesh dependency, particularly for the
normal stresses on the wake of the cylinder. Kwon (2004) ex-
tended the log conformation formulation to viscoelastic flows
around asymmetric arrays of cylindrical obstacles confined in a
channel and the results agreed qualitatively with the flow char-
acteristics. Coronado et al. (2007) presented a simple alternative
implementation of the log-conformation formulation and their
results demonstrated that the method works well for a general-The Discrete

Elastic-Viscous Split
Stress, independent
Traceless velocity
Gradient
interpolation,
Streamline Upwind
Petrov-Galerkin
(DEVSS-TG/SUPG)
are stabilization
schemes used within
the FEM framework.

ized constitutive model improving the numerical stability at high
De, especially in the flow past a confined cylinder, where the
maximum De was extended to 1.0, as compared to 0.7 obtained
with the standard DEVSS-TG/SUPG method. Their results were
also in good agreement with those presented by Hulsen et al.
(2005). Guénette et al. (2008) performed simulations of the flow of
a viscoelastic fluid around a confined cylinder using the Oldroyd-
B and Giesekus models. They used a FEM, with an anisotropic
adaptive remeshing method, based on the log-conformation for-
mulation, and showed that convergence with mesh refinement
was possible for the Oldroyd-B model up to at least De = 0.7.
Kane et al. (2009) compared four different FEM treatments for the
convective term of the log-conformation evolution equation and
performed a comparative study on the cylinder benchmark flow.
Jafari et al. (2010) presented a spectral element algorithm based on
the log-conformation with the aim of removing the instabilities ob-
served in the simulation of unsteady viscoelastic fluid flows, and
surprisingly, at least for FENE-P, the results obtained with the log-
conformation did not converge for higher Deborah numbers flows.
Damanik et al. (2010) used a fully coupled monolithic multigrid
finite element approach with consistent edge-oriented stabiliza-
tion technique. Stress convergence was attained up to De ≈ 0.7
in the cylinder flow, and converged solutions were obtained up
to De ≈ 2.1, with the drag coefficient comparable with the data
presented by Hulsen et al. (2005) and Afonso et al. (2009b). Never-
theless, the monolithic edge-oriented FEM presented by Damanik
et al. (2010), used a direct steady approach which could dissipate
the expected unsteady behaviour of the flow at high Deborah
numbers. The use of only half of the computational domain (i.e.
imposing symmetry boundary conditions along the centreline),
eliminates the possibility to capture possible symmetry-breaking
steady/unsteady phenomena.

If, on one hand, Alves et al. (2001b) clearly identified the necessity to
use very refined meshes and accurate schemes for the advection terms
of the governing equations, on the other hand, Fattal and Kupferman
(2004) provided a glimpse into the possible results for De > 0.8 in the
cylinder case, opening the doors to the supposed unsteady viscoelastic
flows at high Deborah numbers and its inherent instabilities, as the
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(a) Drag force coefficient, CD.

(b) Stress profiles.

Figure 2.2: Flow of an Oldroyd-B fluid (β = 0.59) past a cylinder: (a) drag
force coefficient, CD and (b) stress profiles along cylinder wall and
downstream centreplane at De = 0.7. Figures adapted from Alves
(2004) with the permission of the author.

ones reported in the investigations of Afonso et al. (2009b), detailed in
the next section.

2.2.1.3 Contribution from this work

In Afonso et al. (2009b) (see the integral version of this investigation
on Section 5.1, on page 67), the log conformation methodology was
implemented within the finite volume method framework for the first
time. This was achieved via the discretization of the log-conformation
evolution equation (see equation (5.9), on page 71) into the existing
FVM code.

The flow around a confined cylinder with a blockage ratio of 0.5
was chosen as the test geometry and detailed comparison between
the results obtained by both the standard formulation (based on the
extra stress tensor, see equations (6.3) and (6.5), on page 70, and called
abbreviately as StrT) and the log-conformation tensor approach (called
LogT) was presented.

The results for the StrT formulation obtained in the refined mesh
(mesh M60WR, with WR standing for wake refined) with a minimum
cell size of the order O(10−4 : 10−3) diverged at low De ≈ 0.9, while
for the LogT there was no limiting bound for the attained Deborah
number, although only simulations up to De = 1.9 were performed.
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This represents an increase of about 90% in the maximum attainable
De when the LogT is used instead of the StrT formulation.
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Figure 2.3: Flow of an Oldroyd-B fluid (β = 0.59) past a cylinder: (a) drag
force coefficient, K and (b) stress profiles along cylinder wall and (c)
downstream centreplane at De = 0.7.

The divergence of the simulations performed with the StrT formula-
tion was related with the loss of positive definiteness of A (Figure 5.2,
on page 75), with the time evolution of det(A)min at the rear stagnationFor the Oldroyd-B

model it is expected
that det(A)min> 1
(Hulsen, 1988).

point region becoming negative. For the LogT formulation the value
of det(A)min is, by design, always positive, thus showing no signs of
violating the positive definiteness criterion.

The predictions for the drag coefficient K, obtained by Afonso et al.
(2009b), along with the data published after that work, are presented in
Figure 2.3a. Up to De = 1 the results agree and follow the trend data
of Alves et al. (2001b), Fan et al. (1999), Kim et al. (2004) and Sahin and
Wilson (2007). For higher Deborah numbers (up to De = 1.9), the drag
coefficient predictions are in good agreement with the data presented
by Hulsen et al. (2005) and Damanik et al. (2010). The underprediction
presented by Hulsen et al. (2005) can be explained by the fact that for
De > 1 no steady state could be attained, and in Afonso et al. (2009b)
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the K values were the time-average values, while for Hulsen et al. (2005),
K is assumed right after the onset of the transient behaviour. The direct
steady approach and the use of only half of the computational domain,
did not allowed Damanik et al. (2010) to obtain the expected unsteady
behaviour of the flow at high Deborah numbers.

Concerning the normal stress convergence along the cylinder surface
and the rear wake, mesh independent results were obtained up to
De = 0.7, and in agreement with the values obtained by Alves et al.
(2001b) (see Figures 2.3b and 2.3c). At De = 0.9 stress convergence was
not achieved by any published work. The mesh dependence can be
even more important given the observations by Afonso et al. (2009b) on
the specific location of peak stress, xmax, where the maximum normal
stress, (τxx)max, along the centreline of the rear wake region occurs
(see Figure 5.7). For high Deborah numbers the location of xmax/R
shifts back towards the rear stagnation point, while the maximum
normal stress, (τxx)max is increasing. This upstream shift in xmax/R
at large Deborah numbers certainly contributes to numerical difficulties,
as the size of the region of peak normal stress may eventually become
smaller than the local streamwise mesh resolution.

Afonso et al. (2009b) also performed simulations using the PTT model,
with a linear kernel for the stress function and two different extensional
parameters (ε = 0.02 and 0.25), in order to better understand the main
differences between the results obtained with a constant viscosity vis-
coelastic fluid (represented by the Oldroyd-B model) and a viscoelastic
shear-thinning fluid (PTT model). The extensional parameter ε imposes
an upper limit to the elongational viscosity (ηE∝1/ε for low ε) and
allowed the study of the effect of polymer concentration, ranging from
dilute (ε = 0.02) to concentrated (ε = 0.25) polymer solutions. When ε→ 0 the

PTT model reduces to
the Oldroyd-B model.

For lower values of ε (ε = 0.02), and on the most refined mesh, the
standard formulation diverged atDe ≈ 1.2, again with signs of negative
values of det(A)min, while for the log-conformation approach, con-
verged solutions could be attained up to De ≈ 10. This breakthrough
in the critical Deborah number for steady flow clearly shows the advan-
tage of using the LogT formulation. For high values of ε (ε = 0.25), the
scenario was outstanding, with the LogT presenting no bound for the
limiting Deborah number, while the StrT presented signs of ill-posed
problems at De ≈ 30.

For the PTT model, and for both ε values investigated, the mesh
refinement effect for the profiles of τxx at the cylinder sidewalls and in
the near wake region is negligible (see Figure 5.10, on page 82), even
for so high Deborah numbers.

2.2.2 Freely falling cylinder

The freely falling cylinder in the middle of a channel is equivalent (by
means of a Galilean transformation) to an uniform flow approaching a
fixed cylinder with channel walls moving with the fluid. This configura-
tion is different from the situation discussed in the previous section, in
which the cylinder is fixed relative to the confining channel walls and a
planar Poiseuille flow emerges from an imposed pressure gradient.

The freely falling cylinder case gives rise to the interesting phe-
nomenon of negative wakes (Hassager, 1979), essentially consisting of
fluid in the wake of the cylinder moving faster and in the opposite
direction to the wake-generating object. In a frame of reference fixed
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to the cylinder, this correspond to velocities in the wake that are faster
and in the same direction as the uniform approach flow, a situation
that arises only with viscoelastic fluids. The origin of negative wakes is
not yet well understood, and one of the motivations for this work was
numerical quantification of conditions for its formation.

2.2.2.1 Brief review: experimental work

For some viscoelastic fluids, the steady flow behind a cylinder is charac-
terized by the appearance of a negative wake which strongly depends on
fluid rheology. Negative wakes are overshoots of the streamwise velocity
seen by the moving body along the centreline and have been found
in wake of cylinders, spheres and rising bubbles, and is schematically
represented in Figure 2.4.

Newtonian

Viscoelastic (Negative wake)

U

u

x

Figure 2.4: Schematic representation of a negative wake. Velocity profiles along
the rear wake of the cylinder (reference attached to the cylinder).

One of the most extensive early investigations of this phenomenon
were the visualizations of the sedimentation of a sphere in shear-
thinning PAA solutions by Arigo and McKinley (1998), who also made
an extensive literature survey review. For Boger fluids, however, McKin-
ley et al. (1993) were unable to detect the appearance of negative wakes
downstream of a cylinder and up to the present time there is no exper-
imental evidence of negative wake formation with constant viscosity
elastic fluids.

The specific physical conditions under which the negative wake
arises and the possible mechanisms involved in their formation are still
not fully understood in spite of several studies that have focused on
these issues. In the sphere/cylinder geometries, Bush (1993) attributed
the negative wake behaviour to the relative proportion between elon-
gational stresses in the downstream region and fluid elasticity, and
suggested that the upstream shift in streamlines and the formation of
negative wake are a result of having a Deborah number much greater
than the Trouton ratio. For the sphere flow case, Harlen (2002) proposed
that the origin of negative wake was related to the circumferential gra-
dient of shear stress along the centreline, and in particular with the
competition of shear and normal stress distributions. Based on the
suggestions of Bush (1993) and Harlen (2002), Arigo and McKinley
(1998) proposed a criterion for the formation of negative wake based
on the ratio of axial tensile stress to shear stress. Dou and Phan-Thien
(2004) also studied this phenomenon and proposed a different criterion,
this time based on the ratio between the gradient and the magnitude of
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elongational viscosity, to predict the critical De marking the onset of
negative wake for several constitutive models (PTT, FENE-CR, FENE-P
and Giesekus models).

2.2.2.2 Brief review: numerical work

The settling of a cylinder in a confined viscoelastic fluid is still a work
in progress in computational rheological, and several contributions have
come forward in the recent past. Huang and Feng (1995) investigated
the steady settling of a cylinder through quiescent Newtonian and
Oldroyd-B fluids in a vertical channel, employing FEM with the Elastic-
Viscous Split Stress (EVSS) scheme. For their higher blockage case (50%), The EVSS

(Elastic-Viscous Split
Stress) is stabilization
scheme used within
the FEM framework.

Huang and Feng (1995) predicted a negative wake at high Deborah
numbers, but this unusual phenomenon was not replicated by Oliveira
et al. (1998) in their numerical work based on the FVM. The predictions
of Oliveira et al. (1998) for the unbounded flow case and the confined
case with blockage area of 33% were in agreement with those of Huang
and Feng (1995), but discrepancies were found in the wake velocities for
the higher blockage case (50%). These discrepancies were attributed to
the response of viscoelastic fluids to intense local shear and elongational
flows at the proximity of the channel wall. Dou and Phan-Thien (2004)
carried out simulations of the uniform flow of a viscoelastic fluid
past a cylinder in a moving channel using the UCM, PTT, Oldroyd-B
and the FENE-CR models. They used a control volume finite element
method with a DEVSS-ω formulation under a distributed computing The DEVSS-ω is an

independent
interpolation of the
vorticity version of
the DEVSS FEM
stabilization scheme.

environment through a Parallel Virtual Machine (PVM) library. Again, a
negative wake was not observed with the UCM and Oldroyd-B fluids for
various retardation ratios (β = 0.125, 0.4, 0.6, 0.8), thus corroborating
the predictions of Oliveira et al. (1998) in contrast to the results of
Huang and Feng (1995). However, for the PTT and FENE-CR models a
negative wake appeared at a critical De. Regarding drag coefficient, CD,
predictions, the early calculations of Dou and Phan-Thien (2003) found
a monotonic decrease of CD with De for the FENE-CR fluid with lower
extensibility parameter (L2 = 10). For a higher extensibility parameter
(L2 = 100), however, they predicted a non-monotonic behaviour, with
an initial decrease followed by an increase for approximately De > 0.6,
related to the strong increase of the extensional effects. The numerical
investigation of Kim et al. (2005a) focused on the comparison of negative
wake generation in both uniform and Poiseuille flows past a cylinder,
and on the influence of the FENE-CR model parameters upon this flow
feature: viscosity ratio, β, and polymer extensibility, L2. By employing a
DEVSS-G/SUPG formulation with an efficient iterative solution method The Discrete

Elastic-Viscous Split
Stress, velocity
Gradient
interpolation,
Streamline Upwind
Petrov-Galerkin
(DEVSS-G/SUPG) is
another FEM
stabilization scheme.

developed for the mixed FEM by Kim et al. (2004), they found that the
drag coefficient monotonically decreased for both L2 = 10 and L2 = 100,
in contrast with the results obtained by Dou and Phan-Thien (2003).
They also found that, for all flow conditions and model parameters, the
negative wake generation is more pronounced when the approach flow
is uniform than when it is a Poiseuille flow.

Negative wakes in the settling sphere problem have also been ex-
tensively studied using numerical methods (Harlen, 2002; Dou and
Phan-Thien, 2003; Kim et al., 2005a; Satrape and Crochet, 1994). These
works lead to the general conclusion that both shear-thinning and elas-
tic effects are necessary for the formation of a negative wake. In contrast,
the numerical simulations by Satrape and Crochet (1994) and Harlen
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(2002) showed that a negative wake can be present for constant viscosity
elastic fluids, such as those represented by the FENE-CR model.

2.2.2.3 Contribution from this work

In Afonso et al. ((2008) (see the integral version of this investigation on
Section 5.2, on page 87), the flow of viscoelastic fluids past a cylinder
settling between two parallel plates was numerically investigated using
a finite-volume technique.

Five different constitutive models are used (UCM, Oldroyd-B, FENE-
CR, PTT and Giesekus), in order to properly assess the effect of various
rheological properties and models. For the 50% blockage case, the
steady flow behind the cylinder is characterized by a negative wake,
which strongly depends on the fluid rheology. "Negative wakes" were
visualized in past experimental work and have been extensively stud-
ied in very recent numerical work, especially with view to find the
conditions under which they arise.

Simulations were carried out under creeping flow conditions, using
very fine meshes, especially in the wake of the cylinder, where large
normal stress gradients are observed for high Deborah number flows.
Numerical solutions could be obtained up to Deborah numbers in
excess of those reported previously in the literature, especially in the
case of the PTT, FENE-CR and Giesekus models. Special care was
exercised in order to guarantee that all solutions are well converged
iteratively, with the L2 norm of the residuals of the equations to be less
than a tolerance of 10−6, and that sufficient mesh convergence is also
provided, with the minimum normalized cell spacing along the radial
and azimuthal directions of 0.002 and 0.0003, respectively, allowing
estimation of drag coefficients which are exact up to the first decimal
place, corresponding to an accuracy of around 0.1 - 0.3 % on average.

Understanding the origin and other factors that influence the neg-
ative wake phenomenon thus appears as the main motivation for the
present work. In terms of outcome, this study leads to three important
contributions:

. clarify the significant discrepancies in the predicted drag coeffi-
cient of a FENE-CR fluid obtained by Dou and Phan-Thien (2003)
and Kim et al. (2005a),

. progress towards the development of theory for the formation of
negative wake, and

. confirmation of some sets of results in the literature by different
numerical methods.

For the UCM and the Oldroyd-B fluids with low solvent viscosity con-
tribution (β = 0.125), the drag coefficient on the cylinder decreases
monotonically with increasing Deborah number. When the solvent vis-
cosity contribution is high (β = 0.8) the drag coefficient first decreases
with De followed by a levelling out and marginal, very slight increase,
for De > 1.1. For all retardation ratios, our results are well below the
predictions of Dou and Phan-Thien (2003), with agreement only be-
tween the Newtonian cases up to De ≈ 0.3. For the other models with
bounded extensional viscosity, the FENE-CR, PTT and Giesekus, the
latter two being shear-thinning, the drag coefficient decreases mono-
tonically with increasing Deborah number. For the FENE-CR model,
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good agreement was found with the CD results of Kim et al. (2005a)
for both extensibility parameters, L2 = 10 and L2 = 100, whereas the
predictions of Dou and Phan-Thien (2003) with L2 = 10 lie well below
both sets of results, close to the predictions for the L2 = 100 case. For
L2 = 100, the results from Dou and Phan-Thien (2003) show a non
monotonic behaviour, diverging from both our predictions and those
of Kim et al. (2005a), with agreement only for De 6 0.6.

Regarding the existence of negative wake these sets of simulations
have shown that models with unbounded or bounded but very large
extensional viscosities do not exhibit this feature. For the UCM and
Oldroyd-B fluids there was no sign of a negative wake regardless of the
values of β, with the velocity profiles presenting an upstream shift close
to the back of the cylinder ( x/R 6 1.5− 2) followed by a downstream
shift for De > 0.5. For the FENE-CR model with L2 = 100, there is a
negative wake for De > 1.5, starting about 3 radii from the rear of the
cylinder and extending up to x/R ≈ 16. The magnitude of the negative
wake increases withDe and is approximately 11.7% atDe = 5.0. For the
FENE-CR fluid with L2 = 10, there is no upstream shift of the velocity
and the negative wake is more intense and clearly marked appearing at
De > 0.5, and formed at about one radius distance behind the cylinder.
For L2 = 10 the magnitude of the negative wake is larger than for
L2 = 100, being 32.8% atDe = 7.8, whereas its length is actually smaller,
with x/R ≈ 10 forL2 = 10 and x/R ≈ 16 for L2 = 100. For the PTT fluid
with the highest elongational parameter ε = 0.25, a negative wake in
the velocity overshoot is found at De > 0.5, starting at x/R ≈ 2 and
extending to approximately x/R ≈ 9. The relative velocity overshoot
increases with De up to De ≈ 5 and then asymptotes to a constant
value of about 34%, while its location shifts further downstream. For
lower values of the ε parameter, the flow behaviour becomes similar to
that seen with the UCM model. The Giesekus model produces an initial
upstream shift followed by a downstream shift and a negative wake for
De > 2, starting at x/R ≈ 5.5 and extending in the axial direction up to
x/R ≈ 25. The negative wake magnitude increases with De, attaining a
maximum value of about 3% for De = 8.

2.3 contraction flows

Contraction flow (also called entry flow) of viscoelastic fluids is an es- Entry flows are
accelerative flows
from a large
cross-section via an
abrupt or angular
entry into a smaller
cross-section
(Keunings, 1989).

tablished benchmark flow in computational rheology from almost three
decades. It does not only serve as a demanding and cut of the edge nu-
merical validation geometry, as also entails the possibility of predicting
the correct kinematic and pressure distribution of flow, enabling the
practical design of efficient applications, in which undesirable vortex
structures are suppressed and high stress regions are eliminated to
prevent material damage.

The simplicity of this flow geometry combined with the extremely
numerical complexity, mainly due to the stress singularity in the re-
entrant corner, lead to the recognition that the low Reynolds number
Maxwellian fluid flow in a 4:1 contraction, was one of the most impor-
tant numerical problems for viscoelastic fluids.

This classification occurred in the Vth International Workshop on
Numerical Methods in Non-Newtonian Flows (Hassager, 1988), held
in Lake Arrowhead in the US. The leitmotif for this choice were the
precedent pessimistic mismatch between the experimental and numeric
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results (Crochet and Walters, 1983), here again blamed on the infa-Right before
Hassager’s (1988)
report, the 4:1 sudden
contraction flow was
a predominant theme
in the IVth

International
Workshop on
Numerical Methods
for Non- Newtonian
Flows, held in 1985
in Spa, Belgium (e.g.
Debbaut and Crochet,
1986; Dupret and
Marchal, 1986;
Joseph and Saut,
1986; Josse et al.,
1986; Keunings,
1986, Marchal and
Crochet, 1986).

mous HWNP. This problem is well documented in the review works
condensed by Boger (1987) and White et al. (1987). Further extensive
literature reviews of experiments in this flow were presented by McKin-
ley et al. (1991b) and Owens and Phillips (2002), while reviews on
related numerical work can be found in Keunings (1989), Baaijens
(1998), Oliveira and Pinho (1999a), Walters and Webster (2003), Owens
and Phillips (2002), Rodd et al. (2005) and Alves et al. (2008).

The schematic representation of the 4:1 contraction flow geometry
is illustrated in Figure 2.5. The fluid accelerates from one channel
(or pipe) to another, causing a complex flow that includes regions of
predominantly shear flow (near the walls) as well as regions where the
flow is essentially extensional (along the central axis).

Figure 2.5: Schematic representation of the 4:1 planar contraction geometry.

The half-width of the downstream channel, H2, is taken as the char-
acteristic length scale and the mean velocity in that channel, U2, is the
characteristic velocity. For the Newtonian case, the flow only depends
on the Reynolds number, Re = ρU2H2/η, and on the contraction ratio,
Cr = H1/H2. For a viscoelastic fluid, the flow becomes also dependent
on the Deborah number, usually defined for this flow by

De =
λU2
H2

, (2.3)

where λ is the relaxation time of the fluid.

In the computational benchmark, the flow was explicitly assumed
two-dimensional, in order to simplify the simulations. In the experi-
mental works, several distinct types of entry flows were studied over
the last decades.

The geometric characteristics of the entrance in which the fluid evolves
defines if the contraction is abrupt (or sudden, in which the salient
corner makes a 90o degree angle) or smooth. The characteristic of the
neutral direction (spanwise direction, in opposition of the main stream
direction of the fluid, usually called streamwise direction), defines
wether the contraction is axisymmetric (also called circular or tubular),
planar (or quasi-planar in which the neutral direction is not contracted,
and usually three-dimensional can be assumed negligible) and squared
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(in which the spanwise direction is also contracted and the flow can be
considered fully three-dimensional).

In some cases, such as in microfluidic geometries, the planar config-
uration can become markedly three dimensional, due to wall effects
and reduced characteristic aspect ratios, defined as the ratio of the two
spanwise lengths, Ar = Ly/Lz (assuming that the streamwise direction
is x). The true three-dimensional nature of a real microfluidic contrac-
tion flows depends on the characteristic aspect ratio of the geometry, Hele-Shaw (1898)

flow (named after
H.S. Hele-Shaw) is
defined as a highly
viscous flow between
two parallel flat
plates separated by a
small gap, and is
important in
microfluidics due to
its shallow planar
configurations and
typically low
Reynolds numbers.
Interestingly
Hele-Shaw flows have
streamline patterns
identical to the
corresponding
potential
(irrotational) flow of
ideal (inviscid) fluids.

and by varying the depth of the spanwise direction different flow con-
figurations can be attained ranging from a quasi Hele-Shaw flow, at
very small aspect ratios, up to quasi 2D flows, at large aspect ratios.

During this work, several detailed studies (twelve presentations in
international and national conferences and three peer-review journal
papers, Afonso and Pinho, 2006; Poole et al., 2007d; Afonso et al., 2010e)
were performed on the contraction flow problem1. In the next sections
this benchmark flow is analysed at in more detail.

2.3.1 Brief review: experimental work

In the literature on entry flows of viscoelastic fluids, interest has fo-
cussed mainly on the following aspects (Owens and Phillips, 2002;
Rodd et al., 2005):

. corner vortex characteristics (vortex size, as measured by the
distance it extends up the wall of the large channel, XR, and
intensity of recirculation, ΨR,) and behaviour (vortex regimes:
growth, diverging flow, and unstable); The Couette

correction coefficient,
Ccorr, represents a
dimensionless extra
pressure drop due to
flow redevelopment at
the entrance to the
smaller channel. The
mathematical
description is
presented in equation
(5.39), on page 132.

. lip vortex characteristics (length and behaviour);

. pressure drop across the contraction (usually defined by means
of the Couette correction coefficient, Ccorr).

Pioneering visualization studies with viscoelastic fluids in contractions
were carried out by Cable and Boger (1978a,b, 1979) and Nguyen and
Boger (1979). Cable and Boger (1978a,b, 1979) performed visualizations
in axisymmetric contractions with ratios of Cr = 2 and 4, using high
viscous shear-thinning solutions of dilute PAA in a glucose syrup. These
experiments reported a sequence of distinct flow regimes:

Divergent flow is
characterised by a
strong curvature of
the streamlines away
from the centreline
towards the duct
walls some distance
upstream of the
contraction: almost as
if some “invisible
obstacle” has been
placed in the liquid’s
path (Alves and
Poole, 2007).

. Newtonian-like vortex flow regime at very low flow rates, where
the corner vortex is strictly a result of the Newtonian stresses
caused by the kinematical constraints of the corner and its pres-
ence is predicted by applying the similarity solution of Moffatt
(1964) to the analysis of the local flow in this region.

. elastic vortex growth regime with steady recirculating vortex at
moderate flow rates;

. diverging flow regime at higher flow rates with the streamlines
diverging away from the centreline;

. unstable flow regime above a critical Deborah number, with large
vortex either pulsating symmetrically or moving in an asymmetric
and spiral flow fashion.

1 In Afonso and Pinho, 2006 and Poole et al., 2007d, smooth (or gradual) contraction flows
were numerically and experimentally analysed.
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Fluid inertia was found to stabilize the flow, requiring higher values
of the Deborah number for the onset of flow instabilities. Nguyen and
Boger (1979) also used axisymmetric contraction with contraction ratios
of Cr = 4 and 14.6. They used Boger (highly viscous, elastic fluids with
viscosities that remain nearly constant over many decades of shear rate)
and shear-thinning fluids, and also mapped a rich sequence of flow
regimes ranging from essentially Newtonian-like flow up to unsteady
asymmetric flow, with rotating and helical flow, for higher elasticity.

Walters and Webster (1982) used several different constant viscos-
ity dilute solutions of PAA in a water/maltose syrup mixture in the
flow through a planar 4:1 contraction. In contrast with the observa-
tions of the results obtained in the axisymmetric 4.4:1 contraction, no
significant vortex enhancement was observed. In the axisymmetric con-
figuration vortex enhancement was clearly noticeable when elasticity
was increased, up to the point in which inertia played an important
role. Evans and Walters (1986, 1989) performed experimental visualisa-
tions for both Boger fluids and shear-thinning PAA solutions in planar
contraction flows, and investigated the effect of both contraction ratio
(Cr = 4, 16 and 80) and rounding of the re-entrant corner. Divergent
flow behaviour for low PAA concentrations was observed, when both
inertia and shear-thinning became important.

A variety of contraction ratios ranging (4 < Cr < 16) were used in
the axisymmetric contraction experiments performed by Boger et al.
(1986). Using two different Boger fluids (PAA/corn syrup and PIB/PB
solutions) designed to present similar dynamic and steady rheological
properties, the results obtained in the 4:1 contraction, showed a wide
difference in the vortex growth behaviour within the fluids. From these
results, Boger et al. (1986) concluded that using only the steady and
dynamic shear rheological properties was insufficient to predict the
behaviour of the fluid in axisymmetric contraction geometries. Later,
Boger (1987) related the different extensional viscosities of the two
Boger fluids as the possible explanation for the wide different observed
behaviour, and subsequently the transient shear flows experiments
performed by Mackay and Boger (1987) and Quinzani et al. (1990) also
showed that in order to correctly model the rheological behaviour of
Boger fluids, a spectrum of relaxation over a wide range of shear rates
times is needed.

McKinley et al. (1991b) performed a experimental study in the ax-
isymmetric contraction using highly elastic PIB/PB Boger fluid for a
variety of contraction ratios (2 < Cr < 8). These authors found that at a
critical Deborah number for contraction ratios in the range 2:1 to 5:1,
the flow near the lip of the contraction became time-dependent, with
periodic motion. This unsteady becomes quasi-periodic and aperiodic
when elasticity increases. A three-dimensional unstable flow revealing
small-scale instabilities throughout the entry region was also presented
by Cartalos and Piau (1992), in the flow visualizations of low concentra-
tion solutions of partially hydrolysed polyacrylamide (HPAA) through
an axisymmetric contraction (Cr = 16.4).

The experimental investigations by Rothstein and McKinley (1999,
2001) in axisymmetric contraction/expansion used Boger fluids and a
variety of contraction ratios (4 < Cr < 8), corroborate the important
role of the extensional viscosity on the vortex growth and associated
measured enhanced pressure drop. They found that in the axisymmetric
case, the size of the salient corner vortex formed was smaller than in
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the planar case, due to different experienced Hencky strains as the flow
changes from uniaxial to planar.

The evidence that the flow behaviour of the same constant viscosity
dilute polymer solution in both planar and axisymmetric contractions is
dramatically different was provided by Nigen and Walters (2002). Using
two Boger fluids based on dilute solutions of PAA in a water/glucose
syrup mixture, for a variety of contraction ratios (2 < Cr < 32), they re-
ported that the vortex enhancement was dominant in the axisymmetric
contraction whereas absent for planar contractions.

Poole et al. (2007d) reported experimental observations and numeri-
cal simulations, based upon the PTT model, for the laminar flow of a
series of viscoelastic liquids 0.05%, 0.1%, and 0.4% concentrations of
a PAA over a smooth contraction. As the flow progresses through the
contraction, velocity overshoots develop adjacent to the flat sidewalls of
the contraction that, due to their appearance, were dubbed as cat’s ears.
There is an abrupt change from the nearly two-dimensional flow in the
central region of the contraction with extremely high velocity gradients
evident in the velocity overshoots. The exact shape and magnitude of
the cat’s ears are found to be Reynolds number and Deborah number
dependent. Cat’s ears were

study in a systematic
parametric
investigation by
Afonso and Pinho
(2006) with the single
mode PTT model, and
by Poole and Alves
(2009) using the
UCM model.

Experiments with Newtonian and Boger fluids in 3D square-square
contraction flows were reported by Alves et al. (2005) and Sousa et al.
(2009), where extensive flow visualizations are presented at the middle
plane of a 4:1 contraction using a streak line photography technique.
These experiments revealed the formation of a lip vortex at high Debo-
rah numbers for the more concentrated Boger fluid (aqueous solution of
polyacrylamide at 300 ppm) and related this lip vortex with the increase
of the role of shear induced normal stresses due to the secondary flow
in the cross section of the rectangular channel. An interesting fluid
dynamics feature caused by elasticity was identified experimentally in
this geometry by Alves et al. (2008), in a work which also included 3D
numerical simulations using a 4 mode PTT model with a Newtonian
solvent contribution. Their experimental and numerical results showed
the expected significant vortex growth, measured on longitudinal mid-
planes, and revealed the occurrence of an inversion in the direction
of rotation of the recirculation flow inside the vortices due to elastic
effects. When elastic effects are strong the fluid particles enter the vor-
tices through the horizontal (or vertical) planes of symmetry and leave
through the diagonal planes, whereas in the absence of elasticity the
fluid elements enter the vortices through the diagonal symmetry planes
and exit at the horizontal (vertical) mid planes of symmetry. A similar
finding was reported by Sirakov et al. (2005) in 3D 4:1 square to circu-
lar cross-section contraction simulations with a finite element method
using the eXtended Pom-Pom (XPP) model to analyse the viscoelastic
flow of branched LDPE solutions.

With the advent of microfluidics, some literature in microfabricated
contraction geometries has been published, allowing the exploration
of conditions (very low Re and very high De) not accessible in the
corresponding macro-scale experiments.

Rodd et al. (2005) performed pressure drop measurements and flow
visualization of the flow of dilute aqueous polyethylene oxide (PEO)
solutions through microfabricated planar abrupt contraction/expansion
(Cr = 16). For all polymer solutions used, the onset of elastic instabili-
ties at the contraction entry occurred at a critical Deborah number of
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50. Later, Rodd et al. (2007) investigated the role of inertia with similar
experiments using a constant concentration of PEO, while varying the
viscosity of the solvent with four different glycerol-water solutions. Four
flow regimes were identified, such as the Newtonian-like flow, steady
viscoelastic flow, diverging flow, and elastic corner vortex growth.

Oliveira et al. (2008) presented a detailed study of the flow of a Newto-
nian fluid through 3D-planar microgeometries containing a hyperbolic
contraction followed by an abrupt expansion, aimed at assessing its
potential application as an extensional micro-rheometer. They reported
important 3D effects, which depend on the aspect ratio and a simple
2D approach is often inadequate, even qualitatively, to describe the
flow patterns. For geometries with very low-aspect ratios, a Hele–Shaw
flow approximation is appropriate and, therefore, the flow patterns
resemble those of 2D-potential flow and not planar 2D viscous flow,
as often assumed erroneously in numerical works in microfluidic de-
vices. Gulati et al. (2008) performed an experimental study on the
viscoelastic flow in a micro-contraction (Cr = 2) using a shear thinning
semi-dilute DNA solution. For the entire range of flow visualization,
3.9 < De < 193.3, the corner vortex grew symmetrically, while the lip
vortex was observed. The microfluidic flow of DNA solutions in a 4:1
contraction was very recently performed by Hemminger et al. (2010).
This work examined the contraction deformation/flow behaviour of a
model system for entangled polymeric liquids using DNA solutions
in a micro-fluidic setup, enabling the direct correlation of molecular
responses to continuum flow profiles.

The main picture emerging from the experiments in contraction
flows is that the flow characteristics depends on both the geometrical
properties and on fluid rheology. Specifically for the 2D 4:1 contraction
flow, for some shear-thinning fluids there is corner vortex enhancement
following the formation of a lip vortex, which initially grows and
subsequently merges with the corner vortex, whereas for Boger fluids
the lip vortex mechanism is absent (it does exist, however for large
contraction ratios) and the corner vortex keeps growing with De. At
larger Deborah numbers the single existing corner vortex still grows
with De and the flow is still steady. For all fluids the flow becomes
unsteady above a critical Deborah number.

2.3.2 Brief review: numerical work

In order to organize the review of this subject (and avoid the possible
repetition with the reviews made at the paper presented in Part III, Sec-
tion 5.3), the literature on this computational benchmark is organized
in three different periods:

- pioneer FEM works and their relevance on the HWNP:

the identification of the HWNP appeared in the earlier FEM nu-
merical works (Cochrane et al. (1981), Walters and Webster (1982),
Debbaut and Crochet, 1986; Dupret and Marchal, 1986; Joseph
and Saut, 1986; Josse et al., 1986; Keunings, 1986 and Marchal
and Crochet, 1986), performed even previously to the contraction
computational benchmark (Hassager, 1988). An excellent review
on those pioneering FEM works can be found in Keunings (1989);
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- advent of FVM and other methods and the possibility of framework-
independent benchmark results:

in the early 1990’s some numerical investigations in the contrac-
tion benchmark flow were performed within the FVM framework
(Yoo and Na, 1991, Xue et al., 1998b,a, Oliveira and Pinho, 1999a,
Alves et al., 2000 and Phillips and Williams, 2002), within the hy-
brid FEM/FVM framework (Sato and Richardson, 1994, Matallah
et al., 1998 and Aboubacar and Webster, 2001 ) and within the
BEM framework (Meng et al., 2002). ”In particular, the

present results are
in good agreement
with the
predictions of the
high-resolution
finite volume
method of Alves
et al. (2003b). This
may be the first
case that
quantitative
agreement is
obtained between
studies using
different numerical
methods for the
benchmark
problem of 4:1
planar contraction
flow” (cited from
Kim et al., 2005b)

Alves et al. (2003b) used a new convection scheme (CUBISTA,
Alves et al., 2003a) with the Oldroyd-B fluid, achieving conver-
gence up to De = 2.5 on their finest mesh. Their results in terms
of vortex size were not much different from those previously
obtained by Aboubacar and Webster (2001) using a hybrid finite
volume/finite element scheme, although some differences were
discernible (cf. Figure 2.6). Later, high resolution results obtained
by Kim et al. (2005b) in the same geometry with an Oldroyd-B
model were also close to those of Alves et al. (2003b), but some-
what below even for Newtonian fluids. It is surprising that for
this particular limiting case of Newtonian fluid (De = 0), the
results of Aboubacar and Webster (2001) and Belblidia et al. (2006)
are also underpredicting the vortex size compared to Alves et al.
(2003b). Kim et al. (2005b) used a transient numerical algorithm
based on the four-step fractional step method and DEVSS-G/DG
with equal-order linear interpolation functions and also obtained
converged solutions up to De = 2.5 with their finest mesh. Re-
cently, the benchmark results of Alves et al. (2003b) were also
confirmed by Belblidia et al. (2006), in their steady-state inves-
tigation with the Oldroyd-B model using different stabilisation
methodologies embedded within a time-marching incremental
pressure-correction formulation;

- the log-conformation methology (Fattal and Kupferman, 2004):

up to the beginning of this thesis, the log-conformation was not
applied to the 4:1 contraction benchmark flow, with the Oldroyd-B In the paper by Fattal

and Kupferman
(2005) a reference
was made to an
upcoming paper in
the JNNFM on the
contraction flow, but
this paper was never
published: this maybe
an indication of the
extreme difficulty of
this computational
rheology benchmark
flow.

model.

Kwon (2004) investigated numerically the planar 4:1 contraction
flow using the Leonov constitutive equation and found stabler
computations when using the log-conformation method than
with the conventional approach. Kwon (2004) also concluded
that this new method may only work efficiently for constitutive
equations that are proven globally stable and that the stability
constraint has to be taken into serious consideration. In a sequel,
Yoon and Kwon (2005) obtained solutions for Deborah numbers
in excess of 100 using finer meshes. These authors also presented
solutions for the 4:1:4 contraction/expansion flow and obtained
converged solutions for Deborah numbers above 10. However,
in both geometries the convergence limits decreased with mesh
refinement.

It is clear that this viscoelastic flow is notoriously difficult to simulate
numerically at levels of elasticity above a (rather small) critical Debo-
rah number, where the numerical results exhibit symptoms of mesh
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(a) 2006 scenario.

(b) 2010 scenario.

Figure 2.6: Flow of an Oldroyd-B fluid (β = 1/9) in a 4:1 contraction: (a) vortex
size, XR in the beginnig of this thesis (b) actual vortex size, XR , for
the recent work of Afonso et al. (2010e).

dependency even with refined meshes and usually have a tendency to
diverge.

The scenario at the beginning of this thesis was not promising, as
evidenced in Figure 2.6a. Even for the Newtonian case, the vortex size,
XR was not correctly predicted by the works from different numerical
frameworks. Not surprisingly, at high Deborah numbers the agreement
between results from different numerical methods is harder to achieve
than at low Deborah numbers and there are also important differences
between predictions and experiments.

For instance, the majority of numerical studies on entry flows with
Boger fluids have been restricted to the range of parameters where the
size of upstream vortices is still decreasing and the pressure drop is
smaller than the corresponding Newtonian pressure drop (Alves et al.,
2003b; Aboubacar and Webster, 2001). These predictions were obtained
using continuum mechanics/ macroscale constitutive equations and
are in contrast with experimental results employing constant-viscosity
polymer solutions and melts, which invariably show increased pressure
drop and enhanced vortex formation (Cable and Boger, 1978a,b, 1979;
McKinley et al., 1991b; Chiba et al., 1990). The discrepancies are rooted
both on the physics of the constitutive equations and on the HWNP
numerical issues (Owens and Phillips, 2002).
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Figure 2.6b illustrates the current situation for the XR prediction, and
clearly a significant improvement was achieved, as reported in the next
section.

2.3.3 Contribution from this work

In Afonso et al. (2010e, see the integral version of this investigation
on Section 5.3, on page 113), high elasticity simulations of 2D and 3D
entry flows were performed. These were possible due to the use of
the log-conformation formulation technique of Fattal and Kupferman
(2004) in combination with a high-resolution finite volume method.

For this flow, again no limiting bound for the attained Deborah num-
ber was observed, with stable solutions obtained up to De = 100 in
the 2D case with the Oldroyd-B model and up De ≈ 10000 in the 3D
square/square contraction with the PTT model. The dynamic behaviour
for the 2D and 3D contraction flows was attained at much higher
De than previously, and demonstrate a rich succession of dynamical
transitions, from steady to unsteady flow with lip and corner vortex
enhancement, and from symmetric to asymmetric patterns with alter-
nating vortex pulsation, up to almost chaotic regime of back-shedding
upstream of the contraction plane, in the author knowledge, for the first
time reported in the literature. Fast Fourier transform (FFT) of velocity
signal at a monitoring point to determine the dominant frequencies was
used, which show a characteristic frequency doubling regime at high
De. Qualitatively these results are comparable to the experimental data
of McKinley et al. (1991b), who studied viscoelastic vortex dynamics in
an axisymmetric contraction.

The time average evolution of the vortex size and pressure drop
revealed, for the first time, that after an initial decreasing tendency with
De, there is an upturn followed by considerable enhancement at higher
elasticity. Thus, the trends of the available experimental results are well
captured by the present simulations (qualitatively), except the rise of
pressure drop above the corresponding Newtonian value.

For the 2D 4:1 abrupt contraction flow of the Oldroyd-B fluid, which
has a constant shear viscosity as in real Boger fluids, the flow becomes
unstable at a relatively low critical De of about 2.5, which is of the
same order attained in most previous works. On increasing De the
flow exhibits local unsteadiness which tends to grow as elasticity is
further increased, eventually leading to an asymmetric flow regime with
alternate back-shedding of vorticity from the two pulsating recirculating
eddies formed on the top and bottom walls of the upstream channel.
Dominant frequencies were determined via FFT of velocity signals,
showing a tendency for a frequency doubling mechanism at high De
eventually leading to a chaotic regime. Average vortex size and overall
pressure drop were computed from the time evolution of the predicted
data and show the typical upturn shape seen in experimental data and
in the recent multiscale simulations of Koppol et al. (2009), with an
initial steep decrease followed by strong enhancement when plotted
against De. However, the doubling of the excess pressure drop above
the Newtonian value was not predicted with the present Oldroyd-B
simulations, presumably because of its physical limitations regarding
the transient extensional viscosity behaviour.

The energy losses in the flow of the Oldroyd-B fluid through the
abrupt contraction, evaluated by the Couette correction coefficient
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(Ccorr) that represents a dimensionless extra pressure drop due to
flow redevelopment at the entrance of the smaller channel, presented
a non-monotonic behaviour with the elasticity increase. The increase
in Ccorr occurred for De > 20, as had been seen in earlier studies for
the PTT fluid (Alves et al., 2003b) and in close agreement with the
experimental findings of McKinley et al. (1991b) and Rothstein and
McKinley (2001).



3
T H E ECCENTRIC PURELY ELASTIC INSTABILITIES

eccentric ::
suggests a wide divergence from the usual or normal,

especially in behaviour

A viscoelastic fluid can be considered eccentric, since its behaviour
presents a wide divergence from the usual or normal behaviour. From the
opposite behaviour of the expected from the daily experience with
normal fluids and the fascinating counter-intuitive flow examples pre-
sented in Section 1.1.2 (cf. Figure 1.1, on page 10), passing throught
numerical and experimental elastic instabilities observed in the cylinder
and contraction flows (presented in the previous Chapter), up to an
eventual inertialess turbulent regime (elastic turbulence), viscoelastic
fluids are a true source of eccentricity. Elastic turbulence,

named based on
similarities to the
inertia driven
turbulence (Larson,
2000; Groisman and
Steinberg, 2000),
identifies a path to a
chaotic flow in a form
of irregular flow
patterns, occurring
above the purely
elastic instability.

3.1 elastic instabilities

Flow instabilities are a challenging topic of research both intellectually
as well as of practical engineering interest. They take place in many
different ways and situations, depending on fluid type, flow velocity
and geometry as well as the in presence of other physical phenomena
(such as variable density due to temperature or concentration variations
or surface tension gradients), the classical example being transition
to turbulence (Reynolds, 1883; Manneville, 2004). Of concern here are
instabilities in non-Newtonian fluids in the absence of inertial effects
and under isothermal conditions, which are due to the viscoelasticity
of the fluids.

There are various types of elastic instabilities depending on the cor-
responding flow conditions. The most common and more extensively
investigated are found in shear flows, one industrially relevant example
being the extrusion instabilities at high flow rates, and its relation to
wall slip, reviewed recently by Denn (2001). An early review on insta-
bilities with non-Newtonian fluids was carried out by Pearson (1976),
who clearly concentrated on shear flows and distinguished between
instabilities in non-Newtonian flows that are mere modifications of
Newtonian instabilities and those that are genuinely of elastic origin.

In the subsequent twenty years major progress took place in mea-
suring, understanding and linking elastic instabilities in curvilinear
shear flows (Taylor-Couette, Dean, Taylor-Dean, parallel plate and cone-
plate flows) with linear stability theory and rheological constitutive
modelling, as extensively reviewed by Shaqfeh (1996). In all these cases
it was found that elastic instabilities are related to hoop stresses and
hoop stress gradients in high Deborah number flows. Work has con-
tinued on viscoelastic instabilities in essentially creeping shear flows

47
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and some examples of subsequent research are on the effects of parallel
flow superpositions by Ramanan and Graham (2000), instabilities in
free-surface flows Graham (2003) and square cavity flows by Kim et al.
(2000), amongst others. Naturally, instabilities in viscoelastic flows in
the presence of inertia effects have always been a relevant topic of
research, as the work on cylinder flows by Cadot and Kumar (2000)
and Coelho and Pinho (2003a,b, 2004), but these are not so important
in the present context.

Extension dominated flows are on a different class and this work
concerns their instabilities, in particular those of flows containing a stag-
nation point. Here we are concerned with single-phase stagnation flows,
i.e., excluding flows with stagnation points at solid-liquid and liquid-
gas interfaces as one finds in flows around solid bodies or bubbles.
Elastic instabilities can also arise from the high molecular extension
and stresses developed in the wake of the cylinder, as observed by
McKinley and co-workers (McKinley et al., 1996; Pakdel and McKinley,
1996), who proposed a criterion that defines and unifies the critical
conditions for the appearance of elastic instabilities in these systems.
Dou and Phan-Thien (2008) presented a semi-empirical criterion specif-
ically for the viscoelastic flow past a confined cylinder, and the trigger
mechanism for the onset of the elastic instabilities was related to the
inflection of the velocity profile originated by the normal stresses near
the cylinder surface. This criterion is consistent with that proposed by
McKinley et al. (1996) and by Pakdel and McKinley (1996).

Elastic instabilities were also often encountered in experimental stud-
ies of entry flows, as the jetting instability upstream of a 4:1:4 ax-
isymmetric contraction–expansion (Rothstein and McKinley, 2001), the
bent-elbow shape streak lines close to the re-entrant corner of a 12:1
square-square contraction (Sousa et al., 2009) and the local instability
associated with the formation and decay of a dip of the vortex boundary
at the lip corner of a 4:1 circular contraction (Chiba et al., 2004).

Most research on extension dominated flows has concentrated on
contraction flows, where instabilities have been known to take place for
quite a long time (Cable and Boger, 1979, Giesekus, 1968). In stagnation
point flows, such as the flow in the opposed jet (Cogswell, 1978), in Tay-
lor’s four-roll mill (Giesekus, 1962) or in the cross-slot channel (Gardner
et al., 1982), high stresses develop during the flow compression and
subsequent extension, forming a birefringent strand which lasts longer
the higher the flow Deborah number.

Such high stress development represent a challenge to numerical pre-
dictions, and during this PhD work, several investigations in stagnation
point flows were performed, such as in the cross-slot channel (ten pre-
sentations in international and national conferences and a peer-review
journal paper, Afonso et al., 2010b) and in the mixing-separating geom-
etry (two presentations in international conferences and a peer-review
journal paper, Afonso et al., 2010d), as addressed in the following
section.

3.2 cross-slot flow

The schematic representation of the Cross-slot geometry is presented
in Figure 3.1. This cross-slot is bounded by flat top and bottom walls,
but other configurations can also be designed, such as the 3D six arms
cross flow geometry.
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Figure 3.1: Schematic representation of the Cross-slot geometry.

The central region of the cross-slot, corresponding to the intersection
of the two arms, defines a square with side length H. The length of
the inlet and outlet “arms” is L = 20H. The Deborah number is here
defined as De = λU/H and the Reynolds number as Re = ρUH/η.

3.2.1 Brief literature review

The use of the cross-slot and other similar extensional flows, such as
the four roll mill and opposed jet apparatus, has gained momentum in
the 1980’s, because of the need to develop methods for measuring the
extensional viscosity of dilute polymer solutions (Fuller et al., 1987), the
investigations on coil-stretch transition and on retraction by Gardner
et al. (1982), the works on polymer scission by extensional flow in the
cross-slot of Keller and co-workers (for instance in Odell et al., 1990)
and more recently in the numerical work of Hsieh et al. (2005). These
scission works are reviewed in more detail by Pathak and Hudson
(2006), who have also used the cross slot for scission experiments of
wormlike micelles. Earlier, Remmelgas et al. (1999) had investigated
numerically the symmetric flow of FENE fluid models in the cross-
slot channel at low Weissenberg numbers, so it can be said that the
subcritical flows of viscoelastic fluids in the cross-slot are well known.
Instabilities in the opposed-jet flow of viscoelastic fluids have been
observed by Chow et al. (1988).

The stability analysis of Öztekin et al. (1997) with Oldroyd-B fluids
concerned a stagnation flow in the vicinity of a wall and found an anal-
ogy between the onset of time-dependent instabilities here and that in
other complex flows of elastic fluids having curved streamlines. Clearly,
none of the instabilities found in these studies resembles the asym-
metric flow visualized by Arratia et al. (2006) in their sub-millimitre
cross flow geometry, see Figure 3.2(a-b). The advent of soft-lithography
has opened up the possibility of manufacturing very small geometries,
where the flows of viscoelastic fluids reach high Deborah numbers at
negligible inertia. Since these flows are dominated by diffusion, mixing
is severely limited unless enhanced by flow instabilities (Stroock et al.,
2002). The addition of minor amounts of polymers to fluids, imparting
viscoelastic rheological characteristics, opens up the possibility of en-
hanced mixing due to the onset of elastic flow instabilities (Squires and
Quake, 2005).

Of particular relevance to the study of elastic instabilities is the
experimental observation of instabilities in a "quasi two-dimensional"
cross-slot microchannel flow by Arratia et al. (2006), which motivated
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(a) Newtonian. (b) PAA Boger fluid (De = 4.5).

(c) Newtonian. (d) UCM, De = 0.4.

Figure 3.2: Comparison of experimental and numeric results in a Cross-slot
geometry flow at low Reynolds number (Re < 10−2). The exper-
imental results (a) and (b) were obtained by Arratia et al. (2006),
and the numerical results (c) and (d) were obtained by Poole et al.
(2007c), with permission from the publisher.

the numerical work by Poole et al. (2007c) on the two-dimensional cross-
slot flow of an upper-convected Maxwell fluid under low Reynolds flow
conditions. Poole et al. (2007c) were the first to predict the first type
of flow instability (asymmetric flow) in a two-dimensional cross-slot
channel flow of an UCM fluid (cf. Figure 3.2(c-d)), which in this case
led to a corresponding reduction of pressure loss, and reported also the
stabilizing effect of inertia. Their findings are here explored in much
more detail and complemented by other effects not previously reported.
Poole et al. (2007c) have shown numerically that inertia stabilizes the
flow of UCM fluids by delaying the onset of the steady bifurcation to
higher Deborah numbers, as well as by decreasing the magnitude of
flow asymmetry.

The calculations of Poole et al. (2007b) in a 3D cross-slot, have shown
the destabilizing role of the bounding walls in the spanwise direction.
The stability map presented in Poole et al. (2007b) revealed the exis-
tence of the two asymmetric flow regions for two-dimensional and
weakly three-dimensional flow and the disappearance of the asymmet-
ric steady flow regime as the Hele-Shaw condition is approached while
simultaneously the critical Deborah number for the periodic instability
decreases.

Later, Poole et al. (2007a) incorporated the effect of solvent viscosity
(β 6= 0 in the Oldroyd-B model) and finite extensibility (ε 6= 0 in the
sPTT model), presenting β− Re−De and ε− Re−De maps of flow
pattern types (cf. Figure 3.3), showing the existence of a narrow region
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(a) β−De map. (b) ε−De maps

(c) Re−De stability map. (d) ε−De stability maps

Figure 3.3: β − Re −De and ε − Re −De maps of flow pattern types (Poole
et al., 2007a).

where steady asymmetric flow can emerge, and identified the limiting
De for onset of time dependent flow. The effect of finite extensibility
was studied numerically by Rocha et al. (2009) and analytically by
Becherer et al. (2008), using FENE models.

3.2.2 Contribution from this work

In Afonso et al. (2010b) (see the integral version of this investigation on
Section 6.1, on page 143), the previous investigations for planar geome-
tries (Poole et al., 2007c,b,a) are extended to three-dimensional cross-slot
flows with inlets and outlets in the three orthogonal directions.

A 3D finite-volume numerical method is used to study the viscoelas-
tic flow inside a 3D six arms cross flow geometry considering two
symmetric flow configurations that lead to uniaxial and biaxial ex-
tensional flows, respectively, and represented schematically in Figure
3.4. The influence of the ratio of inlet to outlet flow rates and of the
Deborah and Reynolds numbers on the onset of the flow instability
are investigated numerically in order to demonstrate its purely elastic
nature.

The influences of Deborah and Reynolds numbers and different types
of extensional flow near the stagnation point were analysed, namely
for biaxial and uniaxial extensional flows.

The uniaxial extensional flow configuration is prone to the onset
of steady flow asymmetries at Decrit ≈ 0.22 and at a higher Debo-
rah number there is a second transition from steady asymmetric to
unsteady flow, as in the corresponding two-dimensional cross slot ge-
ometry. This steady asymmetric flow is predominantly a shear type
flow, where transition to unsteady flow is associated with large hoop
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(a) (b)

Figure 3.4: Biaxial extension configuration (Io = 2 : 4) and uniaxial extension
configuration (Io = 4 : 2), obtained in the 3D six arms cross flow
geometry.

stresses developing in curved streamlines, as explained by McKinley
et al. (1996). In this mechanism the curved streamlines become unstable
at hoop stresses that vary inversely with their curvature. Most likely
the instability appears first at the curved streamlines near the re-entrant
corners, but it could also appear elsewhere closer to the stagnation
point, where the streamlines are also curved. By raising the Reynolds
number the curvature of the streamlines in the region of interest in-
crease and the same critical level of hoop stress is attained at a lower
Deborah number. It is easy to visualize that higher inertial forces push
the flow towards the central region of the cross-slot and this forces the
fluid to turn direction closer to the geometric centre of the cross-slot,
thus increasing locally the curvature of the streamlines.

Explaining the stabilizing effect of the Reynolds number for the first
transition is more difficult, since we do not even know yet what is the
primary cause for the first transition in creeping flow. Even though it
is tempting to consider the unbounded normal stresses as its cause,
there are indications that this is not the case given the fact that Poole
et al. (2007c), Rocha et al. (2009) and Becherer et al. (2008) found such
transitions to occur for PTT and FENE fluids for the equivalent 2D cross-
slot flow. Clearly, understanding the causes of both types of transition
in the 2D and 3D cross-slot flows is an important research topic.

On the other hand, for the 3D biaxial extensional flow configuration a
perfectly symmetric flow has been observed up to De ≈ 0.61 and above
this critical Deborah number the flow becomes unsteady and asym-
metric without transitioning to a steady asymmetric flow. Inertia was
found to stabilize the first type of transition (for the uniaxial extensional
flow) and to destabilize the second transition in both flow configura-
tions, although to a much lesser degree in the biaxial extensional flow
configuration.

3.3 mixing-separating flow

The schematic representation of the mixing-separating geometry is
presented in Figure 3.5. A mixing-separating geometry is formed by two
opposed channels interacting through a gap of nondimensional width
θ = g/H, in the middle of a thin separating wall of nondimensional
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thickness α = a/H. It can also be seen as a cross-slot after rotation of
two opposing arms into the other two remaining arms.

Figure 3.5: Schematic representation of the Mixing-Separating geometry.

The Deborah number represents the ratio between the relaxation time
of the fluid, λ, and a characteristic time scale of the flow, here chosen
as g/U. Consequently, for the present geometry the Deborah number
is defined as De = λU/g. For flows with non-negligible inertia the
Reynolds number is also important, and is here defined as Re = ρUH/η.

The degree of flow reversal relative to the unidirectional flow that
would exist in the absence of a gap in the middle wall, is quantified us-
ing the parameter Rr = q2/Q1 = q4/Q2, where q2 and q4 correspond
to the partial flow rates per unit depth that reverse from each inlet arm
and Q1 = Q2 = UH are the total flow rates per unit depth at each inlet
channel

3.3.1 Brief literature review

There are very few published data for the mixing-separating geometry,
and up to the beginning of this thesis, none on the elastic instabilities
had been observed.

Some investigations were performed however, both experimentally
and numerically by Cochrane et al. (1981), Walters and Webster (1982),
Humphrey and Li (1981) and Humphrey et al. (2008). Baloch et al.
(1995) and Fiétier (2002) analysed this flow numerically under different
conditions.

Cochrane et al. (1981) employed a finite-difference method and se-
lected the UCM model to describe the rheological behaviour of a
highly-elastic constant-viscosity “Boger” fluid (Boger, 1977). These
investigators analysed the effects of gap width using two different
flow configurations: (i) matching flow rates in the two inlet channel
arms and (ii) unbalanced inlet flow rates. In a follow-up work (Walters
and Webster, 1982), thin insert plates with rounded edges were used.
For both experimental studies it was found that the flow displayed
distinctive Newtonian and viscoelastic behaviours, with the occurrence
of unidirectional and reversed flows in varying extents.

Later, Baloch et al. (1995) selected the PTT model (Phan-Thien and
Tanner, 1977) to describe the rheological behaviour, and simulated this
flow also using thin insert plates with rounded edges, for the case of
equal flow rates at the inlet channels. Fiétier (2002) simulated the flow
of a FENE-P model (Bird et al., 1980) using a spectral element method,
and considered the case with a thick insert plate with rounded edges.
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The numerical results obtained captured qualitatively the experimental
results presented by Walters and Webster (1982).

Humphrey and Li (1981) used a dye visualization technique, which
revealed the time-evolution of pairs of transversely aligned vortices in
a confined counter-current shearing flow configuration, for moderate
Reynolds numbers (Re = 100− 1000).

More recently, Humphrey et al. (2008) simulated the time-dependent
flow of a Newtonian fluid in a counter-current shearing flow configura-
tion, for 100 < Re < 300.

3.3.2 Contribution from this work

In Afonso et al. (2010d) (see the integral version of this investigation
on Section 6.2, on page 157) a numerical investigation is presented
aimed to expand the limited knowledge available on the viscoelastic
fluid flow behaviour in the mixing and separating geometry, clarifying
and mapping different flow behaviours as a function of gap size under
conditions of low inertia and different elasticity levels. The occurrence
and extent of purely-elastic flow instabilities was also assessed. These
instabilities usually arise in extensionally-dominated flows with strong
streamline curvature, such as flows with a stagnation point (e.g. cross-
slot flow: Arratia et al., 2006; Poole et al., 2007c,a), or the opposed jet
apparatus (Chow et al., 1988).

This investigation focused on the mixing-separating flow geometry
with thin insert plates and equal flow rates at the two channel inlets
under low-Re flow conditions. For a combination of critical flow param-
eters, it was possible to identify a new steady and stable bifurcation in
the flow patterns at low inertia and high elasticity, depending on the
gap sizes:

. For large dimensionless gap sizes, but below a critical value (θ 6
1.6), the reversed flow is initially slightly enhanced with elasticity,
followed by a significant decrease towards zero when Deborah
number further increases. This behaviour is characterized by a
significant departure from streamline parallelism in the mixing-
separating gap region, although with the fluid still tending to
flow unidirectionally in agreement with experiments (Cochrane
et al., 1981; Walters and Webster, 1982).

. For a supercritical dimensionless gap size (θ > 1.84), elasticity
is responsible for a continuous increase of flow reversal relative
to the unidirectional flow with Deborah number. This type of
supercritical pattern has not yet been observed experimentally
primarily due to the stabilising effect of inertia.

. At a well-defined intermediate gap width range (1.6 6 θ 6 1.84),
a steady bifurcation flow pattern emerges, with a sudden jump
between two widely different flow configurations, ranging from
almost unidirectional to almost fully reversed flows, at Deborah
numbers slightly higher than the critical Deborah number. The
bifurcation between these two flow patterns is due to a purely-
elastic instability since inertia has no role (Re = 0) in the present
simulations (we have also observed such purely elastic instabilities
in the works of Poole et al., 2007c,a and Rocha et al., 2009). Further
stability analysis suggested that in this bifurcation flow pattern,
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although both flow configurations are steady and stable, the
unidirectional configuration is preferred.

Flow inertia was found to increase the critical Deborah number for the
steady flow bifurcation. Inertia naturally enhances the straight flow
configuration and at Re = 5, Rr always decreased with Deborah number
for De 6 0.6 and for the investigated gap sizes. The interplay between
inertia and elastic effects is clarified using the elasticity number, El,
instead of Re and De separately.

Essentially the viscoelastic fluid adjusts itself so as to avoid changes
in the flow direction and when the streamline curvature imposed
by the geometry (increasing θ) is large, the elastic normal stresses
become so strong, with consequent high energy loss coefficient, that the
reversed flow pattern can no longer be sustained. There is then a sudden
jump from reversed flow (large curvature) to unidirectional flow (small
curvature), accompanied by a reduction of the energy loss associated
with the flow. In addition, for a limited range of flow parameters, a pair
of extreme flow patterns might co-exist as a solution of the governing
equation, an indication of a steady bifurcation phenomenon.

These results suggest the need for experiments with highly viscous
and elastic fluids (or at microscale where Re is naturally reduced and
De is enhanced) in order to identify the supercritical behaviour, which
has so far not been reported in the literature.





4
A PUZZLING DRIVING FORCE: VISCOELASTIC
ELECTRO-OSMOTIC FLOWS

puzzling :: difficult to understand or solve;
to ponder or study over some perplexing problem or matter;

to solve by careful study or effort.

Usually fluid transport design strategies cannot be easily scaled
down to micron or sub-micron scales because at such lenght scales,
surface-dominated physical forces/phenomena (e.g., capillary, wetting,
electrokinetic effect), which can usually be neglected in macroscale flow
processes, become important. These microchannel flows are often used
in the separation of biological or chemical components, such as the
separation of DNA in genetic engineering. Some of these fluids present
different rheological behaviour from the Newtonian fluids, and to the
authors knowledge, analytical solutions of electroosmotically-driven
flow of viscoelastic fluids in microchannels have rarely been found in
the open literature.

The widespread use and low manufacturing cost of microfluidic
chips (or circuits) is fostering a wealth of new industrial applications
involving complex fluids, often associated with complex phenomena.
Even though microfluidics is still in a state of exploratory research,
there are industrial applications where its advantages stand out clearly,
such as in screening for protein crystallization, bioanalyses or the
manipulation of multiphase flows.

In simple geometries, where the flow is essentially parallel to walls
and these are unpatterned, numerical investigations of electroosmosis
flows can be carried out with simple models, such as the Poisson- Boltz-
mann equation. However, for general flow systems and time-dependent
three-dimensional flows the numerical solution of the base governing
Nernst-Planck equations are required for the accurate computation of
the electric charge distribution. This is essentially a convection-diffusion
equation, which can be easily incorporated into existing numerical
methods. The main difficulty of these computations is the overhead
cost associated with the very thin electric double-layer (EDL) at the
walls, where steep velocity and potential gradients are found.

Most numerical solutions of electro-osmotic flows concern simplified
electrokinetic models and Newtonian fluids, but there are already some
simple implementations for viscoelastic fluids, which avoided calcula-
tions inside the EDL by bridging it with the Helmholtz-Smoluchowski
velocity for the Phan-Thien—Tanner fluid (Park and Lee, 2008b). This
approach needs further research to assess whether it can be general-
ized as in the similar law of the wall problem for turbulent flows and
considering also the Nernst-Planck equation.
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4.1 electro-osmotic flow (eof)

Electro-osmosis is a basic electrokinetic phenomenon, where the flow
is induced by a new body force term, the applied external electric
field, acting on ions that spontaneously formed near walls and other
interface.

The principle was first demonstrated by Reuss (1809), in an exper-
imental investigation using porous clay. This was followed by the
theoretical work on the Electric Double Layer (EDL) by von Helmholtz
(1879), which related the electrical and flow parameters for electroki-
netically driven flows. Later von Smoluchowski (1903) contributed to
the understanding of electrokinetically driven flows, especially for con-
ditions where the EDL thickness is much smaller than the channel
height.

(a) (b)

(c)

Figure 4.1: Schematic representation of the electro-osmotic flow mechanism.

A possible schematic view of an electro-osmotic flow in microchan-
nels can be sketched as follows. A natural migration of ions arises due
to the interaction between the dielectric charged wall and the polar
fluid (cf. Figure 4.1a). Here, the two negatively charged walls of the
microchannel attract counter-ions forming layers of positively charged
fluid near the walls and repel the co-ions. Very thin layers of immobile
counter-ions cover the walls, known as the Stern layers, σ, followed by
thicker more diffuse layers of mobile counter-ions, called the Debye
layer, λD. The two near wall layers form what is called the Electrical
Double Layer (EDL), as observed in Figure 4.1b.
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The global charge of the conducting fluid remains neutral, but since
the EDL is thin the core of the conducting fluid is essentially neutral.
Applying a DC potential difference between the two electrodes at the
inlet and outlet of thechannel, generates an external electric field that
exerts a body force on the counter-ions of the EDL, which move along
the channel dragging the neutral conducting fluid core above by viscous
forces, as observed in Figure 4.1c.

For Newtonian fluids, rigorous modelling and analytical solutions
of simple shear electro-osmotic flow has been the subject of several
studies, and a thorough review on this and on various other aspects of
electro-osmosis can be found in Karniadakis et al. (2005). The theoretical
study of electro-osmotic flows for viscoelastic fluids is fairly recent and
most works have been restricted to simple inelastic fluid models, such
as the power-law, due to the inherent difficulties introduced by more
complex constitutive equations.

It was clear that there were no analytical solutions for fully-developed
electro-osmotic flows of quasi-linear and non-linear viscoelastic fluids,
and even less so when in combination with pressure gradient (at the
start of this thesis). Also, the numerical approach to more complex
geometry flows of complex fluids with electrokinetic effects were scarce.

Since then, several studies were performed on both theoretical and
computational EOF of viscoelastic fluids, such as (Das and Chakraborty,
2006; Park and Lee, 2008b; Berli and Olivares, 2008; Zhao et al., 2008;
Sousa et al., 2010a; Bryce and Freeman, 2010) and Afonso et al., 2009c,
2010c,f,g and Dhinakaran et al., 2010. This set (seven presentations in
international and national conferences and five published papers) is
discussed in detail in the next sections.

4.1.1 Analytical contribution from this work

Various analytical solutions were derived during this PhD, such as
Afonso et al. (2009c, 2010c,f,g) and Dhinakaran et al. (2010).

In Afonso et al. (2009c) an analytical solution is presented for the flow
of viscoelastic fluids in micron sized ducts, namely between parallel
plates and pipes, under the combined influence of electrokinetic and
pressure forces using the Debye–Hückel approximation, including the
limit case of pure electro-osmotic flow. The viscoelastic fluids used are
described by the simplified Phan-Thien–Tanner model (sPTT), with
linear kernel for the stress coefficient function, and zero second normal
stress difference, and the FENE-P model, based on the kinetic theory
for finitely extensible dumbbells with a Peterlin approximation for the
average spring force. The combined effects of fluid rheology, electro-
osmotic and pressure gradient forcings on the fluid velocity distribution
and fluid stresses are also discussed.

In the absence of an imposed pressure gradient, the electro-osmotic
flow exhibits a pluglike velocity profile, as found previously for Newto-
nian fluids, but with the maximum velocity plateau increasing quadrati-
caly with

√
εDeκ, for all κ̄ values. When the viscoelastic flow is induced

by a combination of both electrical and pressure potentials, in addi-
tion to the single contributions from these two mechanisms there is
an extra term in the velocity profile that simultaneously combines
both, which is absent for the Newtonian case where the superposition
principle applies. This non-linear term can contribute significantly to
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the total flow rate, depending on the value of κ̄. Under conditions of
favourable pressure gradient it thus acts as a drag reducer, but for ad-
verse pressure gradients it changes its role to become a drag increaser.
Its existence invalidates the superposition principle and is associated
with the non-linearity of the rheological model, with this analytical
solution indicating that for quasi-linear viscoelastic equations the su-
perposition principle still applies. Under favourable pressure gradients,
the velocities increase significantly with

√
εDeκ, with the profiles at

higher values of κ̄ exhibiting large shear rates within the electric double
layer. As for Newtonian fluids, adverse pressure gradients lead to local
velocity peaks at the edge of the electric double layer. Regarding the
streaming potential problem, viscoelasticity increases the amount of
electrical streaming current, which asymptotes to a constant value at
high

√
εDeN. The amount of electrical streaming current decreases

with the increase of Υ1, due to the lower Ex,sp required to establish
the conduction current for good conductors and the consequent lower
streaming potential as found for Newtonian fluids.

Afonso et al. (2010c) extended the previous work by considering
asymmetric boundary conditions, namely different zeta potentials at the
walls. The fluids are assumed z− z symmetric electrolytes. The analytic
solutions of the electrical potential, velocity distributions and streaming
potential are based again on the Debye-Hückel approximation for weak
potential. The viscoelastic fluids used are modelled by the simplified
Phan-Thien—Tanner constitutive equation, with linear kernel for the
stress coefficient function, and the Finitely Extensible Non-linear Elastic
dumbbells model with a Peterlin approximation for the average spring
force. The combined effects of fluid rheology, electrical double-layer
thickness, ratio of the wall zeta potentials and ratio between the applied
streamwise gradients of electrostatic potential and pressure on the fluid
velocity and stress distributions are discussed.

Later, Dhinakaran et al. (2010) studied analytically the pure electro-
osmotic flow between parallel plates of a viscoelastic fluid, described
by the complete form of the Phan-Thien-Tanner model. This model
uses the Gordon-Schowalter convected derivative, which leads to a non-
zero second normal stress difference in pure shear flow. A nonlinear
Poisson-Boltzmann equation governing the electrical double-layer field
and a body force generated by the applied electrical potential field
are included in the analysis. Results are presented for the velocity and
stress component profiles in the microchannel for different parametric
values that characterize this flow. Equations for the critical shear rates
and maximum electrical potential that can be applied to maintain a
steady fully developed flow are derived and discussed. Some of the
important results can be summarised as follows:

. Comparison with the analytical solution for the flow of Newtonian
fluids, available in the literature was consistent.

. Dimensionless velocities profiles in the channel are invariant with
Deκ below Deκ = 0.1.

. When the shear rate and Deborah number exceed a critical value a
constitutive flow instability occurs for ξ 6= 0. Expressions for these
critical values of shear rate and Deborah number are reported. The
critical shear rate is found to be dependent of ε and ξ, whereas
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the critical Deborah number is only dependent on ξ for large κ.
The critical Deborah number increases with decrease in ξ tending
to infinity as ξ tends to zero.

. Normal and shear stresses are approximately zero near the cen-
treline and rise rapidly near the channel walls. At low Deborah
numbers both these quantities are almost negligible. At higher
Deκ the values of these quantities rise rapidly with increasing
microchannel height ratio.

In Afonso et al. (2010f) (see the integral version of this investigation
on Section 7.4, on page 229) an analytical model that describes a two-
fluid electro-osmotic flow of stratified viscoelastic fluids is present.
This is the principle of operation of an EO two-fluid pump, presented
by Brask et al. (2003), in which an electrically nonconducting fluid is
transported by the interfacial dragging viscous force of a conducting
fluid that is driven by electro-osmosis. The electric potential in the
conducting fluid and the analytical steady flow solution of the two-fluid
electro-osmotic stratified flow in a planar microchannel are presented
by assuming a planar interface between the two viscoelastic immiscible
fluids.

The effects of fluid rheology, dynamic viscosity ratio, holdup and
interfacial zeta potential are analysed to show the viability of this
technique, where an enhancement of the flow rate is observed as the
shear-thinning effects are increased. This work demostrated that higher
volumetric flow rates of a nonconducting Newtonian fluid can be
acheived in EOF pumping when the conducting fluid is viscoelastic
rather than Newtonian, due to the increasing of the shear-thinning
effects.

4.1.2 Numeric contribution from this work

In Afonso et al. (2010g) (see the integral version of this investiga-
tion on Section 7.5, on page 245), three different implementations of
electro-osmosis physical models, depending on the desired level of
approximation, were introduced.

In the first implementation, the Poisson-Nernst–Planck (PNP) equa-
tions were incorporated into the code and the electric charge distribu-
tion required to quantify the electric field forcing of the momentum
equation is calculated without approximations. The second implemen-
tation is an approximation in which a stable Boltzmann distribution
of ions in the electric double layer can be assumed. Here, the Poisson-
Boltzmann equations were implemented. Finally, the so-called Debye-
Hückel approximation was implemented in the Poisson-Boltzmann-
Debye-Hückel (PBDH) version, for cases with small ratio of electrical
to thermal energies. To test each one of the numerical implementations,
some predictions are compared with existing analytical solutions for
the flow in a two-dimensional microchannel under symmetric and
asymmetric boundary conditions for the zeta potential at the walls
(Afonso et al., 2009c, 2010c).

New types of flow instabilities, a mixture between electrokinetic
and elastic instabilities, were obtained in the electro-osmosis flow in
combination with viscoelastic fluids, such as in the cross-slot flow. For
the UCM fluid flow above a critical Deborah number (DeH = 0.275) the
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flow becomes asymmetric, and the differences between the results for
the cross slot with pure EOF and pure pressure gradient flows by Poole
et al. (2007c), were related with the role of the amount of stabilizing
shear flow in the stagnation point region which is less important in the
case of EOF. This difference may also be important for understanding
the onset of the purely-elastic instabilities. At higher Deborah numbers
the flow becomes unsteady, with the formation of vortical structures in
the central region of the cross-slot.
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introduction to part iii

The shortest answer
is doing the thing.

— Ernest Hemingway

The present dissertation falls into the category of multi-paper disser-
tations, and in the Part III of this dissertation, called “(Further) De-
velopments on theoretical and computational rheology”, includes the
complete and integral version of the papers written in the course of
this PhD work. These papers where explained and contextualized in
the previous Part II, in Chapters 2, 3 and 4.

Part III is further divided into three main chapters. In Chapter 5, the
following papers, related with the High Weissenberg Number Problem,
are presented:

. A. Afonso, PJ Oliveira, FT Pinho and MA Alves (2009). The
log-conformation tensor approach in the Finite Volume Method
framework, Journal of Non-Newtonian Fluid Mechanics 157 55-65, in
Section 5.1, on page 67;

. A. Afonso M. A. Alves, F. T. Pinho and P. J. Oliveira (2008). Uni-
form flow of viscoelastic fluids past a confined cylinder, Rheologica
Acta, 47 325-348, in Section 5.2, on page 87;

. A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. Alves (2010),
Dynamics of high Deborah number entry flows – a numerical
study, accepted for publication in the Journal of Fluid Mechanics,
in Section 5.3, on page 113.

Chapter 6, is reserved for the papers related with the eccentric features
of elastic flow instabilities:

. A.M. Afonso, M.A. Alves, F.T Pinho (2010). Purely-Elastic flow
instabilities in a 3D six arms cross slot geometry, Journal of Non-
Newtonian Fluid Mechanics 165 743–751, in Section 6.1, on page 143;

. A.M. Afonso, M.A. Alves, R.J. Poole, P.J. Oliveira and F.T. Pinho
(2010). Viscoelastic flows in mixing-separating cells, accepted for
publication in the Journal of Engineering Mathematics, in Section
6.2, on page 157.

Finally, in Chapter 7, the following analytical and numerical papers
related with viscoelastic electro-osmotic flows are presented:

. A.M. Afonso, M.A. Alves, F.T. Pinho (2009). Analytical solution
of mixed electro-osmotic/ pressure driven flows of viscoelastic
fluids in microchannels. Journal of Non-Newtonian Fluid Mechanics
159 50-63, in Section 7.1, on page 171;

. A.M. Afonso, M.A. Alves, F.T. Pinho (2010). Electro-osmotic flows
of viscoelastic fluids in microchannels under asymmetric zeta
potential, accepted for publication in the Journal of Engineering
Mathematics, in Section 7.2, on page 197;
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. S. Dhinakaran, A.M. Afonso, M.A. Alves, F.T. Pinho (2010). Steady
viscoelastic fluid flow in microchannels under electrokinetic forces:
PTT model, Journal of Colloid And Interface Science 344 513-520, in
Section 7.3, on page 215;

. A.M. Afonso, F.T. Pinho and M.A. Alves (2010), Two-fluid electro-
osmotic flows of viscoelastic fluids, in preparation to submit to
Microfluidics and Nanofluidics, in Section 7.4, on page 229;

. A.M. Afonso, F.T Pinho and M.A Alves (2010). Electro-osmotic
flows of viscoelastic fluids: a numerical study, in preparation to
submit to Journal of Non-Newtonian Fluid Mechanics, in Section 7.5,
on page 245.



5
T H E INFAMOUS HIGH WEISSENBERG NUMBER PROBLEM
AND (FURTHER) DEVELOPMENTS

5.1 the log-conformation tensor approach in the finite

volume method framework

Abstract1

The log-conformation formulation, proposed by Fattal and Kupferman (2004),
has helped to provide further insights into the High-Weissenberg Number
Problem. In this work, we investigate the performance of the log-conformation
formulation in the Finite Volume Method (FVM) framework for creeping
flows of viscoelastic fluids in steady and unsteady flows around a confined
cylinder. The Oldroyd-B and Phan-Thien– Tanner (PTT) constitutive equa-
tions were used to assess the effect of different rheological behaviour on the
flow patterns and solution stability. The calculation of the polymer stress
contribution is carried out with both the standard technique and with the
log- conformation methodology. For all test cases, up to the critical condi-
tions when both methods converge to a steady solution, the use of the log-
conformation technique provides solutions with similar accuracy as the stan-
dard approach. In terms of stability the log-conformation formulation is found
to be significantly more robust, and solutions could be obtained at higher Deb-
orah number flows.

Keywords: Finite-volume method; Log-conformation tensor; Viscoelas-
tic fluid; Cylinder flow.

5.1.1 Introduction

A Finite Volume method (FVM) is applied to the numerical simula-
tion of laminar viscoelastic flow around a confined cylinder using the
Oldroyd-B model (Bird et al., 1987a) and the Phan-Thien–Tanner model
(Phan-Thien and Tanner, 1977; Phan-Thien, 1978) (PTT) with linear
stress coefficient kernel. The Oldroyd-B fluid was selected for this study,
in order to allow direct comparison with previous works (e.g. Alves
et al., 2001b), and also to analyze the applicability and benefits of us-
ing the matrix logarithm transformation (Fattal and Kupferman, 2004)
for Maxwell-type models in a smooth flow (i.e., without geometric
singularities).

The flow around a confined cylinder is a usual benchmark test-
case in computational rheology. It is representative of fundamental
flow dynamics of viscoelastic fluids around solid bodies and it can

1 A. Afonso, PJ Oliveira, FT Pinho and MA Alves (2009). The log-conformation tensor ap-
proach in the Finite Volume Method framework, Journal of Non-Newtonian Fluid Mechanics
157 55-65.
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be encountered in many engineering processes. This flow has been
studied experimentally by McKinley et al. (1993), Baaijens et al. (1994)
and Shiang et al. (1997, 2000). Owens and Phillips (2002) documented
and summarized the main numerical results, focusing primarily on
the Oldroyd-B model. Although the flow around a confined cylinder
is classified as a smooth flow, its numerical calculation presents some
difficulties associated with the development of thin stress layers on the
cylinder sidewall and along the centreline in the cylinder rear wake,
imposing a limiting value to the Deborah number for which steady
solutions can be obtained. In fact, the simulations for the cylinder flow
with the Upper-Convected Maxwell (UCM) or Oldroyd-B fluids are
somehow limited by the so called High-Weissenberg Number Problem
(HWNP; like the Deborah number, the Weissenberg number measures
the flow elasticity). A breakdown in the calculations is found at a
limiting Deborah number below 1 for the UCM fluid whereas for the
Oldroyd-B fluid the breakdown occurs at higher Deborah numbers
depending on the solvent viscosity ratio.

In order to get further insights into the HWNP, this work implements
the methodology recently proposed by Fattal and Kupferman (2004),
the so called matrix-logarithm or log-conformation formulation (nomen-
clature used heretoforth) of the viscoelastic constitutive equations. This
is based on a reformulation of the constitutive law in terms of the matrix
logarithm of the conformation tensor. According to Fattal and Kupfer-
man (2004), taking the logarithm of the conformation tensor reduces its
very large (often exponential) variation. (e.g. in stagnation points, or
near the walls). The new variable can be more accurately approximated
by a polynomial interpolation, and the method also preserves the pos-
itive definiteness of the conformation tensor (Fattal and Kupferman,
2004, 2005; Pan and Hao, 2007; Hulsen et al., 2005; Kwon, 2004; Yoon
and Kwon, 2005; Kwon, 2006; Coronado et al., 2007; Guénette et al.,
2008). A similar logarithm transformation was used previously for
scalar quantities in mass transfer problems by Miranda and Campos
(2001), who applied a simple logarithmic variable transformation of
the solute concentration in the solution of laminar flow and solute
transport equations in a parallel plate device with permeable walls.
This variable transformation improved their finite difference method
allowing the use of a larger grid spacing without loss of accuracy. A
logarithm transformation has also been used in turbulence modelling
using the k-ε formalism (Ilinca et al., 1998). The model is rewritten in
terms of the variables log(k) and log(ε), and when k and ε variables are
recovered the result is always positive.

Fattal and Kupferman (2004) reported a breakthrough in the HWNP
in their numerical simulations with the Finitely-Extensible Nonlinear
Elastic model using the Chilcott-Rallison approximation (FENE-CR) in
a two-dimensional lid-driven cavity flow. Later, Fattal and Kupferman
(2005) applied the log-conformation scheme to the flow of an Oldroyd-
B fluid in the same geometry, using a multigrid solver, and reported
the ability to perform stable simulations at large values of the Weis-
senberg number. They proposed a stability criterion and stated that this
condition may be very restrictive when convection is weak and in the
presence of large deformation rates, as in the flow around sharp corners.
Recently, Pan and Hao (2007) performed numerical simulations of the
lid-driven cavity creeping flow for an Oldroyd-B fluid, using the finite
element method (FEM). They also relied on the log-conformation tech-
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nique, and found that this methodology is stable at higher Weissenberg
numbers, and presented solutions up to De = 3.

Hulsen et al. (2005) were the first to implement the log-conformation
methodology within the FEM framework and applied it to the bench-
mark flow of Oldroyd-B and Giesekus fluids past a confined cylinder.
They reported an almost unbounded convergence limit for the Giesekus
model, whereas for the Oldroyd-B fluid the solution became unsteady
at higher Deborah numbers, while exhibiting symptoms of strong mesh
dependency particularly in the stress fields near the cylinder. Kwon
(2004) investigated numerically the planar 4:1 contraction flow using the
Leonov constitutive equation and found stabler computations when us-
ing the log-conformation method than with the conventional approach.
Kwon (2004) also concluded that this new method may only work
efficiently for constitutive equations that are proven globally stable and
that the stability constraint has to be taken into serious consideration.
In a sequel, Yoon and Kwon (2005) obtained solutions for Deborah
numbers in excess of 100 using finer meshes. These authors also pre-
sented solutions for the 4:1:4 contraction/expansion flow and obtained
converged solutions for Deborah numbers above 10. However, in both
geometries the convergence limits decreased with mesh refinement.
More recently, Kwon (2006) extended the log conformation formulation
to the calculations of flows of viscoelastic fluids in a channel obstructed
by an asymmetric array of cylindrical obstacles. The Leonov model
was employed, and stable solutions were obtained with an apparent
unbounded convergence limit when the retardation parameter that
specifies the solvent viscosity contribution was 0.5. In contrast, in the
absence of a solvent contribution to the Leonov model, the limiting
Deborah number becomes finite, between 4.5 and 20.

Coronado et al. (2007) used an alternate implementation of the log-
conformation formulation in their simulations of the planar Couette
flow and flow past a cylinder in a channel, for several viscoelastic fluids.
These were modelled by a generalized constitutive equation formulated
in terms of the conformation tensor. Their results demonstrated that
this methodology works well and improves the numerical stability at
higher De, especially in the flow past a confined cylinder, where the
maximum De limit was extended to 1.0 as compared to 0.7 obtained
with the standard DEVSS-TG/SUPG method. The results were also in
good agreement with those presented by Hulsen et al. (2005). Recently,
Guénette et al. (2008) performed simulations of the flow of a viscoelastic
fluid around a confined cylinder using the Oldroyd-B and Giesekus
models. They used a FEM, with an anisotropic adaptive remeshing
method, based on the log-conformation formulation, and showed that
convergence with mesh refinement is possible for the Oldroyd-B model
up to at least De = 0.7, although at De = 0.8 mesh convergence was
lost.

The remaining of this paper is organised as follows: after presenting
the governing equations, the log-conformation modified constitutive
equation is described. Then, we explain how the positive definiteness
of the conformation tensor is assessed. Prior to the presentation of
results the numerical method is briefly described and the geometry and
computational meshes used are presented. The paper ends with the
main conclusions.
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5.1.2 Governing Equations

To simulate the steady incompressible flow of viscoelastic fluids, the
following set of governing equations needs to be solved: conservation
of mass,

∇ · u = 0, (5.1)

conservation of momentum,

ρ
Du
Dt

= −∇p+βηo∇2u +
ηo

λ
(1−β) ∇ ·A, (5.2)

containing an additive term which either obeys the Oldroyd-B or the
PTT model and a constitutive equation describing the evolution of the
conformation tensor, A,

λ
∇
A = −Y(trA) (A − I) (5.3)

where I is the unit tensor, u is the velocity vector, p is the pressure,

λ is the relaxation time of the polymer, and
∇
A represents Oldroyd’s

upper-convected derivative of A, given by

∇
A =

DA
Dt

− A · ∇u −∇uT ·A (5.4)

The total fluid extra-stress is the sum of the solvent and polymer
stress contributions, and the viscosity ratio, β, is defined as the ratio
between the Newtonian solvent viscosity, ηs, and the total zero shear-
rate viscosity, η0,

β ≡ ηs

η0
=

ηs

ηs + ηP
(5.5)

where ηP is the coefficient of viscosity of the polymer.
In its general form function Y (trA) for the PTT model is exponential

(Phan-Thien, 1978) but in this work we use its linear form, Y (trA) = 1+

ε (trA − 3) (Phan-Thien and Tanner, 1977). When Y (trA) = 1 (i.e. for ε =
0) the Oldroyd-B model is recovered. The non-unitary form of Y (trA)

for the PTT model with a Newtonian solvent imparts shear-thinning
behavior to the shear viscosity of the fluid and bounds its extensional
viscosity. The constitutive law written in terms of the conformation
tensor A, can be explicitly formulated as a function of the polymer
contribution to the extra-stress tensor, τ, with the following relation
valid for both models,

τ =
ηp

λ
(A − I) . (5.6)

The use of these governing equations in terms of τ was followed in
previous works (Alves et al., 2001b; Oliveira et al., 1998; Alves et al.,
2000, 2003a; Afonso et al., 2008; Oliveira and Miranda, 2005), where the
numerical methodology was extensively validated in the framework of
FVM. This approach is known as the standard method, and is not used
here except in some comparisons to assess the performance of the new
log-conformation method. In such comparison the standard method
will be based on the polymer stress given by equations (5.3) and (5.6).
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5.1.2.1 The log-conformation representation

As mentioned above, Fattal and Kupferman (2004) suggested a simple
tensor-logarithmic transformation of the conformation tensor for dif-
ferential viscoelastic constitutive equations, which can be applied to a
wide variety of constitutive laws. The core feature of the transformation
is the decomposition of the velocity gradient, ∇uT , into a traceless
extensional component, E, and a pure rotational component, R. With
this decomposition, the evolution equation (5.3), can be re-written as
(Fattal and Kupferman, 2004)

∂A
∂t

+ (u · ∇)A − (RA − AR) − 2EA =
Y(trA)

λ
(A − I) (5.7)

In the log-conformation representation the evolution equation (5.7) is
replaced by an equivalent evolution equation for the logarithm of the
conformation tensor, Θ = log A, benefiting from the fact that A is a
symmetric positive definite (SPD) matrix, and thus can be diagonalized
into the form (Fattal and Kupferman, 2004)

A =Ω D ΩT, (5.8)

where Ω is an orthogonal matrix that consist of the eigenvectors of
matrix A, and D is a diagonal matrix made with the corresponding three
distinct eigenvalues of matrix A. The transformation from equation
(5.7) to an equation forΘ = log A is described in Fattal and Kupferman
(2004), and leads to

∂Θ

∂t
+ (u · ∇)Θ− (RΘ−ΘR) − 2E =

Y
[
tr(eΘ)

]
λ

(e−Θ − I). (5.9)

To recover A from Θ the inverse transformation A = eΘ is used
when necessary. The positive definiteness of the conformation tensor is
crucial for the well posedness of the evolution equation. In this work,
the positive definiteness is assessed by checking if the determinant of
A is positive (a necessary condition for A being positive definite. For
the Oldroyd-B model, det(A) > 1 as shown by Hulsen, 1988).

5.1.3 Numerical method and computational meshes

In the past, our group adapted a Newtonian FVM to calculate viscoelas-
tic flows where the polymer contribution to the extra-stress tensor was
described by one of various differential rheological constitutive equa-
tions (Alves et al., 2001b; Oliveira et al., 1998; Alves et al., 2000, 2003a;
Afonso et al., 2008; Oliveira and Miranda, 2005). This fully-implicit
FVM is based on a time-marching pressure-correction algorithm, for-
mulated with the collocated variable arrangement, as explained in
detail in Oliveira et al. (1998) and Alves et al. (2000, 2003a). Here, the
methodology is adapted to the log-conformation procedure and the
corresponding modifications are explained below.

The governing equations are first transformed to a non-orthogonal
system, but keeping the Cartesian velocity and conformation/log-
conformation components. The log-conformation tensor evolution equa-
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tion (5.9) can thus be written into a general non-orthogonal coordinate
system (σ1,σ2,σ3) as,

∂JΘij

∂t
+
∂

∂σl

(
ukβlkΘij

)
= J

(
RikΘkj−ΘikRkj

)
+2JEij+Y (Akk)

J

λ

(
e−Θij − δij

)
(5.10)

where J is the Jacobian of the transformation xk = xk (σl) and βlk are
metric coefficients, defined by the cofactor of ∂xk/∂σl. After integration
over the control volumes forming the computational mesh, and in
time over a time step (δt), the βlk metric coefficients are replaced by
area components (index k) of the surface whose normal vector points
towards direction l, the Jacobian J is replaced by the computational
cell volume V , and the derivatives ∂/∂σl become differences between
values along direction l. More details can be found in Oliveira et al.
(1998).

After the discretization, the various terms are assembled, to obtain a
system of algebraic equations of the form

aΘPΘij,P −
∑
F

aΘF Θij,F = SΘij +
λPVP
δt

Θ0ij,P, (5.11)

where Θ0ij,P refers to the ij component of the log-conformation tensor
at the previous time level, aΘP represents the central coefficient, aΘF
represents the coefficients of the neighbouring cells (with F spanning
the near-neighbouring cells of cell P) and SΘij is the source term.

The numerical procedure used in the standard method to solve for
the extra-stress - equations (5.3) and (5.6)- was modified for the new
form of stress equation based on the log-conformation tensor, equation
(5.9), so that now the algorithm contains the following steps:

1. Initially, the conformation tensor Aij, obtained from the extra-
stress components τij - from equation (5.6) - is used to calculate
the log-conformation tensor, θij. For each computational cell, Aij
is diagonalized according to equation (5.9), and all eigenvalues
and eigenvectors are computed, which are used in the calculation
of the orthogonal matrix, Ωij, and the diagonal matrix, Dij. The
tensor θij is then calculated using the relationΘ =ΩT (log D)Ω.

2. Following the appropriate decomposition (Fattal and Kupferman,
2004) of the velocity gradient, ∇u, and using the values of Ωij,
and Dij, the traceless extensional components, Eij, and the pure
rotational component, Rij, are calculated at each cell;

3. The evolution equation for θij - equation (5.10) - is solved to
obtain θij at the new time level;

4. The conformation tensor Aij is recovered and the extra-stress τij
is calculated from the newly computed conformation field using
equation (5.6);

5. The momentum equations are solved for each velocity component,
ui;

6. As generally the velocity components do not satisfy the continuity
equation, this step of the algorithm involves a correction to ui and
to the pressure field p, so that the updated velocity field ui and
the corrected pressure field p satisfy simultaneously the continuity
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and the momentum equations. This part of the algorithm remains
unchanged and is described in detail in Oliveira et al. (1998);

7. Steps 1 to 6 are repeated until convergence is reached (steady state
calculations), or until the desired final time is reached (unsteady
calculations).

The advective term in equation (5.10) is discretised with the CUBISTA
high-resolution scheme (Alves et al., 2003a), formally of third-order
accuracy and especially designed to deal with differential constitutive
relations.

5.1.4 Results

In order to analyse the performance of the log-conformation formalism
in comparison with the standard formulation of the extra-stress tensor,
the flow past a confined circular cylinder was calculated with both
formulations. For conciseness henceforth we denote by StrT and LogT
the results obtained with the standard and log-conformation methods,
respectively. In all cases the L1-norm of the residuals of the governing
equations was required to be less than a tolerance of 10−6 in order
to stop the time stepping procedure. In all test cases this convergence
criterion was found to be sufficient to attain a converged steady-state
solution.

5.1.4.1 Flow geometry and computational meshes

The geometry of the viscoelastic fluid flow past a confined cylinder in
a channel is shown in Figure 5.1. The ratio of channel half-height h to
cylinder radius R is set equal to 2, which corresponds to the benchmark
50% blockage case (Brown and McKinley, 1994). The computational
domain is 200R long, with 99R upstream and 99R downstream of the
forward and rear stagnation points of the cylinder, respectively. The
downstream length is sufficient for the flow to become fully-developed
and to avoid any effect of the Neumann outflow boundary condition
upon the flow in the vicinity of the cylinder. Vanishing axial gradients
are applied to all variables, including the pressure gradient, at the outlet
plane. No-slip conditions are imposed at both the cylinder surface
(r = R: u = 0, v = 0) and the channel wall (y = ±h: u = 0, v = 0).

Figure 5.1: Schematic representation of the flow past a confined cylinder geom-
etry (X = x/R).

The main characteristics of the meshes M30WR and M60WR used in
this work are given in Table 5.1, including the total number cells (NC),
the number of control volumes around the surface of the cylinder (NS),
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Table 5.1: Main characteristics of the computational meshes.

NC NR NS (∆r/R)min (∆s/R)min

M30WR 11280 30 260 0.008 0.0012

M60WR 45120 60 520 0.004 0.0006

the number of cells placed radially from the cylinder to the channel
wall (NR), and the minimum cell spacing normalized with the cylinder
radius along the radial (∆r) and the azimuthal (∆s = R∆θ) directions.
All the computational meshes mapped the complete flow domain (i.e.
no symmetry boundary condition was imposed along the centreline),
in order to capture possible symmetry-breaking steady/unsteady phe-
nomena (Poole et al., 2007c; Rocha et al., 2009). The subscript WR (for
wake-refined) is added to the mesh designation to denote highly refined
meshes along the wake. For mesh M30WR the minimum normalized
cell spacing along the azimuthal direction is 0.0012 compared with
0.0314 for the equivalent mesh M30 used in Alves et al. (2001b). Mesh
M60WR has twice the number of cells along both directions as mesh
M30WR, with a total of 45120 cells. The number of cells along the cylin-
der sidewall with that mesh is 520 and the minimum normalized cell
spacing along the radial and azimuthal directions is 0.004 and 0.0006,
respectively.

Results of computations are presented in two ways: as a scalar inte-
gral quantity representative of the whole flow; and as detailed profiles
of stress components in the vicinity of the cylinder. The integral quantity
is the dimensionless drag coefficient, K, calculated as

K =
1

η0U

∫
S
(τtot − pI) · n · i dS (5.12)

where I is the unit tensor, n is the unit vector normal to the cylin-
der surface and i is the unitary vector aligned with the streamwise
direction. Stress profiles are shown along the cylinder wall and on
the downstream rear wake, in order to ascertain the quality of the
predictions.

All the calculations were carried out at a vanishing Reynolds number,
Re = ρUR/η = 0 (creeping flow conditions - imposed by dropping out
the convective term in the momentum equation) and we studied the
effect of the Deborah number, here defined as

De =
λU

R
(5.13)

where U and R represent average velocity and the cylinder radius,
respectively. This definition of Deborah number is the same used in
previous works (eg. McKinley et al. (1993); Baaijens et al. (1994); Shiang
et al. (1997, 2000); Oliveira et al. (1998); Afonso et al. (2008); Fan et al.
(1999), and is consistent with taking U for velocity scale and R for
length scale. However we note that sometimes the same dimensionless
group is called Weissenberg number (eg. Hulsen et al., 2005; Coronado
et al., 2007), and that a distinction between the notion of De and Wi
is irrelevant (except perhaps for a constant multiplicative factor) when
the blockage ratio (b = R/h) is not varied. When such a distinction is
required it is appropriate to define Wi = λγ̇c with the characteristic
shear rate based on velocity and length scales existing in the gap
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between the cylinder and the channel walls, thus γ̇c = Ugap/hgap =

(3/2)U[h/(h=R)]/[(h=R)/2], giving Wi = 3Deb/(1=b)2 (with b = 0.5
as in the present study, Wi = 6De). The fact that our numerical results
show either a steady/unsteady flow transition or difficulties to achieve
mesh convergence when De ∼ 1, gives further support to base the level
of elasticity on this definition.

The results for the Oldroyd-B model are presented in Section 5.1.4.2
and for the PTT model in Section 5.1.4.3.

5.1.4.2 Oldroyd-B fluid

In this section we use the Oldroyd-B model with a solvent viscosity
ratio β = 0.59. Normalization of the data is done as follows: coordinates
in the x and y directions were normalized by the cylinder radius, R,
the velocity components by the average velocity, U, and the extra stress
tensor τ and the pressure p are scaled with a viscous stress, η0U/R.

The simulations with the StrT formulation diverged at De = 0.9 with
mesh M60WR. The loss of positive definiteness of A precedes the onset
of divergence of the numerical method, as observed in Figure 5.2, where
the time evolution of the minimum value of the determinant of the
conformation tensor along a calculation is plotted. After approximately
two relaxation times, the simulation with the StrT formulation begins
to present negative values of det(A)min. For the LogT formulation the
value of det(A)min is, by design, always positive, thus showing no
signs of violation of the positive definition criteria. We also observe that
with the LogT formulation det(A)min> 1, as expected for the Oldroyd-
B model (Hulsen, 1988). It can also be observed that the location where
loss of positive definiteness evolution occurs is in the rear stagnation
point region, as depicted in the inset of Figure 5.2. This agrees with the
results of Afonso et al. (2008) for uniform flow of viscoelastic fluids past
a cylinder, where det(A) values were minimum in the rear stagnation
point at all Deborah numbers.

Figure 5.2: Time evolution of det(A)min for creeping flow of an Oldroyd-B
fluid (β= 0.59) past a cylinder. Comparison between StrT and LogT
formulations at De = 0.9, calculated in mesh M60WR. The circles
in the inset figure indicate the location where the minimum value
of det(A) is observed.
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Drag coefficient results

The literature data for the dimensionless drag coefficient (K) show
some discrepancies, especially for Deborah numbers above 0.7. Alves
et al. (2001b) used the standard method, employing highly refined
non-orthogonal meshes, and the predicted drag force agrees well with
values from other simulations in the literature (Hulsen et al., 2005;
Coronado et al., 2007; Guénette et al., 2008; Fan et al., 1999; Kim et al.,
2004). In particular, their predictions of K were nearly identical to those
of the FEM simulations of Fan et al. (1999). The predictions of drag
force of Kim et al. (2004) also agreed well with the previous results up
to De = 0.9.

Figure 5.3: Drag force coefficient for the creeping flow of an Oldroyd-B fluid
(β= 0.59) past a cylinder. Results obtained with the LogT formulation
with meshes M30WR and M60WR, and comparison with data from
Alves et al. (2001b), Hulsen et al. (2005) and Fan et al. (1999).

Table 5.2: Drag force coefficient for the Oldroyd-B model with β = 0.59 (data in
brackets indicate time-average values).

StrT LogT
De M30WR M60WR M30WR M60WR

0.5 118.772 118.821 118.781 118.818

0.6 117.768 117.776 117.778 117.774

0.7 117.370 117.324 117.350 117.323

0.8 117.441 117.370 117.380 117.364

0.9 117.797 117.817

1.0 (118.662) (118.680)
1.1 (119.740) (119.780)
1.2 (120.985) (121.051)
1.4 (124.129) (124.092)
1.5 (126.022) (125.972)
1.6 (127.759) (127.751)
1.7 (130.012) (129.802)
1.8 (132.024) (131.937)
1.9 (134.188) (133.952)
2.0 (136.580) -
2.2 (141.801) -
2.4 (146.730) -
2.5 (149.112) -

The predictions of K obtained in the present work are presented in
Figure 5.3 and in Table 5.2. Up to De = 0.9 the results agree well with
the accurate data of Fan et al. (1999), Alves et al. (2001b), Kim et al.
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(2004) and Hulsen et al. (2005). For higher Deborah numbers, no steady
state could be attained, with the K values oscillating in time with the
amplitude marked as error bars in Figure 5.3. Here, instead of using
the value of K right after the onset of the transient behaviour, as used
by Hulsen et al. (2005), the plotted quantity is the time-average K value.
Although the mean values for both meshes are slightly higher than the
predictions of Hulsen et al. (2005), the lower bound of the oscillations
are in agreement with their predictions.

Stress convergence

In terms of stress convergence with mesh refinement, it is well known
that for De > 0.7 significant discrepancies are found among the results
from the literature (Alves et al., 2001b; Hulsen et al., 2005; Coronado
et al., 2007; Guénette et al., 2008; Fan et al., 1999; Kim et al., 2004),
especially in the maximum peak of normal stresses at the rear wake.
Even the predictions of the extra-stresses obtained with highly refined
meshes at the rear stagnation region and using high order methods are
not conclusive in this respect.

Figure 5.4: Effect of mesh refinement: (a) stress profiles along cylinder wall
and downstream centreplane for Oldroyd-B fluid at De = 0.6. LogT
formulation with meshes M30WR and M60WR and comparison
with data from Alves et al. (2001b); (b) closer view in the rear wake
of the cylinder and comparison with data from the literature.

Figure 5.4 shows normal stress profiles along the cylinder surface
and the rear wake as obtained with different meshes at De = 0.6; the
results are essentially mesh independent, but in the rear wake they are
slightly above those of Alves et al. (2001b) using the StrT formulation
(in this section, we use the results of Alves et al. (2001b) in their refined
mesh (M120) to represent the StrT formulation). This difference is due
to the refinement of the mesh in the wake allowing the stresses to be
better resolved in meshes M30WR and M60WR than in mesh M120,
thus showing the advantage of wake refined meshes. At De = 0.7 the
corresponding normal stress profiles obtained with our wake refined
meshes are plotted in Figure 5.5, and are in good agreement with those
of Alves et al. (2001b) obtained with the StrT formulation. In the rear
wake zone there is now a more noticeable mesh dependency, with the
present results obtained with the LogT formulation exhibiting higher
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stress peaks. The results of Alves et al. (2001b), Kim et al. (2004) and
Hulsen et al. (2005) are all in close agreement, except for the maximum
peak values in the wake that are slightly below those calculated here
on the finest mesh.

Further increase in Deborah number to De = 0.9 enhances the dis-
crepancies in the rear wake zone, as shown in Figure 5.6. Although on
the cylinder surface the normal stress peaks obtained with the LogT
and mesh M60WR are in close agreement with the StrT results of Alves
et al. (2001b) for mesh M120, in the rear wake the differences are large.
There is also a noticeable discrepancy in relation to the data of Fan et al.
(1999) and Coronado et al. (2007).

Figure 5.5: Effect of mesh refinement: (a) stress profiles along cylinder wall
and downstream centreplane for Oldroyd-B fluid at De = 0.7. LogT
formulation with meshes M30WR and M60WR and comparison
with data from Alves et al. (2001b); (b) closer view in the rear wake
of the cylinder and comparison with data from the literature.

Another useful observation concerns the relation between the max-
imum normal stress, (τxx)max, along the centreline of the rear wake
region and the location of peak stress, xmax. These data are plotted
in Figure 5.7, and the value of (τxx)max increases nearly exponen-
tially with De and the location xmax/R shows a non-monotonic be-
haviour, moving downstream from the rear stagnation point (from
(x−R)/R ≈ 0.42 to (x−R)/R ≈ 0.78) for De < 0.6, and shifting back to-
wards the stagnation point at higher Deborah numbers. This upstream
shift in xmax/R at large Deborah numbers certainly contributes to nu-
merical difficulties, as the size of the region of peak normal stress may
eventually become smaller than the local streamwise mesh resolution.
Also, as xmax/R approaches the rear stagnation point, higher residence
times are observed in regions with higher strain rates, thus leading to a
strong increase in the (τxx)max values as the fluid stresses are allowed
to build up.

High Deborah number results

The question of whether a steady solution for cylinder flow can be
attained at high De by improving numerical method accuracy and
stability, is still open to debate. Fan et al. (1999) and Owens et al. (2002)
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Figure 5.6: Effect of mesh refinement: (a) stress profiles along cylinder wall
and downstream centreplane for Oldroyd-B fluid at De = 0.9. LogT
formulation with meshes M60WR and M60WR and comparison
with data from Alves et al. (2001b); (b) closer view in the rear wake
of the cylinder and comparison with data from the literature.

argued that steady numerical solutions for the Oldroyd-B fluid flow at
Deborah numbers above 0.8 are probably numerical artifacts. Recently,
Bajaj et al. (2008) studied the cylinder flow problem with ultra-dilute
and dilute polymer solutions, modelled by the Oldroyd-B and FENE-P
models, and estimated that the number of finite elements required to
achieve convergence is unfeasible to obtain solutions for the Oldroyd-B
model above De = 1, due to the steep increase in the normal stresses
in the thin boundary layer in the vicinity of the cylinder. On the other
hand, experimental work in this geometry with a constant-viscosity
PIB polymer solution showed a first transition from steady 2D to a
steady 3D flow at De ≈ 1.3, followed by a transition to a periodic
time dependent flow at De ≈ 1.85 (McKinley et al., 1993). Shiang et al.
(1997, 2000) also identified experimentally a cellular structure in the
cross-flow plane over a confined cylinder at Decrit ≈ 0.21, with a
periodic vortical structure obtained for Decrit ≈ 0.66. The fluid used
in these experiments has no noticeable shear-thinning for the range of
tested shear-rates. Inspired by the experiments of McKinley et al. (1993),
Oliveira and Miranda (2005) performed numerical simulations using
the FENE-CR model and conjectured that the predicted pulsating small
vortex attached to the rear stagnation point, could be the triggering
mechanism leading to the formation of 3D cellular structures in the
wake of the cylinder. If this is the case, then numerical results computed
at high De assuming 2D flow are not representative of the real flows.

In this work, unsteady solutions were obtained for Deborah numbers
from 1.0 up to 3.0 and 1.9, for meshesM30WR andM60WR, respectively.
This represents an increase of about 90% in the maximum attainable
De as one changes from the StrT to the LogT formulation. Using the
LogT approach the stability requirements were always attained, as per
design. Figure 5.8a illustrates that the minimum value of det(A) is
always positive, and above one (Hulsen, 1988). As described in the
last Section, the unsteady flow was also reflected in the K results, and
Figure 5.8b shows the time oscillations for several De, as predicted
with mesh M60WR. The range of these oscillations increase with De
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Figure 5.7: Maximum value of τxx along the downstream centreline and loca-
tion of peak stress, xmax, as function of De. Results obtained with
the Oldroyd-B fluid in mesh M60WR.

and decrease with mesh refinement. Mesh independent results will be
pursued in future work but those calculations are very time consuming.
Nevertheless, even forDe = 1.9 the relative amplitude of the oscillations
is only of about 1.4% of the time-average value.

Figure 5.8: Time evolution of (a) 1−det(A)min and (b) drag force coefficient,
calculated in mesh M60WR.

To obtain further insights into the time-dependent flow, calcula-
tions were carried out using a second-order time discretization scheme
(Oliveira, 2001a) in order to improve time accuracy. Figure 5.9a shows
the time evolution of K using different time steps for De = 1.2 and
mesh M30WR. The solutions obtained with the smaller time steps
(∆t/λ = 4x10−5 and ∆t/λ = 2x10−5 ) collapse and are independent
of ∆t, showing good time accuracy even if no characteristic frequency
could be estimated from the numerical results of K vs t. The normal
stress profiles at four instants plotted in Figure 5.9b show sharp in-
creases in τxx near the rear stagnation point at some moments, thus
breaking the smoothness of the stress profile in this viscoelastic flow.
This reveals the major importance of the minimum mesh size in the
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axial direction in the stagnation point region. Although stable results
were obtained up to De = 1.8 by Hulsen et al. (2005) they also reported
symptoms of stress convergence problems for De > 0.7, suggesting
that a possible reason was that the length scale associated with the
changes of the velocity gradient near the rear stagnation point was
much smaller than the minimum mesh size in their most refined mesh.
Hulsen et al. (2005) also questioned the existence of a smooth solution
near the cylinder and recently Renardy (2006) argued that at high Deb-
orah number flows the smoothness of viscoelastic stresses could be
expected to deteriorate.

Figure 5.9: Creeping flowof an Oldroyd-B fluid (β= 0.59) past a cylinder at
De = 1.2 (Mesh M30WR). (a) Time evolution of the drag force
coefficient for different time steps, ∆t/λ. (b) Axial normal stress
profiles along cylinder wall and downstream centreline at the four
instants marked in (a).

5.1.4.3 PTT fluid

The evolution equation for the log-conformation tensor, equation (5.9),
includes the PTT model (Phan-Thien and Tanner, 1977; Phan-Thien,
1978) with linear stress coefficient kernel, Y (trA) = 1 + ε (trA − 3);
when ε = 0 the Oldroyd-B model is recovered (Y (trA)= 1). This func-
tion brings in a new parameter ε that imposes an upper limit to the
elongational viscosity (ηE∝1/ε for low ε), and here the PTT model is
employed with two typical values of ε = 0.02 and 0.25, and with solvent
viscosity contribution (β = 0.59). The PTT model is shear-thinning in
viscosity, in contrast to the Oldroyd-B model used in the previous Sec-
tions, and has been employed in several numerical works of flow past
a cylinder with both uniform and Poiseuille inlet conditions (Afonso
et al., 2008; Phan-Thien and Dou, 1999; Dou and Phan-Thien, 2003).

Stability and Drag coefficient results

For lower values of ε (ε = 0.02), the simulations with the StrT formu-
lation diverged at De ≈ 3 and De ≈ 1.2 with meshes M30WR and
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Figure 5.10: Time evolution of det(A)min and residuals of the governing equa-
tions for the creeping flow of a PTT fluid (β= 0.59) past a cylinder
calculated in meshM30WR. (a) Comparison of det(A)min between
StrT and LogT formulations at De = 3 (ε= 0.02) and De = 30 (ε=
0.25); (b) Comparison of iterative convergence between StrT and
LogT formulations at De = 30 (ε= 0.25).

M60WR, respectively. Note that when ε→ 0 the PTT model reduces to
the Oldroyd-B model and, as observed for this latter model, a probable
cause for divergence is the loss of positive definiteness, as observed
in Figure 5.10a, where the determinant of the conformation tensor is
presented for the near critical value of De = 3. The simulation with
the StrT formulation has at least one negative eigenvalue of A, leading
to negative values of det(A)min and this takes place near the rear
stagnation point. For the LogT formulation with ε = 0.02, the value
of det(A)min is always positive, as per design, and converged solu-
tions up to De ≈ 20 and De ≈ 10 were obtained with meshes M30WR
and M60WR, respectively. This breakthrough in the critical Deborah
number for steady flow clearly shows the advantage of using the LogT
formulation. This scenario is even more outstanding in the simulations
for higher values of ε (ε = 0.25), where the LogT formulation shows no
signs of convergence problems, while for the StrT formulation positive
definiteness is no longer observed for De ≈ 30 with mesh M30WR,
as shown in Figure 5.10b. The simulations with the StrT formulation
with mesh M30WR still converged up to De ≈ 200, but the value of
det(A)min was always negative with its magnitude increasing with De,
and with the L1-norm of the residuals of the governing equations not
attaining the required tolerance while the residuals for the equivalent
LogT simulation converging up to the prescribed tolerance of 10−6, as
shown in Figure 5.10b for De = 30 and ε = 0.25.

The predictions of K are displayed in Figure 5.11 and in Table 5.3.
Since there is no available data in the literature for a PTT fluid at
β = 0.59, a direct comparison with results from both formulations is
presented. Up to the critical Deborah number, the results from both
approaches and values of ε agree very well. For higher De the predic-
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Figure 5.11: Drag force coefficient for the inertialess flow of a PTT fluid (β=
0.59) past a cylinder. Results obtained with the LogT and StrT
formulations with meshes M30WR and M60WR.

Table 5.3: Drag force coefficient for the PTT model with β = 0.59 (data in
brackets indicate that full convergence was not achieved).

ε = 0.02 ε = 0.25
StrT LogT StrT LogT

De M30WR M60WR M30WR M60WR De M30WR M60WR M30WR M60WR

0 132.231 132.345 0 132.231 132.345

0.1 130.095 130.256 130.094 130.256 0.1 128.370 128.567 128.369 128.566

0.2 126.428 126.613 126.427 126.613 0.5 114.640 114.805 114.635 114.805

0.4 120.961 121.160 120.959 121.158 1.0 108.789 108.929 108.784 108.928

0.6 118.112 118.312 118.112 118.310 1.5 106.022 106.151 106.024 106.150

0.8 116.498 116.699 116.500 116.698 2.0 104.359 104.481 104.362 104.481

1.0 115.405 115.611 115.409 115.612 2.5 103.227 103.344 103.232 103.345

1.2 114.566 114.781 114.572 114.785 3.0 102.396 102.510 102.402 102.511

1.4 113.878 113.883 114.107 4.0 101.243 101.351 101.247 101.352

1.6 113.290 113.289 113.529 5.0 100.465 100.570 100.469 100.572

1.8 112.772 112.769 113.023 6.0 99.898 100.001 99.901 100.002

2.0 112.306 112.302 112.571 7.0 99.462 99.564 99.464 99.565

2.5 111.322 111.320 111.614 8.0 99.114 99.115 99.216

3.0 110.523 110.505 110.832 9.0 98.828 98.829 98.929

4.0 109.222 109.605 10 98.588 98.588 98.688

5.0 108.243 108.662 20 97.324 97.319 97.420

6.0 107.425 107.905 50 (96.261) 96.244 96.351

8.0 106.273 106.746 100 95.724 95.831

10 105.386 105.888 500 95.057 95.152

20 102.902 1000 94.905

tions of K exhibit a slight mesh dependency, of approximately 0.46%
(De = 10) and 0.11% (De = 100) for ε = 0.02 and ε = 0.25, respectively.

Stress convergence and high Deborah number results

Previous works with constitutive models exhibiting shear-thinning or
bounded extensional viscosity, such as FENE-CR, PTT or Giesekus
models (Oliveira et al., 1998; Afonso et al., 2008; Oliveira and Miranda,
2005), have shown mesh refinement not to be so crucial as with UCM
and Oldroyd-B models. This observation is also valid for the predictions
of τxx presented here, as shown in Figure 5.12. For lower values of ε,
the normal stress profiles along the cylinder sidewalls and in the rear
region at near critical conditions (De = 1 and De = 1.2) are similar
for all meshes and formulations, with a slightly mesh dependency of
τxx profiles in the rear region at De = 1.2 (c.f. Figure 5.12a). The mesh
convergence dependency weakens when the value of ε is increased
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Figure 5.12: Effect of mesh refinement: stress profiles along cylinder wall and
downstream centreline for PTT fluid with meshes M30WR and
M60WR at (a) De = 1 and De = 1.2 with ε = 0.02; (b) De = 6 and
De = 7 with ε= 0.25.

to 0.25, as illustrated in Figure 5.12b, with the predictions of τxx at
De = 6 and De = 7 becoming indistinguishable for all meshes and
formulations, even in the rear region.

As observed in previous Section, the simulations for the PTT model
using the LogT formulation exhibit a significant breakthrough in the
HWNP, with stable and convergent results obtained up to significantly
higher Deborah numbers. In terms of convergence with mesh refine-
ment, we were able to obtain mesh-independent results at low values
of the extensional parameter (c.f. Figure 5.13a), these corresponding to
situations where shear-thinning is weaker. The profiles of τxx exhibit
a progressive increase in magnitude and width with De, both at the
cylinder sidewalls and in the near wake region. For all plotted profiles,
corresponding to De = 1.4, 2.2, 5 and 10, the results obtained in meshes
M30WR and M60WR are similar.

The high De results of Figure 5.13b, obtained with ε = 0.25, show
some new features not seen with the Oldroyd-B model. At the cylin-
der sidewalls for high De, all τxx profiles decrease with an increase
of Deborah number due to shear-thinning. This behaviour was also
observed by Afonso et al. (2008) for a PTT fluid in an uniform flow
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Figure 5.13: Stress profiles along cylinder wall and downstream centreline for
PTT fluid with meshes M30WR and M60WR at (a) De = 1.4, 2.2, 5

and 10 with ε = 0.02; (b) De = 7, 10, 50 and 100 with ε = 0.25.

past a cylinder. In the near wake region the τxx profiles at high De,
corresponding to De = 7, 10, 50 and 100, exhibit a small decrease in
magnitude and a small increase in width downstream the cylinder. At
this extensional parameter, the mesh refinement effect is negligible, in
spite of the very high Deborah numbers.

5.1.5 Conclusions

In this work a finite-volume method was adapted to use the log-
conformation formulation of Fattal and Kupferman (2004) and was
applied to the simulation of 2D laminar viscoelastic fluid flow around
a confined cylinder, using both the Oldroyd-B and the PTT models.

In spite of the usual stress convergence problems in the confined
cylinder geometry using the Oldroyd-B model, calculations with the
log-conformation approach enable results to be obtained at higher
Deborah numbers, as compared to the standard stress formulation,
with the critical De for divergence raising from De ≈ 1.0 to either 1.9
or 2.5 depending on the mesh. At Deborah numbers higher than ∼ 1

the results are unsteady without a well defined frequency, and sharp
profiles are observed for τxx near the rear stagnation point breaking
the smoothness of the stress profile and revealing the major importance
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of refinement in the axial direction at the rear stagnation region of the
cylinder.

With the PTT model the stabilizing benefits of the log-conformation
approach are more clearly established since the range of the allowable
Deborah numbers raises significantly without visible physical desta-
bilization of the flow, which remains steady and symmetric about the
x-axis. Quantitatively, the LogT formulation for the higher value of ε
tested (ε = 0.25) showed no signs of convergence problems on any of
the meshes employed, while for the StrT formulation the violation of
positive definiteness of the conformation tensor occurred at De ≈ 7
on the finest mesh M60WR. On this same mesh, and for smaller value
of ε tested (ε = 0.02), which increases the elongational viscosity and
approaches the Oldroyd-B model, the critical De raised from 1.2 with
the StrT formulation to 10 with the LogT formulation.
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5.2 uniform flow of viscoelastic fluids past a confined

cylinder

Abstract2

Uniform steady flow of viscoelastic fluids past a cylinder placed between
two moving parallel plates is investigated numerically with a finite-volume
method. This configuration is equivalent to the steady settling of a cylin-
der in a viscoelastic fluid, and here, a 50% blockage ratio is considered. Five
constitutive models are employed (UCM, Oldroyd-B, FENE-CR, PTT and
Giesekus) to assess the effect of rheological properties on the flow kinematics
and wake patterns. Simulations were carried out under creeping flow con-
ditions, using very fine meshes, especially in the wake of the cylinder where
large normal stresses are observed at high Deborah numbers. Some of the re-
sults are compared with numerical data from the literature, mainly in terms
of a drag coefficient, and significant discrepancies are found, especially for the
constant-viscosity constitutive models. Accurate solutions could be obtained
up to maximum Deborah numbers clearly in excess of those reported in the
literature, especially with the PTT and FENE-CR models. The existence or
not of a negative wake is identified for each set of model parameters.

Keywords: Falling Cylinder; Viscoelastic; UCM; Oldroyd-B; FENE-CR;
PTT; Giesekus; Negative Wake; Numerical simulations.

5.2.1 Introduction

The flow of a viscoelastic fluid past a cylinder has been extensively
studied both experimentally (Manero and Mena, 1981; Bush, 1993;
McKinley et al., 1993; Broadbent and Mena, 1974) and numerically
(Bush, 1993; Hu and Joseph, 1990; Huang and Feng, 1995; Liu et al.,
1998; Oliveira et al., 1998; Fan et al., 1999; Sun et al., 1999; Alves et al.,
2001b; Caola et al., 2001; Owens et al., 2002; Phan-Thien and Dou,
1999; Kim et al., 2004, 2005a; Oliveira and Miranda, 2005; Gerritsma,
2006). The large number of works in this geometry may be explained
from two major motivations: (1) it is representative of the fundamental
flow dynamics of viscoelastic fluids around solid bodies, and (2) it is
intrinsically related to many processes in chemical engineering, namely
flows through porous media (McKinley et al., 1993), enhanced oil
recovery, composite and textile coating operations (Liu et al., 1998)
and food processes. From a numerical point of view the flow past a
cylinder is a smooth flow because it does not introduce any geometrical
singularity, in contrast, for instance, with the salient corner in entry
flows. Nonetheless the development of thin stress boundary layers on
the cylinder sidewalls and especially the high normal stress developed
along the rear wake centerline, remain a challenge and impose a limiting
value on the Deborah number (De), at least as far as a symmetric steady
flow is concerned.

Two configurations are possible for flow around a cylinder: either the
cylinder is fixed relative to the confining channel walls and a planar
Poiseuille flow emerges from an imposed pressure gradient, or it moves
as in the case of a cylinder falling freely along the middle of a channel,
which is equivalent to a uniform flow approaching a fixed cylinder

2 A. Afonso M. A. Alves, F. T. Pinho and P. J. Oliveira (2008). Uniform flow of viscoelastic
fluids past a confined cylinder, Rheologica Acta, 47 325-348.
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with channel-walls moving with the fluid. The present paper deals with
the second situation which gives rise to the interesting phenomenon
of “negative wakes” (Sigli and Coutanceau, 1977; Hassager, 1979), to
be discussed further down in this section but essentially consisting of
a fluid in the wake of the cylinder moving faster and in the opposite
direction to the wake-generating object. In a frame of reference fixed
to the cylinder this correspond to velocities in the wake that are faster
and in the same direction as the uniform approach flow, a situation
that arises only with viscoelastic fluids. The nature of negative wakes is
not yet well understood and one of the motivations for this work was
numerical quantification of conditions for its formation.

The case of confined flow around a fixed cylinder has been inves-
tigated more often than the settling of a cylinder in bounded or un-
bounded domains, and Owens et al. (2002) documented and sum-
marized the main results in their book, focusing primarily on the
Oldroyd-B model. Phan-Thien and Dou (1999) carried out simulations
of confined cylinder flows with the upper-convected Maxwell (UCM),
Oldroyd-B and PTT models where the flow was fully developed well
upstream of the cylinder. They found negative wakes behind the cylin-
der for this flow at high Deborah numbers and only for the PTT model.
Alves et al. (2001b) implemented classical high-resolution interpolation
schemes for convection (the MINMOD and SMART schemes) in the gen-
eral collocated finite-volume method (FVM) procedure for viscoelastic
flows developed by Oliveira et al. (1998). This implementation enhanced
numerical accuracy and was tested with the benchmark problem of the
flow past a confined cylinder with blockage ratio of 0.5, using the UCM
and the Oldroyd-B models. Highly refined non-orthogonal meshes were
used which allowed a good comparison of the predicted drag force on
the cylinder (the benchmark result) with values from other simulations
in the literature (Liu et al., 1998; Fan et al., 1999; Sun et al., 1999; Caola
et al., 2001; Owens et al., 2002; Phan-Thien and Dou, 1999; Kim et al.,
2004). In particular, predictions of the drag coefficient up to De ≈ 0.7
were consistent with the finite element method (FEM) simulations of
Fan et al. (1999). More recently, Gerritsma (2006) presented results ob-
tained with a spectral element method and again excellent agreement
with the numerical results obtained by Fan et al. (1999) and Alves et al.
(2001b) was found.

The settling of a cylinder in a confined viscoelastic fluid is still a work
in progress in rheological engineering, and several contributions have
come forward in the recent past. Huang and Feng (1995) investigated
the steady settling of a cylinder through quiescent Newtonian and
Oldroyd-B fluids in a vertical channel, employing FEM with the elastic-
viscous stress split scheme (EVSS). For their higher blockage case (50%),
Huang and Feng (1995) predicted a negative wake at high Deborah
numbers, but this unusual phenomenon was not replicated by Oliveira
et al. (1998) in their numerical work based on the FVM. The predictions
of Oliveira et al. (1998) for the unbounded flow case and the confined
case with blockage area of 33% were in agreement with those of Huang
and Feng (1995), but discrepancies were found in the wake velocities for
the higher blockage case (50%). These discrepancies were attributed to
the response of viscoelastic fluids to intense local shear and elongational
flows at the proximity of the channel wall. Dou and Phan-Thien (2004)
carried out simulations of the uniform flow of a viscoelastic fluid past a
cylinder in a moving channel using the UCM, PTT, Oldroyd-B and the
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FENE-CR models. They used a control volume finite element method
(CVFEM) with a DEVSS-w formulation under a distributed computing
environment through a Parallel Virtual Machine (PVM) library. Again, a
negative wake was not observed with the UCM and Oldroyd-B fluids for
various retardation ratios (β = 0.125, 0.4, 0.6, 0.8), thus corroborating
the predictions of Oliveira et al. (1998) in contrast to the results of
Huang and Feng (1995). However, for the PTT and FENE-CR models a
negative wake appeared at a criticalDe. Regarding drag coefficient (CD)
predictions, the early calculations of Dou and Phan-Thien (2003) found
a monotonic decrease of CD with De for the FENE-CR fluid with lower
extensibility parameter (L2 = 10). For a higher extensibility parameter
(L2 = 100), however, they predicted a non-monotonic behaviour, with
an initial decrease followed by an increase for approximately De > 0.6,
related to the strong increase of the extensional effects. The numerical
investigation of Kim et al. (2005a) focused on the comparison of negative
wake generation in both uniform and Poiseuille flows past a cylinder,
and on the influence of the FENE-CR model parameters upon this
flow feature: viscosity ratio (β) and polymer extensibility (L2). By
employing a discrete elastic viscous split stress (DEVSS-G)-streamline
upwinding/Petrov–Galerkin (G/SUPG) formulation with an efficient
iterative solution method developed for the mixed FEM by Kim et al.
(2004), they found that the drag coefficient monotonically decreased for
both L2 = 10 and L2 = 100, in contrast with the results obtained by Dou
and Phan-Thien (2003). They also found that, for all flow conditions and
model parameters, the negative wake generation is more pronounced
when the approach flow is uniform than when it is a Poiseuille flow.

So, for some viscoelastic fluids, the steady flow behind a cylinder
is characterized by the appearance of a negative wake which strongly
depends on fluid rheology. Negative wakes are overshoots of the stream-
wise velocity seen by the moving body along the centreline and have
been found in the wake of cylinders, spheres and rising bubbles (Sigli
and Coutanceau, 1977; Hassager, 1979). One of the most extensive early
investigations of this phenomenon was the visualization of the sedimen-
tation of a sphere in shear-thinning polyacrylamide (PAA) solutions
by Arigo and McKinley (1998), who also made an extensive review of
the literature. Early, however, McKinley et al. (1993) had been unable
to detect the appearance of negative wakes downstream of a cylinder
for Boger fluids and up to the present time there is no experimental
evidence of negative wake formation with constant viscosity elastic
fluids. Negative wakes in the settling sphere problem have also been
extensively studied using numerical methods (Jin et al., 1991; Zheng
et al., 1991; Bush, 1994). These works lead to the general conclusion
that both shear thinning and elastic effects are necessary for the for-
mation of a negative wake, but the numerical simulations by Satrape
and Crochet (1994) and Harlen (2002) showed that a negative wake
can also be present for constant viscosity elastic fluids, such as those
represented by the FENE-CR model. The predicted velocity profiles
along the centreline downstream of the sphere wake were intimately
linked to the extensional properties of the constitutive model, especially
the extensibility parameter L2. For small values of L2 a negative wake
was predicted even at low De values. On the other hand, increasing the
strain-hardening character of the model (by increasing L2) the negative
wake was reduced and eventually eliminated.
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The physical conditions under which the negative wake arises and
the mechanisms involved in its formation are still not fully understood
in spite of several studies that have focused on these issues. In the
sphere/cylinder geometries, Bush (1994) attributed the negative wake
behaviour to the relative proportion between elongational stresses in
the downstream region and fluid elasticity, and suggested that the
upstream shift in streamlines and the formation of negative wake are
a result of having a Deborah number much greater than the Trouton
ratio. For the sphere flow case, Harlen (2002) proposed that the origin
of negative wake was related to the circumferential gradient of shear
stress along the centreline, and in particular with the competition of
shear and normal stress distributions. Based on the suggestions of
Bush (1994) and invoking also arguments later used by Harlen (2002),
Arigo and McKinley (1998) proposed a criterion for the formation of
negative wake based on the ratio of axial tensile to shear stresses. Dou
and Phan-Thien (2004) also studied this phenomenon numerically and
proposed a different criterion, this time based on the ratio between the
gradient and the magnitude of elongational viscosity, to predict the
critical De marking the onset of negative wake for several constitutive
models (PTT, FENE-CR, FENE-P and Giesekus models).

Identifying the conditions that lead to the onset of a negative wake is
one of the motivations for the present work. In terms of outcome, this
study leads to two important contributions: (1) clarify the significant
discrepancies in the predicted drag coefficient of a FENE-CR fluid ob-
tained by Dou and Phan-Thien (2003) and Kim et al. (2005a), and (2)
confirmation of some sets of results available in the literature which
were obtained by different numerical methods. It should thus be clear
that the present work is essentially numerical and aims at clarifying the
conditions under which negative wakes are formed for the most com-
mon differential constitutive models, and giving reliable data for the
drag coefficient on the falling cylinder. A detailed matching of existing
experimental measurements requires close fitting of the rheology of the
fluids, most certainly through the incorporation of a multimode model,
and as such it should be left for a future work.

The paper is organized as follows: in Sections 5.2.2 and 5.2.3 we
briefly describe the general flow problem, present the governing equa-
tions and outline the numerical method used to simulate the settling of
the cylinder in a confined viscoelastic fluid. In Section 5.2.4, results are
presented for all constitutive models, encompassing the predicted drag
coefficient, detailed profiles of velocity and stress components in the
vicinity of the cylinder and stability criteria. A summary of the main
findings closes the paper in Section 5.2.5.

5.2.2 Governing equations and numerical method

The flow is assumed to be steady, laminar and the fluid is incompress-
ible. The governing equations are those expressing conservation of
mass:

∇ · u = 0 (5.14)

and momentum balance:

ρ
∂u
∂t

+ ρ∇ · uu = −∇p+∇ · τ+ ηs∇2u (5.15)
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where u is the velocity vector, p the pressure, t the time, ρ the fluid
density, ηs the Newtonian solvent viscosity and τ the polymeric extra
stress contribution. Five constitutive equations are employed: the upper-
convected Maxwell model (UCM), the Oldroyd-B model (Bird et al.,
1987a), the linear form of the simplified PTT model (Phan-Thien and
Tanner, 1977; Phan-Thien, 1978), the modified FENE-CR model (Chilcott
and Rallison, 1988) and the Giesekus model (Giesekus, 1982). For an
isothermal flow these five rheological equations of state can be written
in a compact form as:

P(tr τ)τ+
λ

F

[
∂τ

∂t
+ u · ∇τ−∇u · τ−∇uT · τ

]
= 2ηpD + G (5.16)

F =
L2 + λ

ηp
tr(τ)

L2 − 3
(5.17)

P(tr τ) = 1+
ελ

ηP
tr(τ) (5.18)

G = ατ2 (5.19)

where λ is a relaxation time, ηp is the polymer viscosity coefficient, D
the rate of deformation tensor, F is the stretch function that depends on
the extensibility parameter L2, representing the ratio of the maximum
to equilibrium average dumbbell extensions. The stress coefficient func-
tion, P(tr τ), depends on the trace of τ and G is the non-linear term
of the Giesekus model, with α representing a dimensionless “mobil-
ity factor”. The stress coefficient function of the PTT model, P(tr τ),
introduces the dimensionless parameter ε which is closely related to
the steady-state elongational viscosity in extensional flows (ηE∝1/ε for
low ε).

The viscosity ratio is defined here as the ratio of the solvent to total
viscosities (note that in some works β is instead defined as ηp/η0 (e.g.
Dou and Phan-Thien, 2003 and Kim et al., 2005a):

β =
ηs

ηs + ηP
=
ηs

η0
(5.20)

A specific constitutive model can be chosen by an appropriate selection
of parameters α, L2, ε and β, and the range of all parameters used in
this work is listed in Table 5.4.

Table 5.4: Range of the model parameters used in this work.

Models ε β α L2

UCM 0 0 0 ∞
Oldroyd-B 0 0.125; 0.4 and 0.8 0 ∞

PTT 0.02 and 0.25 0 0 ∞
FENE-CR 0 0.1 0 10 and 100

Giesekus 0 0.59 0.02 ∞
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Elastic effects are quantified by a non-dimensional Deborah number,
defined here as

De =
λU

R
(5.21)

with U representing the bulk velocity in the channel and R the cylinder
radius. In the numerical simulations the inlet bulk velocity and the
cylinder radius were kept constant, therefore the Deborah number
was varied by changing the value of the relaxation time. Of course in
an experiment with a given fluid and geometry the elasticity number
E = λη0/ρR

2 is kept constant and the Deborah number is varied
by changing the flow rate, that is U, and consequently the Reynolds
number. However, since we force the Reynolds number to be zero and
are concerned with steady flows, the only parameter left is De and it is
theoretically irrelevant whether it is λ or U that is varied.

All the calculations were carried out with a finite-volume method
(for details see Oliveira et al., 1998 and Alves et al., 2000, 2001b, 2003a)
for the limiting case of Re = 0, which was imposed numerically by
neglecting the convective terms of the momentum equation. Accurate
representation of the convective terms in the constitutive equation is
of extreme importance in viscoelastic simulations and the CUBISTA
high-resolution scheme developed by Alves et al. (2003a) was applied
for this purpose. The CUBISTA scheme has the advantage over classical
high-resolution schemes (e.g. the SMART scheme by Gaskell and Lau
(1988) of promoting better iterative convergence when employed in
conjunction with implicit methods. It is a simpler alternative to La-
grangian approaches whose implementation in conjunction with finite
element methods is addressed in the review of Baaijens (1998). Ad-
ditional details of the present method regarding the implementation
of the Giesekus model so that numerical stability is improved can be
found in Oliveira (2001b).

5.2.3 Problem description and computational meshes

A Galilean transformation shows that the settling of a cylinder in a
medium confined by two parallel plates is equivalent to the steady
uniform flow of a fluid around and past a cylinder in a channel, whose
walls move at the same velocity of the approach flow, as shown in Figure
5.14. The ratio of channel half-height h to cylinder radius R is set equal
to 2 which corresponds to a 50% blockage case. The computational
domain is 80R long, with 19R upstream and 59R downstream of the
forward and rear stagnation points of the cylinder, respectively. The
downstream length is sufficient for the flow to become fully-developed
and to avoid any effect of the outflow boundary condition upon the
flow in the vicinity of the cylinder. Vanishing axial gradients are applied
to all variables, including the pressure gradient, at the outlet plane.
No-slip conditions are imposed at both the cylinder surface (r = R:
u = 0,v = 0) and the channel wall (y = ±h: u = U).

The main characteristics of the meshes used in this work are given
in Table 5.5, including the total number cells (NC), the number of
control volumes around the surface of the cylinder (NS), the number
of cells placed radially from the cylinder to the channel wall (NR),
and the minimum cell spacing along the radial (∆r) and the azimuthal
(∆s = r∆θ) directions both normalized with the cylinder radius. The
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Figure 5.14: Schematic representation of the flow geometry.

Table 5.5: Main characteristics of the computational meshes.

NC DOF NR NS (∆r/R)min (∆s/R)min

M60 17400 104400 60 200 0.00481 0.0157

M60WR 22560 135360 60 260 0.004 0.0006

M120WR 90240 541440 120 520 0.002 0.0003

first numerical simulations were carried out with mesh M60 of our
previous work (for complete details see Alves et al., 2001b).

Mesh M60WR has the same number of cells in the radial direction as
mesh M60, but is more refined along the wake (hence the subscript WR
for wake-refined). The total number of cells is 22560. The high degree
of refinement in the rear wake region of the cylinder of mesh M60WR
leads to a minimum normalized cell spacing along the azimuthal di-
rection of 0.0006 compared with 0.0157 for mesh M60. Mesh M120WR
was used to check the convergence with mesh refinement at Deborah
numbers near the critical value. This mesh has twice the number of
cells along both directions as mesh M60WR with NC = 90240 cells. The
number of cells on the cylinder surface of mesh M120WR is 520 and
the minimum normalized cell spacing along the radial and azimuthal
directions is 0.002 and 0.0003, respectively.

5.2.4 Results and discussion

Results of computations are presented as a scalar integral quantity
representative of the flow and as detailed profiles of velocity and stress
components in the vicinity of the cylinder. The integral quantity selected
was the dimensionless drag coefficient, CD, calculated as:

CD =
1

η0U

∫
S
(τtot − pI) · n · i dS (5.22)

where I is the unit tensor, n is the unit vector normal to the cylinder
surface and i is the unitary vector in the x-direction (streamwise direc-
tion). Stress profiles are shown in the thin stress boundary-layer around
the cylinder and on the thin high normal stress region downstream the
rear wake, in order to ascertain the quality of the predictions.

For the UCM and Oldroyd-B models we used two different criteria to
assess numerical stability. One method consisted simply in examining
the positive definiteness of the conformation tensor, A, that is det A > 0;
in addition, Hulsen (1988) demonstrated that for the Oldroyd-B model
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one should have det A > 1. The conformation and polymer stress
tensors are related by

τ =
ηP
λ
(A − I). (5.23)

The other criterion for judging the performance of the numerical dis-
cretization is to determine whether the elastic tensor, T,

T = τ+
ηP
λ

I =
ηP
λ

A, (5.24)

is positive definite (Dupret and Marchal, 1986). Alternatively the system
condition number, S, can also be used to indicate a temporal loss of
evolution (Kim et al., 2005b). For a 2D flow, S is given by (Kim et al.,
2005a),

S = 2
λ1λ2

λ21 + λ
2
2

= 2
det T
tr(T2)

, (5.25)

where λ1 and λ2 are the non-trivial eigenvalues of the elastic tensor, T.
In order to guarantee no loss of evolution S needs to be positive.

In this work, x and y Cartesian coordinates are normalized with
the cylinder radius, R, the velocity components (u and v) with the
characteristic velocity U, and the extra stress tensor τ and the pressure
p by η0U/R.

Figure 5.15: Effect of mesh refinement: stress profiles along cylinder wall and
downstream centreplane for UCM fluid. Mesh M60WR (dashes);
M120WR (lines). Symbols (empty circles) from Dou and Phan-
Thien (2003) for De = 0.6.

5.2.4.1 Mesh refinement studies

It is recognized that this flow problem is difficult to solve accurately,
because in order to resolve the very thin stress boundary layer at
the cylinder wall and the normal stresses downstream of the rear
stagnation point, very refined meshes are required in these regions. The
effect of mesh refinement for the UCM model is shown in Figure 5.15,
where the normalised streamwise normal stresses along the cylinder
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sidewalls and wake centreline are plotted for De = 0.6 and 0.7. In
the region of maximum stresses on the cylinder sidewall and the rear
wake there is a small mesh dependency, especially at De = 0.7. For
comparison, Figure 5.15 also presents the τxx profile along the rear
wake centreline predicted by Dou and Phan-Thien (2003) with their
mesh M4 at De = 0.6. A small inaccuracy might result from extracting
their data from the original figures, however their maximum value
of τxx in the wake still deviates approximately by 9.2% from our
predictions (cf. zoom included in Figure 5.15), and such differences
are probably related to the insufficient mesh refinement of Dou and
Phan-Thien (2003). In fact, their mesh M4 has only a typical hp mesh
size of O(10−2), compared with our mesh size O(10−3; 10−4) in mesh
M120WR.

Figure 5.16: τxx, u and v contour plots for UCM fluid at De = 0.7. Mesh
M60WR (lines) and M120WR (dashes).

Slight differences present in the results obtained with meshesM60WR
andM120WR may be observed in the stress contour plot maps in Figure
5.16, whereas the velocity contours are visually indistinguishable. In
contrast to the Newtonian case, the inertialess UCM flow is clearly
asymmetric about the x = 0 plane, particularly the stress fields, with
τxx exhibiting maxima along the cylinder sidewall and at the centreline
downstream of the cylinder. For the Oldroyd-B model, Figure 5.17
shows normal stress profiles along the cylinder sidewalls and centreline
under nearly critical conditions. These profiles are for β = 0.125 (De =
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1.0), β = 0.4 (De = 1.1), and β = 0.2 (De = 1.4). Small differences
between the solutions on the two meshes are visible near the points of
maximum stress, but it should be emphasized that these flow conditions
are close to the critical De, when the differences are more discernible. In
fact, for lower De discrepancies in the normal stress profiles, and also
in the corresponding peak values, are significantly smaller and even
negligible. It has been checked that iteratively converged numerical
solutions can still be obtained when De is increased by 0.1 for the
above three cases but the discrepancies in the predicted peak normal
stresses in the wake region with the M60WR and M120WR meshes
tended to accentuate. Figure 5.17 also shows a comparison between our
predictions of τxx along the rear wake centreline with those of Dou
and Phan-Thien (2003) on their mesh M4; a significant difference of the
order of 50% is observed due to the high level of azimuthal refinement
of M120WR mesh.

Figure 5.17: Effect of mesh refinement: stress profiles along cylinder wall
and downstream centreplane for Oldroyd-B fluid. Mesh M60WR
(dashed line); M120WR (full line). Symbols (empty circles) from
Dou and Phan-Thien (2003) for De = 1.0.

Previous works have shown mesh refinement not to be so crucial
with constitutive models exhibiting shear-thinning or bounded exten-
sional viscosity (Oliveira et al., 1998; Oliveira, 2001b; Oliveira and
Miranda, 2005; Alves et al., 2000, 2001b, 2003a), such as FENE-CR, PTT
or Giesekus models, and therefore we decided not to use the finer mesh
M120WR and restrict the simulations with these models to meshesM60
and M60WR. This decision is corroborated by the comparisons shown
in Figure 5.18 for the FENE-CR model, where τxx predictions are pre-
sented near critical Deborah numbers of 5.0 and 4.0 for L2 = 10 and
L2 = 100, respectively, using meshes M60 and M60WR. Both meshes
yield normalized normal stress profiles in good agreement, and also
of the corresponding peak stresses, an indication of the good accuracy
achieved by M60 with the FENE-CR model. This mesh independence
is also confirmed in the comparison with Kim et al. (2005a) results
presented in the inset of Figure 5.18. Their predictions at De = 2.5 with
L2 = 10 were obtained with their mesh UM3 having a minimum mesh
size of O(10−4) whereas mesh M60 is only O(10−2) and yet has similar
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level of accuracy. Those authors also employed a “high resolution” FEM
and the matching against our data is excellent.

Figure 5.18: Effect of mesh refinement: normal stress profiles along cylin-
der wall and downstream centreplane for FENE-CR fluid. Mesh
M60WR (empty circles) andM60 (lines). Symbols (empty triangles)
in the inset are from Kim et al. (2005a).

After demonstrating the accuracy of our predictions, in the follow-
ing sections we present and discuss separately the results for each
constitutive model.

5.2.4.2 UCM and Oldroyd-B models

We start with the two simpler quasi-linear differential constitutive mod-
els, the upper-convected Maxwell (UCM) and Oldroyd-B models. Evi-
dence from the literature on viscoelastic flow past a confined cylinder
shows that an increase in viscoelasticity tends to reduce the drag force.
As shown in Figure 5.19 and Table 5.6, this tendency is replicated by our
predictions for the case of sedimentation of a cylinder in a viscoelas-
tic fluid medium obeying the UCM and Oldroyd-B models. Figure
5.19 also compares the CD values obtained using meshes M60WR and
M120WR with those of Dou and Phan-Thien (2003) obtained with a
CV/FEM method. All sets of data show a decrease in CD with Deb-
orah number but, in contrast to the present data, the drag coefficient
predicted by Dou and Phan-Thien (2003) always show an increase at
high De numbers whereas our data only exhibits this increase for large
values of β. Another important difference is that for all retardation ra-
tios, the results are well below the predictions of Dou and Phan-Thien
(2003), with agreement only in the range De 6 0.3. Since higher values
of drag coefficient are usually associated with coarse meshes (Alves
et al., 2001b) or insufficient accuracy, the discrepancies in Figure 5.19
are an indication of loss of accuracy in the results of Dou and Phan-
Thien (2003). With the UCM model, stable and iteratively converged
simulations could be obtained up to De = 0.85 with mesh M60WR
and De = 0.7 with mesh M120WR. For De = 0.85 and mesh M60WR a
periodic solution leading to oscillating drag force values was observed.

Figure 5.20 presents the two stability factors discussed above, the
system condition number and the determinant of the conformation
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Figure 5.19: Drag force coefficient for UCM and Oldroyd-B fluids. Mesh M60
(×); Mesh M60WR (-o-); Mesh M120WR (empty diamonds) and
Dou and Phan-Thien (2003) data (filled circles).

Table 5.6: Drag force coefficient for the UCM and Oldroyd-B models.
Oldroyd-Bβ= 0.8 Oldroyd-Bβ= 0.4 Oldroyd-Bβ= 0.125 UCM

De M60 M60WR M120WR M60 M60WR M120WR M60 M60WR M120WR M60WR M120WR

0.0 99.393 99.366 99.393 99.366 99.393 99.366 99.366

0.1 98.653 97.290 96.286 95.896

0.2 97.354 93.354 90.477 89.225

0.3 96.059 89.407 84.625 82.476

0.4 94.955 86.057 79.622 76.676

0.5 93.988 94.067 83.960 83.384 75.702 75.607 71.981

0.6 93.378 81.327 72.495 68.286 68.047

0.7 92.858 79.797 70.142 65.420 64.993

0.8 92.483 78.707 68.410 63.242

0.9 92.230 77.989 67.178 66.992

1.0 91.807 92.081 77.767 77.573 77.293 66.633 66.354 66.045

1.1 92.024 77.429 77.187 65.925 65.860

1.2 92.049 77.508 65.654

1.3 92.149 77.885

1.4 92.317 92.207

1.5 92.633 92.541

1.6 92.842

2.0 94.425

2.5 95.953

tensor, along the cylinder surface and the downstream centreline for a
range of Deborah numbers. For all simulations the minimum values
of S and detA are always positive, showing no loss of evolution when
the flow is steady. It can also be observed that the determinant of
the conformation tensor increases with Deborah number both on the
cylinder sidewall and in the rear wake zone, indicating strong normal
stress effects (in shear and extension, respectively), while S behaves
inversely (the two quantities are seen to have symmetric shapes relative
to S= detA=1 line when plotted in a log-scale). In the rear stagnation
point, both system condition numbers S and detA tend to unity. The
results in Figure 5.20 suggest S as being a better indication of loss of
evolution.
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Figure 5.20: Stability factors [S factor and det(A)] on the centreline for UCM
fluid and increasing Deborah numbers (De = 0.2, 0.4, 0.6, 0.7 and
0.8).

Figure 5.21 presents normal stress and velocity profiles along the
cylinder surface and the centreline downstream of the cylinder as
function of Deborah number for the UCM model. The τxx profiles in
Figure 5.21a show increasing stresses and peak values with Deborah
number, with the maximum at the cylinder sidewall larger than the
peak at the wake. Near the critical Deborah number (De = 0.8) the
wake maximum normal stress is only 20% of the larger normal stress
at the cylinder wall, in contrast to the related problem with stationary
channel walls where the wake normal stress maxima attains similar
values to the cylinder peak.

According to Oliveira et al. (1998), Alves et al. (2001b) and Dou and
Phan-Thien (2003, 2004), there is no “negative wake” with UCM fluids
for both Poiseuille and uniform approach flows. This is confirmed
here for uniform flow in Figure 5.21b, where no velocity overshoots in
the wake are observed. A small global upstream shift in the velocity
profiles with respect to the Newtonian case is seen up to De ≈ 0.5 (the
inset shows the difference, ∆u/U = (u=uNewt)/U). Then, for De >
0.5 the behaviour observed becomes more complex with the velocity
profiles exhibiting both an upstream shift near the rear stagnation point
followed by a downstream shift further downstream of the cylinder.
Similar observations of a downstream shift in the elastic wake behind
a cylinder in a channel were reported by McKinley et al. (1993). This
phenomenon has been found to increase monotonically with De in all
experimental studies to date.

For the Oldroyd-B model the results are globally similar to those
obtained with the UCM model, with slight differences discussed below.
Using three different viscosity ratio values (β = 0.125 , β = 0.4 and
β=0.8), stable and converged simulations on mesh M60WR could be
obtained up to De = 1.2, De = 1.3 and De = 1.6, respectively. In
terms of the normalized velocity components and the normal stress
contour maps for these cases the behaviour follows closely Figure 5.16
for the UCM, and the plots are therefore not shown here for conciseness.
An important difference between Oldroyd-B and UCM fluids can be
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Figure 5.21: (a) τxx and (b) u centreline profiles for UCM fluid. The inset shows
the wake velocity difference, ∆u/U = (u=uNewt)/U.

observed by comparing the normal stress profiles for β = 0.125 in
Figure 5.22a with those for β = 0 in Figure 5.21b. At low elasticity
and as for the UCM model, the normal stress on the cylinder sidewall
increases significantly with Deborah number up to De = 0.9, however
above De = 1.0 there is a change of trend for the Oldroyd-B fluid and
τxx starts decreasing with De. The behaviour in the rear wake zone is
also noteworthy: for the Oldroyd-B model the normal stress increases
strongly with De and near the critical value the maximum value of τxx
in the rear wake is higher than in the cylinder sidewall, whereas for
the UCM model the rear peak values are well below the cylinder peak
values. This feature occurs for all models except for the UCM fluid,
probably because for this model we cannot obtain steady results for De
above unity.

The velocity profiles presented in Figure 5.22b illustrate the absence
of negative wake for the Oldroyd-B model, and show the same trends
seen previously with the UCM model, i.e., an upstream shift at all
De near the rear stagnation point followed by a downstream shift
for De > 0.5. The axial position where the transition from upstream
to downstream shift occurs decreases with Deborah number from
x/R ≈ 2.2 at De = 0.6 to x/R ≈ 1.6 at De = 1.2.

Decreasing polymer concentration of the Oldroyd-B model (increas-
ing the viscosity ratio factor to β = 0.4 and β = 0.8), the global be-
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Figure 5.22: (a) τxx and (b) u centreline profiles for Oldroyd-B fluid with
β=0.125. The inset shows the wake velocity difference, ∆u/U =
(u=uNewt)/U.

haviour for all variables remains qualitatively similar to that of the
β = 0.125 case discussed above. Figure 5.23a shows the normalized nor-
mal stress profiles at high Deborah numbers (De = 1.2, 1.3 for β = 0.4
and De = 1.5, 1.7 for β = 0.8). The peak values on the cylinder side-
walls saturate and then decrease, whereas in the wake the second peak
exceeds the first at high De. Since the critical De has increased with the
increase of β, the peaks values of τxx in the wake, due to viscoelastic
extensional effects, can rise to higher values than before (smaller β).
Regarding the profile at De = 1.7 and β = 0.8 in Figure 5.23a, although
some oscillations are visible on the cylinder wall zone and in the total
drag force, the corresponding simulation did not show signs of iterative
divergence, presenting positive values of min(S) and min(det A). These
results are not shown here for conciseness; anyway, the waviness of τxx
is most certainly the first indication that the maximum allowable De is
about to be reached.

5.2.4.3 FENE-CR Model

A slightly modified version of the FENE-CR model was proposed and
used by Coates et al. (1992) and later by a number of other authors in a
variety of studies, such as in cylinder and sphere problems, both with
uniform and Poiseuille approach flow conditions (McKinley et al., 1993;
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Figure 5.23: (a) τxx and (b) u centreline profiles for Oldroyd-B fluid with β=0.4
and β=0.8. The inset shows the wake velocity difference, ∆u/U =
(u=uNewt)/U.

Kim et al., 2005a; Oliveira and Miranda, 2005; Satrape and Crochet,
1994; Harlen, 2002; Dou and Phan-Thien, 2004). In all these works, the
constant viscosity FENE-CR model predicted the onset of negative wake
in the velocity profiles for sufficiently low levels of the extensibility
parameter. In the present investigation the FENE-CR model was applied
with β = 0.1 and two extensibility values, L2 = 10 and L2 = 100, in
order to assess the influence of this model parameter on the negative
wake phenomenon.

Figure 5.24 compares the values of CD obtained in this work with
those of Kim et al. (2005a). Our simulations were carried out on meshes
M60 and M60WR, the data are given in Table 5.7, and it was found that
the drag force coefficient decreases monotonically with the Deborah
number. Iterative convergence was possible up to De = 7.8 and De =
5.0 for L2 = 10 and L2 = 100, respectively. Remarkably good agreement
was found with the recent results of Kim et al. (2005a) for the two
extensibility parameters considered, but values ofDe three times higher
could be attained here. In contrast, the predictions of Dou and Phan-
Thien (2003) with L2 = 10 are well below our results, in fact rather
close to our predictions for the L2 = 100 case; with L2 = 100 their
predictions agree with ours. These discrepancies can be attributed
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Figure 5.24: Drag force coefficient for for the FENE-CR fluid. Mesh M60 (×);
MeshM60WR (-©-); Kim et al. (2005a) data (filled diamonds) Mesh
M120WR (empty diamonds).

Table 5.7: Drag force coefficient for the FENE-CR model.
FENE-CR L2 = 10 FENE-CR L2 = 100

De M60 M60WR M60 M60WR
0.1 97.715 97.709 96.426

0.2 94.575 90.775

0.3 91.308 85.072

0.4 88.419 80.178

0.5 85.988 85.935 76.263 76.218

1.0 77.902 77.881 66.144 66.037

1.5 73.188 73.156 62.502 62.343

2.0 69.875 69.862 60.458 60.261

2.5 67.380 67.329 59.009 58.769

3.0 65.341 65.306 57.839 57.578

3.5 63.679 63.629 56.846 56.618

4.0 62.273 62.222 56.119 55.796

5.0 60.017 59.968 54.612 55.069

6.0 58.199

7.0 56.764

7.8 55.716

to either inadequate mesh refinement or lower-order discretization
schemes.

Figures 5.25a and 5.25b show axial velocity and stress contour plots
for the FENE-CR model with β = 0.1, De = 3.0 at two values of
extensibility, L2 = 10 and L2 = 100, respectively. For L2 = 100 (Figure
5.25a), i.e., when the F term in eq. (5.17) tends to unity and the FENE-
CR model approaches the Oldroyd-B model, the maximum values of
the normal stress are located along the cylinder sidewall, due to shear
flow and in the birefringent strand in the centreline downstream of
the cylinder, here due to extensional flow. The birefringent strand at
higher value of extensibility L2 = 100, is much longer and exhibits
higher stress values than the corresponding case with a lower value
of extensibility, L2 = 10, as shown in Figure 5.25b. In both cases the
fore-aft asymmetry is more pronounced than was the case with the
previous models (cf. Figure 5.16) and a negative wake downstream of
the cylinder is now visible (contours of u/U > 1).

As briefly discussed in the Introduction, the onset and strength of
the negative wake depends strongly on the extensibility parameter
L2 of the FENE-CR model and for uniform approach flow several
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Figure 5.25: τxx, u and v contour plots for FENE-CR with (a) L2 = 10 and (b)
L2 = 100 at De = 3 on mesh M60WR.

authors (Satrape and Crochet, 1994; Harlen, 2002; Dou and Phan-Thien,
2004) indicated the absence of a negative wake for high values of L2,
as the fluid behaviour approaches that of the Oldroyd-B model. Dou
and Phan-Thien (2003) suggested that the absence of negative wake
in the experiments of McKinley et al. (1993) can be attributed to the
high extensibility of the fluid (which was modelled with the FENE-CR
having L2 = 144 based on rheological measurements). This trend is also
observed in our results, when comparing Figures 5.26a and 5.26b. For
the FENE-CR model with L2 = 100 (Figure 5.26b), and for small values
of De (< 1.5) no negative wake is observed. Only upstream, followed
by downstream shifts (0.5 < De < 1.5) in the velocity profiles are
observed with respect to the Newtonian case, and these variations are
similar to those reported for the Oldroyd-B fluid in Figure 5.23. Then,
for De > 1.5 there is also an initial small upstream shift, followed by a
downstream shift extending to x/R ≈ 4.5 and finally a negative wake
appears that extends further downstream to x/R ≈ 16. The magnitude
of the negative wake, measured by the relative velocity overshoot
∆u/U = (u=uNewt)/U, increases with De and is approximately 11.7%
at De = 5.0. When the extensibility parameter is reduced, the wake
behaviour changes significantly, as illustrated in Figure 5.26b. Now, for
all values of De no initial upstream shift is observed and the negative
wake appears earlier at De > 0.5, following a small downstream shift
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of the velocity profile near the rear stagnation point. The magnitude of
the negative wake is higher than for the L2 = 100 case, increasing with
De from approximately 1% at De = 1.0 to 32.8% at De = 7.8. However,
the negative wake is shorter for L2 = 10 (x/R ≈ 10) than for L2 = 100

(x/R ≈ 16).

Figure 5.26: u centreline profiles for FENE-CR with (a) L2 = 10 and (b)
L2 = 100 . The inset shows the wake velocity difference, ∆u/U =
(u=uNewt)/U.

5.2.4.4 PTT Model

The PTT model includes the stress coefficient function, see Eq. (5.18),
bringing in a new parameter ε that imposes an upper limit to the
elongational viscosity (ηE∝1/ε for low ε). This model is shear-thinning
in viscosity, in contrast with the FENE-CR of the previous section, and
was used in several numerical works of flow past a cylinder with both
uniform and Poiseuille inlet conditions (Alves et al., 2001b; Phan-Thien
and Dou, 1999; Dou and Phan-Thien, 2003). Here the PTT model is
employed without a solvent viscosity (β = 0), for two typical parameters
ε = 0.02 and 0.25. Note that when ε → 0 the PTT model approaches
the UCM model.

Figure 5.27 (and on Table 5.8) compares the computed of CD val-
ues with those obtained by Dou and Phan-Thien (2003). The present
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Figure 5.27: Drag force coefficient for a PTT fluid with β=0. Mesh M60WR (-©-
or squares); Mesh M60 (×); and Dou and Phan-Thien (2003) data
(filled circles).

Table 5.8: Drag force coefficient for the PTT model.
PTT ε = 0.25 PTT ε = 0.02

De M60 M60WR M60WR
0.1 87.672 94.948

0.2 74.035 86.716

0.3 64.257 78.760

0.4 57.133 72.102

0.5 51.681 51.690 66.814

0.6 47.370 62.540

0.7 43.839 59.115

0.8 40.886 56.147

0.9 38.372 53.763

1.0 36.227 36.202

1.5 28.655 28.584

2.0 24.081 23.936

2.5 20.970 20.774

3.0 18.788 18.462

3.5 16.836 16.713

4.1 15.082

5.1 13.061

6.5 11.151

7.0 10.626

7.5 10.158

predictions obtained on meshes M60 and M60WR are virtually indistin-
guishable and show the drag coefficient to decrease monotonically with
the Deborah number, up to limiting values of De = 0.9 and De = 7.5,
for ε = 0.02 and ε = 0.25, respectively. Generally, numerical simulations
are easier the highest the value of ε and the lower the Deborah number,
and this is borne out in the good agreement observed in Figure 5.27
for ε = 0.25 against with the results of Dou and Phan-Thien (2003), to
be contrasted with the poor comparison involving constant viscosity
models (ε = 0.0) in Figure 5.19. Above De ≈ 0.9 our results are below
those of Dou and Phan-Thien (2003) and furthermore we could attain a
maximum Deborah number four times higher.

Figures 5.28 and 5.29 present our predictions of axial normal stress
and streamwise velocity along the cylinder wall and rear centreline for
the two cases ε = 0.25 and ε = 0.02, respectively. Generally speaking,
the stress levels are much lower than those of previous models on
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account of shear-thinning which affects both the shear viscosity and the
normal stresses. For the PTT model with the higher value of extensional
parameter (ε = 0.02) the τxx predictions present some features not
previously seen. Figure 5.28a shows that, on the cylinder sidewalls for
De > 0.5, all τxx profiles decrease with an increase of Deborah number
due to shear-thinning, this decrease being more intense at smaller De
values. For small values of De, not shown here, the profiles of τxx
exhibit a progressive increase with De, these corresponding to situa-
tions where the shear-thinning is very weak and the effect of elasticity
prevails. This is actually seen to a larger extent in Figure 5.29a where
the low value of ε imparts a weaker shear-thinning. Above De ≈ 5 the
decrease in the normal stress peak at the cylinder sidewalls is not so
intense, with a constant maximum normalized value of approximately
7 to 8. In the near wake region the τxx profiles increase with De up to
De ≈ 5 and then a small decrease and shift to downstream locations
occurs for higher De values.

For the PTT model with a low value of ε (ε = 0.02) the behaviour
of the τxx profiles is akin to that obtained with the UCM model (cf.
Figures 5.29a and Figure 5.21a). The τxx profiles increase with De up
to De ≈ 0.5 and then decrease up to the critical value (De = 0.9). In the
rear wake zone there is a slow monotonic increase in τxx on account of
extensional effects and the small amounts of shear-thinning.

Figure 5.28: (a) τxx and (b) u centreline profiles for the PTT model (ε=0.25). The
inset shows the wake velocity difference, ∆u/U = (u=uNewt)/U.
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As expected, the formation of a negative wake depends on the ε
parameter, with an absence of this flow feature for low values of ε.
These behaviours are illustrated by our results presented in Figures
5.28b and 5.29b. The formation of a negative wake for De > 1 with
ε = 0.25 is obvious in Figure 5.28b, as well as a small downstream shift
in the velocity profiles with respect to the Newtonian condition near
the rear stagnation point. The negative wake seen with ε = 0.25 extends
to approximately x/R ≈ 9 for De = 7.5. The relative velocity overshoot
increases with De up to De ≈ 5, then asymptotes to a constant value
of about 34% and shifts further downstream. With the reduction of
the parameter ε, the flow behaviour becomes similar to that seen with
the UCM model, as observed in Figure 5.29b. For ε = 0.02 there is an
upstream shift in the velocity profiles with respect to the Newtonian
profile up toDe ≈ 0.6. At higher Deborah numbers, the velocity profiles
also exhibit an upstream shift near the stagnation point in the rear wake
of the cylinder, followed by a downstream shift further downstream of
the cylinder, but no negative wake appears regardless of the value of ε.

Figure 5.29: (a) τxx and (b) u centreline profiles for the PTT model (ε=0.02). The
inset shows the wake velocity difference, ∆u/U = (u=uNewt)/U.

5.2.4.5 Giesekus Model

In this section we discuss the results obtained with the Giesekus model
for α = 0.02 and β = 0.59. This viscosity ratio, β, is frequently used in
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numerical works and can be traced back to the value adopted in the
experimental work of McKinley et al. (1993) for the Boger fluid used in
their experiments. Hulsen et al. (2005) applied an implementation of
the log-conformation methodology with a finite element method to the
benchmark flow of Oldroyd-B and Giesekus fluids past a fixed confined
cylinder. An almost unbounded convergence limit for the Giesekus
model was reported, whereas for the Oldroyd-B the solution became
unsteady at high Deborah numbers while exhibiting symptoms of mesh
dependency.

Figure 5.30: Drag force coefficient for a Giesekus fluid (α=0.02 and β=0.59).
Mesh M60WR (-©- ); Mesh M60 (×).

Table 5.9: Drag force coefficient for the Giesekus model.
Giesekus

De M60 M60WR
0.1 97.672

0.2 94.394

0.3 91.151

0.4 88.401

0.5 86.190 86.178

1.0 80.217 80.198

1.5 77.739 77.713

2.0 76.192 76.160

2.5 75.040 75.002

3.0 74.114 74.063

3.5 73.300

4.0 72.652

5.0 71.623

6.0 70.837

7.0 70.201

8.0 69.684

Figure 5.30 presents the CD values obtained with meshes M60 and
M60WR for the Giesekus model (quantified in Table 5.9). The drag
force coefficient decreases monotonically with the Deborah number,
and convergent simulations could be obtained up to De ≈ 8. A direct
comparison cannot be made against the results of Hulsen et al. (2005)
because these are for the flow around fixed-cylinder problem, but it is
clear that the log-conformation formulation offers a much larger range
of allowable Deborah numbers.

Figure 5.31a shows the τxx profiles for the Giesekus model, where it
can be observed that along the cylinder sidewalls all profiles decrease
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with increasing Deborah number (De > 2), again a consequence of
shear-thinning. As for the PTT case, this decrease is more intense at
low Deborah numbers (up to De ≈ 6) than at higher De. On the other
hand, in the rear wake zone the τxx profiles increase for all De and the
maximum value is greater than in the cylinder sidewalls above De = 1.
Although the simulations were stable and convergent, some oscillations
in the stress profiles are observed in the cylinder sidewalls and in the
rear wake zone at high De.

The formation of a negative wake at De > 1 is also seen for the
Giesekus model in Figure 5.31b, where initially an upstream shift in
the velocity profiles, with respect to the Newtonian profile, is present
near the rear stagnation point, and is followed by a downstream shift
that extends to approximately x/R ≈ 5. The length of the negative wake
increases with De so that at De = 8 it extends in the axial direction
up to x/R ≈ 25. Even though the relative velocity overshoot increases
with De, its magnitude is not as large as seen with the previous models,
attaining a maximum value of only about 3% at De = 8.

Figure 5.31: (a) τxx and (b) u centreline profiles for the Giesekus model (α=0.02

and β=0.59). The inset shows the wake velocity difference, ∆u/U =
(u=uNewt)/U.

5.2.5 Conclusions

In this work we present detailed results of a numerical investigation of
the flow of viscoelastic fluids past a confined cylinder settling between
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two parallel plates with a 50% blockage ratio, using a finite-volume
method. In order to properly assess the effect of various rheological
properties, five constitutive models have been used: UCM, Oldroyd-B,
FENE-CR, PTT and Giesekus models.

Simulations were carried out under creeping flow conditions, using
very fine meshes, especially in the wake of the cylinder where large
normal stress gradients are observed for high Deborah number flows.
Numerical solutions could be obtained up to Deborah numbers in
excess of those reported previously in the literature, especially in the
case of the PTT, FENE-CR and Giesekus models. Special care was
exercised in order to guarantee that all solutions are well converged
iteratively, with stopping tolerances of around 10−4, and that sufficient
mesh convergence is also provided, with smaller mesh spacing of order
∆r = 0.002, allowing estimation of drag coefficients which are exact
up to the first decimal place, corresponding to an accuracy of around
0.1 - 0.3 % on average. Besides providing reliable data for the drag
coefficient variation and graphs of velocity and normal stress profiles
along the wake, we reached some other conclusions worth mentioning:

1. Drag coefficient: For the UCM and the Oldroyd-B fluids with low
solvent viscosity contribution (β = 0.125), the drag coefficient on
the cylinder decreases monotonically with increasing Deborah
number. When the solvent viscosity contribution is high (β = 0.8)
the drag coefficient first decreases with De followed by a levelling
out and marginal, very slight increase, for De > 1.1. For all
retardation ratios, our results are well below the predictions of
Dou and Phan-Thien (2003), with agreement only between the
Newtonian cases up to De ≈ 0.3. For the other models with
bounded extensional viscosity, the FENE-CR, PTT and Giesekus,
the latter two being shear-thinning, the drag coefficient decreases
monotonically with increasing Deborah number. For the FENE-
CR model, good agreement was found with the CD results of Kim
et al. (2005a) for both extensibility parameters, L2 = 10 and L2 =

100, whereas the predictions of Dou and Phan-Thien (2003) with
L2 = 10 lie well below both sets of results, close to the predictions
for the L2 = 100 case. For L2 = 100, the results from Dou and
Phan-Thien (2003) show a non monotonic behaviour, diverging
from both our predictions and those of Kim et al. (2005a), with
agreement only for De 6 0.6.

2. Negative wake: Regarding the existence of negative wake these
sets of simulations have shown that model with unbounded or
bounded but very large extensional viscosities do not exhibit this
feature. Figure 5.32 summarizes our findings on the maximum
magnitude of the negative wake for all models tested. For the
UCM and Oldroyd-B fluids there was no sign of a negative wake”
regardless of the values of β, with the velocity profiles presenting
an upstream shift close to the back of the cylinder (x/R 6 1.5− 2)
followed by a downstream shift for De > 0.5. For the FENE-CR
model with L2 = 100, there is a negative wake for De > 1.5,
starting about 3 radii from the rear of the cylinder and extending
up to x/R ≈ 16. The magnitude of the negative wake increases
with De and is approximately 11.7% at De = 5.0, as seen in
Figure 5.32. For the FENE-CR fluid with L2 = 10, there is no
upstream shift of the velocity and the negative wake is more
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intense and clearly marked appearing at De > 0.5, and formed
at about one radius distance behind the cylinder. For L2 = 10

the magnitude of the negative wake is larger than for L2 = 100,
being 32.8% at De = 7.8, whereas its length is actually smaller,
with x/R ≈ 10 forL2 = 10 and x/R ≈ 16 for L2 = 100. For the
PTT fluid with the highest elongational parameter ε = 0.25, a
negative wake in the velocity overshoot is found at De > 0.5,
starting at x/R ≈ 2 and extending to approximately x/R ≈ 9.
The relative velocity overshoot increases with De up to De ≈ 5
and then asymptotes to a constant value of about 34%, while its
location shifts further downstream, as seen in Figure 5.32. For
lower values of the ε parameter, the flow behaviour becomes
similar to that seen with the UCM model. The Giesekus model
produces an initial upstream shift followed by a downstream
shift and a negative wake for De > 2, starting at x/R ≈ 5.5 and
extending in the axial direction up to x/R ≈ 25. The negative
wake magnitude increases with De, attaining a maximum value
of about 3% for De = 8.

Figure 5.32: Maximum negative wake magnitude (umax=U)/U (%) for the
FENE-CR, PTT and Giesekus models.
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5.3 dynamics of high deborah number entry flows – a nu-
merical study

Abstract3

High elasticity simulations of flows through a two-dimensional 4:1 abrupt
contraction and a 4:1 three-dimensional square-square abrupt contraction
were performed with a finite volume method implementing the log-conformation
formulation, proposed by Fattal and Kupferman (2004) to alleviate the High
Weissenberg Number Problem. For the 2D simulations of Boger fluids, mod-
elled by the Oldroyd-B constitutive equation, local flow unsteadiness appears
at a relatively low Deborah number (De) of 2.5. Predictions at higherDe were
only possible with the log-conformation technique and show that the periodic
unsteadiness grows with De leading to an asymmetric flow with alternate
back-shedding of vorticity from pulsating upstream recirculating eddies. This
is accompanied by a frequency doubling mechanism deteriorating to a chaotic
regime at high De. For the 3D contraction, calculations were restricted to
steady flows of Oldroyd-B and Phan-Thien-Tanner (PTT) fluids and very high
De were attained (De ≈ 20 for PTT with ε = 0.01 and De ≈ 10000 for PTT
with ε = 0.25), with prediction of strong vortex enhancement. For the Boger
fluid calculations there was inversion of the secondary flow at high De as
observed experimentally by Alves et al. (2008). The log-conformation tech-
nique gave solutions of similar accuracy to the thoroughly tested standard
finite volume method under steady flow conditions and the onset of a time-
dependent solution occurred approximately at the same Deborah number for
both formulations. Nevertheless, for Deborah numbers higher than the critical
Deborah number, and for which the standard iterative technique diverges, the
log conformation technique continues to provide stable converged solutions up
to quite (impressively) high Deborah numbers, demonstrating its advantages
relative to the standard methodology.

Keywords: Finite-volume method; Log-conformation tensor; Viscoelas-
tic fluids; Planar contraction; Square/Square contraction.

5.3.1 Introduction

Viscoelastic entry flows and in devices with geometric singularities,
such as flows through contractions or contraction/expansions, are im-
portant in polymer processing and in the emerging field of viscoelastic
microfluidics, while posing a great challenge to the numerical meth-
ods, especially at high elasticity, as measured by the Weissenberg (Wi)
or Deborah (De) numbers (here the latter will be used). Due to the
geometrical simplicity and known numerical difficulty, the planar 4:1
sudden contraction was established as a benchmark flow problem in
1987 (Hassager, 1988), and gave rise to several experimental studies in
both planar and axisymmetric geometries: Cable and Boger (1978a,b,
1979), McKinley et al. (1991b), Chiba et al. (1990) and Yesilata et al.
(1999), just to cite a few. Owens and Phillips (2002), McKinley et al.
(1991b) and Boger (1987) present extensive literature reviews of exper-
iments in this flow, while reviews on related numerical work can be
found in Keunings (1989), Baaijens (1998), Walters and Webster (2003),
Owens and Phillips (2002) and Oliveira and Pinho (1999a). The picture

3 A.M. Afonso, P.J. Oliveira, F.T. Pinho and M.A. Alves (2010), Dynamics of high Deborah
number entry flows – a numerical study, accepted in the Journal of Fluid Mechanics.
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emerging from experiments in 2D 4:1 contractions depends on fluid
rheology. For some shear-thinning fluids there is corner vortex enhance-
ment following the formation of a lip vortex, which initially grows and
subsequently merges with the corner vortex, whereas for Boger fluids
the lip vortex mechanism is absent (it does exist, however for large
contraction ratios, not dealt with in this paper) and the corner vortex
keeps growing with De. At larger Deborah numbers the single existing
corner vortex still grows with De and the flow is still steady. For all
fluids the flow becomes unsteady above a critical Deborah number.

Experiments with Newtonian and Boger fluids in 3D square-square
contraction flows were reported by Alves et al. (2005) and Sousa et al.
(2009), where extensive flow visualizations are presented at the middle
plane of a 4:1 contraction using a streak line photography technique.
These experiments revealed the formation of a lip vortex at high Debo-
rah numbers for the more concentrated Boger fluid (aqueous solution of
polyacrylamide at 300 ppm) and related this lip vortex with the increase
of the role of shear induced normal stresses due to the secondary flow
in the cross section of the rectangular channel. An interesting fluid
dynamics feature caused by elasticity was identified experimentally
in this geometry by Alves et al. (2008), in a work which also included
3D numerical simulations using a 4 mode Phan-Thien-Tanner (PTT)
model with a Newtonian solvent contribution. Their experimental and
numerical results showed the expected significant vortex growth, mea-
sured on longitudinal mid-planes, and revealed the occurrence of an
inversion in the direction of rotation of the recirculation flow inside
the vortices due to elastic effects. When elastic effects are strong the
fluid particles enter the vortices through the horizontal (or vertical)
planes of symmetry and leave through the diagonal planes, whereas in
the absence of elasticity the fluid elements enter the vortices through
the diagonal symmetry planes and exit at the horizontal (vertical) mid
planes of symmetry. A similar finding was reported by Sirakov et al.
(2005) in 3D 4:1 square to circular cross-section contraction simulations
with a finite element method using the eXtended Pom–Pom model to
analyze the viscoelastic flow of branched LDPE solutions.

These viscoelastic flows are notoriously difficult to simulate numeri-
cally at levels of elasticity above a critical Deborah number, where the
numerical results exhibit symptoms of mesh dependency even with re-
fined meshes and usually have a tendency to diverge. Not surprisingly,
at high Deborah numbers the agreement between results from different
numerical methods is harder to achieve than at low Deborah numbers
and there are also important differences between predictions and exper-
iments. For instance, the majority of numerical studies on entry flows
with Boger fluids have been restricted to the range of parameters where
the size of upstream vortices is still decreasing and the pressure drop is
smaller than the corresponding Newtonian pressure drop (Alves et al.,
2003b; Aboubacar and Webster, 2001). These predictions were obtained
using continuum mechanics/ macroscale constitutive equations and
are in contrast with experimental results employing constant-viscosity
polymer solutions and melts, which invariably show increased pressure
drop and enhanced vortex formation (Cable and Boger, 1978a,b, 1979;
McKinley et al., 1991b; Chiba et al., 1990). The discrepancies are rooted
both on the physics of the constitutive equations and on numerical
issues (Owens and Phillips, 2002).
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The use of atomistic constitutive equations is extremely expensive and
with today’s resources they are restricted to very simple molecular-sized
computational domains. Some coarse-graining is required to be able to
compute macroscopic flows, and micro-macro numerical methods have
been devised to allow calculations with these mesoscale constitutive
equations. These numerical methods, reviewed by Keunings (2004), are
still computationally very expensive and difficult to perform in complex
geometries of engineering interest, especially considering the need
for very refined meshing and time stepping for accurate viscoelastic
predictions. Hence, the majority of engineering calculations, such as
those mentioned initially, rely on macroscopic constitutive equations
some of which have been derived using more or less sophisticated
closures of the mesoscale models. These derived closures invariably use
decoupling and some form of pre-averaging (Bird et al., 1980; Lielens
et al., 1999) that remove or change some rheological characteristics
of the original mesoscale models (Van Heel et al., 1998; Zhou and
Akhavan, 2003). Needless to say the mesoscale closures have their own
simplifications, hence they require improvements of their own.

Using mesoscale modeling Koppol et al. (2009) predicted the vis-
coelastic flow in a 4:1:4 axisymmetric contraction/expansion and were
able to show simultaneously the correct upstream vortex patterns and
qualitatively the growth of the normalized pressure drop with Deborah
number above that for Newtonian fluids, as in the experiments of Roth-
stein and McKinley (1999). However, their simulations with the FENE-P
model failed to observe the growth of the pressure drop above that for
Newtonian fluids at high Deborah numbers and the justification was
the inadequacy of the FENE-P model at predicting correctly the tran-
sient extensional viscosity growth along the centerline region, which
required at least a mesoscale approach. So, there is clearly the need
for better closures of the mesoscale models leading to new macroscale
constitutive equations for improved predictions.

In addition to improvements in the physical modeling of the rheo-
logical behavior of fluids, there is also the need to improve classical
computational methods, i.e., methods applied to macroscale consti-
tutive equations in order to enable engineering calculations at high
Deborah numbers.

In the present work we explore the dynamics of 2D and 3D con-
traction flows up to much higher De than previously attained, and
demonstrate a succession of dynamical transitions, from steady to
unsteady flow with lip and corner vortex enhancement, and from sym-
metric to asymmetric patterns with alternating vortex pulsation, up to
almost chaotic regime of back-shedding upstream of the contraction
plane. We use the fast Fourier transform (FFT) of velocity signal at a
monitoring point to determine the dominant frequencies, which show
a characteristic frequency doubling regime at high De. Qualitatively
these results are comparable to the experimental data of McKinley et al.
(1991b), who studied viscoelastic vortex dynamics in a axisymmetric
contraction. Finally, the time average evolution of the vortex size and
pressure drop from the present simulations reveal, for the first time,
that after an initial decreasing tendency with De, there is an upturn fol-
lowed by considerable enhancement at higher elasticity. Thus the trends
of the available experimental results are well captured by the present
simulations, except the raise of pressure drop above the corresponding
Newtonian value.



116 the infamous high weissenberg number problem and (further) developments

To accomplish this we use the log-conformation technique within
the finite volume method. We show first that this numerical technique
allows computations of viscoelastic 2D and 3D entry flows at very
high Deborah numbers, provided the rheological equations of state
are transformed and re-written on the basis of the matrix-logarithmic
of their conformation tensors. This technique, originally proposed by
Fattal and Kupferman (2004) in the context of computational rheology,
introduces a better polynomial interpolation of the stresses when these
exhibit an exponential growth, such as near stagnation points, and has
been tested in the recent past in a number of viscoelastic flow problems
and shown to enable computations at higher Deborah numbers than
usual. An additional benefit of the log-conformation formulation is that
it forces positive-definiteness of the conformation tensor (Pan and Hao,
2007; Hulsen et al., 2005; Kwon, 2004; Yoon and Kwon, 2005; Kwon,
2006; Coronado et al., 2007; Kane et al., 2009; Afonso et al., 2009b),
thus avoiding a kind of Hadamard instability plaguing the numerical
simulation once the flow becomes inherently unstable, which invariably
leads to quick divergence of iterative numerical procedures.

There are a number of works in the literature implementing the log-
conformation formulation in the scope of the finite-element method
(FEM) (Fattal and Kupferman, 2005; Pan and Hao, 2007; Hulsen et al.,
2005; Kwon, 2004; Yoon and Kwon, 2005; Kwon, 2006) and showing its
advantages relative to the classical methods with a variety of flows and
constitutive equations. Others were aimed at formulating less computer-
intensive alternative log-conformation algorithms (Coronado et al., 2007;
Kane et al., 2009). Even though they all have shown that it was possible
to achieve a converged solution at high Deborah numbers, they have
not investigated in detail the dynamics of unsteady viscoelastic flows
as done here for the sudden contraction flows.

In a previous work (Afonso et al., 2009b), the original log-conformation
formulation was implemented in the FVM framework and applied to a
benchmark flow problem without geometrical singularities, creeping
viscoelastic flow past a confined cylinder. Here we wish to apply that
formulation to the contraction flow problem to be able to predict the
rich dynamical transitions that unfold when the elasticity is sufficiently
high and that were observed experimentally and described by McKinley
et al. (1991b).

The remainder of this paper is organised as follows: after presenting
the governing equations, the constitutive equations are modified to
incorporate the log-conformation formalism. This is followed by a
brief description of the numerical method, then the geometries and
computational meshes used for each flow problem are given and finally
the results of the simulations are presented and discussed.

5.3.2 Governing Equations and numerical method

In this section we provide the set of differential equations that need
to be solved, encompassing the flow and the constitutive equations,
explain succinctly how they are transformed to the log-formulation,
and give a short description of the numerical method, which has been
explained in detail in a number of previous papers (e.g. Oliveira and
Pinho, 1999a; Alves et al., 2003b; Afonso et al., 2009b).
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5.3.2.1 Base equations

To simulate steady incompressible flow of viscoelastic fluids, conserva-
tion equations for mass,

∇ · u = 0, (5.26)

and momentum,

ρ
Du
Dt

= −∇p+βηo∇2u +
ηo

λ
(1−β) ∇ ·A, (5.27)

need to be solved. The two last terms on the right-hand-side of the
momentum equation describe the rheology of the fluid: the Laplacian
operator corresponds to a Newtonian solvent contribution and the di-
vergence of the conformation tensor (A) is an additive viscoelastic term
which follows here either the Oldroyd-B (Oldroyd, 1950) or the PTT
(Phan-Thien and Tanner, 1977; Phan-Thien, 1978) models. To complete
the constitutive equation describing the additive term, an evolution
equation for the conformation tensor needs also to be solved,

λ
∇
A = −Y(trA) (A − I) . (5.28)

In these equations, I represents the unitary tensor, u is the velocity

vector, p is the pressure, λ is the relaxation time of the polymer, and
∇
A

represents Oldroyd’s upper-convected derivative of A, given by

∇
A =

DA
Dt

− A · ∇u −∇uT ·A. (5.29)

The fluid total extra-stress is the sum of solvent and polymer stress
contributions. The viscosity ratio, β (cf. Eq. 5.30), is defined as the
ratio between the Newtonian solvent viscosity, ηs, and the total zero
shear-rate viscosity, η0:

β ≡ ηs

η0
=

ηs

ηs + ηP
, (5.30)

where ηP is the coefficient of viscosity of the polymer.
In its general form function Y (trA) for the PTT model is exponential

(Phan-Thien, 1978) but in this work we use its linear form, Y (trA) = 1+

ε (trA − 3) (Phan-Thien and Tanner, 1977). When Y (trA) = 1 (i.e. for ε =
0) the Oldroyd-B model is recovered. The non-unitary form of Y (trA)

for the PTT model with a Newtonian solvent imparts shear-thinning
behavior to the shear viscosity of the fluid and bounds its extensional
viscosity. The constitutive law written in terms of the conformation
tensor A, can be explicitly formulated as a function of the polymer
contribution to the extra-stress tensor, τ, with the following relation
valid for both models,

τ =
ηp

λ
(A − I) . (5.31)

When the governing equations are written in terms of the fluid extra-
stress by combining equations (5.28) and (5.31) and writing A explicitly
in terms of τ, so that the momentum equation will have a divergence
of the extra stress term, instead of a divergence of conformation tensor,
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we end up with the “standard formulation”, described in detail and
extensively validated within the FVM framework in (Oliveira and
Pinho, 1999a; Alves et al., 2008, 2003a,b, 2000; Oliveira et al., 1998).
This “standard formulation”, based on the polymer extra-stress given
by equations (5.28) and (5.31), will not be followed here except in some
comparison test-cases in order to assess the performance of the new
log-conformation method.

5.3.2.2 The log-conformation representation

As already described, Fattal and Kupferman (2004) proposed a tensor-
logarithmic transformation of the conformation tensor for differential
viscoelastic constitutive equations, which can be applied to a wide
variety of constitutive laws. The core feature of this transformation
is the decomposition of the velocity gradient, ∇u, into a traceless
extensional component, E, and a pure rotational component, R. With
this decomposition, the evolution equation (5.29), can be re-written as
Fattal and Kupferman (2004)

∂A
∂t

+ (u · ∇)A − (RA − AR) − 2EA =
Y(trA)

λ
(A − I) . (5.32)

In the log-conformation representation the evolution equation (5.32)
is replaced by an equivalent evolution equation for the logarithm of
the conformation tensor, Θ = log A, benefiting from the fact that A is a
symmetric positive definite (SPD) tensor, and thus can be diagonalized
into the form Fattal and Kupferman (2004),

A =Ω ΛΩT, (5.33)

where Ω is an orthogonal tensor that consists of the eigenvectors of
matrix A and Λ is a diagonal matrix assembled with the corresponding
three distinct eigenvalues of A. The transformation from Eq. (5.32) to an
equation for Θ is described in detail by Fattal and Kupferman (2004),
and leads to

∂Θ

∂t
+ (u · ∇)Θ− (RΘ−ΘR) − 2E =

Y
[
tr(eΘ)

]
λ

(e−Θ − I). (5.34)

To recover A from Θ the inverse transformation A = eΘ is used when
necessary. So, instead of solving numerically equation 5.29), it is the
evolution equation for log A (equation 5.34) that is solved. Then, the
inverse transformation is used to calculate the stress field prior to
solving the momentum and mass conservation equations.

5.3.2.3 Overview of solution method

A complete description of the steps required to adapt our FVM to the
log-conformation procedure and the main modifications to the solu-
tion algorithm is presented in Afonso et al. (2009b). It is important to
emphasize that the advective term in equation (5.34) was discretized
with two distinct differencing schemes: the first-order accurate upwind
differencing scheme (UDS) and the CUBISTA high-resolution scheme
(Alves et al., 2003a). This latter scheme is formally of third-order accu-
racy and was especially designed for differential constitutive relations.
The UDS scheme is only first-order accurate, but highly stable, and will
only be used in some test cases.
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The positive definiteness of the conformation tensor is crucial for
the well-posedness of the evolution equation. In this work, the positive
definiteness is assessed by checking if the determinant of A is positive,
and the more strict condition that det(A) = 1 is satisfied (Hulsen
et al., 2005). A useful parameter to analyse the numerical results is the
following scalar used to classify the local flow type (Lee et al., 2007):

ξ =
|D|− |Ω|

|D|+ |Ω|
. (5.35)

where |D| and |Ω| represent the magnitudes of the rate of deformation
and vorticity tensors, respectively

D =
1

2

[
∇u + (∇u)T

]
, Ω =

1

2

[
∇u − (∇u)T

]
, (5.36)

which can be calculated as
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|Ω| =

√
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∑
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∑
j

Ω2ij.

The flow type parameter varies from −1, which corresponds to solid-
like rotation, up to 1, for pure extensional flow. Pure shear flow is
characterized by ξ = 0.

5.3.3 Results

Most simulations were carried out with the log-conformation tensor
formulation (LogT) just explained, while a few simulations for com-
parison purposes used the standard formulation (StrT), which has the
extra stress tensor as dependent variable (i.e. without using the confor-
mation tensor). In both cases iterative convergence to steady solution
required the L2 norm of the residuals of the equations to be less than a
tolerance of 10−6, when the time stepping procedure was stopped and
convergence assumed. All steady and unsteady calculations for both
formulations were obtained with the same time step increment (∆t).

In section 5.3.3.1 we present results for the viscoelastic flow in the
planar 4:1 contraction and in section 5.3.3.5 the results for a 4:1 square-
square three-dimensional abrupt contraction.

5.3.3.1 Abrupt 4:1 contraction

This section is organized in three parts: first we present a few details
about the computational meshes employed in the simulations and the
non-dimensionalization of the results (section 5.3.3.2); then we deal
with the low-Deborah number range of flows (section 5.3.3.3), basically
for De = 3 under conditions for which accurate steady results were
obtained in previous studies (Alves et al., 2003b). The purpose is to
demonstrate the correctness of the log-conformation implementation
and that this formulation is able to achieve the same accuracy as the
standard formulation, an important aspect since the accuracy of the
log-conformation has often been cast in doubt (Coronado et al., 2007;
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Guénette et al., 2008). Finally in section 5.3.3.4 we present the most
interesting results, for the high-Deborah number range, where the
standard stress formulation fails. These are new results predicted with
the differential macroscopic Oldroyd-B model, comprising the unsteady
dynamics of the asymmetric vortical structures formed upstream of
the contraction plane and exploring numerically, for the first time, the
range of elasticity for which the pressure drop increases and the vortex
size is strongly enhanced, as usually observed in the experiments using
Boger fluids. To be able to capture asymmetric flows, the mesh had to
map the complete contraction domain and not just half of it, as it is
usual by invoking symmetry arguments.

Figure 5.33: Schematic representation of the 4:1 planar contraction geometry.

5.3.3.2 Computational meshes

The planar abrupt contraction is sketched in Figure 5.33. In the first
set of simulations, only half of the two dimensional domain is used
in the computations, with symmetry conditions imposed at the centre-
line, y = 0. However, in a second set of simulations at high Deborah
numbers, calculations were performed using the complete flow domain,
so that possible symmetry-breaking flows and instabilities could be
captured. All calculations were carried out at zero Reynolds number,
Re = ρUH/η = 0 (creeping flow), and at varying Deborah numbers,
here defined as

De =
λU2
H2

, (5.38)

where H2 and U2 represent the half-width of the downstream channel
and the corresponding average velocity (Figure 5.33). These variables
are used as length and velocity scales. An inlet length L1 = 40H2
and an outlet length L2 = 100H2 were used to ensure complete flow
development upstream and downstream of the contraction. At the
inlet the velocity and stress profiles are prescribed by the analytical
solutions, whereas at the outlets Neumann boundary conditions are
imposed for all computed variables, except pressure which is linearly
extrapolated from the two adjacent upstream cells. Calculations with
the Oldroyd-B model were carried out with three meshes M1, M2 and
M3, whose major characteristics are listed in Table 5.10. Mesh M3C
maps the whole physical domain, but has the same characteristics of
mesh M3, which relies on symmetry. All computational meshes are
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orthogonal but non-uniform, and the concentration of cells is higher
near the corner of the contraction and the walls (in such a way that
∆xmin = ∆ymin), where the stress/conformation tensor gradients are
expected to be higher.

Table 5.10: Main characteristics of the 4:1 contraction computational meshes.

NC DOF ∆xmin/H2; ∆ymin/H2
M1 5282 31692 0.020

M2 10587 63522 0.014

M3 42348 254088 0.0071

M3C 84696 508176 0.0071

5.3.3.3 Low Deborah number flows

In this section we analyse and compare the performance of the standard
and the log-conformation formulations at low Deborah number flows,
using the Oldroyd-B model as the constitutive equation and a viscosity
ratio of β = 1/9. In this range of elasticity (De = 3) the flow is expected
to be steady and this study is a standard benchmark problem serving
as a precursor study to the unsteady flows of the next section.

Alves et al. (2000) used high order spatial discretization schemes and
fine meshes to predict accurately the flow of UCM fluids in the 4:1
planar contraction, thus improving on earlier predictions of Oliveira
and Pinho (1999a). Subsequently, Alves et al. (2003b) used a new dis-
cretisation scheme (CUBISTA) and simulated the flow of an Oldroyd-B
fluid, achieving high accuracy and convergence up to De = 2.5 on their
finest mesh. Their results in terms of vortex size were not much differ-
ent from those previously obtained by Aboubacar and Webster (2001)
using a hybrid finite volume/finite element scheme, although some
differences were discernible. Later, high resolution results obtained by
Kim et al. (2005b) in the same geometry with an Oldroyd-B model were
also close to those of Alves et al. (2003b), but somewhat below even for
Newtonian fluids. It is surprising that for this particular limiting case
of Newtonian fluid (De = 0), the results of Aboubacar and Webster
(2001) and Belblidia et al. (2006) are also underpredicting the vortex
size compared to Alves et al. (2003b). Kim et al. (2005b) used a transient
numerical algorithm based on the four-step fractional step method and
DEVSS-G/DG with equal-order linear interpolation functions and also
obtained converged solutions up to De = 2.5 with their finest mesh.
More recently, the benchmark results of Alves et al. (2003b) were also
confirmed by Belblidia et al. (2006), in their steady-state investigation
with the Oldroyd-B model using different stabilisation methodologies
embedded within a time-marching incremental pressure-correction
formulation.

The results obtained in the present investigation for the corner vortex
length (XR = xR/H2), using the Oldroyd-B model with both StrT and
LogT formulations, are presented in Table 5.11 for all meshes and are
plotted in Figure 5.34 for the refined mesh M3. These results, irre-
spective of the formulation are graphically undistinguishable from the
benchmark data of Alves et al. (2003b) and follow the trends of the
recent data (Aboubacar and Webster, 2001; Kim et al., 2005b; Belblidia
et al., 2006), with the length of the corner vortex decreasing with elas-
ticity up to De ≈ 3. We have then a quantitative confirmation that the
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Figure 5.34: Dimensionless length of primary vortex (XR = xR/H2) as function
of Deborah number in mesh M3 (Oldroyd-B model). Comparison
of two differencing shemes (UDS and CUBISTA) and results from
various sources. The results of StrT and LogT methodologies were
obtained with mesh M3.

Table 5.11: Dimensionless length of primary vortex (XR) as a function of Deb-
orah number, mesh, differencing scheme and stress formulation
(Oldroyd-B model).

M1 M2 M3

CUBISTA UDS CUBISTA UDS CUBISTA UDS

De StrT LogT StrT LogT StrT LogT StrT LogT StrT LogT StrT LogT

0.0 1.495 - - - 1.497 - - - 1.499 - - -

0.5 1.456 1.457 1.466 1.477 1.457 1.458 1.466 1.475 1.454 1.454 1.460 1.457

1.0 1.397 1.395 1.453 1.488 1.389 1.387 1.435 1.468 1.379 1.378 1.407 1.428

1.5 1.322 1.315 1.456 1.513 1.308 1.302 1.410 1.466 1.289 1.286 1.339 1.388

2.0 1.238 1.230 1.478 1.552 1.215 1.207 1.404 1.477 1.188 1.185 1.276 1.352

2.5 1.149 1.159 1.512 1.596 1.121 (1.117)ª1.414 1.503 1.091 (1.102)ª1.221 1.329

3.0 1.071 (1.056)ª1.569 1.652 1.026 (1.037)ª1.439 1.545 1.008 (1.065)ª1.173 1.324

ª - XR oscillates with harmonic periodicity.

log-conformation offers similar accuracy as the standard formulation,
for steady state solutions, provided the CUBISTA scheme is used in
the discretization of the convective term. Figure 5.34 also illustrates the
detrimental effect in accuracy brought about by the highly diffusive
upwind differencing scheme (UDS), in spite of allowing steady (but
inaccurate) converged simulations to be obtained up to higher Deborah
numbers (De = 5.0 on mesh M3). It is important to mention at this
point that the LogT formulation, but not the StrT, is able to predict
an elastic instability, manifested as an unsteady behaviour at De ≈ 2.5.
This unsteadiness is captured with the CUBISTA scheme and a mesh
that still relies on computations with flow symmetry imposed at the
centre plane. To indicate unsteady flow, the values of XR inside brackets
in Table 5.11 represent the time-average value of XR along the cycle
of such harmonic oscillation. Note that Aboubacar and Webster (2001)
have also reported the onset of time oscillations at De ≈ 2.5 when using
their finest mesh.

Figure 5.35 shows the coupled effect of mesh refinement and dif-
ferencing scheme on the streamline patterns at De = 2.5, for both
formulations. At this Deborah number simulations with the CUBISTA
scheme on meshes M2 and M3 present the unsteady features just
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Figure 5.35: Coupled effect of mesh refinement and differencing scheme on
the streamline patterns at De=2.5 for the Oldroyd-B model: (a)
StrT; (b) LogT. Note: streamline spacing. ΨR= 0.2 × 10−3 inside the
recirculations; ΨR multiplied by 103.

mentioned. All simulations with LogT result in higher values of the
dimensionless intensity of recirculation, ΨR, than the StrT simulations,
but in both cases those values tend to decrease with mesh refine-
ment. The dimensionless intensity of the recirculation is defined as
ΨR = (ψmax −ψinl)/ψinl = Ψmax − 1, where ψmax is the stream function
value at the centre of the vortex and ψinl is the inlet value at the upper
wall (assuming ψsym = 0 at the symmetry axis), which corresponds
to the inlet flow rate per unit depth. The lip vortices in all LogT sim-
ulations are larger than those calculated with StrT, but as refinement
of the mesh increases both formulations converge towards the same
solution.

Figure 5.36 displays streamlines and contour maps of the flow classi-
fication parameter x for increasing values of Deborah number, based
on predictions with both LogT and StrT formulations, on the finest
mesh M3. As the Deborah number was raised, the salient corner vortex
decreased in size and strength while the lip vortex grew in intensity,
with these lip vortices appearing at around De ≈ 1.5 for both formula-
tions. The comparison of Figure 4 essentially confirms that no major
differences exist between predictions with the StrT and LogT formula-
tions at low Deborah number flows. However, a careful examination
of the data in Figure 5.36 reveals that at De ≈ 2 the simulations with
the StrT formulation violate the minimum stability criteria, with the
occurrence of negative values of det(A), while for the LogT simula-
tions the minimum value of det(A) remains positive and greater than
unity as it should (Hulsen et al., 2005). This constitutes a major ad-
vantage of the LogT formulation in high Deborah number simulations,
because negative values of det(A), beside being physically incorrect,
rapidly lead to numerical divergence of iterative methods, following an
Hadamard kind of instability, a situation eventually occurring with the
StrT formulation but not with the LogT formulation.

In the flow type contour maps presented in Figure 5.36, the three
limiting types of flow are clearly identified: the region of plane shear
flow, where ξ ≈ 0 as indicated by point 3, in the vicinity of the walls
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Figure 5.36: Flow patterns (top half) and maps of flow-type parameter (bottom
half) as predicted on mesh M3 (Oldroyd-B model). (a) StrT; (b)
LogT. (The values of det(A)min are indicated beside each map).

especially in the smaller channel and elsewhere in the contraction zone;
extensional flow (ξ→ 1, point 4) just upstream of the contraction plane
and near the corner; and nearly rigid-body rotation flow, in two de-
marked zones of rotation (ξ → −1; points 1 and 2). As De increases,
the location and relative sizes of these zones evolves (irrespective of
formulation): the size of the rotational region near the re-entrant corner
increases; extensional flow in the corner decreases, and in the contrac-
tion entrance the region of extensional flow increases.

Figure 5.37 presents the longitudinal distribution of the first normal
stress difference along the centreline and near the downstream channel
wall, predicted on mesh M3 with the CUBISTA high-resolution scheme.
As expected, there are no visible differences between the two formula-
tions along the symmetry axis for the range of De at which the flow
remains steady. This is especially clear for the profiles near the wall (at
y/H2 = 0.993) and in the vicinity of the salient corner where stresses
grow intensively. However, significant discrepancies in the first normal
stress difference, N1, arise near the downstream duct wall at De ≈ 2.5,
which are related to the intensification of the flow unsteadiness pre-
dicted with the log-conformation method at high Deborah numbers, as
discussed in the next section.
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Figure 5.37: Distribution of the axial first normal stress differences near the
downstream duct wall at y/H2 = 0.993 (top) and along the centre-
line (bottom), calculated for increasing De (0.5, 1, 1.5, 2 and 2.5) on
mesh M3 with LogT and StrT formulations (Oldroyd-B model).

5.3.3.4 Non-linear dynamics at high Deborah number flows

Time-dependent behaviour in the 4:1 abrupt contraction flow, associated
to a pure elastic instability, has been observed in many experimental
works (e.g. McKinley et al. 1991b; Chiba et al. 1990; Boger 1987) and
some numerical investigations (Aboubacar and Webster, 2001; Oliveira,
2001c). Oliveira (2001c) reported velocity oscillations in his compu-
tations of creeping flow with the PTT and Giesekus models at high
Deborah numbers (De ≈ 5) using half the physical domain. In a nu-
merical study of planar contraction flow with the Oldroyd-B model,
El Hadj and Tanguy (1990) and Fortin and Esselaoui (1987) compared
the solutions obtained using meshes mapping half and the full geome-
tries, and reported the existence of multiple-solution families and the
existence of an oscillatory flow in the contraction region at high Debo-
rah number flows. Their simulations with the full contraction domain
yielded stable as well as periodic solutions, with the frequency of the
oscillations being roughly inversely proportional to the square root of
the relaxation time.

We report now the most interesting results of the work, related to
the dynamical aspects of the vortex motion and unsteady flow patterns
formed upstream of the contraction plane at highDe. Such flow features
have never been reported before in numerical studies and it is only
the ability of the log-conformation approach to maintain the positive
definiteness of A and enhance numerical stability that makes these
predictions possible. So, in order to obtain further insight into the fluid
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dynamics of the flow, and in particular its inherent unsteadiness, a new
set of simulations was performed using the mesh mapping the full
physical domain M3C.

Figure 5.38: Time average dimensionless length of primary vortex (XR) as func-
tion of Deborah number obtained with mesh M3C. Error bars
represent the amplitude of the oscilations.

Convergent and steady results were obtained up to De ≈ 2.5 for
both the strT and LogT formulations. For De > 2.5 the flow became
unsteady, and simulations with StrT diverged at De = 3. Simulations
with LogT were not carried out beyondDe = 100, due to computational
time limitations and also due to insufficient inlet length to ensure com-
plete flow development and corner vortex extension. In these unsteady
simulations the number of time-steps per relaxation time is of the order
of 5 000 and 25 000, at low and high Deborah numbers, respectively.
Due to numerical simplicity and high stability, a first-order implicit
Euler scheme for the time integration was used. Even though small
times steps were used, time accuracy needs to be further investigated
in the future, preferably using second-order time schemes.

Table 5.12: Mean dimensionless length of primary vortex (XR) obtained with
mesh M3C using the CUBISTA scheme.

De StrT LogT

0.5 1.454 1.454

1.0 1.380 1.378

1.5 1.290 1.287

2.0 1.191 1.191

2.5 1.086 1.093

3.0 - 1.002

3.5 - 0.931

4 - 0.887

5 - 0.889

6 - 0.962

7 - 1.342

8 - 1.732

9 - 2.012

10 - 2.210

15 - 2.915

20 - 3.383
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The results obtained for the time-average corner vortex length (XR),
using the Oldroyd-B model with both StrT and LogT formulations and
for mesh M3C, are presented in Table 5.12 and plotted in Figure 5.38

for LogT. A non-monotonic evolution is observed, with a minimum
value of XR attained at De ≈ 4.5 and then more than doubling at
De = 20 relative to the Newtonian value. The error bars in Figure 5.38

indicate the amplitude of the XR oscilations. A similar non-monotonic
behaviour was recently reported by Howell (2009), using a continuation
algorithm for the discontinuous Galerkin finite element approximation
of the viscoelastic fluid flow in a 4:1 abrupt contraction. Their measured
quantity was the solution norm, and for their refined mesh (∆xmin ≈
0.125 and ∆xmin/H = ∆ymin ≈ 0.03125), they obtained a minimum
value at De ≈ 5.7. Otherwise, all other works we are aware of were
confined to the range De = 5 and therefore the minimum and the
upturning portions of the XR.vs.De variation could not be anticipated.

Concerning the dynamics of the viscoelastic fluid, a variety of dif-
ferent flow regimes could be observed from our predictions while
increasing the Deborah number. At low Deborah numbers (De < 1.0)
the corner vortex decreases in size, and the fluid behaves as a highly
viscous Newtonian fluid flowing through an abrupt contraction, with
the fluid in the upstream duct converging and accelerating directly
towards the downstream duct (steady flow regime). At Delip ≈ 1.5, a
very weak elastic lip vortex can be observed at the edge of the re-entrant
corner, as previously depicted in Figure 5.36. This lip vortex increases
in size as the elasticity is further increased, while the length of the
corner vortex still decreases. Up to this point the two vortices remain
separated and their flow features are steady up to Deosc ≈ 2.5, when
very small oscillations are detected near the re-entrant corner.

Dynamical flow features in the next figures will be shown with help
of instantaneous streamline plots and velocity history traces at a specific
position, namely at the first internal node near the re-entrant corner
at xL = xmin/2 and yL = H2 − ymin/2 (cf. Figure 5.33). Improved
understanding of the dynamic processes described below can be gained
from observation of the movies which are deposited in the following
web-address: http://www.fe.up.pt/~mmalves/jfm2010/index.htm.

Figure 5.39a presents an instantaneous plot of the flow pattern at
De = 3.0, where the lip vortex is noticeable. At this Deborah number,
the amplitude of the oscillations is still quite small as reported in Figure
5.40a, showing a time trace of the dimensionless axial velocity compo-
nent (uL/U2) predicted next to the re-entrant corner at the monitoring
location mentioned above. The corresponding fast Fourier transform
is also represented in Figure 5.40a and we observe a dimensionless
frequency spectrum with combined features of sub-harmonic period-
doubling (with frequencies of half of the fundamental frequency, λf1)
as well as some harmonic frequencies (the peak at 2λf1). To resume, for
2.5 6 De 6 4.5 a regime of flow unsteadiness with periodicity sets in
with lip vortex growth (unsteady periodic or lip vortex growth regime).

As the Deborah number is further increased, the elastic lip vortex in-
creases in size (lip vortex growth regime), eventually reaching the corner
vortex region, and merging with it in a fairly complex dynamic process.
The beginning of this merging-growth regime occurs at Demerg ≈ 4.5,
corresponding to the minimum value of XR shown in Figure 5.38. It is
characterized by a complex interaction between very weakly pulsating
lip and corner vortices, which tend to approach and separate. The

http://www.fe.up.pt/~mmalves/jfm2010/index.htm
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Figure 5.39: Illustration of the unsteady flow patterns at high Deborah numbers
(mesh M3C and CUBISTA scheme).

variation of the corner vortex size is given by the error bars in Figure
5.38. In this process there is a mechanism of stress release whereby
the first normal stress difference, N1, near the downstream duct wall
also varies between a maximum value, when the two vortices are more
separated and a minimum when the vortices are closer. The shape of
the boundary engulfing the two vortices is concave and there is also
a top-bottom asymmetry, which is weak as seen in the instantaneous
streamline plots of Figure 5.39b for De = 5.0, showing the formation
of the large concave elastic vortex. As a consequence of the loss of
symmetry the vortices become dissimilar in size and the longer vortex
can appear on either wall. At this Deborah number, the dimensionless
axial velocity component (uL/U2) oscillations are stronger, and higher
harmonics of the dimensionless oscillation frequency (2λf1, 3λf1) ap-
pear in the corresponding frequency spectrum presented in Figure
5.40b. Sub-harmonic period-doubling features (with λf2 ≈ 1

2λf1) are
still observed and a very small symptom of quasi-periodicity emerges
as a small peak of energy that can be identified as a linear combination
of λf1 and λf2 (i.e., m1λf1 +m2λf2, with m1 and m2 integers).
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For higher Deborah numbers, the dynamics and shape of the flow
patterns change, exhibiting only a single large corner vortex with a
convex boundary shape for Decc = 8, as presented in the still image of
Figure 5.39c pertaining to De = 10. This convex curvature of the vortex
boundary is accompanied by divergent flow streamlines upstream of the
abrupt contraction, a typical phenomenon usually observed in high De
contraction flows (Alves and Poole, 2007). Simultaneously, the vortex
increases in size and the unsteady flow behaviour becomes more no-
ticeable. The top-bottom asymmetry continues to exist with the longer
vortex alternating from the bottom to the top wall and vice-versa, as at
lower De. Although the variation in XR is not very large, as measured
by the error bars of Figure 5.38, the process is clearly more complex
exhibiting a wider range of characteristic frequencies as observed in
Figure 5.40c, which plots the fundamental dimensionless frequencies
of the oscillations of the axial velocity at the edge of the re-entrant cor-
ner. Again, quasi-periodic oscillations are evident, with dimensionless
frequency peaks identified as multiple linear combinations of λf1 and
λf2.

Figure 5.40: Velocity trace at xL = [x = xmin/2;y = H2 − ymin/2] and FFT
spectrum for: (a) De = 3.0; (b) De = 5.0; (c) De = 10 (d) De = 13,
(e) De = 20 and (f) De = 100.

Further increasing the Deborah number after the elastic vortex en-
hancement (De3rd = 12), a new kind of time-dependent instability
arises, particularly near the re-entrant corner of the contraction, with
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the appearance of a third vortex inside the larger corner vortices. This
kind of elastic instability is often encountered in experimental studies,
as the jetting instability upstream of a 4:1:4 axisymmetric contraction–
expansion (Rothstein and McKinley, 2001), the bent-elbow shape streak
lines close to the re-entrant corner of a 12:1 square-square contraction
(Sousa et al., 2009) and the local instability associated with the forma-
tion and decay of a dip of the vortex boundary at the lip corner of a
4:1 circular contraction (Chiba et al., 2004). This is well shown by the
instantaneous flow pattern obtained at De = 13 in Figure 5.39d. The
amplitude of the oscillations is equivalent to those reported at De = 10,
while the corresponding dimensionless fundamental frequencies have
grown, as presented in the frequency spectrum of Figure 5.40d.

By increasing even more the elasticity of the fluid (Debs = 15), there
is an intensification of the third vortex, and the time-dependent nature
of the flow undergoes a new transition into the so-called third vortex
growth and back-shedding regime. The flow has large corner vortices,
which have different sizes and hence the flow is asymmetric as well
as periodic. Inside the existing shorter vortex, a new lip vortex is
periodically generated in the vicinity of the re-entrant corner. This inner
lip vortex grows first very quickly inside the original vortex eventually
forcing it to elongate. As this elongation takes place, the inner lip vortex
decreases in size and vanishes when the enveloping outer vortex reaches
its maximum length. Simultaneously, the large vortex at the opposite
wall decreases in size. This is shown in the instantaneous flow pattern
obtained at De = 20 in Figure 5.39e. The dimensionless amplitude of
the oscillations are now stronger and the top-bottom asymmetry is
very clear and stronger than at lower De. As shown in the frequency
spectrum presented in Figure 5.40e the corresponding dimensionless
fundamental frequencies are now smaller than at lower De, no longer
sharply defined but exhibiting a broader range of frequencies (broad-
based peak) and there are still higher harmonics of the oscillation
frequency 2λf1.

As the Deborah number goes well beyond a value of 20, elastic
effects become even more dramatic, and the inner lip vortex that we
saw developing inside the large corner vortex at lower De, is now
stronger and forces a detachment of the vorticity, which is shed in the
upstream flow direction (back-shedding). This back-shedding of vorticity
is sketched at three different times in the instantaneous flow patterns
of Figures 5.39(fgh) for De = 100. The corresponding oscillations of the
dimensionless velocity have large amplitudes, as presented in Figures
5.40(fgh) together with the FFT plot showing the predominant broad-
based back-shedding frequency. Although at this Deborah number
the ratio between the time step employed in the simulations and the
relaxation time is 1/25000, the spatial and temporal resolutions may
not be sufficient for the same level of accuracy as before (in fact mesh
M3C was shown to be well suited at small De, cf. Figure 5.34 and
Table 5.11), therefore these results at high De should be regarded as
qualitative, meaning that this data is not of benchmark quality. In
addition, accurate results in the back-shedding regime require the use
of longer computational domains upstream of the contraction (and
possibly downstream) than was the case here. Finally, as for other
flows with a sequence of transitions (for instance, inertial transitions
in the Newtonian fluid flow around a cylinder (Williamson, 1996) or
elastic transitions in Taylor-Couette flow (Shaqfeh, 1996)) it is expected



5.3 dynamics of high deborah number entry flows – a numerical study 131

that at some stage the flow becomes three-dimensional, thus requiring
expensive full three-dimensional time dependent computations.

Figure 5.41: Dominant frequencies (a) and velocity amplitude at location xL =
[x = xmin/2, yL = H2 − ymin/2] (b) as function of Deborah
number obtained with mesh M3C. Lines in the frequencies graph
are λfi ∝ aDe (with a = 0.0527, 0.1581 and 0.23715), as predicted
by El Hadj and Tanguy (1990) and Fortin and Esselaoui (1987).
Line in the amplitude graph represents the fitting to identify the
critical Deborah number for the Hopf bifurcation to unsteady flow
|δuL | ∝

√
De−Deosc .

Variations of the dominant frequencies and velocity amplitudes
traced at the monitoring location XL close to the corner are presented in
Figure 5.41 as a function of Deborah number. The vertical lines refer to
tentative values of characteristic Deborah numbers marking the onset
of the various flow regimes described in the precedent discussion. The
full thick line in Figure 5.41a represents the functional dependence
λfi = a

√
De with a = 0.1581, giving the dimensional frequency as

inversely proportional to the square root of relaxation time (El Hadj
and Tanguy, 1990; Fortin and Esselaoui, 1987) and the lower and up-
per dashed lines correspond to λfi = a

√
De/3 and λfi = 3a

√
De/2,

respectively. Our predicted frequencies, with the dominant frequencies
represented with full symbols and the other frequencies with open sym-
bols, agree with λfi = 0.1581

√
De at small and intermediate Deborah

numbers (De = 3 and 5 6 De 6 11), but fall below this line at higher
Deborah numbers (De = 20), where the predicted data tend to agree
better with the correlation of the lower dashed line, λfi = a

√
De/3.

In the region 11 < De < 20 the data agree with the upper line and
we note that the beginning of the back-shedding regime (Debs ≈ 15)
is characterized by a period of oscillation roughly equal to the fluid
relaxation time, i.e., the product of Strouhal and Deborah numbers is
unity (St De = tflowfi), which is in agreement with λfi = 3a

√
De/2.

In the amplitude graph (Figure 5.41b), the full line represents the fit
to identify the critical Deborah number for the Hopf bifurcation to
unsteady flow (|δuL| ∝

√
De−Deosc).

To quantify the energy losses in the flow of the Oldroyd-B fluid
through the abrupt contraction, we evaluated the variation of the Cou-
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ette correction coefficient (Ccorr) with De. The Couette correction is the
normalized pressure drop between inlet and outlet after discounting for
the fully-developed pressure drop along the channels (i.e., it represents
a dimensionless extra pressure drop due to flow redevelopment at the
entrance of the smaller channel), and is calculated as:

Ccorr =
∆p−∆pFD

2τw
, (5.39)

where ∆p is the pressure difference between the inlet and the outlet,
∆pFD is the pressure drop required to drive fully-developed flow in the
inlet and outlet straight channels, as in the absence of the abrupt planar
contraction, and τw is the wall shear stress under fully-developed flow
conditions. In Figure 5.42 we plot Ccorr on the basis of the time-average
pressure differences, but error bars accounting for the dynamic process
are included. In the literature there are only data for the steady flow
regime (mainly forDe = 3) and the present predictions agree with those
of Alves et al. (2003b) and Aboubacar and Webster (2001) in the low De

range. The plot shows that the energy losses for the Oldroyd-B fluid
evolve non-monotonically with De, with an increase in Ccorr occurring
for De > 20, as had been seen in earlier studies for the PTT fluid (Alves
et al., 2003b). It is interesting to notice, by comparing Figures 5.38 and
5.42 that the pressure drop is still decreasing when the vortex sizes are
already growing, showing that both quantities are not directly related.

Figure 5.42: Time average Couette correction (Ccorr) as function of Deborah
number obtained with mesh M3C. Error bars represent the ampli-
tude of the oscilations.

5.3.3.5 Square-square three-dimensional abrupt contraction

Flow geometry and computational meshes

The flow geometry is illustrated in Figure 5.43a. In this case, the full
domain is used in all the simulations in order to be able to capture
elastic flow asymmetries or instabilities that may arise. Inlet and outlet
lengths are the same used for the two-dimensional problem, L1 = 40H2
and L2 = 100H2, which are long enough for complete flow development
upstream and downstream of the contraction, as will be demonstrated.
However, a difference relative to the 2D problem is that now, at the
entrance of the inlet duct a uniform velocity profile is imposed, since for
the PTT model the analytical solution for a square duct is not known;



5.3 dynamics of high deborah number entry flows – a numerical study 133

at the exit Newmann boundary conditions are used as in the planar
contraction flow.

Calculations with the Oldroyd-B and PTT models were carried out
at a vanishing Reynolds number Re = ρU2H2/η = 0 (creeping flow)
using the two meshes M40 and M56, characterised in Table 5.13. The
mesh data in Table 5.13 includes the total number of control volumes
in the meshes (NC), the number of degrees of freedom (DOF) and
the minimum sizes near the re-entrant corners. Meshes M40 and M56

have 40 and 56 cells, respectively, in both transverse directions at the
upstream channel. A zoomed view of mesh M56 near the contraction
plane is depicted in Figure 5.43b. Another difference with the previous
problem is that only steady-state results are reported here, and any
detected sign of unsteadiness in the calculations will serve to identify
the critical Deborah number. We restrict our analysis to steady flows due
to the large CPU times that would be required for accurate unsteady
flow calculations using viscoelastic models in a 3D geometry.

Figure 5.43: (a) Schematic representation of the 3D Square/Square 4:1 contrac-
tion geometry and (b) detailed view near the contraction plane for
Mesh M56.

Table 5.13: Computational meshes used for the 4:1 3D square/square contrac-
tion flow.

NC DOF ∆xmin/H2 ∆ymin/H2 ∆zmin/H2

M40 51000 510000 0.104 0.10 0.10

M56 312816 3128160 0.051 0.054 0.054
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In the next sections we present qualitative (flow patterns on the sym-
metry planes and 3D streak lines) and quantitative results (vortex size
measured along the diagonal plane and the central plane; distribution
of the normalized first normal stress difference along the centreline
and downstream channel wall; stability criteria). In section 5.3.3.6 we
present results obtained for the Oldroyd-B model and in section 5.3.3.7
the results for the PTT fluid.

5.3.3.6 Oldroyd-B model

In this section we analyse the results obtained with the Oldroyd-B
model having a viscosity ratio of β = 0.59. We start by comparing, in
Figure 5.44, the theoretical and the numerical axial velocity profiles
for fully developed flow at the inlet and outlet square channels. These
predictions are for both StrT and LogT formulations at a Deborah
number of 4.8, taken in the mid symmetry planes as a function of the
transverse direction coordinates, y and z. The theoretical and numerical
profiles match at this Deborah number, indicating that the assumed
inlet and outlet lengths (L1 and L2) of the computational meshes are
sufficient for complete flow development upstream before the flow
reaches the contraction plane, and flow redevelopment downstream of
the contraction. The theoretical velocity profile was calculated using the
analytical solution for a Newtonian fluid in a square channel (White,
1991), which is also applicable for constant viscosity viscoelastic fluids
(Boger fluids) such as those described by the Oldroyd-B model.

Figure 5.44: Theoretical and numerical axial velocity profiles along the trans-
verse directions for the Oldroyd-B model at De = 4.8 (mesh M56).

Results for the normalized vortex lengths measured along the diago-
nal (XDR = xDR/H1) and horizontal/vertical (XHR = xHR/H1) planes,
for both the StrT and LogT formulations, are presented in Figure 5.45.
These data are now scaled with the upstream channel half-width, for
consistency with previous works (Alves et al., 2005, 2008; Sousa et al.,
2009), and were predicted on meshes M40 and M56 with two different
interpolating schemes for the convective terms in the constitutive equa-
tion (UDS and CUBISTA). Again, numerical diffusion introduced by
the upwind scheme allows much higher De numbers to be reached, at
the expense of a loss in accuracy indicated by the significant tendency



5.3 dynamics of high deborah number entry flows – a numerical study 135

to over predict the vortex size. Steady solutions having similar accuracy
were obtained up to De ≈ 4.8 with both formulations, when the finest
mesh and the CUBISTA scheme are employed. For these conditions,
the simulations with the StrT formulation diverged at De ≈ 5 while
the simulations with the LogT formulation continue to converge up to
De ≈ 22, with noticeable unsteady behaviour, particularly for De = 20.
The normalized vortex lengths measured along the diagonal and the
horizontal/vertical planes increase significantly with Deborah number
(cf. Figure 5.45), and there is close agreement between results calculated
using the two formulations. On the coarse mesh M40, the critical Debo-
rah number for onset of time-dependent flow raised to De ≈ 6.4 and
De ≈ 8.0 for the strT and LogT formulations, respectively, raising even
further to De ≈ 6.9 and De ≈ 48 when using the UDS scheme with
the StrT and LogT formulations, respectively. This is, once again, an
unambiguous demonstration of the stabilising effect of the numerical
diffusion inherent to the upwind scheme (Alves et al., 2000, 2003b),
which comes, unfortunately, accompanied by a significant loss of ac-
curacy, as observed from the StrT results, with both XDR, and XHR
deviating significantly from the accurate predictions obtained on a finer
mesh with the CUBISTA scheme. Even though Figure 5.45 shows that
for this particular flow UDS in conjunction with the LogT formulation
provides results closer to those obtained with both a precise interpola-
tion (CUBISTA) scheme and the finest mesh M56 (especially for XHR,
cf. Figure 5.45), showing that this formulation is not so sensitive with
respect to the interpolation scheme as is the standard formulation, we
cannot conclude that the LogT formulation is more accurate than the
StrT methodology, or otherwise. Indeed, a different trend was observed
in the planar contraction flow (cf. Figure 5.34).

Figure 5.45: Dimensionless vortex length measured along the diagonal (XDR =
xDR/H1) and horizontal/vertical (XHR = xHR/H1) planes as a
function of Deborah number obtained with M40 and M56. Oldroyd-
B model.

Figure 5.46 shows maps of stream trace patterns taken in the mid
symmetry plane (y = 0 or z = 0) and the diagonal plane (z = ±y)
with both formulations (for each case, the top half shows StrT and the
bottom half shows LogT predictions) up to the critical Deborah number
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for the StrT formulation. These predictions were based on mesh M56

and the CUBISTA scheme.
The flow patterns displayed in Figure 5.46 predicted with the two

formulations are quite similar at each De, except for a slight difference
observed at De ≈ 4.8, when a small “lip vortex” near the re-entrant
corner in the horizontal plane becomes visible in the predictions with
the StrT formulation. The minimum value of the stability criterion,
det(A), is approximately equal to one for all simulations, therefore
no problems of lack of numerical convergence and stability occurred
in these simulations. Regarding the flow type, Figure 5.46 shows a
contour plot of ξ, demonstrating that the flow in the central part
of the geometry is essentially of extensional nature, except near the
walls where the expected shear flow is observed. However, in contrast
to the 2D case, we do not observe the small regions of solid-body
rotation near the re-entrant and salient corners, presumably because
of the extra shear introduced by the secondary flow along the third
coordinate, which is typical in this geometry, as discussed below. When
increasing the Deborah number, there is an important increase in the
extensional nature of the flow in the recirculation zone, visible in both
the diagonal and lateral symmetry planes. At De = 4.8 we see the
first instances of some differences between predictions by the StrT
and LogT formulations, especially in the diagonal symmetry plane
where the lengths of the vortices become noticeably different. These
differences are better seen in Figure 5.47, which plots the streamwise
variation of the normalized first-normal stress difference (N1) close
to the downstream channel wall as predicted by the StrT and LogT
formulations.

The three-dimensional nature of the open recirculations for Newto-
nian and viscoelastic flows through square-square abrupt contractions
was previously reported and analysed by Alves et al. (2008), where
a good agreement with experiments was also shown. As commented
in the introduction, they also reported a flow inversion due to elastic
effects in the 3D 4:1 square-square contraction using shear-thinning
fluids. Sirakov et al. (2005) commented upon a similar flow inversion
in their 3D simulations of a square to circular cross-section contraction
flow. This fluid dynamical inversion was also observed experimentally
by Sousa et al. (2009) using Boger fluids, thus confirming that the effect
is due to elasticity and not to the shear-thinning nature of the fluid.

To corroborate the flow visualizations of Sousa et al. (2009), in this
work we present the first numerical evidence that the fluid dynamical
inversion for Boger fluids can be predicted with the Oldroyd-B model.
Figure 5.48 shows streamline plots and the corresponding flow-type
classification maps (ξ) calculated in the symmetry planes for the flow
of Oldroyd-B fluids at De > 7.5, predicted on mesh M56 and with the
LogT formulation. For the Newtonian case (cf. Figure 5.46a for De = 0)
and low De, the fluid particles departing from the top corner of the
diagonal plane (z = ±y, Figure 5.48b) enter the recirculation in the
diagonal plane, rotate toward its centre and then flow towards the
horizontal/vertical plane vortex (y = 0 or z = 0, Figure 5.48a), where
they rotate back from the eye of the recirculation to the outside before
exiting the contraction near the re-entrant corner. At high Deborah
numbers (e.g. De = 15 or 20 in Figure 5.48) the flow direction inside
the recirculation inverts, and the fluid particles enter the recirculating
region at the middle plane vortex (y = 0 or z = 0, Figure 5.48a winding
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Figure 5.46: Flow patterns and 3D flow-type parameter (ξ) predicted for the
Oldroyd-B model on mesh M56. (top half) StrT; (bottom half) LogT;.
Left column: mid symmetry plane (y = 0 or z = 0) and right
column: diagonal plane (z = ±y).

through its eye and drifting from here to the diagonal vortex (z = ±y,
Figure 5.48b where they unwind to exit the contraction. That is, we have
now exactly the opposite behaviour of that seen at low De, as far as the
secondary flow in the recirculation region is concerned. Regarding the
flow type classification contours, also plotted in Figure 5.48, increasing
the Deborah number leads to a significant increase in the extensional
nature of the flow in the central part of the geometry as well as inside
the recirculation zone, in both the mid (y = 0 or z = 0) and diagonal
symmetry planes (z = ±y). At the highest Deborah numbers there is
also an enhancement of the Moffatt recirculation (Moffatt, 1964) at the
salient corner of the contraction particularly noticeable at the diagonal
mid plane.

5.3.3.7 PTT model

In this section we analyse the results obtained with the PTT model
having a viscosity ratio of β = 1/9. The PTT model is shear-thinning
in viscosity and in the first normal stress coefficient, in contrast to
the Oldroyd-B model used in the previous Sections. The extensional
viscosity is bounded due to the non zero value of the new parameter



138 the infamous high weissenberg number problem and (further) developments

Figure 5.47: Axial first normal stress difference along a line close and parallel
the downstream duct wall for the Oldroyd-B model on mesh M56

and using the CUBISTA scheme. Comparison of the results from
the two formulations.

ε appearing in the stress coefficient function, since the steady-state ex-
tensional viscosity is inversely proportional to ε, at low ε values. If this
extensional parameter is set to 0, then Y (trA) = 1 and the Oldroyd-B
constitutive equation is recovered. In this work we perform compu-
tations for ε = 0.02 and ε = 0.25, typical of dilute and concentrated
polymer solutions, respectively.

Figure 5.48: Flow patterns and 3D flow-type parameter (ξ) predicted at high
Deborah numbers for the Oldroyd-B model on mesh M56. (a) mid
symmetry plane (y = 0 or z = 0) and (b) diagonal plane (z = ±y).

Results for the vortex length along the diagonal (XDR) and horizon-
tal/vertical (XHR) symmetry planes for both the StrT and LogT formu-
lations, are presented in Figure 5.49. These predictions were obtained
on meshes M40 and M56 with the CUBISTA high-resolution scheme
for the two extensibility parameters, ε = 0.25 and ε = 0.02. For the
lower value of ε (ε = 0.02), the simulations with the StrT formulation
diverged at De ≈ 2 and De ≈ 4 with meshes M56 and M40, respectively.
Note that when ε→ 0 the PTT model reduces to the Oldroyd-B model
and, as remarked before, a probable cause for divergence is the loss of
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positive definiteness of the conformation tensor. For the LogT formula-
tion with ε = 0.02, the value of det(A)min was always positive, as per
design of the LogT methodology, showing no sign of loss of evolution
up to De ≈ 20 and De ≈ 30 with meshes M56 and M40, respectively (cf.
Figure 5.49a). Such significant increase in the critical Deborah number
for steady flow by almost an order of magnitude clearly shows the
advantage of using the LogT formulation in a flow problem possess-
ing a geometrical singularity. At the higher value of ε (ε = 0.25), the
superiority of the LogT formulation shows even more clearly with no
signs of loss of evolution or divergence up to De ≈ 10000, while for
the StrT formulation loss of evolution occurs at De ≈ 90 and De ≈ 60
with meshes M40 and M56, respectively, as shown in Figure 5.49b. We
further note that the two formulations provide similar results up to the
point where the standard stress formulation is unable to provide an
adequate numerical solution.

Figure 5.49: Dimensionless vortex length measured along the diagonal (XDR =
xDR/H1) and horizontal/vertical (XHR = xHR/H1) planes as a
function of Deborah number obtained with M40 and M56. PTT
model with (a) ε=0.02 and (b) ε=0.25.

Figure 5.50 presents the flow patterns and contours of the flow-
type classification parameter (ξ) predicted with the PTT model (ε =

0.25) on mesh M56 with the LogT formulation. For this shear-thinning
fluid, both the vortex lengths along the diagonal diagonal (XDR) and
horizontal/vertical (XHR) symmetry planes increase up to De ≈ 100,
and then the value remains almost constant, as shown in Figure 5.49b.
As for the Oldroyd-B fluid increasing the Deborah number leads also
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to a significant increase in the extensional nature of the flow in the
central part of the geometry and also in the recirculation zones in
both symmetry planes (y = 0 or z = 0 in Figure 5.50a) and z = ±y
in Figure 5.50b)). Looking more carefully at the flow patterns in the
diagonal plane (z = ±y in Figure 5.50b) at large De (De = 100), we
see the growth of a second recirculation at the salient edge of the
contraction, which could explain the stabilisation of the length of the
main vortex. As for the Oldroyd-B fluid, the elasticity-driven inversion
of the secondary flow is clearly apparent for higher Deborah numbers
(De = 100), as previously reported by Alves et al. (2008).

5.3.4 Conclusions

High elasticity simulations of 2D and 3D entry flows are reported,
and were possible due to the use of the log-conformation formulation
technique of Fattal and Kupferman (2004) in combination with a high-
resolution finite volume method.

For the 2D 4:1 abrupt contraction flow of the Oldroyd-B fluid, which
has a constant shear viscosity as in real Boger fluids, the flow becomes
unstable at a relatively low critical De of about 2.5, which is of the
same order attained in most previous works. On increasing De the
flow exhibits local unsteadiness which tends to grow as elasticity is
further increased, eventually leading to an asymmetric flow regime with
alternate back-shedding of vorticity from the two pulsating recirculating
eddies formed on the top and bottom walls of the upstream channel.
Dominant frequencies were determined via FFT of velocity signals,
showing a tendency for a frequency doubling mechanism at high De
eventually leading to a chaotic regime. Average vortex size and overall
pressure drop were computed from the time evolution of the predicted
data and show the typical upturn shape seen in experimental data and
in the recent multiscale simulations of Koppol et al. (2009), with an
initial steep decrease followed by strong enhancement when plotted
against De. However, the doubling of the excess pressure drop above
the Newtonian value was not predicted with the present Oldroyd-B
simulations, presumably because of its physical limitations regarding
the transient extensional viscosity behaviour.

For the 4:1 square-square 3D abrupt contraction, simulations were
carried out both with the Oldroyd-B and the PTT models, but they were
restricted to steady flows. Very high Deborah numbers were attained
(De ≈ 20 for PTT model with ε = 0.02 and De ≈ 10000 for PTT model
with ε = 0.25), with prediction of strong vortex enhancement and
inversion of the sense of rotation of fluid particles inside the vortices,
previously observed experimentally with Boger fluids, but not reported
numerically with constant viscosity model fluids.

These high Deborah number calculations could only be performed
with the log-conformation technique, whereas the standard stress for-
mulation systematically diverged beyond a critical low De. When both
methods converge to a steady solution, the use of the log-conformation
technique provides results of global and local quantities, such as eddy
size and stress profiles that cannot be distinguished visually from those
of the standard approach when refined meshes and accurate discretiza-
tion schemes are used. Thus, these computations show well that at least
in the scope of the finite volume procedure the log conformation for-
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Figure 5.50: Flow patterns and 3D flow-type parameter (ξ) predicted at high
Deborah numbers for the PTT model (ε=0.25) on mesh M56. (a)
mid symmetry plane (y = 0 or z = 0) and (b) diagonal plane
(z = ±y).

mulation is superior to the standard approach that uses the extra-stress
tensor as dependent variable.
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6
T H E ECCENTRIC PURELY ELASTIC INSTABILITIES AND
(FURTHER) DEVELOPMENTS

6.1 purely-elastic flow instabilities in a 3d six arms cross

slot geometry

Abstract1

The creeping flow of an upper-convected Maxwell (UCM) fluid is investigated
numerically in a three-dimensional orthogonal cross-slot geometry. We anal-
yse two different flow configurations corresponding to uniaxial extension and
biaxial extension, and assess the effects of extensional flow type, Deborah and
Reynolds numbers on flow dynamics near the interior stagnation point. Using
these two flow arrangements the amount of stretch and compression near the
stagnation point can be varied, providing further insights on the viscoelastic
flow instability mechanisms in extensionally-dominated flows with an interior
stagnation point. The uniaxial extensional flow arrangement leads to the onset
of a steady flow asymmetry, followed by a second purely elastic flow instabil-
ity that generates an unsteady flow at higher flow rates. On the other hand,
for the biaxial extension flow configuration a symmetric flow is observed up to
the critical Deborah number when the time-dependent purely-elastic instabil-
ity sets in, without going through the steady symmetric to steady asymmetric
transition. Keywords: 3D Cross-slot; Elastic instability; UCM model;

Flow bifurcation; Finite-Volume method.

6.1.1 Introduction

The occurrence of purely-elastic instabilities in several canonical vis-
coelastic fluid flows is now a recognized fact. These instabilities are
often present in extensionally-dominated viscoelastic flows containing
an interior stagnation point, such as the opposed jet devices (Chow
et al., 1988), the four roll mill apparatus (Lagnado et al., 1984) and cross-
slot geometry (Lagnado et al., 1984; Poole et al., 2007c). Purely elastic
instabilities have also been observed in shear flows with or without
extensional flow contributions. Examples of the former are found in
the flow in the mixing-separating geometry investigated by (Afonso
et al., 2010d) and in converging flows in abrupt contractions (Alves
et al., 2008; Sousa et al., 2009) or in T-like geometries (Oliveira et al.,
2009; Soulages et al., 2009). The Taylor-Couette instability is an example
of a shear flow without extensional flow contributions in which elastic
instabilities arise (Muller et al., 1989; Larson et al., 2006; Muller et al.,

1 A.M. Afonso, M.A. Alves, F.T Pinho (2010). Purely-Elastic flow instabilities in a 3D six
arms cross slot geometry, Journal of Non-Newtonian Fluid Mechanics 165 743–751.
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1993), but other shear flows with streamline curvature also originate
elastic instabilities (Pakdel and McKinley, 1996; McKinley et al., 1996),
which can eventually lead to elastic turbulence as argued by Grois-
man and Steinberg Groisman and Steinberg (2000, 2004), and provided
the instability threshold is independent of the wave number. These
pure shear flows of viscoelastic fluids with streamline curvature are
linearly unstable, as quantified by various criteria (Larson et al., 2006;
Joo and Shaqfeh, 1992), and summarized by the Pakdel-McKinley crite-
rion (Pakdel and McKinley, 1996). Theoretical modeling of extension
dominated flows and its instabilities and singularities have also been
extensively investigated, as in the works of Rallison and Hinch (1988),
Renardy (2006), Thomases and Shelley (2007, 2009) and Becherer et al.
(2008). These flows have received particular attention recently due to
their potential use in the measurement of the extensional viscosity of
dilute polymer solutions in micro systems, where the elastic nature of
the fluid is amplified by the small scales (Squires and Quake, 2005).

Of particular relevance to this study is the experimental observation
of instabilities in a "quasi two-dimensional" cross-slot microchannel flow
by Arratia et al. (2006) (this cross-slot is bounded by flat top and bottom
walls), which motivated the numerical work by Poole et al. (2007c) on
the two-dimensional cross-slot flow of an upper-convected Maxwell
(UCM) fluid under low Reynolds flow conditions. These authors were
able to predict the onset of a bi-stable steady asymmetric flow above
a critical Deborah number (De), followed by a second transition to
a time dependent flow at higher De. These numerical results were
qualitatively in agreement with the experimental observations of the
quasi two-dimensional flow of Arratia et al. (2006). Subsequently, Poole
et al. (2007b) considered the true three-dimensional nature of a real
microfluidic cross-slot flow and investigated the effect of the aspect
ratio of the geometry, by varying the depth of the slot channel from
a quasi-Hele-Shaw flow configuration up to large aspect ratios (quasi-
2D flow). Later, Poole et al. (2007a) incorporated the effect of solvent
viscosity (β 6= 0 in the Oldroyd-B model) and finite extensibility (ε 6= 0
in the sPTT model), presenting β− Re−De and ε− Re−De maps of
flow pattern types, showing the existence of a narrow region where
steady asymmetric flow can emerge, and identified the limiting De for
onset of time dependent flow. The effect of finite extensibility was also
studied numerically by Rocha et al. (2009) and analytically by Becherer
et al. (2008), using FENE models.

In this work the previous investigations for planar geometries (Poole
et al., 2007c,b,a) are extended to three-dimensional cross-slot flows
with inlets and outlets in the three orthogonal directions. A 3D finite-
volume numerical method is used to study the viscoelastic flow inside
a 3D six arms cross flow geometry considering two symmetric flow
configurations that lead to uniaxial and biaxial extensional flows, re-
spectively. The influence of the ratio of inlet to outlet flow rates and of
the Deborah and Reynolds numbers on the onset of the flow instability
are investigated numerically in order to demonstrate its purely elastic
nature.

The remaining of this paper is organized as follows: in Section 6.1.2
we present the governing equations and briefly describe the numerical
method used in their solution. Section 6.1.3 presents the computational
meshes and describes the flow problem under analysis. The numerical
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results are presented and discussed in Section 6.1.4, before ending the
paper with the main conclusions of this study.

6.1.2 Governing equations and Numerical Method

The equations to be solved are those of conservation of mass

∇ · u = 0, (6.1)

and momentum

ρ
∂u
∂t

+ ρ∇ · uu = −∇p+∇ · τ, (6.2)

of an incompressible fluid, together with an appropriate constitutive
equation for the extra-stress, τ. In this work, for reasons of rheological
simplicity, the UCM model is used

τ+ λ

(
∂τ

∂t
+∇ · uτ

)
= η

(
∇u +∇uT

)
+ λ

(
τ · ∇u +∇uT · τ

)
, (6.3)

where λ and η are the relaxation time and shear viscosity of the fluid,
respectively. An alternative formulation of this constitutive law writes
the extra-stress tensor as an explicit function of the conformation tensor
A, which for the UCM model reads as,

τ =
ηp

λ
(A − I) . (6.4)

Then, the conformation tensor A is described by an evolution equa-
tion which for the UCM is

λ

(
DA
Dt

−∇u ·A − A · ∇uT
)

= (A − I) . (6.5)

The main advantage of this transformation is on its numerical so-
lution since it provides the possibility of using the log-conformation
technique, introduced by Fattal and Kupferman (2004), which has been
shown to lead to a significant increase of numerical stability (Kwon,
2004; Hulsen et al., 2005; Coronado et al., 2007; Afonso et al., 2009b;
Kane et al., 2009). In this technique a simple tensor-logarithmic trans-
formation is performed on the conformation tensor for differential
viscoelastic constitutive equations. This technique can be applied to a
wide variety of constitutive laws and in the log-conformation represen-
tation the evolution equation (6.5) is replaced by an equivalent evolution
equation for the logarithm of the conformation tensor,Θ = log A, bene-
fiting from the fact that A is a symmetric positive definite matrix, and
thus can be diagonalized into the form (Fattal and Kupferman, 2004)

A = OXOT , (6.6)

where O is an orthogonal matrix generated with the eigenvectors of
matrix A and X is a diagonal matrix created with the corresponding
three distinct eigenvalues of A. The transformation from equation (6.5)
to an equation for Θ is described by Fattal and Kupferman (2004), and
leads to

∂Θ

∂t
+ (u · ∇)Θ− (RΘ−ΘR) − 2E =

1

λ

(
e−Θ − I

)
. (6.7)
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In Eq. (6.7) R and E are a pure rotational tensor and a traceless
extensional tensor, respectively, which combine to form the velocity
gradient tensor (Fattal and Kupferman, 2004). To recover A from Θ the
inverse transformation A = eΘ is used when necessary. The extra-stress
tensor can be obtained, if necessary, using Eq. (6.4).

A fully-implicit finite-volume method was used to solve Equations
(6.1) – (6.7). This fully-implicit FVM is based on a time marching
pressure-correction algorithm and is formulated with the collocated
variable arrangement. The numerical method used to solve the log-
conformation evolution equation is explained in detail in Afonso et al.
(2009b) and in some papers therein. The advective terms were dis-
cretized with the CUBISTA high-resolution scheme (Alves et al., 2003a),
formally of third-order accuracy. Along with inertial effects, in this
work we will also focus on creeping-flow conditions, in which case the
advective term in the momentum equation is neglected.

6.1.3 Flow problem and computational meshes

The three-dimensional cross-slot geometry is illustrated in Figure 6.1,
for the two flow configurations studied in this work.

Figure 6.1: Schematic view of the cross-slot geometry: (a) biaxial extension
configuration (Io = 2 : 4); (b) uniaxial extension configuration
(Io = 4 : 2) and (c) zoomed view of the mesh near the center.

The geometries are identified by the ratio of the number of inlets to
the number of outlets (Io): the biaxial extension configuration (Io =

2 : 4) has two inlets (Q1 and Q2) and four outlets (Q3 to Q6) and the
uniaxial extension configuration (Io = 4 : 2) has four inlets (Q1 to Q4)
and two outlets (Q5 and Q6).

These configurations generate different degrees of stretch and com-
pression near the stagnation point, providing new insights into the



6.1 purely-elastic flow instabilities in a 3d six arms cross slot geometry 147

viscoelastic flow instability mechanism in cross-slot flows. For the co-
ordinate system illustrated in Figure 6.1, and using the definition of
strain rate tensor (Walters et al., 2009), its components at the stagnation
point are given by

˙εij = ε̇0

 − (m+ 1) 0 0

0 m 0

0 0 1

 (6.8)

Depending on the value of the parameter m, different types of ex-
tensional flow can be observed near the interior stagnation point. For
the biaxial extension configuration (Io = 2 : 4), represented in Figure
6.1a, m = 1, while for the uniaxial extension configuration (Io = 4 : 2),
sketched in Figure 6.1b, m = −1/2. In general, for extensional flows m
is in the range −1/2 6 m 6 1.

The central region of the cross-slot, corresponding to the intersection
of the six arms, defines a cube with side length H. The length of the inlet
and outlet “arms” is L = 20H. Fully-developed velocity (with an average
value U) and stress profiles are imposed as inlet boundary conditions,
while at outlets Neumann boundary conditions are imposed to all
variables, i.e. ∂ϕ/∂x = 0, including the pressure gradient. Previous
works for 2D flow (Poole et al., 2007c,b,a) confirm that further increases
in the inlet and outlet arms lengths have a negligible effect on the critical
Deborah number for elastic instabilities and on the flow patterns. The
Deborah number is here defined as De = λU/H and the Reynolds
number as Re = ρUH/η.

The mesh used in the numerical simulations has a total of 203,125

cells, corresponding to 2,031,250 degrees of freedom. A zoomed view
of the mesh at the central region of the cross-slot is also presented in
Figure 6.1c, along with a description of relevant dimensions. The central
cubic region of the cross-slot has 25 cells along each direction (x, y and
z), corresponding to minimum cell sizes of ∆xmin/H = ∆ymin/H =

∆zmin/H = 0.04. Increasing the mesh refinement leads to significant
increases in the CPU times, due to the three-dimensional nature of
the flow, therefore more detailed three-dimensional mesh refinement
studies will be undertaken in the future. For this particular mesh, we
can estimate the numerical uncertainty of the results to be less then 5%
from the investigation of the corresponding 2D flows of (Oliveira et al.,
2009; Rocha et al., 2009), where extensive mesh refinement studies were
carried out. These three dimensional simulations were carried out in
a AMD dual core with 2 GHz and 2 GB of RAM and each complete
simulation for steady state flow conditions took on average from 12 to
24 hours of CPU time at low De, going up to about 340 hours of CPU
time at the highest De, where the flow is asymmetric.

6.1.4 Results

Due to the complex three dimensional flow dynamics it is more difficult
to quantify the flow asymmetry than for two-dimensional flows. For
that purpose we used the main direction angles of the rate of deforma-
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tion tensor at the interior stagnation point. To obtain such angles we
decomposed the deformation rate tensor,

D =
1

2

[
∇u + (∇u)T

]
, (6.9)

into its eigenvalues and corresponding right eigenvectors,

Dvi = λivi i = 1, 2, 3 (no summation on i). (6.10)

The eigenvectors v1, v2, and v3 are the principal directions of the
deformation rate tensor, i.e. the shear-free directions, and the corre-
sponding eigenvalues λ1, λ2, and λ3 are the principal strain rates, thus
quantifying the elongations in the principal directions. Finally, we de-
fine the direction angles as the angles between the principal directions of
the deformation rate tensor and the versors that define the coordinate
system (êj), κij = arccos

(
vi · êj/ ‖vi‖

)
(no summation over identical

indices). In particular, we are interested in the main direction angles,
which are obtained when i = j.

Results are presented in section 6.1.4.1 for the flow in the biaxial
extension configuration (Io = 2 : 4) and in section 6.1.4.2 for uniaxial
extensional flow (Io = 4 : 2).

Figure 6.2: Flow patterns and contour plots of normalized first normal-stress
differences for Newtonian flow for Io = 2 : 4 at centre planes (a) xy
and (b) yz.

6.1.4.1 Biaxial extension configuration (Io = 2 : 4)

The creeping-flow simulations for the biaxial extension flow (Io = 2 : 4)
did not present any signs of asymmetry up to De ≈ 0.61. The principal
angle directions calculated in the vicinity of the central stagnation point,
show that the three ii remain constant with the increase of the Deborah
numbers up to De ≈ 0.61, with κ11 = κ22 = κ33 = π/4. Under these
conditions the flow is shear free in this central region as can be observed
in Figures 6.2 and 6.3, where the flow characteristics are shown via
stream traces and contour plots of normalized normal-stress differences,(
τjj − τii

)
/ (3ηU/H), for Newtonian and De = 0.6 flows, respectively

(no summation over repeated indices and i 6= j). It is clear that the flow
remains symmetric for these two cases. At De ≈ 0.3 we start to observe
the appearance of symptoms of diverging streamlines (Alves and Poole,
2007) in the yz centreplane, the plane where the strain rate is positive,
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but the flow remains symmetric in relation to all planes (no change in
ii).

Figure 6.3: Flow patterns and normalized first normal-stress differences con-
tours at De = 0.6 for Io = 2 : 4 at centre planes (a) xy and (b)
yz.

The diverging streamlines phenomenon is seen when we also observe
the waved stream traces near the corners of the two exit ducts, es-
pecially at higher De, as shown in Figure 6.3. Then, above a critical
Deborah number, De = 0.62, the flow becomes unsteady, with oscil-
lations occurring in all directions. Thus, in the biaxial extension flow,
the first transition is directly from a steady symmetric flow to a time
dependent flow, not showing the intermediate regime of a bi-stable
steady asymmetric flow, as reported by Arratia et al. (2006); Poole et al.
(2007c,b) for a planar cross-slot geometry.

Becherer et al. (2008) argued that a transition from a steady to a
time dependent 2D flow in a cross-slot geometry is a purely elastic
instability of a highly elastic flow with curved streamlines (McKinley
et al., 1996) and usually is a Hopf bifurcation. However, that referred
to a steady asymmetric flow that had previously transitioned from
being-extensional dominated to being shear-dominated. This earlier
transition has not been observed here in this biaxial extensional flow,
which evolves directly from the steady symmetric to an unsteady flow,
even though the Reynolds number is zero. So, a question arises as to
whether the generalization of Becherer et al. (2008) can be extended to
any extensional 3D flow or just to uniaxial extension, where there is a
transition from steady symmetric to steady asymmetric flow, as will be
shown in the next section.

For the biaxial extensional flow (Io = 2 : 4) the effect of inertia is
very small for the studied Re range [Re 6 2], with the critical Deborah
number for the onset of unsteady behavior being nearly constant, as
observed in the Re −De stability map of Figure 6.4, i.e. inertia has
a very small destabilizing effect regarding this transition in biaxial
extensional flow. Further research into this problem requires the use of
finer meshes. For all simulations with Io = 2 : 4, the results in planes
xy and xz were similar.

6.1.4.2 Uniaxial extension configuration (Io = 4 : 2)

For the uniaxial extensional flow case (Io = 4 : 2) a transition from
steady symmetric flow in all planes (cf. Figure 6.5) to a steady asym-
metric flow was observed at a rather small critical Deborah number
(Decrit ≈ 0.22). Figures 6.5 and 6.6 show the flow patterns and contour
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Figure 6.4: Re–De stability map for the biaxial extension flow configuration
(Io = 2 : 4).

plots of normal stress differences for Io = 4 : 2 at De = 0 and De = 0.3
at centre planes xy and yz (similar to the flow pattern at plane xz),
respectively. The asymmetric flow is clear with the inlet flow dividing
by different amounts into the two z-direction channels and in the dis-
tortion of the stress contour levels at the centre (the stress contours are
antisymmetric when the flow is symmetric). We note that in Figure 6.6
we are plotting the projected streamtraces since the visualized planes
are no longer symmetry planes. When the flow is symmetric (as in
Figure 6.5) the real streamtraces are plotted.

Figure 6.5: Flow patterns and contour plots of normal-stress differences for
Newtonian flow for Io = 4 : 2 at centre planes (a) xy and (b) yz.

When the flow is asymmetric, the flow distortion can be quantified
using the main direction angle in the z-direction (κ33), as presented
in Figure 6.7. This clearly shows that an asymmetric flow exists and
that the flow at the center is no longer purely extensional, but is a
combination of shear and extension. This is more evident in the flow
type plots presented in Figure 6.8, where the following parameter is
used to quantify the local flow type:

ξ =
|D|− |Ω|

|D|+ |Ω|
. (6.11)
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where |D| and |Ω| represent the magnitudes of the rate of deformation
tensor -equation (6.9) - and vorticity tensor,

Ω =
1

2

[
∇u − (∇u)T

]
, (6.12)

which can be calculated as

|D| =

√
1

2

(
D : DT

)
=

√√√√1

2

∑
i

∑
j

D2ij (6.13)

|Ω| =

√
1

2

(
Ω :ΩT

)
=

√√√√1

2

∑
i

∑
j

Ω2ij.

this flow type parameter has previously been used by Lee et al. (2007)
and Mitsoulis and Hatzikiriakos (2009) and apparently much earlier by
Fuller and Leal (1980), amongst others.

Figure 6.6: Projected stream lines at centre planes (a) xy and (b) yz. Also shown
are the contour plots of normal-stress differences for De = 0.3
(Io = 4 : 2).

The flow type parameter varies from ξ = −1, which corresponds
to solid-like rotation, up to ξ = 1, which corresponds to extensional
flow. A shear flow is identified when ξ→ 0. As observed in Figure 6.8,
for the Newtonian fluid the flow in the central part of the geometry
is essentially of extensional nature, except near the walls where the
expected shear flow is observed. On the other hand, for De = 0.3
we can observe an important shear region near the stagnation point,
thus showing that the transition to asymmetric flow is accompanied
by a flow type transition, from an extensionally dominated flow to
a situation where shear effects become dominant. In order to better
understand this transition, we plot in Figure 6.9 the variation with De
of the local Weissenberg number, Wi = λε̇, calculated at the stagnation
point. The strain rate at the stagnation point can be calculated from
the second and third invariants of the rate of deformation tensor (Bird
et al., 1987a; Walters et al., 2009),

ε̇ = 3
I3(D)

I2(D)
=
6 det(D)

tr(D2)
. (6.14)

As observed in Figure 6.9, for low Deborah numbers (De < 0.05) there
is a linear relation between Wi and De. As the coil stretch transition
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Figure 6.7: Variation of main direction angle κ33 with Deborah number at the
center of the cross-slot for uniaxial extension flow (Io = 4 : 2 ). Full
symbols represent unsteady simulations.

is approached (Wi = 0.5) Wi tends to a plateau. We note, however,
that for De > 0.1 the local Weissenberg number at the stagnation point
exceeds the critical value (Wi = 0.5) and the stream wise normal stress
becomes unbounded. As also found for the planar cross slot flow, it
is not the unbounded nature of the normal stress at the stagnation
point that drives the first instability (Poole et al., 2007c). Indeed, for the
planar cross slot this instability is also observed with models that have
bounded extensional viscosities, such as the FENE-CR model used by
Rocha et al. (2009). However, until the critical De, the local Weissenberg
number at the stagnation point does not increase further, otherwise
the singularity of the normal stress field would become more severe
(Becherer et al., 2008). When the asymmetric flow sets in, we observe a
significant decrease of ξ at the stagnation point, with a transition to a
shear-dominated flow, as also shown in Figure 6.9.

Becherer et al. (2008) analytically studied the effect of the boundary
conditions for the normal and shear components of the stress tensor
at the inflow boundaries of the central region of the cross-slot flow
geometry. The authors argued that the first instability observed in
the cross-slot geometry (Arratia et al., 2006; Poole et al., 2007c,b) corre-
sponds to a switching from elongational-dominated to shear-dominated
velocity field, whereas the second transition is that of a shear-dominated
flow with curved streamlines, in agreement with the present results. In
Figure 6.9 we also plot the variation of Wi at the stagnation point with
De for the biaxial extension configuration (Io = 2 : 4), and it is clear
that the asymmetric steady flow configuration is not observed because
of the lower Wi values attained before the onset of the unsteady insta-
bility. Presumably, for the Io = 2 : 4 when the extensional flow becomes
unstable any asymmetric steady shear flow is inherently unstable and
the transition is directly from steady extensional to unsteady flow.

We have also undertaken simulations in a geometry consisting of
one eighth of the full domain (for Io = 4 : 2), and imposing symmetry
at the geometric xy, xz and yz symmetry planes crossing the origin
of the Cartesian system of coordinates. For lower Deborah number
conditions (De < Dec) the results with the full geometry and the
geometry with imposed symmetry coincide. However, above the critical
De the artificially imposed symmetry will be representative of the flow
field that would be obtained if there was no perturbation in the flow
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Figure 6.8: Flow type parameter and projected stream lines at centre planes xy
and yz for De = 0, 0.2 and 0.3.

that drives the asymmetry. As shown in Figure 6.9, in this case the
flow at the stagnation point is still extensionally dominated (ξ ≈ 1),
in contrast with the full mesh simulations where the transition to a
quasi shear flow is observed, with a simultaneous increase of the local
deformation rate.

Further increasing the Deborah number leads to a second flow tran-
sition from a steady asymmetric flow to an unsteady asymmetric flow
as in the experiments of Arratia et al. (2006) and in the 2D numerical
works of Poole et al. (2007c,b) for "quasi 2D" and 2D cross slot flows,
respectively. This is seen in the stability map of Figure 6.10 for Re = 0,
where the two Deborah numbers for the first and second transitions
are approximately 0.22 and 0.32, respectively.

Regarding the effect of flow inertia, the trends are different for the
first and second transitions: whereas inertia has a stabilizing effect
for the first transition from steady symmetric to steady asymmetric
flow (the first critical Deborah number increases with Re), for the
second transition from steady asymmetric to unsteady flow inertia
helps destabilize the flow and the second Deborah number decreases



154 the eccentric purely elastic instabilities and (further) developments

Figure 6.9: Variation with De of the local Weissenberg number (Wi) and flow
type parameter (ξ) at the stagnation point for the biaxial (Io =
2 : 4) and uniaxial (Io = 4 : 2) extensional flow configurations.
Values for the symmetry-imposed flow also included for the uniaxial
configuration.

with Re, as is also observed for the transition in the Io = 2 : 4 flow
configuration, although to a much lesser degree. Hence, at Re = 0, the
second transition takes place at Decrt ≈ 0.32, for Re = 1 Decrt ≈ 0.31
and at Re = 2 Decrt ≈ 0.29. These changes can be observed both in the
main direction angle plot (Figure 6.7) as well as in the Re–De stability
map represented in Figure 6.10. Finally, for Reynolds numbers in excess
of around 2, the transition associated with elasticity is directly from
a steady symmetric to an unsteady flow, as is also observed for the
transition in the Io = 2 : 4 flow configuration for all Reynolds numbers
studied.

As we have seen above in Figs. 6.9 and 6.10, the steady asymmetric
flow is predominantly a shear type flow, where transition to unsteady
flow is associated with large hoop stresses developing in curved stream-
lines, as explained by McKinley et al. (1996). In this mechanism the
curved streamlines become unstable at hoop stresses that vary inversely
with their curvature. Most likely the instability appears first at the
curved streamlines near the reentrant corners, but it could also appear
elsewhere closer to the stagnation point, where the streamlines are also
curved. By raising the Reynolds number the curvature of the stream-
lines in the region of interest increase and the same critical level of hoop
stress is attained at a lower Deborah number. It is easy to visualize
that higher inertial forces push the flow towards the central region of
the cross-slot and this forces the fluid to turn direction closer to the
geometric centre of the cross-slot, thus increasing locally the curvature
of the streamlines. It is not so easy to understand on simple terms why
there is an increase of streamline curvature with Reynolds number near
the reentrant corner, but this possibility is open.

Explaining the stabilizing effect of the Reynolds number for the first
transition is more difficult, since we do not even know yet what is the
primary cause for the first transition in creeping flow. Even though it is
tempting to consider the unbounded stresses as its cause, we suspect
that is not the case given the fact that Poole et al. (2007c), Rocha et al.
(2009) and Becherer et al. (2008) found such transitions to occur for
PTT and FENE fluids for the 2D equivalent cross-slot flow. Clearly,
understanding the causes of both types of transition in the 2D and 3D
cross-slot flows is an important research topic.
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As argued by Oliveira et al. (2009), the existence of a symmetry-
breaking bifurcation is likely to be related with a stress relief mecha-
nism, and this can be assessed by comparing the energy losses in the
real flow, with those predicted in the symmetry-imposed flow config-
uration. For creeping flow conditions, the power dissipation can be
calculated from:

∆Ẇreal =
∑
i

Qin,ipin,i −
∑
j

Qout,jpout,j, (6.15)

where the subscript ‘in’ refers to inlet boundaries and the subscript ‘out’
refers to the outflow boundaries. For both flow configurations analyzed
in this work one obtains

∆Ẇreal = (pin − pout)
∑
i

Qin,i. (6.16)

The power dissipation ∆Ẇreal can be compared to that of an ideal
flow where fully developed shear flow conditions would be observed
everywhere along the channels, and no energy dissipation would take
place in the central region of the cross slot. For this ideal flow configu-
ration the power dissipation can be estimated as

∆Ẇideal =

6∑
i=1

Qi |dp/ds|i Li, (6.17)

where |dp/ds|i represents the stream wise pressure gradient under
fully-developed flow conditions in arm i. The extra power dissipation
due to the extensional flow in the cross slot geometry can be estimated
as (and is independent of the length of the arms, when they are suffi-
ciently long for achieving fully developed flow conditions at inlets and
outlets) ∆Ẇexc = ∆Ẇreal − ∆Ẇideal. In order to generalize the re-
sults, it is useful to work with a dimensionless extra power dissipation,
K, here defined as:

K =
∆Ẇreal −∆Ẇideal∑
jQout,j |dp/ds|jH

=
∆preal −∆pideal

4τw
(6.18)

where ∆preal is the pressure difference between one of the inlets and
one of the outlets, ∆pideal is the pressure drop required to drive fully-
developed flow in the inlet and outflow straight channels, as in the
absence of the interference of the central region, and τw is the average
wall shear stress under fully-developed conditions at any of the outflow
channels (τw = |dp/ds|jH/4).

In Figure 6.11 we present the variation of K with De, together with
data from a set of additional calculations with imposed flow symmetry,
i.e., simulations with only 1/8 of the geometry. As was also observed in
previous works (Poole et al., 2007c; Afonso et al., 2010d; Soulages et al.,
2009), K is reduced above the critical Deborah number, showing that the
steady asymmetric flow dissipates less energy than the symmetric flow
configuration. This is an interesting observation, similar to previous
works in the planar cross-slot and flow focusing geometries (Poole
et al., 2007c; Afonso et al., 2010d; Soulages et al., 2009), but it does not
necessarily imply a minimum energy loss principle as the cause for the
flow transition.
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Figure 6.10: Re–De stability map for the uniaxial extension configuration (Io =
4 : 2).

Figure 6.11: Effect of Deborah number on the dimensionless extra power dis-
sipation (K) for the uniaxial extension configuration (Io = 4 : 2).
Simulations with full geometry (•) and 1/8 of the geometry (im-
posed flow symmetry) (-∇-).

6.1.5 Conclusions

A numerical study of creeping flow of an UCM fluid in three-dimensional
cross-slot geometries with six arms was undertaken. The influences of
Deborah and Reynolds numbers and different types of extensional flow
near the stagnation point were analyzed, namely biaxial and uniaxial
extensional flow. The uniaxial extensional flow configuration is prone to
the onset of steady flow asymmetries at Decrit ≈ 0.22 and at a higher
Deborah number there is a second transition from steady asymmetric
to unsteady flow, as in the corresponding two-dimensional cross slot
geometry. On the other hand, for the biaxial extensional flow configu-
ration a perfectly symmetric flow has been observed up to De ≈ 0.61
and above this critical Deborah number the flow becomes unsteady
and asymmetric without transitioning to a steady asymmetric flow.
Inertia was found to stabilize the first type of transition (for the uniax-
ial extensional flow) and to destabilize the second transition in both
flow configurations, although to a much lesser degree in the biaxial
extensional flow configuration.
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6.2 viscoelastic flows in mixing-separating cells

Abstract2

The flow of Newtonian and viscoelastic fluids in a mixing-separating geom-
etry that consists of two opposed channel flows interacting through a gap in
the common separating wall is investigated. The flow in this type of geome-
try was studied experimentally by Cochrane et al. (1981) using Newtonian
and viscoelastic fluids at low Reynolds numbers (Re < 50). In this numeri-
cal study, by use of a finite-volume method, the effects of Deborah (De) and
Reynolds numbers and gap size on the two-dimensional flow dynamics are
assessed. The normalized gap size varies between 0 and 5, Re varies between
0 and 50 and De varies between 0 and the maximum attainable value. Due to
the anti-symmetry of the fully developed inlet conditions and the symmetry of
the flow geometry, the Newtonian creeping flow is anti-symmetric. Increas-
ing the gap size of the separating walls leads to an increase of the reversed
flow-rate ratio (Rr), which is defined as the ratio of the reversed and the total
flow rate. For creeping flow of viscoelastic fluids, here described by the upper-
convected Maxwell model, two distinct flow patterns are observed. Below a
critical gap size, the reversed flow is slightly enhanced when the Deborah
number increases. Further increase of De leads to a subsequent decrease in
Rr towards zero. For a supercritical gap size, increasing the Deborah number
leads to a monotonic increase in Rr.

Keywords: Mixing-separating, viscoelastic fluids, UCM model, elastic
instabilities, flow bifurcation.

6.2.1 Introduction

In this work we investigate the flow in a mixing and separating geome-
try (Cochrane et al., 1981) for low Reynolds number flow conditions,
including the limit of vanishing inertia (creeping flow). The simplest
differential constitutive equation describing viscoelastic behaviour, the
upper-convected Maxwell (UCM) model, is used in the present numeri-
cal study. The flow in this geometry was also investigated experimen-
tally and numerically by Cochrane et al. (1981), Walters and Webster
(1982), Humphrey and Li (1981) and Humphrey et al. (2008). Baloch
et al. (1995) and Fiétier (2002) analysed this flow numerically under
different conditions.

Cochrane et al. (1981) employed a finite-difference method and se-
lected the UCM model to describe the rheological behaviour of a
highly-elastic constant-viscosity “Boger” fluid (Boger, 1977). These
investigators analysed the effects of gap width (g) using two different
flow configurations: (i) matching flow rates in the two inlet channel
arms and (ii) unbalanced inlet flow rates. In a follow-up work (Walters
and Webster, 1982), thin insert plates with rounded edges were used.
For both experimental studies it was found that the flow displayed
distinctive Newtonian and viscoelastic behaviours, with the occurrence
of unidirectional and reversed flows in varying extents. Later, Baloch
et al. (1995) selected the Phan-Thien-Tanner (PTT) model (Phan-Thien
and Tanner, 1977) to describe the rheological behaviour, and simulated

2 A.M. Afonso, M.A. Alves, R.J. Poole, P.J. Oliveira and F.T. Pinho (2010). Viscoelastic
flows in mixing-separating cells, accepted for publication in the Journal of Engineering
Mathematics.
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this flow also using thin insert plates with rounded edges, for the case
of equal flow rates at the inlet channels. Fiétier (2002) simulated the
flow of a FENE-P model (Bird et al., 1980) using a spectral element
method, and considered the case with a thick insert plate with rounded
edges. The numerical results obtained captured qualitatively the exper-
imental results presented by Walters and Webster (1982). Humphrey
and Li (1981) used a dye visualization technique, which revealed the
time-evolution of pairs of transversely aligned vortices in a confined
counter-current shearing flow configuration, for moderate Reynolds
numbers (Re = 100− 1000). More recently, Humphrey et al. (2008) simu-
lated the time-dependent flow of a Newtonian fluid in a counter-current
shearing flow configuration, for 100 < Re < 300.

In the present numerical investigation we expand the limited knowl-
edge available on the viscoelastic fluid flow behaviour in the mixing
and separating geometry, clarifying and mapping different flow be-
haviours as a function of gap size under conditions of low inertia and
different elasticity levels. The occurrence and extent of purely-elastic
flow instabilities is also assessed. These instabilities usually arise in
extensionally-dominated flows with strong streamline curvature, such
as flows with a stagnation point (e.g. cross-slot flow Arratia et al.,
2006; Poole et al., 2007c,a), or the opposed jet apparatus (Chow et al.,
1988). In their numerical investigation, Poole et al. (2007c) studied the
two-dimensional cross-slot flow of an UCM fluid for creeping and low
Re flow conditions, and reproduced qualitatively the occurrence of
a steady bi-stable asymmetric flow, above a critical Deborah number.
Further increase of De led to a second transition to a time-dependent
flow as observed in the experimental work of Arratia et al. (2006). Later,
Poole et al. (2007a) included the effects of solvent viscosity and finite
extensibility (using the Oldroyd-B and PTT models), and delimited dif-
ferent flow patterns in β− Re−De and ε− Re−De maps. These flow
maps showed the existence of a narrow region of steady asymmetric
flow in the ε−β− Re−De parameter space and identified the critical
De for occurrence of time-dependent flow.

Elastic instabilities are not restricted to extensional flows and are
found in shear flows, as widely documented by Morozov and van
Saarloos (2007). Earlier investigations on elastic instabilities in Poiseuille
and Couette flows were reported in Ho and Denn (1977) and Joo and
Shaqfeh (1992), and criteria for their onset were proposed by Shaqfeh
(1996) and McKinley et al. (1996).

In this investigation we focus on the mixing-separating flow geom-
etry with thin insert plates and equal flow rates at the two channel
inlets under low-Re flow conditions. Newtonian and viscoelastic fluids,
described using UCM model, are used. This flow combines, under
certain conditions, regions of extensional flows with shear flows, but
shear effects play an important role under all conditions.

The remainder of this paper is organised as follows: initially the
governing equations are presented, followed by a brief description
of the finite-volume method used in the simulations. Afterwards, we
describe the flow geometry and the computational meshes used before
presenting the numerical results obtained. The paper ends with the
main conclusions.
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6.2.2 Governing equations and numerical method

The equations we need to solve are those of conservation of mass and
momentum of an incompressible fluid,

∇ · u = 0, (6.19)

ρ
∂u
∂t

+ ρ∇ · uu = −∇p+∇ · τ, (6.20)

coupled with a constitutive equation for the extra-stress tensor, τ. For
reasons of rheological simplicity, we use the UCM model which is
described by the evolution equation

τ+λ

(
∂τ

∂t
+ u · ∇τ

)
= η

(
∇u +∇uT

)
+λ

(
τ · ∇u +∇uT · τ

)
, (6.21)

where λ and η are the relaxation time and shear viscosity of the fluid,
respectively.

A fully-implicit finite-volume method was used to solve Equations
(6.19) – (6.21). The method is based on a time marching pressure-
correction algorithm formulated with the collocated variable arrange-
ment, as described in detail in previous works (Oliveira et al., 1998;
Alves et al., 2003a). Recently, this numerical method was adapted to use
the log-conformation methodology proposed by Fattal and Kupferman
(2004), and this technique is used here due to the enhanced numeri-
cal stability. The main modifications implicated in the use of the log-
conformation method are described in detail by Afonso et al. (2009b),
therefore are not here repeated. In summary, the governing equations
are initially transformed to a non-orthogonal coordinate system, but
keeping the dependent variables in a Cartesian coordinate system. Af-
terwards, the equations are integrated in space over the control volumes
of the computational mesh, and in time over a small time step (δt),
leading to sets of linearised algebraic equations of the general form:

aPui,P =

6∑
F=1

aFui,F + Sui , (6.22)

to be solved for the velocity components, and

aΘP Θij,P =

6∑
F=1

aΘF Θij,F + SΘij (6.23)

to be solved for the logarithm of the conformation tensor, Θij. In Eqs.
(6.22) and (6.23) aF represents coefficients accounting for advection
and diffusion (only advection in Eq. 6.23) and S contains the source
terms with all contributions that are not included in the terms with
coefficients. The subscript P denotes a generic cell and subscript F the
corresponding neighbour cells. The central coefficient of the momentum
equation, aP, is given by

aP =
ρVP

δt
+

6∑
F=1

aF. (6.24)
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The sets of linear equations (6.22) are solved sequentially for the
Cartesian velocity components. This newly-computed velocity field
usually does not satisfy the continuity equation and needs to be ad-
justed by an adequate correction of the pressure field that drives it.
This adjustment is accomplished through a pressure-correction field
determined from a Poisson pressure equation, following the ideas of
the SIMPLEC algorithm (Van Doormaal and Raithby, 1984). Once a
velocity field that satisfies the continuity equation has been obtained,
the implicitly-discretized constitutive equations (i.e. Eq. 6.23) are solved
sequentially. To formulate the advective fluxes of the constitutive equa-
tion, we use the CUBISTA high-resolution scheme, a third-order method
specifically designed for differential rheological constitutive equations
(Alves et al., 2003a). In this work we will focus primarily on creeping-
flow conditions, in which case the advective term of the momentum
equation (i.e. the left side of equation 6.20) is neglected. When inertial
flows are considered, we include the advective term of the momentum
equation, and also use the CUBISTA high-resolution scheme in the
evaluation of the advective fluxes.

6.2.3 Flow geometry and computational meshes

The flow under investigation is that of two opposed channels interacting
through a gap of nondimensional width θ = g/H, in the middle of a thin
separating wall of nondimensional thickness α = a/H, as illustrated in
Figure 6.12. The two inlet and outlet channels have the same width (H)
and lengths L = 20H.

Figure 6.12: Schematic diagram of the mixing-andseparating flow geometry.

Fully-developed velocity and stress profiles are imposed at the two
inlets. Preliminary studies confirmed that the inlet and outlet channel
lengths are sufficiently long to avoid interference of the inlet and/or
outflow boundary conditions upon the flow in the central region. At all
channel walls, no-slip boundary conditions are imposed. At the outlet
planes Neumann boundary conditions (∂ϕ/∂x = 0) are applied to all
variables including the pressure gradient.

For all gap values analysed the computational domain was mapped
using six orthogonal blocks, one in each of the four channels and
two blocks in the central region. The main characteristics of the three
consecutively refined meshes used in this work are presented in Table
6.1, for the case with θ = 1.

Table 6.1 includes the information regarding the total number cells
of the meshes (NC), the number of control volumes in the central re-
gion in both x and y directions (NCS), and the minimum cell spacing
(∆xmin and ∆ymin), which also occurs in the central region. For other
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Table 6.1: Main characteristics of the computational meshes (θ = 1).

NC DOF NCSx NCSy ∆xmin/H ∆ymin/H

M25(θ = 1) 6300 37800 26 25 0.0385 0.04

M51(θ = 1) 25704 154224 52 51 0.0186 0.0196

M101(θ = 1) 102212 613272 104 101 0.0093 0.0099

plate thicknesses and gap values, the meshes were adapted in order
to have the same minimum cell spacing at the central region of the
meshes. For each value of θ investigated, different meshes were gen-
erated with different number of cells in the x and y directions, but
always ensuring consistent mesh refinement and that the minimum cell
spacing in both directions remained essentially the same (i.e. square
control volumes in the region of interest). Consequently, in all meshes
the central region of the mesh is uniform, and progressively refined
from ∆xmin/H = ∆ymin ≈ 0.04 to 0.02 and 0.01 for meshes M25, M51

and M101, respectively. These two-dimensional meshes contain 102212

and 122816 cells (M101) corresponding to 613272 and 736896 degrees-
of-freedom (DOF), for low and large nondimensional gap widths, re-
spectively.

The results discussed in the next section are presented in dimen-
sionless form, unless otherwise stated. Velocities are normalised using
the bulk velocity in the inlet channels (U) and the extra-stresses are
normalised using a characteristic viscous stress, ηU/H. The Deborah
number represents the ratio between the relaxation time of the fluid (λ)
and a characteristic time scale of the flow, here chosen as g/U. Conse-
quently, in the present investigation we define the Deborah number as
De = λU/g.

For flows with non-negligible inertia the Reynolds number is also
important, and is here defined as Re = ρUH/η. The degree of flow
reversal relative to the unidirectional flow that would exist in the
absence of a gap in the middle wall, is quantified using the parameter
Rr = q2/Q1 = q4/Q2, where q2 and q4 correspond to the partial flow
rates per unit depth that reverse from each inlet arm and Q1 = Q2 =

UH are the total flow rates per unit depth at each inlet channel, as
shown in Figure 6.12.

6.2.4 Results and discussion

6.2.4.1 Assessment of numerical accuracy

In this section we estimate the numerical uncertainty analysing the
convergence with mesh refinement. In Figure 6.13 we plot the transverse
profiles of the dimensionless velocity and shear stress along the vertical
line (x = 0) that crosses the stagnation point located at the middle
of the gap. The data from all the meshes correspond to the creeping
flow of an UCM fluid at De = 0.35, for a dimensionless gap and for a
separating wall with negligible thickness (α = 0). The velocity profiles
calculated in meshes M51 and M101 exhibit excellent agreement. The
stress profiles show a slight mesh dependency near the stagnation point,
due to the high stress gradients that occur in that region, but elsewhere
the agreement between all meshes is very good.
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Figure 6.13: Transverse profiles of the normalised velocity and shear stress at
x/H = 0, for De = 0.35 (Re = 0, θ =

√
2 and α→ 0), on mesh M25

(open circle), mesh M51 (dashed line) and mesh M101 (full line).

Table 6.2: Quantification of numerical uncertainty for some representative cases:
Couette correction.

Ccorr Error (%)

De θ M25 M51 M101 Extr. M25 M51 M101

0.42 1.414 1.496 1.486 1.482 1.480 1.069 0.369 0.127

0.26 1.740 2.348 2.194 2.180 2.179 7.768 0.674 0.059

0.30 2.000 2.475 2.396 2.378 2.373 4.303 0.980 0.223

Additional information on the accuracy of the numerical results is
presented in Table 6.2, where the estimated error for the Couette correc-
tion (Ccorr) coefficient (discussed in Section 6.2.4.4 and defined in Eq.
6.25) is provided for all three meshes and for three different nondimen-
sional gap widths (θ =

√
2, 1.74 and 2) for a range of Deborah numbers.

The uncertainties were estimated by comparison with the Ccorr ex-
trapolated using Richardson’s extrapolation technique (Ferziger, 1981).
As can be observed, the uncertainties estimated for meshes M51 and
M101 are always below 1%, showing again the high level of accuracy
of the numerical results. Therefore, in the remainder of the paper, un-
less otherwise stated, the results presented were obtained with the
intermediate mesh M51.

6.2.4.2 Newtonian fluid flow

Geometrically, the mixing-and-separating geometry can be idealized as
a cross-slot device (Arratia et al., 2006) with one pair of aligned arms
rotated by 90

◦ towards the other pair, leading to a nondimensional gap
size of and a vanishing thickness of the separation plate (α → 0). If
during this transformation the flow type wouldn’t change, the ratio
between the reversed to unidirectional flow would be Rr = 0.5, in order
to keep full similarity with the cross-slot. Obviously, this is not the
case as illustrated in Figure 6.14, where Rr is plotted as a function of
normalized gap width, θ, for various plate thicknesses, α, for creeping
flow of a Newtonian fluid. For this shear dominated flow we obtain
Rr = 0.29 for θ =

√
2. In order to achieve Rr = 0.5 the normalized

gap should be about θ ≈ 1.75. From Figure 6.14 we conclude that
the effect of plate thickness for thin plates is small in agreement with
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experiments (Cochrane et al., 1981; Walters and Webster, 1982). Figure
6.14 also highlights that the transition from a straight unperturbed
no-reverse-flow situation at low θ to a full flow reversal occurs when
the dimensionless gap size becomes large.

Figure 6.14: Degree of reverse flow as function of gap width, θ, and plate
thickness, α, for the Newtonian case at Re = 0.

The differences between the results for the cross-slot and the mixing-
and-separating geometries can be explained from the different angles
of the approaching flows in the vicinity of the stagnation points. In the
mixing-and-separating geometry these approach flows are not aligned
with the channels and are not orthogonal as occurs in the cross-slot flow.
Consequently, in the mixing-and-separating geometry the shear flow is
important in the stagnation point region, being absent in the cross-slot
flow geometry which is purely extensional in character, except in the
vicinity of the channel walls. This difference may also be important
for understanding the onset of purely-elastic instabilities in the cross-
slot geometry (Morozov and van Saarloos, 2007; Afonso et al., 2010b).
These observations are better understood analysing the streamline
plots presented in Figure 6.15 , which correspond to creeping flow of
Newtonian fluids at low, medium and large dimensionless gap widths
(θ = 1, 2 and 2.83). These patterns correspond to the α = 0 curve
represented in Figure 6.14, where the corresponding reversed flow rate
ratios take the numerical values of 0.123, 0.575 and 0.846, i.e., increasing
with gap size.

Figure 6.16 illustrates the influence of flow inertia on Rr for New-
tonian fluids as a function of the dimensionless gap width, θ. For all
Reynolds numbers analysed, Rr varies from 0 to 1 as the gap sizes
increases in agreement with experiments (Cochrane et al., 1981; Walters
and Webster, 1982). For conditions of low inertia (say, Re 6 1) the varia-
tion of Rr with θ is independent of Reynolds number. However, when
inertial effects are significant, flow reversal is enhanced. In Figure 6.16

we plot data of Rr at some representative Reynolds numbers as function
of θ for each of the three meshes, and once again, mesh dependency is
barely noticeable.

6.2.4.3 Viscoelastic and Inertial effects

Figure 6.17 illustrates an interesting bifurcation which depends on the
gap width and occurs with UCM fluids under creeping flow condi-
tions. For large dimensionless gap sizes, but below a critical value
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Figure 6.15: Streamlines for the mixing-and-separating geometry for several
gap widths, θ, and plate thickness, α, for the Newtonian case at
Re = 0.

(θ 6 1.6), the reversed flow is slightly enhanced initially as viscoelas-
ticity increases, followed by a significant decrease towards zero when
De further increases. This behaviour is characterized by a significant
departure from streamline parallelism in the gap region, although with
the fluid still tending to flow unidirectionally in agreement with experi-
ments (Cochrane et al., 1981; Walters and Webster, 1982). This situation
is illustrated by the flow pattern of Figure 6.18a.

In contrast, for a supercritical dimensionless gap size (θ > 1.84) we
find that viscoelasticity is now responsible for a continuous increase
of Rr with De, and the corresponding flow patterns are similar to
those illustrated in Figure 6.18b. It is important to emphasize that this
supercritical pattern has not yet been observed experimentally primarily
due to the stabilising effect of inertia, to be discussed below.

For creeping flow and at a definite intermediate gap width range
(1.6 6 θ 6 1.84, cf. Figure 6.17 for θ = 1.74) a steady bifurcation flow
pattern emerges, with a sudden jump between two widely different
flow configurations, ranging from almost unidirectional to almost fully
reversed, at Deborah numbers slightly higher than the critical Deborah
number. The corresponding streamline plots are illustrated in Figure
6.18 for De = 0.345 and θ = 1.74. On the upper plot the flow is almost
unidirectional (Rr = 0.047) while at the bottom plot the flow is highly
reversed (Rr = 0.85). The bifurcation between these two flow patterns
is due to a purely-elastic instability since inertia has no role (Re = 0)
in the present simulations (we have also observed such purely elastic
instabilities in Poole et al., 2007c,a; Rocha et al., 2009). Incidentally,
when θ = 1.74 we find a maximum value of Rr = 0.5 before bifurcation
(at De ≈ 0.2) and this corresponds to the situation where the approach
flows at the stagnation point tend to be closer to perpendicular. Here, we
found that the critical Deborah number for the onset of the bifurcation
of UCM fluids is Decrit = 0.316, a similar value to that reported for
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Figure 6.16: Degree of reverse flow as function of gap width, θ, for several
Reynolds numbers. Newtonian case on meshes M25 (diamond),
M51 (lines) and M101 (closed circle).

the instability in the cross-slot geometry (Decrit ≈ 0.31, Poole et al.
2007c) with this De defined as θDe. The predictions also indicated that
in this intermediate region of bifurcated flow the critical De decreases
in inverse proportion to θ.

Regarding the influence of flow inertia, the critical De for the steady
bifurcation is found to increase with Re, as illustrated in Figure 6.19

for θ = 1.74 and Re = 1. Here, Rr is plotted as a function of De for
three different dimensionless gap widths (θ =

√
2, 1.74 and 2) and for

Re up to 10. As observed for the Newtonian fluids, the degree of flow
reversal is essentially independent of Reynolds number for Re 6 1. At
higher Reynolds numbers (e.g. Re = 5 and 10) and θ = 2 we observe an
inversion in the flow configurations: whereas at low Re viscoelasticity
was seen to be responsible for an increase in Rr (the typical supercritical
behaviour), at large Reynolds numbers Rr decreases with De (the
typical subcritical behaviour). Thus, strong inertial effects eliminate
the elastic bifurcation and the flow becomes more unidirectional. This
behaviour is also in contrast with the Newtonian case where for the
same value of θ = 2 an increase in the Reynolds number increased
the reversed flow. This opposed effect of flow inertia at low and high
elasticity explains why the supercritical behaviour has not yet been
observed in experiments and suggests the need for further experimental
work, using a highly viscous and elastic fluid, to attain low Reynolds
numbers flow at high Deborah numbers. An interesting alternative is to
use microfluidic geometries, in which the small sizes lead to a decrease
of flow inertia and to a significant enhancement of viscoelasticity (note
that De increases when the length scale decreases) (Stone et al., 2004).

In order to clarify the trends in Figure 6.19 and mimic the procedure
of experiments, we conducted an additional set of simulations with
constant Elasticity number (El = De/Re = λη/ρH2θ), a situation that
better reproduces the experimental scenario, where an increase of the
flow rate leads to a proportional increase of Re and De, without altering
the elasticity number (which is independent of flow rate). Using such an
approach, the combined effects of elasticity and inertia are quantified
by the Elasticity number, and these effects are presented in Figure 6.20 ,
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Figure 6.17: Degree of reverse flow as function of Deborah number for several
gap widths, θ, and Re = 0 (closed symbols—Mesh M51 and open
symbols—Mesh M101).

Figure 6.18: Streamlines for θ = 1.74, α = 0, Re = 0 and De = 0.345 in mesh
M101: the two bifurcated solutions have (a) Rr = 0.041 and (b)
Rr = 0.83.

where Rr is plotted as a function of De for three different gap widths
(θ =

√
2, 1.74 and 2) and for three different values of El (El = 0.1, 1

and 5). For a subcritical gap size (θ =
√
2) the effect of El is small, with

the reversed flow slightly attenuated by viscoelasticity, followed by a
strong decrease in Rr towards zero as De further increases. For the
intermediate gap width (θ = 1.74), the steady bifurcation flow patterns
are not observed for low Elasticity numbers (El = 0.1), and the critical
Deborah number increases as El decreases, showing the stabilising
effect of inertia. Finally, for a supercritical gap size (θ = 2) we can
observe again an inversion in the flow configurations for low El, with
Rr decreasing with De, thus the flow becomes more unidirectional.

6.2.4.4 Steady bifurcation flow stability

As discussed in the previous sections, for intermediate gap widths
(1.6 6 θ 6 1.84) a steady bifurcation flow pattern is observed. For
Deborah numbers higher than a critical value, two different steady flow
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Figure 6.19: Degree of reverse flow as function of Deborah number for several
gap widths, θ, and Re = 0, 1, 5 and 10.

Figure 6.20: Degree of reverse flow as function of Deborah number for several
gap widths, θ, and elasticity numbers (El = 0.1, 1 and 5).

patterns with different flow configurations can be observed. In order to
access the stability of these dual configurations we performed a simple
test for θ = 1.74, the results of which are shown in Figure 6.21. Time-
dependent flow simulations were performed for a periodic variation
of Deborah number, departing from a De near the critical value (De =
0.322, corresponding to a highly reversed configuration flow, Rr =

0.75), down to De = 0.316 (corresponding to a quasi unidirectional
configuration flow, Rr = 0.076), using a second-order time discretization
scheme (Oliveira, 2001a) with a small time step (∆t/λ = 2x10−5), for
good accuracy in time. After one cycle of De, the flow configuration
shifts from a reversed to a unidirectional configuration, remaining
in this configuration along the rest of the pulsating variation. This
observation suggests that, although both flow configurations are steady
and stable, the unidirectional configuration is preferred.

An alternative explanation to this behaviour is based on the energy
losses of the two flow configurations, here quantified using a Couette
correction coefficient (Ccorr), evaluated as the normalized pressure
drop between inlet and outlet after discounting for the fully-developed
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Figure 6.21: Stability analysis for θ = 1.74, with α = 0, Re = 0 and De =
[0.316, 0.322].

pressure drop along the channels (i.e. Ccorr represents a dimensionless
extra pressure drop):

Ccorr =
∆p−∆pFD

2τw
, (6.25)

where ∆p is the pressure difference between any of the inlets and
one of the outlets, ∆pFD is the pressure drop required to drive fully-
developed flow in the inlet and outflow straight channels, as in the
absence of the interference of the gap, and τw is the wall shear stress
under fully-developed conditions (given by τw = 6ηU/H for the UCM
model). The value of Ccorr for Newtonian fluids as function of the
non-dimensional gap size is presented in Figure 6.22a, showing that
Ccorr increases asymptotically to about 1.3 as θ increases beyond 2,
corresponding to increased levels of reversed flow. So, extrapolating
these findings to the viscoelastic case we conclude that the preferred
configuration (unidirectional flow) corresponds to the less dissipative
flow field, a situation that has been reported in other similar instabilities
in cross slot and flow focusing geometries (Poole et al., 2007c; Rocha
et al., 2009; Oliveira et al., 2009). This difference is also clear in the
results for Ccorr obtained for an intermediate gap width (θ = 1.74) and
plotted as a function of De in Figure 6.22b. The reversed flow is initially
slightly enhanced up to De = 0.25 (recall Figure 6.17) and mainly
because strong hoop stresses are established due to fluid elasticity and
flow curvature, the value of Ccorr increases significantly above the
Newtonian level, and this is followed by a decrease of the Couette
correction when the flow starts to become more unidirectional as De
is further increased. At Deborah numbers above the Decrit, and for
the reversed configuration flow, it is clear that the energy losses are
significantly higher than for the corresponding unidirectional flow
configuration, correlating with the results presented in Figure 6.21.

6.2.5 Conclusions

The UCM model was used to simulate viscoelastic fluid flows in a
mixing-separating geometry (Cochrane et al., 1981). For a combination
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Figure 6.22: Couette correction coefficient under creeping flow conditions and
zero thickness ( Re = 0 and α = 0) as function of: (a) dimensionless
gap size, θ, in Newtonian flow (De = 0); (b) Deborah numbers for
UCM fluid flow (θ = 1.74). (closed circle Mesh M51; open circle
M101).

of critical flow parameters, it was possible to identify a new steady bi-
stable bifurcation in the flow patterns at low inertia and high elasticity.

Under creeping flow conditions the UCM model exhibited two dis-
tinct flow patterns. For normalized gap sizes below a critical value,
the reversed flow is slightly enhanced as De increases, followed by a
strong decrease towards zero of the reversed flow rate as De further
increases. In contrast, above a supercritical gap size increasing De leads
to a monotonic increase in Rr. For near-critical flow geometries it was
possible to observe a sudden transition between the two flow condi-
tions at slightly different Deborah numbers. Flow inertia was found to
increase the critical Deborah number for steady flow bifurcation. Inertia
naturally enhances the straight flow configuration and at Re = 5, Rr
always decreased with Deborah number for De 6 0.6 and for the in-
vestigated gap sizes. The interplay between inertia and elastic effects is
clarified using the elasticity number, El, instead of Re andDe separately.
Essentially the viscoelastic fluid adjusts itself so as to avoid changes in
the flow direction and when the streamline curvature imposed by the
geometry (increasing θ) is large, the elastic normal stresses become so
strong, with consequent high energy loss coefficient, that the reversed
flow pattern can no longer be sustained. There is then a sudden jump
from reversed flow (large curvature) to unidirectional flow (small cur-
vature), accompanied by a reduction of the energy loss associated with
the flow. In addition, for a limited range of flow parameters, a pair of
extreme flow patterns might co-exist as a solution of the governing
equation, as an indication of a steady bifurcation phenomenon.

These results suggest the need for experiments with highly viscous
and elastic fluids (or at microscale where Re is naturally reduced and
De is enhanced) in order to identify the supercritical behaviour, which
has so far not been reported in the literature.
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7
A PUZZLING DRIVING FORCE AND (FURTHER)
DEVELOPMENTS

7.1 analytical solution of mixed eo/pressure driven flows

Abstract1

Analytical solutions are presented for the flow of viscoelastic fluids in mi-
cron sized ducts, namely between parallel plates and pipes under the com-
bined influence of electrokinetic and pressure forces using the Debye–Hückel
approximation, including the limit case of pure electro-osmotic flow. The vis-
coelastic fluids used are described by the simplified Phan-Thien–Tanner model
(sPTT), with linear kernel for the stress coefficient function, and zero second
normal stress difference, and the FENE-P model, based on the kinetic theory
for finitely extensible dumbbells with a Peterlin approximation for the aver-
age spring force. The solution is non-linear with a significant contribution
arising from the coupling between the electric and pressure potentials. This
term acts as a drag reducer and a drag increaser under favorable and adverse
pressure gradients, respectively and contrasts with the Newtonian flow case,
for which it does not exist, demonstrating that the superposition principle
valid for Newtonian fluids no longer applies when non- linear viscoelastic
fluid models are considered. The combined effects of fluid rheology, electro-
osmotic and pressure gradient forcing on the fluid velocity distribution and
fluid stresses are also discussed. The analysis of the streaming potential is also
included.

Keywords: Electro-osmotic/pressure driven flows; PTT model; FENE-P
model; viscoelastic fluids; microchannels; streaming potential.

7.1.1 Introduction

Pressure-driven fully developed pipe and channel flows of Newtonian
fluids are simple flows described in most classical books on viscous
fluid mechanics (Lamb, 1932). For non-Newtonian fluids the corre-
sponding flow characteristics are also well known when their rheolog-
ical descriptions are inelastic and rely on such simple models as the
power-law or Bingham equations (Skelland, 1967). In contrast, the cor-
responding flows for complex materials described by quasi-linear and
non-linear viscoelastic constitutive equations have only been the subject
of research over the last 30 years, except for a few simple cases which
have been known for a longer time. For the Phan-Thien–Tanner (PTT)

1 A.M. Afonso, M.A. Alves, F.T. Pinho (2009). Analytical solution of mixed electro-osmotic/
pressure driven flows of viscoelastic fluids in microchannels. Journal of Non-Newtonian
Fluid Mechanics 159 50-63.
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model (Phan-Thien and Tanner, 1977; Phan-Thien, 1978) there are sev-
eral recent analytical solutions in the literature for non-homogeneous
shear flow under fully-developed conditions in pipes, channels and
annuli (Oliveira and Pinho, 1999c; Pinho and Oliveira, 2000; Alves et al.,
2001a; Cruz and Pinho, 2004; Mirzazadeh et al., 2005). For the FENE-P
fluid (Bird et al., 1980), Oliveira (2002) investigated analytically the
solution for slit and pipe flows and some of these solutions for PTT
and FENE-P fluids were extended by Cruz et al. (2005) to account
for the presence of a Newtonian solvent and the use of multimode
models (Cruz and Pinho, 2007). For the Giesekus fluid an earlier so-
lution was derived by Schleiniger and Weinacht (1991) and for the
Johnson-Segalman constitutive equation the reader is referred to Van
Schaftingen and Crochet (1985) and Fyrillas et al. (1999). Issues of
flow stability in these flows have also been investigated as reported
discussed in the introduction of Cruz and Pinho (2007).

The overall impact of surface forces on flow characteristics increases
as the flow scale decreases (Stone et al., 2004). Therefore, capillary
and electrokinetic effects, which may be negligible in macroscale flow
processes, can become dominant or be used on purpose for flow control
in microchannels and microfluidic devices (Stone et al., 2004). The latter
are relevant in the present context and arise when dielectric surfaces are
brought in contact with polar fluids further enhanced by the application
of external electric potentials. It is the case of separation and synthesis
of biological or chemical components, such as the separation and ma-
nipulation of DNA molecules (Jendrejack et al., 2003), biopolymers and
large proteins.

Electro-osmosis is a basic electrokinetic phenomenon, where the flow
of an electrolyte in a channel is induced by an external electric field
applied between the inlet and outlet, after the interaction between
the dielectric channel walls and the polar fluid has created near-wall
layers of counter-ions within the fluid. These layers of liquid move
under the action of the applied electric field whereas the neutral core
is dragged and moves as a solid body (Bruss, 2008). The principle was
first demonstrated by Reuss (1809), in an experimental investigation
using porous clay. This was followed by the theoretical work on the
Electric Double Layer (EDL) of von Helmholtz (1879), which related the
electrical and flow parameters for electrokinetically driven flows. In the
early 1900s von Smoluchowski (von Smoluchowski, 1903) contributed
to the understanding of electrokinetically driven flows, especially for
conditions where the EDL thickness is much smaller than the channel
height.

For Newtonian fluids, rigorous modeling of the electro-osmotic flow
in microchannels has been the subject of several studies. Burgreen and
Nakache (1964) studied the effect of the surface potential on liquid
transport through ultrafine slits relying on the Debye–Hückel linear
approximation to the electrical potential distribution under an imposed
electrical field. Rice and Whitehead (1965) discussed the same prob-
lem in a circular capillary and Levine et al. (1975) extended the Rice
and Whitehead model (Rice and Whitehead, 1965) to a higher surface
potential. Dutta and Beskok (2001) obtained analytical solutions for
the velocity distribution, mass flow rate, pressure gradient, wall shear
stress, and vorticity in mixed electro-osmotic/pressure driven flows
for two-dimensional straight channels, under conditions of small EDL
thickness, with application to microfluidic devices where the wall-to-
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wall distance was one to three orders of magnitude larger than EDL
thickness. Arulanandam and Li (2000) and Wang et al. (2007a) pre-
sented a two-dimensional analytical model for the electro-osmotic flow
in a microchannel with rectangular cross-section. A thorough review
on various other aspects of electro-osmosis can be found in Karniadakis
et al. (2005).

The theoretical study of electro-osmotic flows of non-Newtonian
fluids is recent and most works have been limited to simple inelastic
fluid models, such as the power-law, due to the inherent analytical dif-
ficulties introduced by more complex constitutive equations. Examples
are the recent works of Das and Chakraborty (2006) and Chakraborty
(2007), who presented explicit analytical solutions for velocity, tempera-
ture and concentration distributions in electro-osmotic microchannel
flows of a non-Newtonian bio-fluid described by the power-law model.
Other purely viscous models were analytically investigated by Berli
and Olivares (2008), who considered the existence of a small wall layer
depleted of additives (the skimming layer) and behaving as a Newto-
nian fluid under the combined action of pressure and electrical fields,
thus restricting the non-Newtonian behaviour to the electrically neutral
region outside the EDL. Investigations on other relevant phenomena
in microfluidics, such as surface tension effects and its relation to non-
Newtonian properties also rely on the inelastic power law viscosity
model (Chakraborty, 2005).

Very recently these studies were extended to viscoelastic fluids by
Park and Lee (2008b), who derived the Helmholtz-Smoluchowski veloc-
ity for pure electro-osmotic flow of PTT fluids and provided a simple
numerical procedure to calculate its value. It is clear that there are
no analytical solutions for fully-developed electro-osmotic flows of
quasi-linear and non-linear viscoelastic fluids, and even less so when
in combination with pressure gradient, where some new non-linear
coupled terms arise. This work aims to partially fulfill this gap by pre-
senting the analytical solutions for the flows of PTT and FENE-P fluids
between two parallel plates under the mixed influence of electrokinetic
and pressure forces, including the limit case of pure electro-osmosis.
The PTT fluid (Phan-Thien and Tanner, 1977) obeys the simplified
model, with a linear kernel for the stress coefficient function (Phan-
Thien, 1978) and a zero second normal stress difference, thus it includes
the solution for Upper-Convected model (UCM) fluids. The FENE-P
fluid is also used, and this model is based on the kinetic theory for
Finitely Extensible Non-linear Elastic dumbbells with a Peterlin ap-
proximation for the average spring force (cf. Bird et al., 1980). The
viscoelastic fluids are assumed to have the same properties in the whole
domain including the EDL. Bio-fluids are usually complex in their
structure leading to equally complex constitutive equations to describe
their rheology and the ensuing flows. In particular they often exhibit
normal stresses, shear-thinning viscosity and memory effects and their
rheological behaviour can be described by differential viscoelastic con-
stitutive equations that are related to the PTT and FENE-P form, as in
the case of blood (Owens, 2006; Moyers-Gonzalez et al., 2008), saliva
(Vissink et al., 1984), synovial fluid (Thurston and Greiling, 1978; Fam
et al., 2007) or other biofluids containing long chain molecules. The
flows of relevance here would be in micron-size geometries as in chips
for chemical and biological analysis and in micro-rheometers (Rodd
et al., 2007).
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The paper starts with the set of governing equations including the
nonlinear Poisson –Boltzmann equation governing the EDL field and
the added body force to the momentum equation caused by the applied
electrical potential field. The simplifications required to obtain the
analytical solution are discussed, the solutions are presented, including
the particular case of streaming potential, and a discussion of the
effects of the various relevant nondimensional parameters upon the
flow characteristics closes this work.

7.1.2 Governing equations

The steady, fully-developed flow of the incompressible viscoelastic fluid
under investigation is sketched in Figure 7.1. The flow direction in the
conditions illustrated is from left to right, but it can be reversed if either
the polarity at the walls or of the electrodes at each end of the channel
are reversed. In both cases, the solutions here described remain valid.

Figure 7.1: Schematic of the flow in a microchannel.

The migration of ions naturally arises due to the interaction between
the dielectric walls and the polar fluid. Here, the two negatively charged
walls of the microchannel of height 2H, length l and width w, with
w� 2H, attract counter-ions forming layers of positively charged fluid
near the walls and repel the co-ions. Very thin layers of immobile
counter-ions cover the walls, known as the Stern layers, followed by
thicker more diffuse layers of mobile counter-ions, the two layers near
the wall forming what is called the Electrical Double Layer (EDL). The
global charge of the flow domain remains neutral, but since the two
EDLs are thin the core is essentially neutral. Applying a DC potential
difference between the two electrodes at the inlet and outlet generates
an external electric field that exerts a body force on the counter-ions
of the EDL, which move along the channel dragging the neutral liquid
core. The pressure difference that can also be applied between the inlet
and outlet can act in the same direction of the electric field or in the
opposite direction. Alternatively, the potential difference is not imposed,
but results from the accumulation of ions at the end of the channel
due to the flow created by the pressure difference. This particular case,
known as streaming potential, implies a specific relation between the
favorable pressure gradient and the ensuing adverse external electric
field (Yang and Li, 1997), which will be quantified later in this paper.

The basic field equations describing this fully-developed flow for
incompressible fluids are the continuity equation,

∇ · u = 0 (7.1)
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and the modified Cauchy equation,

−∇p+∇ · τ+ ρeE = 0 (7.2)

where u is the velocity vector, p the pressure, ρ the fluid density and
τ the polymeric extra-stress contribution. The ρeE term of equation
(7.2) represents a body force per unit volume, where E is the applied
external electric field (or resulting from the streaming potential) and ρe
is the net electric charge density in the fluid.

7.1.2.1 Constitutive equations

7.1.2.2 PTT model

The polymer extra-stress τ is described by an appropriate constitutive
equation, and in this work we consider two models. The first model de-
scribes the viscoelastic behaviour following the ideas of Phan-Thien and
Tanner (Phan-Thien and Tanner, 1977; Phan-Thien, 1978), who derived
the PTT model - equation (7.3) - from network theory arguments,

f(τkk)τ+ λ
∇
τ = 2ηD (7.3)

where D =
(
5uT +5u

)
/2 is the rate of deformation tensor, λ is the

relaxation time of the fluid, η is a polymer viscosity coefficient and
∇
τ

represents the upper-convected derivative of τ, defined as

∇
τ =

Dτ
Dt

−5uT .τ− τ.5 u (7.4)

The stress coefficient function, f(τkk), is given by the linear form
(Phan-Thien and Tanner, 1977)

f(τkk) = 1+
ελ

η
τkk (7.5)

where τkk represents the trace of the extra-stress tensor and ε is a
parameter that imposes an upper limit to the elongational viscosity. For
ε = 0 the upper-convected Maxwell model (UCM) is recovered.

7.1.2.3 FENE-P model

The second viscoelastic model used in this work is the FENE-P equation,
based on the kinetic theory for finitely extensible dumbbells with a
Peterlin approximation for the average spring force. In this case the
polymer extra-stress is given by (Bird et al., 1980):

Z(τkk)τ+ λ
∇
τ − λ

(
τ−

b

b+ 2
nkBTI

)
D lnZ

Dt
= 2η

(
b+ 5

b+ 2

)
D (7.6)

where I is the identity tensor, b is a parameter that measures the
extensibility of the dumbbell, kB is the Boltzmann constant, T is the
absolute temperature and n is a parameter of the model (Bird et al.,
1980). The stress coefficient function, Z(τkk), can be expressed by (Bird
et al., 1980):

Z(τkk) = 1+ 3

(
1

b+ 2
+
λ

3η

τkk
(b+ 5)

)
(7.7)
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Note that for fully-developed flows D lnZ/Dt ≈ 0 and equation (7.7)
becomes considerably simplified.

7.1.2.4 Poisson–Boltzmann equation

Contact between the dielectric walls of the channel with the electrolyte
fluid spontaneously results in the formation of two electric double layers
(EDL), one near each wall, as seen in Figure 7.1. They are sufficiently
far from each other to allow us to consider them as independent. In
the case of pipe flow there is a single EDL around the wall, so that
EDL’s at opposite sides of a diameter do not interfere. The potential
field (ψ) of these electric double layers can be expressed by means of a
Poisson–Boltzmann equation:

∇2ψ = −
ρe

ε
(7.8)

where ε is the dielectric constant of the solution, assumed constant. The
Poisson- Boltzman equation can be integrated subjected to adequate
boundary conditions, to be given in the next section. Prior to that it
is necessary to quantify the electric charge density in order to have
a closed-form equation. According to Bruss (2008) the electric charge
density, ρe, for an electrolyte in equilibrium near a charged surface is
given by

ρe = −2noez sinh
(
ez

kBT
ψ

)
(7.9)

here no is the ionic density, e is the elementary electronic charge and z
is the valence of the ions.

7.1.2.5 Boundary conditions and other assumptions

The coordinate system is represented in Figure 7.1. Due to the symmetry
of the geometry only half of the channel (0 6 y 6 H) is considered in
this analysis. For the pipe geometry, H is the pipe radius. At the wall
the no-slip condition applies whereas on the centreplane/axis, y = 0,
the condition of symmetry applies. Since the flow is fully-developed
the velocity and stress fields only depend on the transverse coordinate
y. This coordinate represents the radial position for the pipe flow.

As described above, the contact between the dielectric wall and the
electrolyte fluid results in a spontaneous charge transfer between wall
and fluid by ionization, ion adsorption or ion dissolution that leads to
an opposite charge distribution at the wall and fluid, which depends on
the chemical composition of both materials, while maintaining global
charge neutrality. Then, electro-osmotic flow results from the motion
of the charged fluid species when subjected to an externally applied
electric field between the channel/pipe inlet and outlet. The thickness
of the EDL depends on the ionic concentration, thermal energy and
electrical properties of the liquid, ranging from nanometers for high
ionic concentration solutions to several microns for pure water and
pure organic liquids. Here, we assume that the ionic charge distribution
across the channel/pipe is such that the two EDL are thin. Under these
conditions and provided the applied electric field is weak, i.e., that
4φ/l � ψ0/ξ, where 4φ is the potential difference of the applied
electric field, l is the channel length and ξ is the Debye layer thickness,
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the charge distribution is essentially independent of the external electric
field and is determined from the potential at the wall, ψ0, frequently
called the zeta potential. If the local electro-osmotic flow velocities are
small, which is the case for thin EDL, the effect of fluid motion on the
charge redistribution can also be neglected. These assumptions are all
part of the so-called standard electrokinetic model.

The electric double layer is thin when the potential at the wall is small.
For small values of ezψ0/kBT , synonymous of a small ratio of electrical
to thermal energies, equation (7.9) can be linearized, sinh x ≈ x. This
is called the Debye-Hückel approximation and is invoked in this work.
At room temperature this limits the zeta potential to values much
smaller than 26 mV. Under these conditions, each wall only affects the
charge distribution in its vicinity and does not interfere with the charge
distribution near the other wall of the channel. For thin layers in a
pipe this also means that there is no need to account for wall curvature
effects, when deriving the potential and electric charge distributions
for the pipe flow solution.

The boundary conditions for the Poisson-Boltzmann equation are
∂ψ/∂y = 0 at the symmetry plane/axis and zeta potential at the wall,
ψwall = ψ0, which takes the sign of the fluid charges at the wall.

Regarding the non-Newtonian fluid, the assumption is made that
there is a well mixed fluid behaviour uniformly distributed across
the channel/pipes. An alternative assumption, sometimes invoked for
solutions and suspensions, including non-Newtonian fluids (Berli and
Olivares, 2008), is that there is depletion of additives very close to
the wall, where the fluid essentially behaves as a Newtonian fluid.
This is currently under investigation and the corresponding solution is
considerably more eleaborate. Besides there are here possibilities that
need to be considered, and this matter is left for future work.

7.1.3 Analytical solution

7.1.3.1 PTT constitutive equation

The extra-stresses for the PTT model in these fully-developed flows, for
which u = {u(y), 0, 0}, can be obtained from equations (7.3-7.5), which
reduce to

f(τkk)τxx = 2λ
·
γτxy (7.10)

f(τkk)τyy = 0 (7.11)

f(τkk)τxy = η
·
γ+ λ

·
γτyy (7.12)

where τkk = τxx + τyy is the trace of the extra-stress tensor. Equation
(7.11) implies τyy = 0, τkk = τxx, and the stress coefficient function
becomes an explicit function of the streamwise normal stress f(τxx)
as in Phan-Thien and Tanner (1977). Then, upon division of equation
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(7.10) by equation (7.12) the specific function f(τxx) cancels out, and a
relation between the normal and shear stresses is obtained,

τxx = 2
λ

η
τ2xy (7.13)

7.1.3.2 FENE-P constitutive equation

For the FENE-P fluid in fully developed shear flow between two parallel
plates and in a pipe, i.e., subjected to u = {u(y), 0, 0}, equations (7.6)
and (7.7) reduce to

Z(τkk)τxx = 2λ
·
γτxy (7.14)

Z(τkk)τxy =

(
b+ 5

b+ 2

)
η
·
γ (7.15)

Again, the trace of the extra-stress tensor becomes τkk = τxx, thus

Z(τxx) =

(
b+ 5

b+ 2

)[
1+

λ

η

(b+ 2)

(b+ 5)2
τxx

]
(7.16)

The relation between the normal and shear stresses is,

τxx = 2
λ

η

(
b+ 2

b+ 5

)
τ2xy (7.17)

7.1.3.3 Potential field across the channel

The potential field only depends on y, ∇2ψ = d2ψ/dy2, which can be
used in equation (7.8). Substituting the distribution of the net charge
density (ρe) by equation (7.9) and invoking the assumptions discussed
in Section 7.1.2.5, the following form of the Poisson- Boltzmann equa-
tion for the potential across the half channel is obtained:

d2ψ
dy2

= κ2ψ (7.18)

where κ2 = 2noe
2z2

εkBT
is the Debye-Hückel parameter, related to the

thickness of the Debye layer, ξ = 1
κ (also referred to as the EDL thick-

ness). This approximation is valid when the Debye thickness is small
but finite, i.e., for 10 . H/ξ . 103, and it is also used here for pipe flow
neglecting wall curvature effects in the Laplacian.

Equation (7.18) can be solved subjected to the boundary conditions
(cf. Section 7.1.2.5) to give,

ψ =
ψ0 cosh (κy)

cosh (κH)
(7.19)

for 0 6 y 6 H. Finally, the net charge density distribution, equation
(7.9), in conjunction with equations (7.19) reduces to

ρe = −εψ0κ
2 cosh (κy)

cosh (κH)
(7.20)

which is a positive quantity for a wall charged negatively (ψ0 < 0).
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7.1.3.4 Analytical solution for the PTT model

Henceforth, the analytical solution and the subsequent discussions
are for channel flow, thus avoiding unnecessary complications. The
full solution for pipe flow is presented in Appendix A without any
discussion because the trends are similar to those found for the slit
flow.

Under fully developed conditions, the momentum equation (7.2),
reduces to

dτxy
dy

= −ρeEx + p,x (7.21)

where p,x ≡ dp/dx, Ex ≡ −dφ/dx and φ is the electric potential of the
applied external field, which is characterized by a constant streamwise
gradient under fully-developed flow conditions. Note that in this flow
the external electrical field is positive according to Figure 7.1, and
negative otherwise.

Using equation (7.20) and noting that the shear stress at the center-
line is zero, Eq. (7.21) can be integrated to yield the following linear
contribution of electro-osmotic and pressure gradient contributions to
the shear stress distribution

τxy = εψ0Exκ
sinh (κy)

cosh (κH)
+ p,xy (7.22)

Using the relation between the normal and shear stresses - equation
(7.13), the following explicit expression for the normal stress component
is obtained,

τxx = 2
λ

η

(
εψ0Exκ

sinh (κy)

cosh (κH)
+ p,xy

)2
(7.23)

The square term in equation (7.23) introduces a contribution to the
normal stress from the combined electro-osmotic and pressure forces.

To determine the velocity gradient, equations (7.12), (7.22) and (7.23)
are combined to give

·
γ ≡ du

dy
=

[
1+ 2ελ2

(
κεψ0Ex

η

sinh (κy)

cosh (κH)
+
p,x

η
y

)2](
κεψ0Ex

η

sinh (κy)

cosh (κH)
+
p,x

η
y

)
(7.24)

Equation (7.24) can be integrated subject to the no-slip boundary
condition at the wall (u‖y=H = 0) and the resulting velocity profile is

u = uE+uP +uEP (7.25)

with

uE = (
εψ0Ex

η
− 2Cκ2ελ2

[
εψ0Ex

η

]3
)(A− 1)+

2

3
κ2ελ2

[
εψ0Ex

η

]3
(A
3
− 1)

(7.26)

uP =
1

2

[
p,x

η

] (
y2 −H2

) [
1+ ελ2

[
p,x

η

]2 (
y2 +H2

)]
(7.27)

uEP =
3

2
ελ2

[
εψ0Ex

η

]2 [
p,x

η

] [
1−A

2
+(κ2H2 −κ2y2)C+ 2κD

(
yAB−H

)]
+ 12

ελ2

κ2

[
εψ0Ex

η

] [
p,x

η

]2 [
κD

(
H−yB

)
+(1+

1

2
κ2y2)A−(1+

1

2
κ2H2)

]
(7.28)
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where A =
cosh(κy)
cosh(κH) , B =

sinh(κy)
sinh(κH) , C = 1

cosh2(κH)
and D = tanh (κH).

As suggested by equation (7.25) there are three contributions to
the velocity profile: uE represents the pure electro-osmotic flow for a
viscoelastic fluid and is given by equation (7.26); uP is the contribution
due to the pressure gradient for a viscoelastic fluid and is given by
equation (7.27); finally, the third contribution couples the Poiseuille and
electro-osmotic flows and this is given by uEP expressed by equation
(7.28), which is simultaneously proportional to p,x and Ex. This last
contribution only exists because the fluid is nonlinear, i.e., no such effect
is present if the fluid is Newtonian or a quasi-linear viscoelastic fluid,
such as UCM fluid. Indeed, uEP is proportional to ε, which is non-zero
for the PTT fluid but is zero for UCM/Oldroyd-B fluids. Equation (7.25)
shows that the superposition principle valid for Newtonian and quasi-
linear viscoelastic fluids is no longer valid for the PTT and FENE-P
fluids and suggests that the same applies to other non-linear viscoelastic
models.

It is often more convenient to work with the dimensionless form of
equation (7.25). Introducing the normalizations ȳ = y/H and κ̄ = κH,
the dimensionless velocity profile can be written as

u

ush
= (1− 2CεDe2κ)(1−A) +

2

3
εDe2κ(1−A

3
)

−
1

2
Γ
(
1− ȳ2

)[
1+

εDe2κ
κ̄2

Γ2
(
1+ ȳ2

)]
(7.29)

+
3

2

εDe2κ
κ̄2

Γ
[
1−A

2
+ (κ̄2 − (κ̄ȳ)2)C+ 2κ̄D

(
ȳAB− 1

)]
−
12εDe2κ
κ̄4

Γ2
[
κ̄D
(
1− yB

)
+ (1+

1

2
(κ̄ȳ)2)A− (1+

1

2
κ̄2)

]
where Deκ = λush

ξ = λκush is the Deborah number based on the
EDL thickness and on the Helmholtz-Smoluchowski electro-osmotic
velocity, defined as ush = −εψ0Exη (von Smoluchowski, 1903; Park and
Lee, 2008b). In Poiseuille flows a different Deborah number is usually
defined (Oliveira and Pinho, 1999c; Pinho and Oliveira, 2000) based
on the cross-sectional average velocity for the Newtonian flow under
the sole influence of pressure gradient and the channel half-height,

DeN = λUN
H with UN = −

H2p,x
3η . A third alternative Deborah number

for electro-osmotic flow is based again on ush, but considers the channel
half-height, Desh = λush

H . These three Deborah numbers are related by
Deκ = κ̄Desh = −3Γ κ̄DeN, where parameter Γ = − H2

εψ0

p,x
Ex

represents
the ratio of pressure to electro-osmotic driving forces.

Flow problems are usually of direct or indirect/inverse type. In
a direct problem the pressure gradient p,x and the applied electric
potential gradient Ex are known (or instead the ratio of pressure to
electro-osmotic driving forces is known) and the flow rate, or the cross-
sectional average velocity, is required. The flow rate can be determined
from integration of the velocity profile of equation (7.25). Here, this inte-
gration was carried out using the normalized velocity profile, equation
(7.29), thinking ahead on the benefit this brings to the inverse problem,
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where the aim is the determination of Γ for a given dimensionless flow
rate. The expression for the normalized flow rate is

Q =
Q

2Hush
=

u

ush
=

∫1
−1

u

ush
dy = 2

∫1
0

u

ush
dy =Q

E
+Q

P
+Q

EP

Q
E
= 2

(
1− 2CεDe2κ

)(
1−

D

κ̄

)
+
4

3
εDe2κ

(
1−

1

3

D

κ̄

(
1+ 2C

))
Q
P
= −2Γ

(
2

5

εDe2κ
κ̄2

Γ2+
1

3

)
(7.30)

Q
EP

= 3
εDe2κ
κ̄2

Γ

(
2−

D

κ̄
−C+

2

3
Cκ̄2− 2κ̄D

)
−
24εDe2κ
κ̄4

Γ2
(
−3+ 3

D

κ̄
+
3

2
κ̄D−

1

2
κ̄2
)

This is a cubic equation on Γ and the solution of the inverse prob-
lem (calculation of Γ for a given Q) involves the determination of Γ ,
which can be done using the Cardan-Tartaglia solution for cubic al-
gebraic equations. Within the assumptions invoked in Section 7.1.2.5,
the analysis in this section is general, but relies on the Debye-Hückel
approximation. Here, as in many practical applications the finite electric
double layer is very small, about 1 to 3 orders of magnitude smaller
than the thickness of the microfluidic channel (10 . κ̄ . 103). In these
circumstances cosh (κ̄) � 1 and D = tanh (κ̄) ≈ 1, so the above equa-
tions for the velocity profile can be further simplified. In particular the
normalized flow rate becomes

Q ' 2
(
κ̄− 1

κ̄

)
+
4

3
εDe2κ

(
3κ̄− 1

3κ̄

)
− 2Γ

(
2

5

εDe2κ
κ̄2

Γ2 +
1

3

)
+ 3

εDe2κ
κ̄2

Γ

(
2κ̄− 1− 2κ̄2

κ̄

)
−
24εDe2κ
κ̄4

Γ2
(
κ̄

2
(3− κ̄) +

3− 3κ̄

κ̄

)
(7.31)

which is simpler than equation (7.30), but still cubic in Γ . This expression
can be written in compact form as

Γ3 + a1Γ
2 + a2Γ + a3 = 0 (7.32)

The explicit solution of the inverse problem, giving the ratio of pressure
to electro-osmotic driving forces as a function of the non-dimensional
flow rate, viscoelastic model parameters and relative microchannel ratio
is obtained using the Cardan-Tartaglia solution,

Γ =
3

√√√√
−
b1
2

+

√
b21
4

+
a3

27
+

3

√√√√
−
b1
2

−

√
b21
4

+
a3

27
−
a1
3

a = a2 −
a21
3

b1 = a3 −
a1a2
3

+
2a31
27

(7.33)

with

a1 = 15

(
3− κ̄

κ̄

)
+ 30

(
3− 3κ̄

κ̄3

)
a2 =

5

6

κ̄2

"De2
»
+
15

4

(
2κ̄2 − 2κ̄+ 1

κ̄

)
(7.34)

a3 =
5

4

κ̄2

"De2
»

(
Q− 2

(
κ̄− 1

κ̄

)
−
4

3
εDe2κ

(
3κ̄− 1

3κ̄

))
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The explicit expressions for the dimensionless shear and normal
stress components are obtained from normalization of equations (7.22)
and (7.23),

τxy

3ηushκ
=
1

3

[
Γ
y

κ̄
−

sinh (κ̄y)

cosh (κ̄)

]
(7.35)

τxx

3ηushκ
=
2

3
Deκ

(
Γ
y

κ̄
−

sinh (κ̄y)

cosh (κ̄)

)2
(7.36)

The normalized shear rate is
·
γ

ushκ
=

[
1+ 2εDe2κ

(
Γ
y

κ̄
−

sinh (κ̄y)

cosh (κ̄)

)2](
Γ
y

κ̄
−

sinh (κ̄y)

cosh (κ̄)

)
(7.37)

and the viscosity profile is given by

µ(
·
γ) ≡

τxy
·
γ
⇒ µ(

·
γ)

η
=

[
1+ 2εDe2κ

(
Γ
y

κ̄
−

sinh (κ̄y)

cosh (κ̄)

)2]−1
(7.38)

Wall values for all these quantities are useful and are obtained after
setting y = 1 (and tanh (κ̄) ≈ 1 for κ̄ & 10):
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(7.39)

The dimensionless locci of the local velocity profile maximum (or
minimum), δ, can be obtained by setting the shear rate equation (7.37)
to zero. Since the first term on the right hand side of equation (7.37) is
always positive, δ requires the multiplicative factor to be null and is
given by,

δ =
κ̄

Γ

sinh
(
κ̄δ
)

cosh (κ̄)
=
κ̄

Γ
B(δ) (7.40)

This is an interesting equation, because it is independent of the fluid
rheology. Recalling equation (7.35) it implies that τxy‖y=δ = 0, and
obviously δ = 0 is a natural solution of equation (7.40) required by the
centerline symmetry condition. However equation (7.40) must have a
second solution for δ for positive values of Γ as will become apparent
in Section 7.1.4 (cf. Figure 7.3).

7.1.3.5 Streaming potential solution

In the solution of the previous section, the electrical field Ex can be
applied externally or be a consequence of electric potentials created
by the flow. In the absence of an externally applied electrical field, the
imposed pressure difference causes a flow containing ions in motion,
hence it causes an electrical current, called the streaming current, I ′s. The
streaming current accumulates counterions at the end of the channel
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therefore setting up an electric field, Ex,sp which is associated with
the so-called streaming potential, φsp via Ex,sp = −∆φsp/l. Therefore,
this induced electric field opposes the flow and creates an opposite
current, I ′c, called conduction corrent. The net electrical current, I ′, is
the sum of the streaming current and the electrical conduction corrent
and in steady-state should be zero:

I ′ = I ′s + I
′
c ≡ 0 (7.41)

The electrical streaming current (per unit of of width) is of the form:

I ′s = 2

∫H
0
u(y)ρe(y)dy (7.42)

which for the particular case of the PTT fluid leads to

I′s
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The electrical conduction current in the channel can now be expressed
as:

I ′c = 2σtEx,spH (7.44)

where σt is the total electric conductivity. Note that the conduction
current can now flow back through both the fluid as well as the
channel walls, depending on the corresponding electrical conduc-
tivities. The total electrical conductivity can be calculated as σt =

σfluid + σsurPsur/Achan, where Psur and Achan are the wetting
perimeter and cross section area of the channel, respectively and σfluid
and σsur are the fluid bulk and wall surface conductivities, respectively.
This equation and the condition imposed by equation (7.41) leads fi-
nally to the expression that defines the relation between the imposed
pressure gradient and the ensuing streaming electric field, Ex,sp. This
ratio is Γsp = − H2

εψ0

p,x
Ex,sp

and such relation is equation (7.45)

−2Υ1 = κD− κ2C+ 9
κ3εDe2N
Γ2sp

(
D+

3

2
κC
2
−
5

2
DC

)
−
2

κ
Γsp

[
κ−D+

18εDe2N
κ2

(
κ3 − 6D− 3κ2D+ 6κ

)]

− 36
κεDe2N
Γsp

[
−
1

3
D+ κD

2
− 2κC+

7

3
DC

]
+ 18

εDe2N
κ

[
3κ2D− 12κD

2
+
3

2
D− κ3C+ 9κ−

21

2
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(7.45)
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with Υ1 = H2ησt
ε2ψ20

. This new dimensionless number quantifies the effect

of electric conductivity. Equation (7.45) is a cubic equation in Γsp, that
can be rewritten in compact form as

Γ3sp + a1Γ
2
sp + a2Γsp + a3 = 0 (7.46)

with coefficients
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κΥ1 + 0.5κ2D− 0.5κ3C

κ−D+
18εDe2N
κ2

(
κ3 − 6D− 3κ2D+ 6κ

)
−
9εDe2N

[
3κ2D− 12κD

2
+ 3
2D− κ3C+ 9κ− 21

2 κC
]

κ−D+
18εDe2N
κ2

(
κ3 − 6D− 3κ2D+ 6κ

)
a2 =

18κ2εDe2N

[
−13D+ κD

2
− 2κC+ 7

3DC
]

κ−D+
18εDe2N
κ2

(
κ3 − 6D− 3κ2D+ 6κ

)
a3 = −

9

2

κ4εDe2N

(
D+ 3

2κC
2
− 5
2DC

)
κ−D+

18εDe2N
κ2

(
κ3 − 6D− 3κ2D+ 6κ

) (7.47)

The solution of equation (7.46) for Γsp is equation (7.33), but with the
coefficients of equation (7.47).

For (10 . κ̄ . 103), cosh (κ̄) � 1 and D = tanh (κ̄) ≈ 1, and the
above equations simplify to become
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As expected, equations (7.46) -(7.47) reduce to the Newtonian fluid
solution, as found in (Mala et al., 1997), when ε→ 0:

Γsp = Υ1

1+ 1
2
κ2

Υ1

(
D
κ −C

)
1−D/κ

 (7.49)

7.1.3.6 Analytical solutions for the FENE-P model

For fully developed channel flow there is similarity between the solu-
tions for the PTT and the FENE-P models as found by Oliveira et al.
(1998). Comparing equations (7.83) to (7.84) for the PTT model with
equations (7.86) and (7.87) for the FENE-P model, and since the mo-
mentum equation (7.90) is independent of the constitutive equation,
there is an exact equivalence of the solution in the sense of a parameter
to parameter match, as explained in detail in Cruz et al. (2005). Hence,
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the solution of Section 7.1.3.4 also applies to the flow of FENE-P fluids,
provided the following substitutions are made:

f(τxx)→
(
b+ 2

b+ 5

)
Z(τxx)

λ→ λ

(
b+ 2

b+ 5

)
(7.50)

ε→ 1

b+ 5

η→ η

Identically, these same substitutions are valid to provide the pipe solu-
tion for the FENE-P model from the corresponding PTT equations in
Appendix A.

7.1.4 Discussion of results

In the previous section, general equations were derived for fully de-
veloped flow of viscoelastic fluids (PTT and FENE-P fluids) under the
mixed influence of electrokinetic and pressure gradient forces. The
different influences of the driving forces and fluid rheology on the
velocity profile have been identified in equation (7.25) and in this sec-
tion we discuss in detail some limiting cases in order to understand
the fluid dynamics. The following limit cases contained in the general
solution are: (a) Newtonian fluid with mixed electro-osmotic/pressure
driving forces; (b) Viscoelastic fluid under the sole influence of an
electro-osmotic driving force; (c) Poiseuille flow of a viscoelastic fluid
and (d) Viscoelastic fluid with mixed electro-osmotic/pressure driving
forces. Case (c) was studied in detail elsewhere (Oliveira and Pinho,
1999c; Alves et al., 2001a; Cruz et al., 2005), and so was case (a) (Dutta
and Beskok, 2001), but this latter situation is revisited here as a starting
point.

Figure 7.2: Velocity profiles for several relative microchannel ratios, κ̄, for New-
tonian fluids under the sole influence of electrokinetic forces, Γ = 0.
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7.1.4.1 Newtonian fluid with mixed driving forces

For a Newtonian fluid the relaxation time is zero and the Deborah
number vanishes (Deκ = 0), thus equation (7.29) becomes

u

ush
= 1−

cosh (κ̄ȳ)

cosh (κ̄)
−
1

2
Γ
(
1− ȳ2

)
(7.51)

under the mixed influence of electro-osmotic and pressure driving
forces, as was also shown by Dutta and Beskok (2001). For Γ → ∞,
pressure forces dominate the momentum transport for any value of
κ̄, and the classical laminar parabolic velocity profile is recovered.
Note that this corresponds to Ex → 0 and ush → 0, since ush ∝ Ex
and Γ ∝ E−1x . For Γ → 0, the last term on the right-hand-side of
equation (7.51) vanishes, the flow becomes governed solely by the
electro-osmosis and the velocity profile is only a function of the wall
distance and the relative microchannel ratio, κ̄, as shown earlier by
Burgreen and Nakache (1964). Figure 7.2 shows the effect of the relative
microchannel ratio, κ̄ (or H/ξ, where ξ is the Debye layer thickness) on
the dimensionless velocity profiles for pure electro-osmotic flow, Γ = 0.
As κ̄ → 1 the double layer thickness becomes of the same order of
magnitude as the channel half-height and the region of excess charge is
distributed over the entire channel. This situation is not fully compatible
with this solution for which the Debye-Hückel approximation was
invoked, which requires κmin & 10. For κ̄ = 100 the width the Debye
layer is about 1% of the channel half-height. Note that for large κ̄
(κ̄→∞) the size of the EDL or region of excess charge is relatively small,
and equation (7.51) reduces to the classical Helmoltz- Smoluchowski
equation, u/ush = 1 (von Smoluchowski, 1903), if simultaneously
Γ = 0.

Figure 7.3 shows velocity profiles for various ratios of pressure gra-
dient to electro-osmotic driving forces at κ̄ = 20 and κ̄ = 100. When
Γ = 0 the velocity profiles correspond to a pluglike flow. Γ < 0 and
Γ > 0 correspond to Poiseuille electro-osmotic flows with favorable and
adverse pressure gradients, respectively. The velocity profiles shown
in Figure 7.3 (b) for κ̄ = 100 are identical to those of Dutta and Beskok
(2001). The value of κ̄ = 100 is a typical example for a 0.1 mM buffer
solution in a glass channel with ψ0 of aproximately 25 mV (Dutta and
Beskok, 2001).

Equation (7.51) predicts negative velocities at ȳ = 0 when Γ >

2
cosh(κ̄)−1

cosh(κ̄) for all values of κ̄. For small but finite Debye lengths, κ̄ & 10,
the velocity becomes negative in the central region of the channel for
Γ & 2. As shown in Figure 7.3, the velocity maxima depend on Γ , and
this dependency can be expressed by

u
ush

∣∣∣
max

= 1− 1
2Γ Γ 6 0

∧
κ̄ & 10

u
ush

∣∣∣
max

= 1−
cosh(κ̄δ)
cosh(κ̄) − 1

2Γ
(
1− δ

2
)

Γ > 0
(7.52)

where δ is the dimensionless locci of the velocity peaks (or τxy‖y=δ =

0), given by equation (7.40).
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(a) (b)

Figure 7.3: Velocity profiles for various ratios of pressure to electro-osmotic
driving forces, Γ , for Newtonian fluids with relative microchannel
ratio of (a)κ̄ = 20 and (b)κ̄ = 100.

7.1.4.2 Viscoelastic fluid with sole electro-osmotic driving force

The discussion in this paper on viscoelastic flows is for a PTT fluid,
but will be identical for a FENE-P model provided the substitutions
indicated in Section 7.1.3.6 are made. For a viscoelastic fluid under the
sole influence of electro-osmotic driving force, Γ = 0, equation (7.29)
reduces to

u

ush
=

(
1− 2

εDe2κ

cosh2 (κ̄)

)(
1−

cosh (κ̄ȳ)

cosh (κ̄)

)
+
2

3
εDe2κ

[
1−

(
cosh (κ̄ȳ)

cosh (κ̄)

)3]
(7.53)

Figure 7.4 (a) shows the corresponding dimensionless velocity profiles
as a function of the parameter

√
εDeκ for two relative microchannel

ratios of κ̄ = 20 and κ̄ = 100 and these profiles should be compared
with the profiles in Figure 7.2 for Newtonian fluids. As for Newtonian
fluids, the velocity profiles exhibit a pluglike shape, but now with the
velocity plateau increasing significantly with

√
εDeκ, for both values

of κ̄. In fact, setting ȳ = 0 in equation (7.53) leads to the following
quadratic relationship between the maximum velocity plateau and√
εDeκ,

u

ush
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εDe2κ
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)(
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1−

1

cosh3 (κ̄)

]
(7.54)

which for κ̄ & 10 reduces to u
ush

∣∣∣
max
≈ 1+ 2

3εDe
2
κ.

The influence of κ̄ on the velocity profiles of Figure 7.4 (a) is restricted
to a narrow region, the effective EDL thickness, with the velocity profiles
for higher values of κ̄ exhibiting thinner EDL layers and consequently
larger velocity gradients. Figure 7.4 (b) shows the corresponding profiles
of dimensionless normal and shear stresses for the viscoelastic fluid as
function ofDeκ. In order to simplify the analysis of the influence of both
Deκ and κ̄ on the stress profiles, a near-wall variable, χ = (1− y) κ̄, is
used. By using χ in Figure 7.4 (b) the stress profiles for different values
of κ̄ collapse, since their magnitudes are determined by the values of κ̄.
The dimensionless shear stress is also independent of Deκ, exhibiting
a constant wall value of -1/3 (as predicted by equation (7.35) with
Γ = 0). The normal stresses increase linearly with Deκ regardless of κ̄
(cf. equation (7.36)).
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(a) (b)

Figure 7.4: Flow characteristics for electro-osmotic flow (Γ = 0) of a PTT fluid
for relative microchannel ratios of κ̄ = 20 (lines) and κ̄ = 100

(lines and symbols): (a) Dimensionless velocity profiles as function
of
√
εDeκ; (b) Dimensionless normal and shear stress profiles as

function of Deκ. χ = (1− y) κ̄ is the near wall variable.

Dimensionless shear viscosity profiles for the PTT fluid in electro-
osmotic flow are plotted in Figure 7.5 as function of the near wall
variable, χ. There is a decrease in shear viscosity near the wall when√
εDeκ increases, on account of the shear-thinning behavior of the PTT

fluid, and consequently the thickness of the EDL is larger than for the
equivalent Newtonian flow. By using the modified wall variable the
dimensionless shear viscosity profiles, µ(γ̇), become independent of the
relative micro-channel ratio. It is this low wall viscosity at high values
of εDe2κ that is responsible for the strong increase in u/ush.

Figure 7.5: Dimensionless viscosity profiles for electro-osmotic viscoelastic flow
(Γ = 0) of a PTT fluid as function of

√
εDeκ for relative microchannel

ratios of κ̄ = 20 (lines) and κ̄ = 100 (lines and symbols). χ = (1− y) κ̄
is the near wall variable.

7.1.4.3 Viscoelastic fluid with mixed driving forces

The viscoelastic flow characteristics under the combined action of
electro-osmosis and pressure gradient forcing are discussed here, re-
calling equation (7.25).

Figures 7.6 (a) and (b) present dimensionless velocity profiles for
flows with favorable and adverse pressure gradients, respectively. For
Γ < 0, the velocity profiles increase with

√
εDeκ, as seen previously in



7.1 analytical solution of mixed eo/pressure driven flows 189

Figure 7.4, due to shear-thinning effects, leading to correspondingly
higher shear rates near the walls. For Γ > 0, the pressure gradient is
against the flow and the velocity profiles show the same double peak
seen for Newtonian flows (cf. Figure 7.3). The velocity profiles also
increase with

√
εDeκ, due to increasing levels of shear-thinning, both

within the EDL layer and in the bulk zone. For flow with favorable
pressure gradients the velocity maximum is given by equation (7.55)
(for κ & 10) and takes place on the centreplane. For adverse pressure
gradients the velocity peaks are at the edge of the EDL and the cor-
responding velocity maximum depends on Γ as given by equation
(7.56).
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where δ is the dimensionless locci of the velocity peaks (or the
location of a zero shear stress, τxy‖y=δ = 0) to be calculated from
equation (7.40).

(a) (b)

Figure 7.6: Dimensionless velocity profiles for a PTT fluid under the mixed
influence of electro-osmotic/pressure driving force as function of√
εDeκ for: (a) Γ = −1 and κ̄ = 100; (b) Γ = 1 and κ̄ = 20.

Figure 7.7 shows transverse profiles of the dimensionless normal and
shear stresses as function of the near-wall variable, χ = (1− y) κ̄ and
Deborah number, for a high value of κ̄ (κ̄ = 100). The lines represent
flows with favorable pressure gradients (Γ = −1) whereas lines with
symbols typify flows with adverse pressure gradients (Γ = 2.5). In the
former case the dimensionless normal stresses decrease sharply near
the microchannel walls, within the EDL layer, as shown in detail in
Figure 7.8 for Deκ = 2. In the latter case, as shown in Figure 7.8, the
profiles of τxx also decrease sharply near the microchannel walls within
the EDL, followed by an increase to a local maximum near the walls, at
the end of the EDL layer. For all flows the magnitude of τxx increases
with Deκ and κ̄.

As observed in Section 7.1.3.4 in respect to equation (7.25), besides
the viscoelastic flow induced by the single contributions from electrical
and pressure potentials, there is an extra term that simultaneously
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Figure 7.7: Dimensionless normal and shear stresses profiles for viscoelastic
fluid under the mixed influence of electro-osmotic/pressure driving
force as function of

√
εDeκ for κ̄ = 100, Γ = −1 (lines) and Γ = 2.5

(lines with symbols).

combines both effects and which is absent from the Newtonian case.
This invalidates the superposition principle, and is associated with the
non-linearity of the rheological model. These various contributions and
the corresponding whole velocity profile are plotted in Figures 7.9 (a)
and (b) for two typical cases of favorable and opposed pressure gradient
and electric force, Γ = −1 and Γ = 2.5, respectively. The combined term
uEP acts in the same direction as the Poiseuille contributions, but has a
slope like that of the electro-osmotic contribution, i.e, it is a plug like
profile except in the wall vicinity. In absolute terms uEP and uP are
here of similar magnitude, but uEP can be larger than uP as discussed
next.
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Figure 7.8: Dimensionless normal and shear stresses profiles for viscoelastic
fluid under the mixed influence of electro-osmotic/pressure driving
force at Deκ = 2 as function of the near wall variable, for κ̄ = 100
(Γ = −1 and Γ = 2.5) and κ̄ = 20 (Γ = 2.5).

The corresponding flow rates are given by equation (7.30) and the
flow rate contributions relative to the total flow rate, QT = QE +QP +

QEP, are shown in Figures 7.10 (a) and (b), as function of
√
εDeNfor

Γ = −1 and Γ = 2.5, respectively. The contribution in terms of flow
rate are similar to those of the velocity discussed above, but no longer
include the effect of position in the channel. In each figure, curves for
two relative microchannel ratios of κ̄ = 20 (lines) and κ̄ = 100 (lines
and symbols) are presented. At low

√
εDeN the relative contributions
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vary quickly from their corresponding Newtonian values to asymptotic
values at large

√
εDeN (

√
εDeN & 5). These asymptotic values at large√

εDeN are inversely proportional to κ̄. For Γ = −1 and κ̄ = 20 the non-
linear contribution is actually quite significant, with QEP/QT ' 19%,
whereas at κ̄ = 100 QEP/QT is only of 4%. At high values of

√
εDeN

, the non-linear contribution becomes stronger than the pressure po-
tential contribution, because QEP has one term linearly proportional
to the pressure gradient and a second term proportional to p2,x, which
acts in opposite direction to the linear term for p,x > 0. This nonlinear
contribution is therefore equivalent to a drag reduction effect when
fixing the flow rate and quantifying the required forcings relative to a
non-coupled situation. For adverse pressure gradients, the non-linear
contribution acts to reduce the total flow rate as shown in Figure 7.10

(b) for Γ = 2.5, where the non-linear flow reduction, QEP, is stronger
than the pressure contribution, QP. Thus, the coupled term is now
acting as a drag increaser. In this situation, the main contribution for
the total flow rate is QE, with both QP and QEPacting to reduce the
flow rate. At higher values of

√
εDeN this reduction is again stronger

at lower values of κ̄, with QEP/QT ' −12% and −76% for κ̄ = 100 and
κ̄ = 20, respectively (note that QE/QT ' 180% for κ̄ = 20).

(a) (b)

Figure 7.9: Dimensionless velocity profile components for a PTT fluid under
the mixed influence of electro-osmotic/pressure driving force for√
εDeκ = 2 and relative microchannel ratio of κ̄ = 20: (a) Γ = −1

and (b) Γ = 2.5.

The variation with Γ of the asymptotic values at εDe2κ = 200 of the
various contributions to the total flow rate are plotted in Figure 7.11

for κ̄ = 20. For very large favorable and adverse pressure gradient the
main flow is obviously dominated by the pressure contribution, QP.
The singularities at Γ ' 6.45 correspond to Q ' 0. Here, the strength of
the adverse pressure gradient was sufficient to overcome the strength
of the electro-osmotic forcing to reverse the total flow rate.

To discuss the streaming potential problem it is more enlightning
to work with the reciprocal of Γsp, Γ−1sp = −εψ0

H2
Ex,sp
p,x

. Figure 7.12 (a)
shows that this quantity increases with viscoelasticity, for differents
values of κ and Υ1. This means that viscoelasticity increases the amount
of electrical streaming current, which asymptotes to a constant value
at high

√
εDeN. In contrast, increasing Υ1 decreases the value of Γ−1sp
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(and the amount of electrical streaming current) for two reasons. The
streaming current is directly proportional to Ex,sp(cf. equation (7.43))
and then with I ′c = −I ′s, a higher electrical conductivity implies a
lower value of Ex,sp as in equation (7.44). So, the combination of these
two effects, for a given pressure gradient results in a lower streaming
potential therefore a lower value of Γ−1sp . Similarly, if the system has a
lower electrical conductivity stronger streaming potentials are required
to obtain electrical equilibrium. The necessarily larger electric fields
in poor conductors (small Υ1) lead to stronger effects on the velocity
field as is well shown in Figure 7.12 (b). Here, the deviation from pure
Poiseuille flow is enhanced by poor electric conductivity. This Figure
also confirms that viscoelastic shear-thinning fluids enhance streaming
potential effects more than Newtonian fluids. All these effects are
enhanced as κ decreases. Note that the velocity profiles in Figure 7.12

(b) have been normalized by the Newtonian bulk velocity at identical
pressure gradient (UN), instead of ush, to avoid the singularity in the
Helmholtz-Smoluchowski electro-osmotic velocity (Ex,sp = 0) for pure
Poiseuille flow.
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Figure 7.10: Relative contribution to the flow rate for electro-osmotic flow of
a PTT fluid for relative microchannel ratios of κ̄ = 20 (lines) and
κ̄ = 100 (lines and symbols) as function of

√
εDeκ: (a) Γ = 2.5 (b)

Γ = −1.

The final comment concerns with the skimming layer, the thin layer
close to the wall where the fluid essentially behaves as the Newtonian
solvent. This can act as a lubrication layer and the real impact on
the flow depends on the ratio between its thickness (δl) and the EDL
thickness (ξ), on the amount of shear-thinning of the bulk fluid, on the
applied pressure gradient and on the ratio between the characteristic
viscosities of the bulk fluid and solvent. For both δl = ξ and δl > ξ,
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u/ush is essentially unchanged in the EDL for the homogeneous and
two-fluid model. Outside the EDL, u/ush does not change much if the
flow is purely electro-osmotic regardless of all other parameters, but an
intense shear-thinning can lead to differences of up to 20% as can be
assessed from Berli and Olivares (2008). In the presence of a skimming
layer the sensitivity of u/ush to pressure gradient is always reduced
relative to the homogeneous fluid solution: for δl = ξ this leads to large
differences in u/ush outside the EDL and for δl > ξ, say δl = 5ξ, this
problem is somewhat reduced so that for weak shear-thinning fluids
(and Newtonian) the homogeneous solution is a good approximation to
the two-fluid model, but for moderate to strongly shear-thinning fluids
differences in excess of 70% can be found. This is currently a problem
under investigation for viscoelastic fluids.

Figure 7.11: Relative contribution to the flow rate for electro-osmotic flow of
a PTT fluid for relative microchannel ratios of κ̄ = 20 at large
εDe2κ (= 200) as a function of Γ .

7.1.5 Conclusions

Analytical solutions for channel and pipe flows of viscoelastic fluids
under the mixed influence of electrokinetic and pressure forces were
obtained. The analysis are restricted to cases with small electric double-
layer, where the distance between the walls of a microfluidic device is
at least one order of magnitude larger than the EDL. The viscoelastic
fluids used are described by the PTT model (Phan-Thien and Tanner,
1977), with linear kernel for the stress coefficient function and zero
second normal stress difference (Phan-Thien, 1978), and the FENE-P
model (Bird et al., 1980).

In the absence of an imposed pressure gradient, the electro-osmotic
flow exhibits a pluglike velocity profile, as found previously for Newto-
nian fluids, but with the maximum velocity plateau increasing quadrat-
icaly with

√
εDeκ, for all κ̄ values.

When the viscoelastic flow is induced by a combination of both
electrical and pressure potentials, in addition to the single contributions
from these two mechanisms there is an extra term in the velocity profile
that simultaneously combines both, which is absent for the Newtonian
case where the superposition principle applies. This non-linear term
can contribute significantly to the total flow rate, depending on the
value of κ̄. Under conditions of favourable pressure gradient it thus acts
as a drag reducer, but for adverse pressure gradients it changes its role
to become a drag increaser. Its existence invalidates the superposition
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principle and is associated with the non-linearity of the rheological
model, with this analitycal solution indicating that for quasi-linear
viscoelastic equations the superposition principle still applies.

Under favorable pressure gradients, the velocities increase signifi-
cantly with

√
εDeκ, with the profiles at higher values of κ̄ exhibiting

large shear rates within the electric double layer. As for Newtonian
fluids, adverse pressure gradients lead to local velocity peaks at the
edge of the electric double layer.

Regarding the streaming potential problem, viscoelasticity increases
the amount of electrical streaming current, which asymptotes to a con-
stant value at high

√
εDeN. The amount of electrical streaming current

decreases with the increase of Υ1, due to the lower Ex,sp required to es-
tablish the conduction current for good conductors and the consequent
lower streaming potential as found for Newtonian fluids.

(a)

(b)

Figure 7.12: Streaming potential: (a) variation of Γ−1sp with
√
εDeN as function

of κ and Υ1; (b) Normalized velocity profiles for κ = 20 and
showing effects of Υ1 and

√
εDeN.
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Appendix A: Analytical solution for the PTT and FENE-P models in pipe
flow

The momentum equation is given by equation (7.57) where now y de-
notes the radial coordinate, H is the pipe radius and all other quantities
are defined in the main text. The net charge density distribution is
given by equation (7.20).

1

y

d (yτxy)

dy
= −ρeEx + p,x (7.57)

which can be integrated to obtain

τxy =
εψ0Exκ sinh (κy)

cosh (κH)
−
εψ0Ex cosh (κy)

y cosh (κH)
+

εψ0Ex

y cosh (κH)
+
1

2
p,xy (7.58)

Using equation (7.13) the following explicit expression for the normal
stress component is obtained for the PTT fluid,

τxx = 2
λ

η

(
εψ0Exκ sinh (κy)

cosh (κH)
+
1

2
p,xy−

εψ0Ex cosh (κy)

y cosh (κH)
+

εψ0Ex

y cosh (κH)

)2
(7.59)

The velocity gradient is,

·
γ ≡ du

dy
=

[
1+2ελ2

(
εψ0Exκ sinh(κy)

η cosh(κH)
+
1

2η
p,xy−

εψ0Ex cosh(κy)

ηy cosh(κH)
+

εψ0Ex
ηy cosh(κH)

)2]
(
εψ0Exκ sinh(κy)

η cosh(κH)
+
1

2η
p,xy−

εψ0Ex cosh(κy)

ηy cosh(κH)
+

εψ0Ex
ηy cosh(κH)

)
(7.60)

The integration of equation (7.60) subject to the no-slip boundary
condition at the wall (u‖y=H = 0) gives the following velocity profile
for the PTT fluid:

u = uE+uP +uEP (7.61)

with

uE =

[
εψ0Ex
η

] [
A−1+

√
C
{

ln
( y
H

)
+ Chi(κH)− Chi(κy)

}]
+ κ22ελ2

[
εψ0Ex
η

]3 [
C
(
1−A

)
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1

3
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A
3

−1
)

+C

{√
C
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8
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8
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+
3

2
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3

2
Chi(2κy)+

3

8
Chi(3κy)−

3

8
Chi(3κH) +

3

2
ln
(
H

y

))
+

3

2κH

[
5

4
D
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H
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√
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H
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1

4

H
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sinh(3κy)+

1

4
sinh(3κH)
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+
3

4κ2H2

[
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(
H2

y2
A−1

)
+
√
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(
cosh(2κH)−

H2

y2
cosh(2κy)+

5

3

(
1−

H2

y2

)

+
1

6

H2

y2
cosh(3κy)−

1

6
cosh(3κH)

)]}]
(7.62)

uP = 1
2

[
p,x
2η

] (
y2 −H2

) [
1+

[
p,x

2η

]2
ελ2

(
y2 +H2

)]
(7.63)
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uEP =
3

2
ελ2

[
εψ0Ex
η

]2 [ p′x
2η
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2
)
+2κD
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yAB−H
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(7.64)

where Chi(z) is the hyperbolic cosine integral, defined as

Chi(z) = γ+ ln(z) +

z∫
0

cosh (t) − 1

t
dt (7.65)

and γ is the Euler-Mascheroni constant (γ = 0.57721566490...). Chi(z)
can also be calculated from:

Chi(z) = γ+ ln(z) +
1

2

∞∑
k=1

z2k

k(2k)!
(7.66)

To obtain the solution for pipe flow of FENE-P fluids it suffice to
apply the substitutions of section 7.1.3.6 to this set of equations.

For pipe flow, the relation between the electrical streaming current
and the electrical conduction current is

Is = −Ic =

∫H
0
2πu(y)ρe(y)ydy = −πσtEx,spH

2 (7.67)

For the PTT and FENE-P fluids, equation (7.67) is not integrable, and
a numerical approach is required to obtain a solution.
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Abstract2

This work investigates the flow of viscoelastic fluids between parallel plates
under the combined influence of electro-osmotic and pressure gradient forc-
ings with asymmetric boundary conditions, by considering different zeta po-
tentials at the walls. The fluids are z-z symmetric electrolytes. The analytic
solutions of the electrical potential, velocity distributions and streaming po-
tential are based on the Debye-Hückel approximation for weak potential. The
viscoelastic fluids used are modelled by the simplified Phan-Thien—Tanner
constitutive equation, with linear kernel for the stress coefficient function,
and the Finitely Extensible Non-linear Elastic dumbbells model with a Peter-
lin approximation for the average spring force. The combined effects of fluid
rheology, electrical double-layer thickness, ratio of the wall zeta potentials and
ratio between the applied streamwise gradients of electrostatic potential and
pressure on the fluid velocity and stress distributions are discussed.

Keywords: Electro-osmotic/pressure driven flows; asymmetric zeta
potentials; simplified Phan-Thien—Tanner model (sPTT); Finitely Exten-
sible Nonlinear Elastic model with Peterlin’s approximation (FENE-P);
viscoelastic fluids; microchannels.

7.2.1 Introduction

Soong and Wang (Soong and Wang, 2003) investigated electro-kinetic
effects on flow and heat transfer of Newtonian liquids flowing between
two parallel plates under asymmetric boundary conditions including
wall-sliding motion, different zeta potentials, and unequal heat fluxes
at the walls. They showed that the surface electric condition due to
unequal zeta potentials dramatically influences the electric potential
distribution with concominant changes in the streaming potential and
the Newtonian fluid flow characteristics. Such asymmetries are actually
fairly normal because many manufacturing techniques use different
materials at different walls (Nguyen and Wereley, 2002). For instance, in
soft lithography the channels are often made of polydimethylsiloxane
(PDMS) except for the top wall that is often made of glass for optical
access or other material for other purpose. In pure electro-osmosis the
consequence of this is a linear velocity profile in the bulk instead of
a constant front (Kuo et al., 2008). Asymmetric electro-osmosis can
also be the outcome of imposed polarization by AC fields in otherwise
symmetric geometries (Islam and Wu, 2006; Mansuripur et al., 2009),
but this matter is outside of the scope of this work which is related
with DC current.

In DC electro-osmosis, recently an investigation was carried out
by Afonso et al. (2009c), who presented the analytical solutions for
channel and pipe flows of viscoelastic fluids under the mixed influ-
ence of electro-osmotic and pressure gradient forcing but only under
symmetric boundary conditions. They used the simplified Phan-Thien

2 A.M. Afonso, M.A. Alves, F.T. Pinho (2010). Electro-osmotic flows of viscoelastic fluids in
microchannels under asymmetric zeta potential, accepted for publication in the Journal of
Engineering Mathematics.
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and Tanner model (sPTT model, Phan-Thien and Tanner, 1977), with
linear kernel for the stress coefficient function and zero second nor-
mal stress difference (Phan-Thien, 1978), and the Finitely Extensible
Non-linear Elastic dumbbells model (FENE-P model) with a Peterlin
approximation for the average spring force (Bird et al., 1980) to describe
viscoelasticity. Subsequently, a similar investigation was carried out by
Dhinakaran et al. (2010) for PTT fluids with non-zero second normal
stress difference coefficient in shear flowing between parallel plates,
which identified the conditions for the onset of an instability originated
in the constitutive equation. Both analysis were restricted to cases with
small electric double-layers, where the distance between the walls of
a microfluidic device is at least one order of magnitude larger than
the thickness of the electric double layer (EDL). When the viscoelastic
flow is induced by a combination of both electrical and pressure po-
tentials, as in the investigations by Afonso et al. (2009c), in addition
to the independent contributions from these two mechanisms there
is an extra term in the velocity profile that simultaneously combines
both, which is absent for the Newtonian case where the superposition
principle applies. This non-linear term can contribute significantly to
the total flow rate, depending on the value of the EDL thickness and is
a consequence of the non-linear nature of the constitutive relation of
the fluid. Park and Lee (2008b) derived expressions for the Helmholtz-
Smoluchowski velocity for pure electro-osmotic flow of PTT fluids and
provided a simple numerical procedure to calculate its value, and Sousa
et al. (2010a) considered the effect of a Newtonian skimming layer for
the PTT fluid. Note that earlier investigations on pure electro-osmotic
flow or combined electro-osmosis with pressure gradient forcing had
been carried out in the context of Newtonian fluids, as reviewed by
Afonso et al. (2009c). The contributions reviewed in that paper are all
for symmetric zeta potentials, though.

This work aims to generalize the study of symmetric z− z electrolyte
viscoelastic fluids in electro-osmotic/ pressure gradient driven flows
to other pratical relevant flow conditions by presenting the analytical
solutions for the flows of sPTT and FENE-P fluids between two parallel
plates under asymmetric boundary conditions of unequal zeta poten-
tials at the channel walls. Dilute and semi-dilute polymer solutions
can easily be represented by these constitutive equations. Specifically,
in Sousa et al. (2010b) the rheology of various aqueous solutions of
polyethylene oxide, with molecular weights ranging from 2x106 to
8x106 g/mol, and of an 18x106 g/mol polyacrylamide, all at concentra-
tions not exceeding 0.1% by weight, were investigated. The rheologies
of these fluids were very well fit by a single mode form of the PTT
model, which is quite adequate for this shear flow.

The paper starts with the set of governing equations including the
nonlinear Poisson –Boltzmann equation governing the EDL fields and
the momentum equation modified by the body force associated with
the applied electrical potential field. The simplifications required to
obtain the analytical solution are discussed, the solutions are presented
and a discussion of the effects of the various relevant nondimensional
parameters upon the flow characteristics closes this work.
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7.2.2 Governing equations

The basic equations describing the flow are the continuity equation,

∇ · u = 0 (7.68)

and the momentum equation,

ρ
Du
Dt

= ∇ · τ−∇p+ F (7.69)

where u is the velocity vector, p the pressure, t the time, ρ the fluid den-
sity (assumed constant) and τ the polymeric extra stress contribution.
The body force F in the momentum equation (7.69) is here given as

F = ρeE (7.70)

where E is the applied external electric field and ρe is the net electric
charge density associated with the spontaneously formed electric dou-
ble layers, which are assumed here not to be affected by the imposed
electric field. The electric field is related to a potential (Φ), by E = −∇Φ,
with Φ = ψ+φ, where φ is the applied streamwise potential and ψ
is the equilibrium/ induced potential at the channel walls, associated
with the interaction between the ions of the fluid and the dielectric
properties of the wall. The boundary conditions are no-slip at both
walls and asymmetric zeta potentials at the walls, with Figure 7.13

showing schematically the flow channel, coordinate system and type of
forcing.

7.2.2.1 Constitutive equations

sPTT model

One of the viscoelastic models adopted here to represent viscoelastic
effects is the sPTT equation (simplified Phan-Thien and Tanner (Phan-
Thien and Tanner, 1977)), which can be expressed by

f(τkk)τ+ λ
∇
τ = 2ηD, (7.71)

where D is the rate of deformation tensor (D = 1
2

(
∇u +∇uT)), λ is a

relaxation time, η is the constant viscosity coefficient and
∇
τ represents

the upper-convected derivative, defined by

∇
τ =

Dτ
Dt

−∇uT · τ− τ · ∇u. (7.72)

The stress coefficient function, f(τkk), can be expressed in the linearised
form, as

f(τkk) = 1+
ελ

η
τkk, (7.73)

where τkk = τxx + τyy + τzz is the trace of the extra stress tensor.

FENE-P model

Another viscoelastic model used in this work is the FENE-P constitutive
equation, based on the kinetic theory for finitely extensible dumbbells
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with a Peterlin closure for the average spring force (Bird et al., 1980).
The coarse grained molecule of the FENE-P model is represented by
a single dumbbell, whose connector force follows a non-linear spring
law possessing limited extension, without consideration for excluded
volume effects and hydrodynamic interaction. The resulting constitutive
equation for the polymer stress can be written as

Z(τkk)τ+λ
∇
τ −λ

(
τ−

b

b+ 2
nkBTI

)
D lnZ

Dt
= 2

b

b+ 2
nkBTλD (7.74)

where
∇
τ represents the upper convected derivative defined by equation

(7.71), b is a parameter that measures the extensibility of the dumbbell,
kB is the Boltzmann constant, T is the absolute temperature and n is a
parameter of the model (Bird et al., 1980). The stress coefficient function,
Z(τkk) can be expressed as

Z(τkk) = 1+ 3

(
1

b+ 2
+
λ

3η

τkk
(b+ 5)

)
. (7.75)

2.2. Poisson–Boltzmann equation

If a liquid contacts a dielectric surface there are interactions between
the ions and the wall, leading to a spontaneous charge distribution at
the fluid and the wall. The wall acquires a charge and the counter-ions
in the fluid are attracted by the wall while the co-ions are repelled.
In this case, an electric layer is formed near the wall, which is called
the electric double layer (EDL, see Bruss (2008) for more details). The
induced potential field within the electric double layer, can be expressed
by means of a Poisson equation:

∇2ψ = −
ρe

ε
(7.76)

where ψ denotes the EDL potential and ε is the dielectric constant of
the solution. The net electric charge density in the fluid, ρe, can be
described by the following Boltzmann distribution

ρe = −2noez sinh
(
ez

kBT
ψ

)
(7.77)

where, no is the ion density, e is the electronic charge and z the valence
of the ions. In order to obtain the velocity field, first we need to solve
for the net charge density distribution (ρe). The charge density field can
be calculated by combining equation (7.76), which for fully-developed
steady flow reduces to

d2ψ
dy2

= −
ρe

ε
, (7.78)

and equation (7.77) to obtain the the well-known Poisson–Boltzmann
equation,

d2ψ
dy2

=
2noez

ε
sinh

(
ez

kBT
ψ

)
. (7.79)

The electroosmotic flow is primarily caused by the movement of the
charged species adjacent to the channel walls when subjected to an
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Figure 7.13: Schematic of the flow in a parallel plate microchannel.

externally applied electric field. In general, the distribution of the
charged species in the domain is governed by the potential at the
walls and by the externally applied electric field. However, when the
EDL thickness is small and the charge at the walls is not large, this
distribution is essentially governed by the potential at the wall, ψ0,
and is not affected by the externally applied electric field. Thus, the
charge distribution near the walls can be determined independently of
the applied external electric field. In fact, the effect of fluid motion on
the charge redistribution can itself be neglected when the fluid velocity
is small, i.e., when the inertial terms in the momentum equation are
not dominant or when the EDL thickness is small since the flow is
locally uni-directional. In this work with the additional consideration
of steady fully-developed channel flow and the inherent symmetry, the
charge redistribution is exactly null as is also the inertial term of the
momentum equation. Then, for small values of ψ it is also possible to
conduct further simplifications because the Debye–Hückel linearization
principle (sinh x ≈ x) can be invoked. Physically it means that the
electrical potential is small compared with the thermal energy of the
ions, and the Poisson–Boltzmann equation for the channel flow under
investigation becomes:

d2ψ
dy2

= κ2ψ, (7.80)

where κ2 = 2noe
2z2

εkBT
is the Debye–Hückel parameter, related with the

thickness of the Debye layer, ξ = 1
κ (normally referred as the EDL

thickness). This approximation is valid when the Debye thickness is
small but finite, i.e., for 10 . H/ξ . 103.

Equation (7.80) can be integrated coupled with boundary conditions
for different zeta potential at the walls, ψ‖y=−H = ζ1 and ψ‖y=H = ζ2
(cf. Figure 7.13), leading to:

ψ(y) = ζ1
(
Ψ1e

κy −Ψ2e
−κy

)
(7.81)

with Ψ1 =
(RζeκH−e−κH)
2 sinh(2κH) and Ψ2 =

(Rζe−κH−eκH)
2 sinh(2κH) , and where Rζ =

ζ2/ζ1 denotes the ratio of zeta potentials of the two walls. This equation
is valid for −H 6 y 6 H and when Rζ = 1 the symmetric potential
profile of Afonso et al. (2009c) is recovered.

Finally, the net charge density distribution, equation (7.77), in con-
junction with equation (7.81) reduces to

ρe = −εκ2ζ1
(
Ψ1e

κy −Ψ2e
−κy

)
= −εκ2ζ1Ω

−
1 (y), (7.82)
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where the operator Ω±p (y) = Ψ
p
1 (e

κy)p ±Ψp2 (e
−κy)

p is a hyperbolic
function of the transverse variable y, and depends on the ratio of zeta
potentials and on the thickness of the Debye layer.

7.2.3 Analytical solution

7.2.3.1 sPTT Constitutive equation

The predictions of the sPTT model in this flow, for which u = {u(y), 0, 0},
can be obtained from equations (7.72) and (7.73), and leads to

f(τkk)τxx = 2λγ̇τxy (7.83)

f(τkk)τxy = ηγ̇, (7.84)

where τkk = τxx is the trace of the stress tensor and
·
γ = du/dy is the

velocity gradient. The demonstration that τyy = 0 for sPTT fluids in
fully developed shear flows can be found in Oliveira and Pinho (1999c),
so the stress coefficient function becomes an explicit function of the
normal stress τxx only. Upon division of the expressions for the two
nonvanishing stresses (equations (7.83) and (7.84)) the specific function
f(fixx) cancels out, and a relation between the non zero normal and
shear stresses is obtained,

τxx = 2
λ

η
τ2xy (7.85)

7.2.3.2 FENE-P Constitutive equation

For the FENE-P fluid in fully developed channel flow, i.e., subjected to
u = {u(y), 0, 0}, equations (7.74) and (7.75) reduce to

Z(τkk)τxx = 2λ
·
γτxy (7.86)

Z(τkk)τxy =

(
b+ 5

b+ 2

)
η
·
γ. (7.87)

Again, the trace of the extra-stress tensor becomes τkk = τxx, thus

Z(τxx) =

(
b+ 5

b+ 2

)[
1+

λ

η

(b+ 2)

(b+ 5)2
τxx

]
. (7.88)

The relation between the normal and shear stresses is,

τxx = 2
λ

η

(
b+ 2

b+ 5

)
τ2xy. (7.89)

Inspection of these expressions and those of Section 7.2.3.1 shows
similarities between the sPTT and FENE-P stress distributions and this
will have consequences as discussed in Section 7.2.3.4.
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7.2.3.3 Analytical solution for the sPTT model

From the previous simplifications, the momentum equation (7.69), for
fully developed channel flow reduces to

dτxy
dy

= −ρeEx + p,x, (7.90)

where p,x ≡ dp/dx, Ex ≡ −dφ/dx and φ is the electric potential of the
applied external field, which is characterized by a constant streamwise
gradient. Note that in this flow the external electrical field is positive
according to Figure 1, and negative otherwise. Using equation (7.82),
Eq. (7.90) can now be integrated to yield the following distribution of
shear stress resulting from a linear contribution of the pressure gradient
and electric field contributions,

τxy = εκζ1ExΩ
+
1 (y) + p,xy+ τ1, (7.91)

where τ1 is a shear stress integration constant to be quantified later
from the boundary conditions.

Using the relationship between the normal and shear stresses - equa-
tion (7.85), an explicit expression for the normal stress component is
also obtained,

τxx = 2
λ

η

(
εκζ1ExΩ

+
1 (y) + p,xy+ τ1

)2 . (7.92)

The square term in equation (7.92) introduces a contribution to the
normal stress from the combined electro-osmotic and pressure forces.
After combining equations (7.84), (7.91) and (7.92) we arrive to the
velocity gradient distribution, given by

·
γ ≡ du

dy
=

[
1+ 2ελ2

(
εExζ1
η

κΩ+
1 (y) +

p,x

η
y+

·
γ1

)2]
(
εExζ1
η

κΩ+
1 (y) +

p,x

η
y+

·
γ1

)
(7.93)

where for compactness we use the shear rate asymmetry coefficient
defined as

·
γ1 = τ1/η. We note that this coefficient has no particular

physical interpretation.



204 a puzzling driving force and (further) developments

Equation (7.93) is integrated subject to the no-slip boundary condition
at both walls (u‖y=H = u‖y=−H = 0) and the resulting velocity profile
is

u =
·
γ1 (y+ H)

(
1+ 2ελ2

·
γ
2

1

)
+

[
εExζ1
η

](
1+ 6

·
γ
2

1ελ
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(7.94)

where the operator Ω±p,q(y) is defined as

Ω±p,q(y) = (κy)(q−1)Ω±p (y) − (−1)(q+1) (κH)(q−1)Ω±p (−H). (7.95)

The no-slip boundary conditions for the velocity at the walls allows the
determination of the integration constants. Here we chose to obtain an
explicit form for

·
γ1. The application of the second no-slip boundary

condition leads to the following cubic equation:

·
γ
3

1 + a1
·
γ
2

1 + a2
·
γ1 + a3 = 0. (7.96)

The Cardan-Tartaglia solution of the cubic equation gives the follow-
ing explicit expression for the physically meaningful real solution of
equation (7.96) (the other two solutions are complex and unphysical),

·
γ1 =

3

√√√√
−
b1
2

+

√
b21
4

+
a3

27
+

3

√√√√
−
b1
2

−

√
b21
4

+
a3

27
−
a1
3

a = a2 −
a21
3

b1 = a3 −
a1a2
3

+
2a31
27

(7.97)

with coefficients
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a3 =
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As suggested by equation (7.161) there are terms which are only propor-
tional to Ex, others to p,x and those that are simultaneously proportional
to p,x and Ex. Even the terms proportional to

·
γ1 depend on both forc-

ings. Therefore, as discussed by Afonso et al. (2009c), the superposition
principle valid for Newtonian fluids and quasi-linear viscoelastic fluids
is no longer valid for the sPTT fluid and suggests that the same applies
to other non-linear viscoelastic models.

It is often more convenient to work with the dimensionless form of
equation (7.161). Introducing the normalizations ȳ = y/H and κ̄ = κH,
the dimensionless velocity profile can be written as
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(7.99)

where Ω±p,q(y) is the normalization of the operator introduced by
equation (7.95), defined as

Ω
±
p,q(y) = (κ y)(q−1)Ω

±
p (y) − (−1)(q+1)κ(q−1)Ω

±
p (−1). (7.100)

with Ω±p (y) = Ψ
p
1

(
eκy

)p ±Ψp2 (e−κy)p.
The dimensionless shear rate asymmetry coefficient calculated from

·
γ
3

1 + a1
·
γ
2

1 + a2
·
γ1 + a3 = 0, (7.101)
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with coeficients
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where
·
γ1 =

·
γ1H
ush

and Deκ = λush
ξ = λκush is the Deborah number

based on the EDL thickness and on the Helmholtz-Smoluchowski
electro-osmotic velocity, defined as ush = −εζ1Exη (Park and Lee,
2008b). In Poiseuille flows a different Deborah number is usually de-
fined (Oliveira and Pinho, 1999c) based on the cross-sectional average
velocity for the Newtonian flow under the sole influence of pressure

gradient and the channel half-height, DeN = λUN
H with UN = −

H2p,x
3η .

A third alternative Deborah number for electro-osmotic flow is based
again on ush, but considers the channel half-height, Desh = λush

H .
These three Deborah numbers are related byDeκ = κ̄Desh = −3Γ κ̄DeN,
where parameter Γ = − H2

εζ1

p,x
Ex

represents the ratio of pressure to electro-
osmotic driving forces. Note that for simplicity the above terms were
based on the zeta potential at the bottom wall (ψ‖y=−H = ζ1), but
can be related with the upper wall zeta potential using the ratio of
zeta potentials: ush = ush2/Rζ, Γ = RζΓ2 and Deκ = Deκ2/Rζ. The
solution of equation (7.101) is similar to equation (7.97).

The flow rate per unit length can be determined from integration
of the velocity profile (7.161). Here, this integration was carried out
using the normalized velocity profile, equation (7.162), leading to the
following expression
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. (7.103)

The decoupling of this total flow rate into its three fundamental contri-
butions (pure electro-osmosis, pure Poiseuille flow and the nonlinear
combined forcing contribution) is not attempted here since it leads to
extremely complex relations, if at all possible. In fact, the dependence

on the shear rate asymmetry coefficient,
·
γ1, complicates this task, because
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·
γ1 is the solution of equation (7.102) to the cubic equation (7.101), and
each of its various component coefficients (a1, a2 and a3) also contain
the same fundamental contributions. However, it is possible to gain in-
sight into this issue by looking at the simpler symmetric case for which
Afonso et al. (2009c) quantified the relative flow rate contributions (cf.
their Figure 10). For instance, for large viscoelasticity (

√
εDeκ > 5), the

ratio of flow rates asymptotes and becomes inversely proportional to κ.
If the double layer is thick, say κ = 20, and for a favourable pressure
gradient, QEP/QT can be of the order of 19%, decreasing to 4% for a
thin EDL. This non-linear contribution becomes stronger than the pure
Poiseuille contribution at high values of

√
εDeκ, even if the pressure

gradient is adverse.
The explicit expressions for the dimensionless shear and normal

stress components are obtained from normalization of equations (7.91)
and (7.92),
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The normalized shear rate is
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 (7.106)

and the viscosity profile can be obtained from

µ(
·
γ) ≡

τxy
·
γ
⇒ µ(

·
γ)

η
=

1+ 2εDe2κ
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κ
+

·
γ1
κ
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+
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2
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.

(7.107)

7.2.3.4 Analytical solution for the FENE-P model

As pointed out at the end of Section 7.2.3.2, for fully developed channel
flow there is similarity between the solutions for the sPTT and the
FENE-P models (Bird et al., 1980). Comparing equations (7.83) and
(7.84) for the sPTT model with equations (7.86) and (7.87) for the FENE-
P model, and since the momentum equation (7.90) is independent of the
constitutive equation, an exact equivalence in the sense of a parameter
to parameter match is obtained, as explained in detail in Cruz et al.
(2005). Hence, the solution of Section 7.2.3.3 also applies to the flow of
FENE-P fluids provided the following substitutions are made:
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f(τxx)→
(
b+ 2

b+ 5

)
Z(τxx)

λ→ λ

(
b+ 2

b+ 5

)
(7.108)

ε→ 1

b+ 5

η→ η

7.2.4 Discussion of results

In Section 7.2.3 the solution was obtained for fully developed flow of
viscoelastic fluids (sPTT and FENE-P fluids) under the mixed influence
of pressure gradient and electro-osmosis induced by asymmetric zeta
potentials at the channel walls. The different influences of the driving
forces, fluid rheology and zeta potential ratio on the velocity profiled
have been identified in equation (7.161) and in this section we discuss in
detail some of the various limiting cases in order to better understand
the fluid dynamics. The limit cases contained in the general solution
are: (a) Newtonian fluid with mixed electro-osmotic/pressure driving
forces and asymmetric wall zeta potentials; (b) Pure electro-osmotic
flows of viscoelastic fluids with asymmetric wall zeta potentials; (c)
Poiseuille flow of a viscoelastic fluid and (d) Viscoelastic fluid with
mixed electro-osmotic/pressure driving forces and asymmetric wall
zeta potentials. Case (c) was studied in detail elsewhere (Oliveira, 2002;
Cruz et al., 2005; Oliveira and Pinho, 1999c; Alves et al., 2001a), and
so was case (a) in Soong and Wang (2003), but this latter situation is
revisited here as a starting point.

7.2.4.1 Newtonian fluid with mixed driving forces and asymmetric zeta po-
tentials

For a Newtonian fluid the relaxation time is zero, so the Deborah
number vanishes (Deκ = 0), and equation (7.162) becomes

u

ush
=
·
γ1 (y+ 1) −Ω

−
1,1(y) +

1

2
Γ
(
y2 − 1

)
, (7.109)

under the mixed influence of electro-osmotic and pressure driving
forces, as was also shown by Soong and Wang (2003). As explained
in Section 7.2.3.3, the asymmetric boundary conditions for the zeta
potential at the channel walls introduces a new constant in the velocity

profile,
·
γ1, that depends on the ratio of zeta potentials, Rζ, on the

relative microchannel ratio, κ̄, on the ratio of pressure gradient to
electro-osmotic driving forces, Γ , and on the fluid rheology. For a
Newtonian fluid the dimensionless shear rate asymmetry coefficient is a

linear function of Rζ, as expressed by
·
γ1 = 1

2Ω
−
1,1(1) =

1
2 (Rζ − 1). For

symmetric boundary conditions (Rζ = 1),
·
γ1 = 0, and the velocity

profile is simplified to that of Dutta and Beskok (2001). For Γ → ∞,
pressure forces dominate the momentum transport for any value of κ̄,
and the classical laminar parabolic velocity profile is recovered. Note
that this corresponds to Ex → 0 and ush → 0, since ush ∝ Ex and Γ ∝
E−1x . For Γ → 0, the last term on the right-hand-side of equation (7.109)
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Figure 7.14: Effect of zeta potential ratio on Newtonian flow under pure electro-
osmosis (Γ = 0) and κ̄ = 20: (a) Dimensionless potential and (b)
velocity profiles. Symbols in (b) represent the data from Burgreen
and Nakache (1964).

vanishes, the flow becomes governed exclusively by electro-osmosis
and the velocity profile is a function of the wall distance, the relative
microchannel ratio, κ̄, and the ratio of zeta potentials, Rζ, as shown
by Soong and Wang (2003). So, for symmetric boundary conditions
(Rζ = 1), the velocity profile is only a function of the wall distance and
the relative microchannel ratio, κ̄, as shown earlier by Burgreen and
Nakache (1964). Note that for large κ̄ (κ̄→∞) the size of the EDL, or
region of excess charge, is relatively small, and equation (7.109) reduces
to the classical Helmoltz- Smoluchowski equation, u/ush = 1 (Park
and Lee, 2008b), if simultaneously Γ = 0.

Figure 7.14(a) shows the effect of the ratio of zeta potentials, Rζ, on
the variation of the dimensionless potential for pure electro-osmotic
flow (Γ = 0) and relative microchannel ratio of κ̄ = 20. When the ratio
of zeta potentials decreases from symmetric (Rζ = 1) to anti-symmetric
(Rζ = −1) the corresponding dimensionless potential profiles varies
from fully symmetric to fully anti-symmetric, respectively. This is also
observed in the velocity profiles presented in Figure 7.14(b): for sym-
metric boundary conditions (Rζ = 1) the velocity profile corresponds to
a pluglike flow, as shown earlier by Burgreen and Nakache (1964). When
Rζ = −1 the velocity profiles are fully anti-symmetric.

Figure 7.15 shows Newtonian velocity profiles for various ratios of
pressure gradient to electro-osmotic driving forces at κ̄ = 20 and for
different values of Rζ. When Γ = 0 and Rζ = −1 the velocity profiles are
anti-symmetric, as seen in Figure 7.14(b). When Γ 6= 0, corresponding to
mixed Poiseuille electro-osmotic flows, the pressure gradient effect can
be observed in the favorable (Γ < 0) or adverse (Γ > 0) contributions
for the velocity profiles. The velocity profiles shown in Figure 7.15 (b)
for κ̄ = 20 and Rζ = 2, show a skewed pluglike profile, due to a higher
zeta potential at y = 1. Equation (7.109) predicts negative velocities
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(a) (b)

Figure 7.15: Velocity profiles for Newtonian fluids for κ̄ = 20 and different
ratios of pressure to electro-osmotic driving forces, Γ , and zeta
potential ratios: (a) Rζ = −1 and (b) Rζ = 2.

at ȳ = 0 when Γ > 2
·
γ1 −

[
Rζ+1−2 cosh(κ)

cosh(κ)

]
for all values of κ̄ and Rζ.

For symmetric boundary conditions, negative velocities at ȳ = 0 are
predicted for Γ > 2 and small but finite Debye lengths, κ̄ & 10, as
observed by Afonso et al. (2009c).

7.2.4.2 Viscoelastic fluid with pure electro-osmosis and asymmetric zeta po-
tential

For the sPTT fluid under pure electro-osmosis driving force, the solution
is derived by setting Γ = 0, for which equation (7.162) reduces to
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− 2εDe2κ

(
1

3
Ω

−
3,1(y) + 3Ψ1Ψ2Ω

−
1,1(y)

)
.

For symmetric boundary conditions (Rζ = 1 and
·
γ1 = 0) the above

equation reduces to that presented by Afonso et al. (2009c), but for

Rζ 6= 1 the dimensionless shear rate asymmetry coefficient,
·
γ1, depends

on the fluid rheological properties, as shown in Figure 7.16(a). For

Rζ < 1,
·
γ1 is always negative, decreasing with the increase of

√
εDeκ,

an indication that the shear stress is also decreasing as
√
εDeκ increases.

For Rζ > 1,
·
γ1 is always positive and increases with

√
εDeκ, due to

the increasing of the shear-thinning behaviour of the fluid, leading to
higher shear stress. All curves asymptote to the same limiting curve

when
√
εDeκ → ∞, with the absolute value of

·
γ1 increasing when κ̄

increases (κ̄ = 20, 100, 150 and 200), as observed in Figure 7.16(b). The

increase of
·
γ1 with κ̄ is related with the reduction of the shear layer,

leading to high shear stresses near the wall, requiring higher values of
·
γ1 to balance the velocity profile.
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Figure 7.16: Variation of the dimensionless shear rate asymmetry coefficient, for
pure electro-osmotic viscoelastic flow (Γ = 0) as a function of the
ratio of zeta potentials, Rζ. (a) increasing

√
εDeκ for κ̄ = 20 and

(b) assimptotic limit for
√
εDeκ →∞ at several κ̄.

Figure 7.17: Dimensionless velocity profiles as a function of
√
εDeκ for electro-

osmotic flow (Γ = 0) of a PTT fluid for Rζ = −1 (lines) and Rζ = 0.5
(lines with symbols) at relative microchannel ratios of κ̄ = 20.
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Figure 7.18: Variation of the dimensionless shear rate asymmetry coefficient, with
Rζ as a function of Γ (electro-osmotic/pressure drive flow) for the
asymptotic limit of

√
εDeκ →∞ and κ̄ = 100.

Figure 7.17 shows the corresponding dimensionless velocity profiles
as a function of the parameter

√
εDeκ for two ratios of zeta potentials,

Rζ = −1 and Rζ = 0.5, and a relative microchannel ratio of κ̄ =

20. These profiles should be compared with those in Figure 7.14(b)
pertaining to Newtonian fluids. As for Newtonian fluids, the velocity
profiles for Rζ = −1 exhibit an anti-symmetric pluglike shape (full lines
in Figure 7.17), with the absolute velocites increasing with

√
εDeκ. For

Rζ = 0.5, increasing
√
εDeκ also leads to an increase in the skewed

pluglike profile, as observed in Figure 7.17. This flow enhancement by
increasing

√
εDeκ is typical of sPTT fluids and is associated with the

increased shear-thinning behaviour of the fluid.

7.2.4.3 Viscoelastic fluid with mixed driving forces and asymmetric zeta
potentials

The viscoelastic flow characteristics under the combined action of
electro-osmosis and a pressure gradient are discussed in this Section,
recalling equation (7.161).

The Poiseuille effect on the dimensionless shear rate asymmetry coeffi-

cient,
·
γ1, is presented in Figure 7.18, here for the asymptotic limit of√

εDeκ →∞. Increasing the favorable pressure gradient (decreasing Γ ),
·
γ1 increases, especially for Rζ < 1. Increasing Γ for adverse pressure

gradient conditions,
·
γ1 also increases, especially for −1 < Rζ < 1,

i.e.,
·
γ1 behaves monotonically but non-linearly with Rζ showing the

minimum value for Rζ < 1 and the maximum for Rζ > 1. Figures 7.19

(a) and (b) present the dimensionless velocity profiles for the flows with
favorable and adverse pressure gradients, respectively. For Γ < 0 with
anti-symetric zeta potentials (Rζ = −1), the velocity profiles increase
with

√
εDeκ, due to shear-thinning effects, leading to correspondingly

higher shear rates near the walls. For Γ > 0 with Rζ = 0.5, the velocity
profiles show the same double peak seen for Newtonian flows (cf. Fig-
ure 7.15(a)), due to the retarding action of the pressure gradient. The
velocity profiles also increase with

√
εDeκ, again due to shear-thinning

effects, both within the EDL layer and in the bulk zone.
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(a) (b)

Figure 7.19: Dimensionless velocity profiles for a PTT fluid under the mixed
influence of electro-osmotic/pressure driving force as function of√
εDeκ for relative microchannel ratio of κ̄ = 20: (a) Γ = −2 and

Rζ = −1 and (b) Γ = 2.5 and Rζ = 0.5.

7.2.5 Conclusions

Analytical solutions for channel flow of symmetric z− z electrolyte
viscoelastic fluids under the mixed influence of electro-osmosis and
pressure gradient forcings were obtained for the case of asymmetric wall
zeta potentials. This analysis is restricted to cases with small electric
double-layers, where the wall-to-wall distance is at least one order of
magnitude larger than the thickness of each EDL. The viscoelastic fluids
analysed are described by the sPTT model (Phan-Thien and Tanner,
1977), with linear kernel for the stress coefficient function and zero
second normal stress difference (Phan-Thien, 1978), and the FENE-P
model (Bird et al., 1980).
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Abstract3

The electro-osmotic flow of a viscoelastic fluid between parallel plates is inves-
tigated analytically. The rheology of the fluid is described by the Phan-Thien-
Tanner model. This model uses the Gordon-Schowalter convected derivative,
which leads to a non- zero second normal stress difference in pure shear flow. A
nonlinear Poisson-Boltzmann equation governing the electrical double-layer
field and a body force generated by the applied electrical potential field are
included in the analysis. Results are presented for the velocity and stress
component profiles in the microchannel for different parametric values that
characterize this flow. Equations for the critical shear rates and maximum
electrical potential that can be applied to maintain a steady fully developed
flow are derived and discussed.

Keywords: Electro-osmotic flow, parallel plates, PTT model, viscoelastic
fluid, analytical study, constitutive flow instability.

7.3.1 Introdution

The theoretical analysis of electro-osmotic flows (EOF) of Newtonian
fluids in microchannels has been the subject of several studies. Bur-
green and Nakache (1964) studied the effect of the surface potential on
liquid transport through ultrafine capillary slits assuming the validity
of the Debye-Hückel linear approximation to the electrical potential
distribution under an imposed electrical field. Rice and Whitehead
(1965) discussed the same problem in a circular capillary. Dutta and
Beskok (2001) obtained analytical solutions for the velocity distribution,
mass flow rate, pressure gradient, wall shear stress, and vorticity in
mixed electro-osmotic/pressure driven flows for a two-dimensional
straight channel geometry, for small, yet finite symmetric electrical
double layers (EDL), relevant for applications where the distance be-
tween the two walls of a microfluidic device is about 1-3 orders of
magnitude larger than the EDL thickness. Arulanandam and Li (2000)
and Wang et al. (2007a) presented a two-dimensional analytical model
for the electro-osmotic flow in a rectangular microchannel. Wang et al.
(2007b) derived a semianalytical solution to study the flow behaviour
of periodical electro-osmosis in a rectangular microchannel based on
the Poisson-Boltzmann and the Navier-Stokes equations. Zade et al.
(2007) presented analytical solutions for the heat transfer characteris-
tics of Newtonian fluids under combined pressure and electro-osmotic
flow forcing in planar microchannels. Analytical solutions for the two-
dimensional, time-dependent as well as time-independent EOF driven
by a uniform electric field with non-uniform zeta potential distributions
along the walls of a conduit were presented by Qian and Bau (2002).
Several other articles can be found in the literature on theoretical stud-
ies of EOF with Newtonian fluids in microchannels such as those of
Petsev and Lopez (2006), Qian and Bau (2005), among others.

3 S. Dhinakaran, A.M. Afonso, M.A. Alves, F.T. Pinho (2010). Steady viscoelastic fluid flow
in microchannels under electrokinetic forces: PTT model, Journal of Colloid And Interface
Science 344 513-520.
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Biofuids are often solutions of long chain molecules which impart a
non-Newtonian rheological behaviour characterized by variable viscos-
ity, memory effects, normal stress effect, yield stress and hysteresis of
fluid properties. These fluids are encountered in chips used for chemical
and biological analysis or in micro-rheometers.

The theoretical study of electro-osmotic flows of non-Newtonian
fluids is recent and has been mostly limited to simple inelastic fluid
models, such as the power-law, due to the inherent analytical diffi-
culties introduced by more complex constitutive equations. Examples
are the recent works of Das and Chakraborty (2006) and Chakraborty
(2007), who presented explicit relationships for velocity, temperature
and concentration distributions in electro-osmotic microchannel flows
of non-Newtonian bio-fluids described by the power-law model. Other
purely viscous models were analytically investigated by Olivares et al.
(2009), who considered the existence of a small wall layer depleted of
additives and behaving as a Newtonian fluid (the skimming layer), un-
der the combined action of pressure and electrical fields, thus restricting
the non-Newtonian behavior to the electrically neutral region outside
the electrical double layer. Very recently these studies were extended
to viscoelastic fluids by Afonso et al. (2009c), who presented analyti-
cal solutions for channel and pipe flows of viscoelastic fluids under
the mixed influence of electro-kinetic and pressure forces, using two
constitutive models: the Phan-Thien-Tanner model (PTT, Phan-Thien
and Tanner (1977)), with linear kernel for the stress coefficient function
and zero second normal stress difference Phan-Thien (1978), and the
kinetic theory based Finitely Extensible Non-linear Elastic model with
a Peterlin closure for the average dumbbell spring force (cf. Bird et al.
(1980)) denoted as FENE-P model. Their analysis (Afonso et al., 2009c)
was restricted to cases with small electric double-layers, where the dis-
tance between the walls of a microfluidic device is at least one order of
magnitude larger than the EDL, and the fluid is uniformly distributed
across the channel.

Afonso et al. (2009c) also showed that when the viscoelastic flow is
induced by a combination of both electric and pressure potentials, in
addition to the contributions from these two isolated mechanisms there
is an extra term in the velocity profile that simultaneously combines
both forcings, which is absent for the Newtonian fluids where the super-
position principle applies. This extra term can contribute significantly to
the total flow rate, and appears only when the rheological constitutive
equation is non-linear. Afonso et al. (2010c) extendedtheir earlier study
Afonso et al. (2009c) to the flow of viscoelastic fluids under asymmetric
zeta potential forcing, whereas Sousa et al. (2010a) considered the effect
of a Newtonian skimming layer for the PTT fluid.

Flow instabilities can occur for a variety of reasons. For instance, they
are associated with perturbations to non-linear terms of the governing
equations which grow without control. Generally speaking, in electro-
osmotic flows in microchannels, flow instabilities can be promoted by
oscillating electric fields, as was justified by Boy and Storey Boy and
Storey (2007) among others. They can also be promoted by gradients
of conductivity as shown in the experimental study of Lin et al. (2004)
who also analyzed the problem theoretically and numerically.

In addition to inertial non-linearities, which require high Reynolds
number flows, non-Newtonian fluids are also prone to flow instabilities
due to non-linearities in their rheological behaviour. For instance, for
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viscoelastic fluids constitutive instabilities in Poiseuille and Couette
flows were observed when the constitutive equation exhibit a non-
monotonic behaviour for the shear stress, as reported by Alves et al.
(2001a) for the full PTT model, and by Español et al. (1996) and Georgiou
and Vlassopoulos (1998) for the Johnson-Segalman (JS) constitutive
equation (Larson, 1998). To the best knowledge of the authors this
constitutive instability in microchannels under EOF has not yet been
studied. There are other viscoelastic flow instabilities not associated
with non-monotonic fluid properties, but these are not considered here.

In this study, we extend the work of Afonso et al. (2009c) considering
the full Gordon-Schowalter convective derivative in the PTT model
to analyze the steady fully developed flow in the microchannel. We
derive expressions for the critical shear rates and Deborah number
beyond which constitutive flow instability occurs. The rest of the paper
is organised as follows. The physical description of the problem is given
in Section 7.3.2 while the equations governing the flow are presented
in Section 7.3.3. The analytical solutions are derived in Section 7.3.4.
Section 7.3.5 discusses the results of the study and the conclusions are
presented in Section 7.3.6.

7.3.2 Physical description of the problem

The geometry under consideration is shown schematically in Figure
7.20, where a microchannel is formed between two parallel plates
separated by a distance (height) 2H. The length of the channel is L and
the width is W, both assumed to be much larger than the height, i.e.,
L,W � 2H. The bottom plate is located at y = -H while the top plate is
located at y = H. A potential is applied along the axis of the channel
which provides the necessary driving force for the flow through electro-
osmosis. Due to symmetry of the geometry and flow conditions with
respect to the channel mid-plane (y = 0), only the upper half of the
channel (0 6 y 6 H) is considered in this analysis.

Figure 7.20: (a) Diagram of the microchannel geometry considered in the study;
(b) 2D representation of electro-osmotic flow of viscoelastic fluids
in the microchannel for a negatively charged wall.
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7.3.3 Governing Equations

The equations governing the flow of an incompressible fluid between
the parallel walls of the microchannel are the continuity and the modi-
fied Cauchy equation,

∇ · u = 0 (7.111)

ρ
Du
Dt

= −∇p+∇ · τ+ ηs∇2u + F (7.112)

where u is the velocity vector, t the time, ρ the fluid density, ηs is
the Newtonian solvent viscosity and τ the polymeric contribution to
the extra-stress tensor. Here, we consider that the solvent viscosity is
negligible in comparison with the polymeric contribution, i.e., ηs = 0.
The term F in the modified momentum Eqn. (7.112) represents a body
force per unit volume, given by

F = ρeE (7.113)

where E = −∇φ is the applied external electric field and ρe is the
net electric charge density. The potential has two contributions: (a) an
applied external field, E and (b) a spontaneously induced potential
that appears near the wall, ψ. The formation of the EDL in a fluid
containing charged species occurs spontaneously when the fluid is
brought in contact with the microchannel walls, causing a preferential
redistribution of the charged species in the fluid and wall (Bruss, 2008;
Probstein, 2003). In order to obtain the induced potential field, the net
charge density distribution (ρe) has to be solved as discussed in Section
7.3.3.2.

7.3.3.1 Constitutive equation

The model adopted here to describe the viscoelastic behaviour of the
fluid is the PTT model (Phan-Thien and Tanner, 1977), which can be
expressed as

f(τkk)τ+ λ
�
τ= 2ηD, (7.114)

where D = (∇uT +∇u)/2 is the rate of deformation tensor, λ is the re-
laxation time, η is the polymer viscosity coefficient and

�
τ represents the

Gordon-Schowalter convected derivative of the stress-tensor, defined as

�
τ=

Dτ
Dt

−∇uT · τ− τ · ∇u+ ξ (τ ·D + D · τ) , (7.115)

where ε is the extensibility parameter and parameter ξ accounts for
the slip between the molecular network and the continuum medium
(Phan-Thien and Tanner, 1977). A simplified version of the above model
is the so-called simplified Phan-Thien-Tanner (sPTT) equation, where
ξ = 0. The stress coefficient function, f(τkk) is given by the linear form,

f(τkk) = 1+
ελ

η
τkk (7.116)

where τkk = τxx + τyy + τzz represents the trace of the extra-stress
tensor. As the flow is two dimensional, we have τzz = 0. When f(τkk) =
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1 (i.e., when ε = 0, but ξ 6= 0), the Johnson-Segalman constitutive
equation, used for dilute polymeric solutions, is recovered.

7.3.3.2 Potential field within the electric double layer

The flow investigated is steady and fully developed and in addition the
electric double layers (EDLs) are thin so that there is no interference
from one wall into the other. These conditions simplify the Nernst-
Planck equations governing the ionic and electric potential field (ψ)
distributions. Consequently, the potential field within the electric double
layer can be given by the well known Poisson equation:

∇2ψ = −
ρe

ε
(7.117)

where ε is the dielectric constant of the solution. We are here consid-
ering standard kinetic theory conditions, where the applied constant
potential streamwise gradient (∆φ/L, where L is the channel length)
is much weaker than the induced transverse ion potential (ψo/ξ) so
mutual interference is negligible. The distribution of the net electric
charge density, ρe, in equilibrium near a charged surface, as in a fully
developed flow, is described as (Bruss, 2008)

ρe = −2noez sinh

(
ez

kBT
ψ

)
. (7.118)

For small values ofψ, the Debye-Hückel linearization principle (sinh x ≈
x) can be used, which means physically that the electrical potential
is small compared with the thermal energy of the charged species.
Invoking this principle, the Poisson-Boltzmann equation resulting from
substitution of Eqn. (7.118) into Eqn. (7.117) takes the following simpler
linear form

d2ψ

dy2
= κ2ψ, (7.119)

where κ2 = 2noe
2z2/(εkBT ) is the Debye-Hückel parameter, related

with the thickness of the Debye layer, λD = 1/κ (normally referred
as the EDL thickness). This approximation is valid when the Debye
thickness is small but finite, i.e., for 10 6 H/λD 6 103. As a consequence
the induced potential is limited so that its energy does not exceed
the thermal energy. Equation (7.119) can be solved subjected to the
following boundary conditions: zeta potential at the wall, ψ||y=H = ψ0
and symmetry in the centerline, (dψ/dy)||y=0 = 0, and can be written
in the dimensionless form as

ψ =
cosh(κ y)
cosh(κ)

, (7.120)

where, the following non-dimensional quantities are defined: ψ =

ψ/ψ0, κ = κH and y = y/H. Finally, the net charge density distribution
Eqn.(7.118) in conjunction with Eqn.(7.120) reduces to

ρe = −εψ0κ
2 cosh(κ y)

cosh(κ)
. (7.121)
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7.3.4 Analytical solution

7.3.4.1 PTT constitutive equation

The predictions of the PTT model in this flow, for which u ={u(y),0,0},
can be obtained from equations (7.114) - (7.116), and leads to

f(τkk)τxx = λ(2− ξ)γ̇τxy (7.122)

f(τkk)τyy = −λξγ̇τxy (7.123)

f(τkk)τxy = ηγ̇+ λ

(
1−

ξ

2

)
γ̇τyy −

λξ

2
γ̇τxx (7.124)

where τkk = τxx + τyy is the trace of the extra-stress tensor and γ̇ is
the velocity gradient (γ̇ = du/dy). Upon division of Eqn. (7.122) by Eqn.
(7.123) the specific function f(τkk), γ̇ and τxy cancel out, and a relation
between the two normal stresses is obtained,

τyy = −
ξ

2− ξ
τxx (7.125)

leading to the following form of the stress coefficient function:

f(τkk) = 1+
2ελ(1− ξ)

η(2− ξ)
τxx. (7.126)

Division of Eqn. (7.124) by Eqn. (7.122) results in a second order alge-
braic equation for the streamwise normal stress,

λξτ2xx − ητxx + λ(2− ξ)τ
2
xy = 0 (7.127)

which leads to the following physical solution for τxx (note that at the
centerline, τxx and τxy should be zero)

τxx =
η

2λξ

[
1−

√
1−

4λ2ξ(2− ξ)

η2
τ2xy

]
. (7.128)

7.3.4.2 Analytical flow solution for the PTT model

From the invoked assumptions and for a zero pressure gradient, the
momentum equation (7.112), reduces to

dτxy
dy

= −ρeEx (7.129)

where Ex = −dφ/dx is the streamwise gradient of the applied external
electric potential (φ). Using equation (7.121) and noting that τxy||y=0 =

0, Eqn. (7.129) can be integrated to yield

τxy = εψ0Exκ
sinh(κy)
cosh(κH)

(7.130)



7.3 analytical solution of eo viscoelastic fluid flow: ptt model 221

Using the relation between the normal and shear stresses - equation
(7.128), an explicit expression for the normal stress component is ob-
tained,

τxx =
η

2λξ

[
1−

√√√√1−(aλκush sinh(κy)
cosh(κH)

)2 ]
(7.131)

with a defined as a = 2
√
ξ(2− ξ), for compactness and ush = −εψoEx/η

is the Helmholtz-Smoluchowski velocity based on the zero-shear rate
viscosity. After combining Eqns. (7.124), (7.125), (7.126), (7.130) and
(7.131) we obtain an expression for the velocity gradient:

γ̇ =
du
dy

= −

[
1+ 1

χ

{
1−

√
1−

(
aλκush

sinh(κy)
cosh(κH)

)2 }]
κ ush

sinh(κy)
cosh(κH)

1− 1
2

[
1−

√
1−

(
aλκush

sinh(κy)
cosh(κH)

)2 ] (7.132)

with χ defined as χ =
ξ(2−ξ)
ε(1−ξ) , in order to improve the readability.

Integrating Eqn. (7.132) and applying the no-slip boundary condition at
the wall (i.e., u = 0, at y = H ) the following velocity profile is obtained:

u = =
2 cosh(κH)
a2λ2κ2ush

(
2+ χ

χ

)[
1

2
ln

{
(1+A(H))(1−A(y))

(1−A(H))(1+A(y))

}
− ln

{
tanh(κy2 )

tanh(κH2 )

}

−
1

(2+ χ)

a2λ2κ2ush
2

cosh(κH)

{
1−

cosh(κy)
cosh(κH)

}
−
aλκush

cosh(κH)[
(arcsin{B cosh(κy)}− arcsin{B cosh(κH)}

)]
(7.133)

where,

A(y) =
cosh(κy)√

1−
[
aλκush

sinh(κy)
cosh(κH)

]2 ;B =

aλκush
cosh(κH)√

1+
[
aλκush

cosh(κH)

]2
Equation (7.133) can be written in dimensionless form as

u/ush =
2

GaDeκ

(
2+ χ

χ

)[
1

2
ln

{
(1+A(1))(1−A(y))

(1−A(1))(1+A(y))

}

− ln

{
tanh(κ y2 )

tanh(κ2 )

}
−

1

(2+ χ)
GaDeκ

{
1−

cosh(κ y)
cosh(κ)

}

−G

(
arcsin{B cosh(κ y)}− arcsin{B cosh(κ)}

)]
(7.134)

with the dimensionless forms of A and B,

A(y) =
cosh(κ y)√

1−G2 sinh2(κ y)
;B =

G√
1+G2

and G =
aDe»

cosh(»)
(7.135)

where Deκ = λκush is a Deborah number.
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Critical shear rate

A physical solution for the transverse profile of velocity, in Eqn. (7.133),
only occurs when[

aλκush
sinh(κy)
cosh(κH)

]2
6 1.

Thus, at critical conditions (that occurs at the wall):

sinh(κH) =
cosh(κH)

aλκ
∣∣∣ush∣∣∣ . (7.136)

Substituting Eqn. (7.136) in Eqn. (7.132), we conclude that the critical
shear rate |γ̇c| is

λ|γ̇c| =
ε(1− ξ) + ξ(2− ξ)

[ξ(2− ξ)]3/2
. (7.137)

This is the same constitutive instability obtained by Alves et al. (2001a)
for pressure-driven channel flows, and is related with the existence of
a local maximum of the shear stress as a function of the shear rate for
the PTT model without a solvent viscosity, and occurs for the condition
indicated in Eqn. (7.137), independent of the mechanism used to drive
the flow (Alves et al., 2001a). This critical shear rate depends on both ε
and ξ, i.e., it is a characteristic of the PTT model and independent of the
type of forcing. Above the maximum shear rate given in Eqn.(7.137), the
governing equations for the flow between the walls of the microchannel
do not have a real solution, and the fully-developed steady solution no
longer exists.

Expression for critical Deborah number

Under critical conditions at the wall, multiplying Eqn.(7.132) by λ

results in the expression

λγ̇c = −2

[
1+

1

χ

]
Deκtanh(κH)

For κH >10, tanh(κH)→ 1 and the previous equation takes the form

λγ̇c = −2

[
1+

1

χ

]
Deκ (7.138)

Equating Eqn.(7.137) and Eqn.(7.138) we get a relation for the critical
Deborah number as

|Deκ,c| =
1

a
(7.139)

Beyond this critical value of Deκ,c the flow cannot be steady and fully
developed, as the shear rate near the wall exceeds the critical value. An
expression for the corresponding critical electric potential, that can be
applied, Ex,c, can be obtained from Eqn.(7.139) and is given by

|Ex,c| =
η

aλκε|ψo|
(7.140)
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This expression is useful in setting the electric field along the channel
so as to have a stable flow. If a strong forcing is imposed, the flow must
naturally evolve to a different condition, presumably an unsteady flow.
Note that an asymmetric steady flow would lead to a shear rate beyond
the critical value of Eqn. (7.137) at one of the walls, thus reinforcing the
idea that only an unsteady flow is possible. However, the investigation
of the flow characteristics above this critical conditions and of the
transition process requires the use of various different specific tools.

7.3.5 Results and Discussion

The general equations for the flow of viscoelastic fluids in microchan-
nels under the influence of electro-osmosis were derived in Section 7.3.4.
The influence of electro-kinetic forcing and fluid rheology on the veloc-
ity profile has been identified in Eqn. (7.133). Important limiting cases
contained in the general solutions are: (a) Newtonian flow under the
sole influence of electrokinetic forces and (b) viscoelastic fluid with zero
second normal stress difference, i.e., the simplified Phan-Thien-Tanner
(sPTT) equation with ξ = 0.

For a Newtonian fluid the relaxation time is zero and the Deborah
number vanishes (Deκ = λκush = 0 , although also true, it suffices
to impose λ = 0), so the velocity profile is only a function of the
wall distance and the relative microchannel ratio, κ, as shown earlier by
Burgreen and Nakache (1964). Figure 7.21 shows the effect of the relative
microchannel ratio, κ (or H/λD, where λD is the Debye layer thickness)
on the dimensionless velocity profiles (u/ush) for pure electro-osmotic
flow. As κ→1 the double layer thickness becomes of the same order of
magnitude as the channel half-height and the region of excess charge is
distributed over the entire channel. This situation is not fully compatible
with this solution for which the Debye-Hückel approximation was
invoked, which requires κ > 10 . As κ increases, the width of the
Debye layer decreases, and the profile becomes sharper near the wall,
as illustrated in Figure 7.21.

Figure 7.21: Dimensionless velocity profiles for κ = 10, 20 and 100 for pure
electro-osmotic flow of a Newtonian fluid. Symbols represent the
data from Burgreen and Nakache (1964).

The effect of Deκ on the dimensionless velocity profiles is shown
in Figure 7.22 at different Deborah numbers and fixed ε and ξ while
κ = 20. At large Deborah numbers, the ratio u/ush is significantly
greater than unity near the centerline due to shear-thinning of the
viscosity of the PTT fluid and the consequent lower viscosities at the
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wall region. With a decrease in Deκ, shear thinning effects become
less important, and below Deκ = 0.1 the dimensionless velocity profile
remains unaltered, and equal to the profile for a Newtonian fluid.

Figure 7.22: Effect of Deκ (ε, ξ = 0.01, κ = 20) on the non-dimensional velocity
profiles for the viscoelastic fluid flow in the microchannel under
the influence of electro-osmotic forces.

The flow between the parallel walls of the microchannel depends on
rheological and electro-osmotic parameters. The influence of ε and ξ
on the dimensionless transverse velocity profiles are plotted in Figure
7.23(a) and 7.23(b), respectively, for κ = 20 at Deκ = 3.0 . Upon fixing
Deκ and ξ and decreasing ε from 0.2 to 0.001, we find that the dimen-
sionless velocity profiles approach the solution for Johnson-Segalman
fluid (ε = 0), which in this case is similar to the Newtonian solution
because of the small ξ used, as seen in Figure 7.23(a). The variation
of the non-dimensional velocity profiles at ξ = 0.001, 0.005 and 0.01
is presented in Figure 7.23(b) for Deκ = 3 and ε = 0.1. Increasing
ξ from 0.001 to 0.01 increases the velocity profile due to enhanced
shear-thinning associated with ξ.

(a) (b)

Figure 7.23: Effect of (a) variation of ε at Deκ = 3 and ξ = 0.01 and (b)
variation of ξ at Deκ = 3 and ε = 0.1 on the non-dimensional
velocity profiles for the viscoelastic fluid flow in the microchannel
under the influence of electro-osmotic forces. In all cases κ =20.

The critical Deborah number (|Deκ,c|), predicted from Eqn.(7.139)
is presented in Figure 7.24 as a function of ξ. In log-log scale Deκ,c
decreases monotonically and linearly as the parameter ξ increases (with
a slope of -1/2) for small values of ξ, and in the limiting case of ξ = 0
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(sPTT model) the flow is constitutively stable for any Deκ. At any non-
zero value of ξ increasing the value of Deκ (or the electric gradient, Ex)
beyond a critical value produces a constitutively unstable flow. From
Eqn.(7.139), we find |Deκ,c| only depends on ξ, when κ > 10.

Figure 7.24: Variation of critical Deborah number (|Deκ,c|) with ξ.

The variation of the dimensionless critical shear rate (λ|γ̇c|) with ε as
a function of ξ is presented in Figure 7.25 for ξ = 0.001, 0.01 and 0.1.
The plot of critical shear rate versus ε shows a linear relationship for
all ξ, as anticipated from Eqn. (7.137). The critical shear rate gradually
increases for ξ = 0.01 and 0.1, whereas, a steep rise with ε is observed
as ξ decreases (cf. Figure 7.25 with ξ = 0.001). In the limit, for ξ = 0

the curve is vertical, i.e., λ|γ̇|c tends to infinity meaning stable flow.

Figure 7.25: Variation of dimensionless critical shear rate (λ|γ̇c|) with ε at
ξ = 0.001, 0.01 and 0.1.

Profiles of normal and shear stresses, drawn based on Eqn. (7.130)
and (7.131), are shown in Figure 7.26 (a), (b) as a function of y/H at
κ = 10 and 20 for different values of Deκ. The normal stress approaches
zero for y/H < 0.75 and increases rapidly near the wall. At low Deκ
the normal stress is almost zero near the wall for both κ = 10 and 20.
With increase in Deκ the normal stress increases gradually. The increase
in normal stress is gradual for κ = 10 compared to κ = 20 where the
rise is sudden in agreement with the corresponding variations of the
velocity profile. A similar trend is observed for the shear stress profiles
as seen in Figure 7.26.

For the channel flow of viscoelastic fluids with electrokinetic forces,
in the absence of Gordon-Schowalter derivative, Afonso et al. (2009c,
2010c) observed that the influences of ε and Deκ can be combined as
a single dimensionless quantity, εDe2κ. In order to verify whether this
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(a) (b)

Figure 7.26: (a) Normal stress (τxx) and (b) Shear stress (τxy) as a function of
y/H at different Deborah number (Deκ) for κ = 10 and 20.

also occurs here, we considered two sets of data ε andDeκ so that εDe2κ
are equal to 0.1 and 0.4, keeping ξ constant and equal to 0.01. Results
for the dimensionless transverse velocity profiles in the channel (not
shown here) revealed that no such εDe2κ scaling apply here compared
to the sPTT model.

7.3.6 Conclusions

Analytical solutions in microchannels for the electro-osmotic flow of
viscoelastic fluids obeying the full PTT model have been derived. The
Gordon-Schowalter convected derivative has been used in this model
which leads to non- zero second normal stress difference. Symmet-
ric boundary conditions with equal zeta potentials at the walls were
assumed. A nonlinear Poisson-Boltzmann equation governing the elec-
trical double-layer field and a body force generated by the applied
electrical potential field were included in the Navier-Stokes equations.
Some of the important results can be summarised as follows:

. Comparison of the present result with the analytical solution, for
the flow of Newtonian fluids, available in the literature is found
to be consistent.

. Profiles of dimensionless velocities in the channel are invariant
with Deκ below Deκ = 0.1.

. When the shear rate and Deborah number exceed a critical value a
constitutive flow instability occurs for ξ 6= 0. Expressions for these
critical values of shear rate and Deborah number are reported. The
critical shear rate is found to be dependent of ε and ξ, whereas
the critical Deborah number is only dependent on ξ for large κ.
The critical Deborah number increases with decrease in ξ tending
to infinity as ξ tends to zero.

. Normal and shear stresses are approximately zero near the cen-
terline and rise rapidly near the channel walls. At low Deborah
numbers both these quantities are almost negligible. At higher
Deκ the values of these quantities rise rapidly with increasing
microchannel height ratio.
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7.4 analytical solution of two-fluid eo flows of viscoelas-
tic fluids

Abstract4

This paper presents an analytical model that describes a two-fluid electro-
osmotic flow of stratified viscoelastic fluids. This is the principle of operation
of an EO two-fluid pump, recently presented by Brask et al. (2003), in which
an electrically nonconducting fluid is transported by the interfacial dragging
viscous force of a conducting fluid that is driven by electro-osmosis. The elec-
tric potential in the conducting fluid and the analytical steady flow solution of
the two-fluid electro-osmotic stratified flow in a planar microchannel are pre-
sented by assuming a planar interface between the two immiscible fluids with
Newtonian or viscoelastic rheological behaviour. The effects of fluid rheology,
dynamic viscosity ratio, holdup and interfacial zeta potential are analyzed to
show the viability of this technique, where an enhancement of the flow rate is
observed as the shear-thinning effects are increased.

Keywords: Electro-osmotic flows; two-fluid pump; viscoelastic fluids.

7.4.1 Introduction

Electro-osmotic flows (EOF) in microfluidic devices have been studied
extensively over the past decade (Brask et al., 2003; Gao et al., 2005; Chen
and Santiago, 2002; Xuan and Li, 2004; Wang et al., 2009), because they
enable precise liquid manipulation and are easily scalable to nanosized
systems. The major applications of EO pumps are in micro flow injection
analysis, microfluidic liquid chromatography systems, microreactors,
microenergy systems and microelectronic cooling systems. Fluid pumps
are important elements in such microchannel networks, and promising
candidates for miniatuzization are lectro-hydrodynamic pumps using
ion-dragging effects via the so-called electro-osmosis, and traveling-
wave-induced flow (Brask et al., 2003) due to the inherent simplicity in
producing small-sized pumps with these techniques. A comprehensive
review on electrokinetic pumps has been recently published by Wang
et al. (2009).

Some of the above studies were focused on the transport of fluids
with high electrical conductivity, for which a classical EO pump is
needed. An overview of fabrication and working principles for such
systems was presented by Zeng et al. (2001). For nonpolar fluids, such
as oil, traditional EOF pumping cannot be used, due to the low fluid
conductivity (Gao et al., 2005). To overcome this limitation, Brask et al.
(2003) proposed an idea that allows the use of EOF as a driving mech-
anism, using an electric fluid with high conductivity to drag the low
conductivity nonpolar fluid. Their study (Brask et al., 2003) analyzed
the performance of the pump by equivalent circuit theory and compu-
tational fluid dynamic simulations.

The theoretical study of electro-osmotic flows of non-Newtonian flu-
ids is recent and has been limited to simple inelastic fluid models, such
as the power-law, due to the inherent analytical difficulties introduced

4 A.M. Afonso, F.T. Pinho and M.A. Alves (2010), Two-fluid electro-osmotic flows of
viscoelastic fluids, in preparation to submit to Microfluidics and Nanofluidics.
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by more complex constitutive equations. Examples are the recent works
of Das and Chakraborty (2006) and Chakraborty (2007), who presented
explicit relationships for velocity, temperature and concentration dis-
tributions in electro-osmotic microchannel flows of non-Newtonian
bio-fluids described by the power-law model. Other purely viscous
models were analytically investigated by Berli and Olivares (2008), who
considered the existence of a small wall layer depleted of additives
and behaving as a Newtonian fluid (the skimming layer), under the
combined action of pressure and electrical fields, thus restricting the
non-Newtonian behaviour to the electrically neutral region outside
the Electrical Double Layer (EDL). More recently these studies were
extended to viscoelastic fluids by Afonso et al. (2009c), who presented
analytical solutions for channel and pipe flows of viscoelastic fluids
under the mixed influence of electrokinetic and pressure forces, using
two constitutive models: the Phan-Thien and Tanner (PTT model (Phan-
Thien and Tanner, 1977)), with linear kernel for the stress coefficient
function and zero second normal stress difference (Phan-Thien, 1978),
and the Finitely Extensible Non-linear Elastic dumbbells model with a
Peterlin approximation for the average spring force (FENE-P model, cf.
(Bird et al., 1980)). The analysis of Afonso et al. (2009c) was restricted to
cases with small electric double-layers, where the distance between the
walls of a microfluidic device is at least one order of magnitude larger
than the EDL, and the fluid is well mixed and uniformly distributed
across the channel. When the viscoelastic flow is induced by a combi-
nation of both electric and pressure potentials, in addition to the single
contributions from these two mechanisms there is an extra term in
the velocity profile that simultaneously combines both forcings, which
is absent for the Newtonian fluids where the superposition principle
applies. This extra term can contribute significantly to the total flow
rate, depending on the value of the relative microchannel ratio and
appears only when the rheological constitutive equation is non-linear.
Afonso et al. (2010c) later extended this study to the flow of viscoelastic
fluids under asymmetric zeta potential forcing.

The analytical solution of the steady two-fluid electro-osmotic strat-
ified flow in a planar microchannel is presented here by assuming a
planar interface between the two viscoelastic immiscible liquids. The
working principle of the two-fluid pump is described in detail in the
begining of Section 7.4.2. The PTT fluids considered (Phan-Thien and
Tanner, 1977) obey a simplified model, with a linear kernel for the stress
coefficient function (Phan-Thien, 1978) and a zero second normal stress
difference in shear. The PTT model also includes the limiting case for
Upper-Convected Maxwell (UCM) fluids.

The remaining of the paper starts with the flow problem definition,
followed by the presentation of the set of governing equations and a
discussion of the assumptions made to obtain the analytical solution.
Using this solution, the effects of the various relevant dimensionless
parameters upon the flow field characteristics are discussed in detail.

7.4.2 Flow geometry and definitions

The flow under investigation is the steady, fully-developed flow of
two incompressible and immiscible viscoelastic fluids which also have
significantly different condutivities, as shown schematically in Figure
7.27(a). This type of flow can be found in some EOF pumps Brask
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et al. (2003), where the nonconducting fluid located at the upper part
of the system is dragged by an electrically conducting fluid at the
bottom section, as illustrated in Figure 7.27(b). Although the origin of
the coordinate system is at the interface between the two fluids, their
thickness are not necessarily identical.

(a)

(b)

Figure 7.27: (a) Illustration of the coordinate system and (b) schematic of the
two-fluid EOF pump.

The migration of ions naturally arises due to the interaction between
the dielectric bottom wall and the conducting fluid. Concerning the
wall-fluid interface, the charged bottom wall of the channel attracts
counter-ions to form a layer of charged fluid near the wall and repels the
co-ions. A very thin layer of immobile counter-ions covers the bottom
wall, known as the Stern layer, and is followed by a thicker more diffuse
layer of mobile counter-ions. These layers near the wall form the EDL.
The global charge of the conducting fluid remains neutral, but since
the EDL is thin the core of the conducting fluid is essentially neutral.
Applying a DC potential difference between the two electrodes at the
inlet and outlet of the bottom channel section, generates an external
electric field that exerts a body force on the counter-ions of the EDL,
which move along the bottom channel dragging the neutral conducting
fluid core above by viscous forces.

A similar situation arises at the fluid-fluid interface, where there is
also dielectric interaction leading to the formation of a second EDL in
the conducting fluid next to the interface. The conducting fluid (Fluid
B) drags the nonconducting fluid (Fluid A) by hydrodynamic viscous
forces at the interface (cf. Figure 7.27(a)).

The pressure difference that can be independently applied between
the inlets and outlets of both the upper and lower channels can act
in the same or in the opposite directions of the electric field. Alterna-
tively, the streamwise electric potential difference may not be imposed
independently, but results from the accumulation of ions at the end of
the channel due to the flow forced by an imposed pressure difference.
This particular case is known as the streaming potential and implies a
specific relationship between the imposed favorable pressure gradient
and the ensuing adverse external electric field (Yang and Li, 1997), a
case which will not be analysed in this paper for conciseness.

To analyse this system, a two-dimensional Cartesian orthonormal
coordinate system (x, y) is used with the origin located at the fluid-fluid
interface, as shown in Figure 7.27(a). We assume a stratified viscoelastic
flow and a planar interface, a condition satisfied when the contact angle
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between fluids A and B is close to 90º (Gao et al., 2005). The thickness
of the conducting fluid is H1 and that of the non-conducting fluid is
H2. The width w is assumed very large, such that w� H2 +H1 = H.

The holdup of the conducting fluid (Fluid B), RB, is here defined as
the ratio between the cross section area occupied by the conducting
fluid and the cross section area of the channel, i.e.,

RB =
H1

H2 +H1
=
H1
H

. (7.141)

Similarly, the hold up of nonconducting fluid (Fluid A) is defined as

RA = 1− RB =
H2

H2 +H1
=
H2
H

. (7.142)

The electrical double layer that forms near the bottom channel wall
in contact with the conducting fluid (Fluid B), has a zeta potential
denoted by ζ1. The second EDL in Fluid B, at the interface contact
with fluid A, has an interfacial zeta potential (ζi) that depends on
the properties of the two fluids and varies with the pH value, the
concentration of ions in the conducting fluid and the presence of ionic
surfactants (Gao et al., 2005). This interfacial zeta potential influences
the potential distribution in the two EDLs, hence the electroosmotic
force distribution and therefore the flow.

7.4.3 Theoretical model of the two-fluid electroosmotic viscoelastic flow

The basic field equations describing this fully-developed laminar flow
of incompressible fluids are the continuity equation,

∇ · u = 0 (7.143)

and the modified Cauchy equation,

−∇p+∇ · τ+ ρeE = 0 (7.144)

where u is the velocity vector, p is the pressure and τ is the polymeric
extra-stress tensor.

The ρeE term of equation (7.144) represents a body force per unit
volume, where E is the applied external electric field and ρe is the net
electric charge density in the fluid. This term is null for the non-polar
fluid A, but needs to be quantified for the polar fluid B.

The main simplifying assumptions and considerations in the current
analysis are: (i) the two fluids are viscoelastic (but the Newtonian fluid
is also included as a limiting case when the relaxation time is negligible);
(ii) fluid properties are assumed to be independent of local electric field,
ion concentration and temperature (this is certainly true for dilute
solutions (Gao et al., 2005), but we make this assumption for our fluids);
(iii) the flow is steady and fully developed with no-slip boundary
conditions at the channel walls; (iv) the two fluids are immiscible and
there is stratification with a planar interface between fluids where a
second EDL can form; (v) a pressure gradient can simultaneously be
imposed along the channel and (vi) the standard electrokinetic theory
conditions apply (Probstein, 2003).
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7.4.3.1 PTT model constitutive equations

The polymer extra-stress τ is described by an appropriate constitutive
equation, and in this work we consider the viscoelastic model of Phan-
Thien and Tanner (Phan-Thien and Tanner, 1977; Phan-Thien, 1978)
(PTT model) of equation (7.145) derived from network theory arguments

f(τkk)τ+ λ
∇
τ = 2ηD. (7.145)

Here, D =
(
5uT +5u

)
/2 is the rate of deformation tensor, λ is the

relaxation time of the fluid, η is the viscosity coefficient and
∇
τ represents

the upper-convected derivative of τ, defined as

∇
τ =

Dτ
Dt

−5uT .τ− τ.5 u . (7.146)

The stress coefficient function, f(τkk), is given by the linear form (Phan-
Thien and Tanner, 1977)

f(τkk) = 1+
ελ

η
τkk, (7.147)

where τkk represents the trace of the extra-stress tensor. The extensibil-
ity parameter, ε, imposes a maximum of the steady state elongational
viscosity, which is inversely proportional to ε, for small ε. For ε = 0

the UCM model is recovered which has an unbounded elongational
viscosity above a critical strain rate ε̇ = 1/(2λ). For fully-developed
flow conditions, for which u = {u(y), 0, 0}, the extra-stress field for the
PTT model can be obtained from equations (7.145–7.147), leading to

f(τkk)τxx = 2λ
·
γτxy (7.148)

f(τkk)τxy = η
·
γ (7.149)

where τkk = τxx, since τyy = 0 (Pinho and Oliveira, 2000; Alves
et al., 2001a), and

·
γ is the transverse velocity gradient (

·
γ ≡ du/dy).

Then, upon division of equation (7.148) by equation (7.149) the specific
function f(τxx) cancels out, and a relation between the normal and
shear stresses is obtained,

τxx = 2
λ

η
τ2xy. (7.150)

7.4.3.2 Electric double layers in the conducting fluid (Fluid B)

The potential field within the conducting fluid B, can be expressed by
means of a Poisson equation:

∇2ψ = −
ρe

ε
, (7.151)
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where ψ denotes the electric potential and ε is the dielectric constant of
the fluid. In equilibrium conditions near a charged wall, the net electric
charge density, ρe, can be described as

ρe = −2noez sinh
(
ez

kBT
ψ

)
, (7.152)

where no is the ion density, e is the elementary electric charge, z is the
valence of the ions, kB is the Boltzmann constant, and T is the absolute
temperature. In order to obtain the velocity field for fluid B, we first
need to determine the net charge density distribution (ρe). The charge
density field can be calculated by combining equations (7.151) and
(7.152) under fully developed flow conditions, to obtain the well-known
Poisson–Boltzmann equation

d2ψ
dy2

=
2noez

ε
sinh

(
ez

kBT
ψ

)
. (7.153)

The electroosmotic flow is primarily caused by the action of an exter-
nally applied electric field on the charged species that exist near the
bottom channel wall and in the vicinity of the interfacial surface. The
distribution of the charged species in the domain is governed by the
potentials at the wall and at the interface, and then by the externally
applied electric field. When the Debye thicknesses are small and the
charges at the wall and at the interface are not large, the distribution
of the charged species is governed mainly by the ζ1 potential at the
wall and by ζi at the interface, and negligibly affected by the exter-
nally DC electric field (standard electrokinetic theory). Thus, the charge
distribution across fluid B, can be determined independently of the
externally applied electric field. Indeed, the effect of fluid motion on
the charge redistribution can be neglected when the fluid velocity is
small, i.e., when the inertial terms in the momentum equation are not
dominant (they are null under fully developed conditions) or when the
Debye thickness is small. Additionally, for small values of ψ the De-
bye–Hückle linearization principle (sinh x ≈ x) can also be used, which
means physically that the electric potential energy is small compared
with the thermal energy of ions, and the Poisson–Boltzmann equation
simplified to:

d2ψ
dy2

= κ2ψ, (7.154)

where κ2 = 2noe
2z2

εkBT
is the Debye–Hückel parameter, related with the

thickness of the Debye layer as ξ = 1
κ (normally referred to as the EDL

thickness). This approximation is valid when the Debye thickness is
small but finite, i.e., for 10 . H1/ξ . 103.

Equation (7.154) can be integrated subjected to the following bound-
ary conditions: zeta potential at the bottom wall ψ‖y=−H1 = ζ1 and
zeta potential at the interface ψ‖y=0 = ζi. The potential field becomes

ψ(y) = ζ1
(
Ψ1e

κy −Ψ2e
−κy

)
(7.155)

for −H1 6 y 6 0. Denoting Rζ = ζi/ζ1 as the ratio of zeta potentials,

then Ψ1 =
Rζe

κH1−1

eκH1−e−κH1
and Ψ2 =

Rζe
−κH1−1

eκH1−e−κH1
. When Rζ = 1 a symmet-

ric potential profile obtained as by Afonso et al. (2009c) for the whole
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channel, whereas for vanishing zeta potential at the interface, Rζ = 0,
one obtains a special case of that obtained by Afonso et al. (2010c).
Finally the net charge density distribution, equation (7.152), together
with the Debye–Hückle linearization principle leads to

ρe = −εκ2ζ1
(
Ψ1e

κy −Ψ2e
−κy

)
= −εκ2ζ1Ω

−
1 (y) (7.156)

where the operator Ω±i (y) = Ψi1e
(κy)i ± Ψi2e

(−κy)i is a hyperbolic
function of the transverse variable y, and depends on the ratio of zeta
potentials, Rζ, and on the thickness of the Debye layer.

7.4.3.3 Momentum equation of the two-fluid flow

Conducting fluid (Fluid B)

For the conducting fluid (Fluid B), the momentum equation (7.144),
reduces to,

dτBxy
dy

= p,x − ρeEx = p,x + εκ
2ζ1ExΩ

−
1 (y) (7.157)

where Ex ≡ −dφ/dx and p,x ≡ dp/dx. The electric potential of the
applied external field, φ, is characterized by a constant streamwise
gradient. Equation (7.157) is integrated to yield the following shear
stress distribution

τBxy = p,xy+ εκζ1ExΩ
+
1 (y) + τB (7.158)

where τB is a stress integration coefficient related to the stress at the
fluid-fluid interface. It is clear that in contrast to pure Poiseuille flow the
shear stress distribution is no longer linear on the transverse coordinate.
Using the relationship between the normal stress and the shear stress,
equation (7.150), an explicit expression for the normal stress component
is also obtained,

τBxx = 2
λ

η

(
p,xy+ εκζ1ExΩ

+
1 (y) + τB

)2 . (7.159)

For simplicity subscript B will be removed from the rheological param-
eters of Fluid B (ηB = η, εB = ε and λB = λ). Combining (7.149), (7.158)
and (7.159) we come to the expression for the velocity gradient

duB
dy =

[
1+ 2ελ2

(
εExζ1
η

κΩ+
1 (y) +

τB
η

+
p,x

η
y

)2]
(7.160)(

εExζ1
η

κΩ+
1 (y) +

τB
η

+
p,x

η
y

)
.
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Equation (7.160) can be integrated subject to the no-slip boundary
condition at the lower wall (uB‖y=−H1

= 0) leading to

uB =
τB
η

(y+ H)

(
1+ 2ελ2

(
τB
η

)2)
+

[
εExζ1
η

](
1+ 6

(
τB
η

)2
ελ2

)
Ω−
1,1(y)

+ 2ελ2
[
εExζ1
η

]2
κ
τB
η

(
6Ψ1Ψ2κ (y + H)+

3

2
Ω−
2,1(y)

)
+ 2ελ2

[
εExζ1
η

]3
κ2
(
1

3
Ω−
3,1(y)+ 3Ψ1Ψ2Ω

−
1,1(y)

)
+
1

2

[
p,x

η

](
y2− H2

)(
1+ 6ελ2

(
τB
η

)2
+ ελ2

[
p,x

η

]2 (
y2+ H2

))

+ 2
τB
η
ελ2

[
p,x

η

]2 (
y3+ H3

)

+ 12
ελ2

[
εExζ1
η

] [
p,x
η

]
κ

τB
η

(
Ω−
1,2(y)−Ω

+
1,1(y)

)

+ 6
ελ2

[
εExζ1
η

] [
p,x
η

]2
κ2

(
Ω−
1,3(y)+ 2Ω

−
1,1(y)− 2Ω

+
1,2(y)

)
+ 6ελ2

[
εExζ1
η

]2 [
p,x

η

](
Ψ1Ψ2κ

2
(

y2− H2
)
+
1

2
Ω−
2,2(y)−

1

4
Ω+
2,1(y)

)
(7.161)

where the operator Ω±i,j(y) ≡ (κy)(j−1)Ω±i (y)− (−1)(j+1) (κH1)
(j−1)Ω±i (−H1)

is now defined for compactness. This equation is valid for −H1 6 y < 0.
It is often more convenient to work with the dimensionless form of

equation (7.161). Introducing the normalizations ȳ = y/H1 = y/ (RBH)
and κ̄ = κRBH, the dimensionless velocity profile in the conducting
fluid can be written as

uB

ush
= τB (y+ 1)

(
1+ 2τ2B

εDe2κ
κ2

)
−

(
1+ 6τ2B

εDe2κ
κ2

)
Ω

−
1,1(y)

+ 2τB
εDe2κ
κ

(
6Ψ1Ψ2κ (y + 1)+

3

2
Ω

−
2,1(y)

)
− 2εDe2κ

(
1

3
Ω

−
3,1(y)+ 3Ψ1Ψ2Ω

−
1,1(y)

)
+
1

2
Γ
(
y2− 1

)(
1+ 6τ2B

εDe2κ
κ2

+
εDe2κ
κ2

Γ2
(
y2+ 1

))
+ 2τB

εDe2κ
κ2

Γ2
(
y3+ 1

)
− 12τB

εDe2κ
κ3

Γ
(
Ω

−
1,2(y)−Ω

+
1,1(y)

)
+ 6

εDe2κ
κ2

Γ

(
Ψ1Ψ2κ

2
(

y2− 1
)
+
1

2
Ω

−
2,2(y)−

1

4
Ω

+
2,1(y)

)
− 6

εDe2κ
κ4

Γ2
(
Ω

−
1,3(y)+ 2Ω

−
1,1(y)− 2Ω

+
1,2(y)

)
(7.162)

where τB = τB
η
RBH
ush

and Deκ = λush
ξ = λκush is the Deborah number

based on the relaxation time of the conducting fluid (Fluid B), on the
EDL thickness and on the Helmholtz-Smoluchowski electro-osmotic
velocity near the bottom wall, defined as ush = −εζ1Exη . The dimen-

sionless parameter Γ = −
(RBH)2

εζ1

p,x
Ex

represents the ratio of pressure to
electro-osmotic driving forces. Note that for simplicity the above terms
were based on the zeta potential at the bottom wall (ψ‖y=H1 = ζ1), but
could be based on the interfacial zeta potential using the ratio of zeta
potentials: ush = ushi/Rζ, Γ = RζΓi and Deκ = Deκi/Rζ.
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The normalized flow rate of the pumping fluid B, can be determined
from integration of the velocity profile

QB =
uB

ush
=

∫0
−H1

uB

ushH1
dȳ = τB

(
1+ 2

εDe2κ
κ2

τ2B

)
−
1

2
Γ

(
4

5

εDe2κ
κ2

Γ2 +
2

3

(
1+ 6τ2B

εDe2κ
κ2

))

+ 2τB
εDe2κ
κ2

Γ2 −
1

2

(
1+ 6

εDe2κ
κ2

τ2B

)(
Ω

+
1,1(1)

κ
− 2Ω

−
1 (−1)

)

+
εDe2κ
κ

τB

(
12Ψ1Ψ2κ+

3

2

(
Ω

+
2,1(1)

2κ
− 2Ω

−
2 (−1)

))

−εDe2κ

(
Ω

+
3,1(1)

9κ
−
2

3
Ω

−
3 (−1)+ 3Ψ1Ψ2

(
Ω

+
1,1(1)

κ
− 2Ω

−
1 (−1)

))

− 6τB
εDe2κ
κ4

Γ
[
Ω

+
1,2(1)− 2Ω

−
1,1(1)+ 2κ

(
κΩ

−
1 (−1)+Ω

+
1 (−1)

)]
+ 3

εDe2κ
κ2

Γ

(
1

4κ

(
Ω

+
2,2(1)−Ω

−
2,1(1)

)
−
4

3
Ψ1Ψ2κ

2 +κΩ
−
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Nonconducting fluid (Fluid A)

The derivation of the analytical solution for this fluid layer follows the
same steps as for the conducting fluid, with the necessary adaptations.
For the nonconducting fluid (Fluid A), the momentum conservation
equation (7.144), reduces to

dτAxy
dy

= p,x, (7.164)

since, as explained, there no external electrical field forcing, due to low
condutivity. Equation (7.164) can be integrated to yield the following
shear stress distribution

τAxy = p,xy+ τA (7.165)

where τA is the shear stress at the fluid-fluid interface, to be quantified
in the next section. Using the relationship between the normal and
shear stresses - equation (7.150), the following explicit expression for
the normal stress component is obtained,

τAxx = 2
λA
ηA

(p,xy+ τA)
2 (7.166)

Combining equations (7.149), (7.165) and (7.166) the velocity gradient
distribution in fluid A is given by

duA

dy
=

[
1+ 2εAλ

2
A

(
p,x

ηA
y+

τA
ηA

)2](
p,x

ηA
y+

τA
ηA

)
(7.167)
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Equation (7.167) is integrated subject to the no-slip boundary condition
at the upper wall (uA‖y=H2 = 0) and leads to

uA =
τA
ηA

(y− H2)

(
1+ 2εAλ

2
A

(
τA
ηA

)2)
+ 2εAλ

2
A

τA
ηA

[
p,x

ηA

]2 (
y3− H32

)
+
1

2

[
p,x

ηA

](
y2− H22

)(
1+ 6εAλ

2
A

(
τA
ηA

)2
+ εAλ

2
A

[
p,x

ηA

]2 (
y2+ H22

))
(7.168)

valid for 0 < y 6 H2. Introducing the normalizations ȳ = y/H2 =
y/RAH and κ̄A = κRAH, the dimensionless velocity profile can be
written as

uA

ush
= τA (y− 1)

(
1+ 2τ2A

εADe
2
κA

κ2A

)
+ 2τA

1

β2
εADe

2
κA

κ2A
Γ2A

(
y3− 1

)
(7.169)

+
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εADe
2
κA

κ2A
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β2
εADe

2
κA

κ2A
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(
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where τA = τA
ηA

RAH
ush

, β = ηA/ηB is the dynamic viscosity ratio

and DeκA = λAush
ξ = λAushκ is the Deborah number based on

the relaxation time of fluid A, on the EDL thickness and on the
Helmholtz-Smoluchowski electro-osmotic velocity. The parameter ΓA =

−
(RAH)2

εζ1

p,x
Ex

represents the ratio of pressure to electro-osmotic driving
forces. The expression for the normalized volumetric flow rate of the
pumped fluid A in the upper part of the channel is

Q
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=

(
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ush

)
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=

∫H2
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−
1
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β

(
1+ 6τ2A

εADe
2
κA

κ2A

)
.

Fluid A- Fluid B interface conditions

In deriving the shear stress profiles, equations (7.158) and (7.165), and
all the subsequent quantities like velocity and flow rates, two integration
coefficients appeared, τA and τB, which have to be determined from
the boundary conditions at the fluid-fluid interface namely: τxyA‖y=0 =

τxy
B
‖y=0 and uA‖y=0 = uB‖y=0.

Using the relationships between the shear stresses at the interface,
equations (7.158) and (7.165), and those for the dimensionless velocity
profiles, equations (7.162) and (7.169), we can determine the variables
τA and τB,

τA = RA
RB

1
βτB − κA

β Ω
+
1 (0)

τB =
3

√
−b12 +

√
b21
4 + a3

27 +
3

√
−b12 −

√
b21
4 + a3

27 − a1
3

(7.171)

where a = a2 − a
2
1/3, b1 = a3 − a1a2/3 + 2a

3
1/27, the coefficients

a1, a2 and a3 are obtained from the manipulation of equation (7.162)
to obtain an explicit expression for τB. In that coefficients appears a
dimensionless number that relates the rheological properties of the two
fluids, Rε =

√
ε
εA

λ2

λ2A
.
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7.4.4 Results and discussion

In the previous section, general equations were derived for steady fully
developed two-fluid electro-osmotic stratified flow of PTT viscoelastic
fluids under the mixed influence of electrokinetic and pressure gradient
forces. The different influences of the driving forces (Γ ), fluid rheology
(Rε), dynamic viscosity ratio (β), fluids holdup (RB) and of the ratio of
zeta potentials (Rζ) on the velocity profile have been explicitly incor-
parated in equations (7.168), (7.161) and (7.171) and in this section we
discuss in detail some limiting cases in order to understand the system
fluid dynamics.

The following set of two-fluid systems is included in the general
solution where: (a) Newtonian-Newtonian fluid system; (b) viscoelastic-
Newtonian fluid system; (c) Newtonian-viscoelastic fluid system; and
(d) viscoelastic - viscoelastic fluid system. Cases (b) and (d) are not
discussed in this work, due to space limitations, althougth the derived
equations also include these cases. Case (a) was studied in detail else-
where (Gao et al., 2005), but this situation is revisited here as a starting
point and for comparison with case (c), i.e., in the following we analyse
in detail the pumping of a Newtonian fluid by another Newtonian fluid,
and, alternatively, by a viscoelastic fluid.

(a) (b)

Figure 7.28: Effect of the driving forces (Γ = −2, −1, 0, 1 and 2) on dimension-
less (a) velocity profiles and (b) volumetric flow rate for Newtonian-
Newtonian flow configuration. Symbols represent the data from
Afonso et al. (2009c) for (β = 1, Rζ = 0 and Γ = 0).

7.4.4.1 Newtonian-Newtonian EOF pump configuration

For the Newtonian-Newtonian flow configuration, both the conducting
and nonconducting fluids are Newtonian (Deκ = DeκA = 0). The
velocity profile system equations and the dimensionless boundary
condition coefficients, provided by equation (7.171), simplify to uA

ush
= τA (y− 1) + 1

2βΓA
(
y2 − 1

)
for 0 6 y 6 1

uB

ush
= τB (y+ 1) −Ω−

1,1(y) +
1
2Γ
(
y2 − 1

)
for − 1 6 y 6 0

(7.172)
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For small relative microchannel ratio, κ̄→ 1, the double layer thick-
ness is of the same order of magnitude as the Fluid B thickness and the
region of excess charge is distributed over the entire fluid. This situa-
tion is not compatible with this solution for which the Debye-Hückel
approximation was invoked, which requires κmin & 10. In this work
and as a typical example, we set κ̄ = 20 in all figures.

For Γ = 0, i.e., when the flow is driven only by electro-osmosis,
the velocity profile is a function of the wall distance, of the relative
microchannel ratio, κ̄, of the ratio of zeta potentials, Rζ, and of the
dynamic viscosity ratio as shown earlier by Gao et al. (2005). Also, for
a single fluid situation (β = 1) and in the absence of interface zeta
potential (Rζ = 0) the solution simplifies to a particular case obtained
by Afonso et al. (2009c) (no zeta potential in the upper wall and no
pressure gradient, symbols in Figure 7.28a). The corresponding effect
of the ratio of pressure gradient to electro-osmotic driving forces on the
dimensionless flow rate is obvious (cf. Figures 7.28(b)), increasing with
favorable pressure gradients (Γ < 0), and decreasing for flows with
adverse pressure gradients (Γ > 0). Obviously, the flow rate for fluid B
is higher because for identical fluids heights fluid B is being forced also
by electro-osmosis.

(a) (b)

Figure 7.29: Effect of the dynamic viscosity ratio (β = 10−2, 10−1, 1, 10 and
100) on dimensionless (a) velocity profiles and (b) volumetric flow
rate for Newtonian-Newtonian flow configuration.

Figure 7.29 shows the influence of the dynamic viscosity ratio (β ≡
ηA/ηB) on the dimensionless velocity profile (a) and on the volumetric
flow rate (b). When the dynamic viscosity ratio decreases the dimen-
sionless velocity increases (cf. Figure 7.29(a)). So, if the viscosity of the
conducting fluid is much higher than the viscosity of the nonconducting
fluid, an increase in the dimensionless volumetric flow rate is expected,
as can be observed in Figure 7.29(b). However, a higher viscosity implies
a lower Helmholtz-Smoluchowski electro-osmotic velocity consequently
the dimensional flow rate may actually decrease.

A major effect on the velocity profile is that due to non-zero interfacial
zeta potential, as presented in the profiles of Figures 7.30. When ζi > 0,
a favorable extra drag forcing term arises in the velocity profile at the
interface of the two-fluids, leading to a significant increase in the volu-
metric flow rate, even for ζi < ζ1. When ζi < 0, the adverse localized
electrostatic force decreases the pumping action and the corresponding
dimensionless flow rate (cf. Figure 7.30(b)).
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(a) (b)

Figure 7.30: Effect of the ratio of zeta potentials (Rζ = −0.2, −0.1, 0, 0.1 and
0.2) on dimensionless (a) velocity profiles and (b) volumetric flow
rate for Newtonian-Newtonian flow configuration.

Another important effect is due to the holdup of the nonconducting
fluid. When the height of the nonconducting fluid is larger than the
height of the conducting fluid (RA > RB), the normalized velocities of
both fluids increase, as observed in Figure 7.31(a). This suggests that
to obtain higher volumetric flow rates in fluid A, the holdup of the
conducting fluid B should be kept small (cf. Figure 7.31(b)). In fact, as
the Helmholtz-Smoluchowski electro-osmotic velocity is independent
of the thickness of fluid B, as RA → 1 the fluid interface plane will
tend to coincide with the regions of higher velocity. This conclusion
also suggests that a better configuration for an EOF pump would be a
three layer fluid flow, with the conducting fluid in contact with both
the upper and lower walls, and the non conducting fluid in the middle
being dragged like a solid body, i.e., a solid lubrificated by thin layers
of conducting fluid in motion.

(a) (b)

Figure 7.31: Effect of the nonconducting fluid holdup on dimensionless (a)
velocity profiles (RA = 1/3, 1/2 and 2/3) and (b) volumetric flow
rate for Newtonian-Newtonian flow configuration.
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7.4.4.2 Newtonian-Viscoelastic EOF pump configuration

For the Newtonian-Viscoelastic flow configuration, the conducting
fluid is viscoelastic dragging the nonconducting Newtonian fluid. The
Deborah number of the conducting fluid is non-zero (Deκ 6= 0 and
DeκA = 0), and the velocity profile and the nondimensional boundary
condition coefficients are given by uA

ush
= τA (y− 1) + 1

2β ΓA
(
y2 − 1

)
for 0 6 y 6 1

Eq. (7.162) for − 1 6 y 6 0
(7.173)

Figures 7.32 (a) and (b) present the dimensionless velocity and volumet-
ric flow rate profiles as a function of

√
εDeκ, respectively. We can see

that increasing the elasticity of the conducting fluid, more than doubles
the velocities due to shear-thinning effects within the EDL layer thus
raising the velocity value of the bulk transport in the core of the channel.
This also helps to increase the shear rates near the bottom wall and at
the two fluids interface, increasing the dragging of the nonconducting
fluid by the hydrodynamic viscous forces at the interface. Consequently
there is a significant increase in the dimensionless volumetric flow rate
(cf. Figure 7.32b).

(a) (b)

Figure 7.32: Dimensionless profiles of (a) velocity and (b) volumetric flow rate
as function of

√
εDeκ.

As we can also see in Figure 7.32 (a), in the absence of pressure
gradient the EDL acts like a plate in pure Couette flow, transmitting a
constant shear stress across the channel.

Figure 7.33 shows the dimensionless velocity profiles (a) and vol-
umetric flow rate (b) at

√
εDeκ = 2 (for comparison the Newtonian

results of Figures 7.28 are also presented) to illustrate the effect of Γ .
A favorable pressure gradient (Γ < 0) helps increase the flow rate and
makes velocity profiles fuller. By using pressure, the dragging effect
at the interface is helped by the pressure forcing which affects directly
the two fluids. The beneficial shear-thinning effect is clear in the large
increase in the flow rate of Figure 7.33(b).

As for the Newtonian-Newtonian flow configuration, decreasing β
leads to an increase in velocity profiles and the volumetric flow rate,
which is further increased by shear-thinning effects (cf. Figure 7.34(a)
and (b) and compare with Figure 7.29). When using a viscoelastic fluid
as conducting fluid it is natural to have a more viscous fluid than
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the Newtonian nonconducting fluid, which leads to an optimal flow
situation.

Γ

Q

5 4 3 2 1 0 1 2

0

2

4

6

8

Fluid B

Fluid A

β=1; κ=20; R
ζ
= 0; R

Α
= 1/2

ε
0.5
De

κ
= 0

ε
0.5
De

κ
= 2

|

_

(a) (b)

Figure 7.33: Effect of the driving forces (Γ = −2, −1, 0, 1 and 2) on dimension-
less (a) velocity profiles and (b) volumetric flow rate for Newtonian-
Viscoelastic flow configuration.

The effects of the fluid A holdup (RA) and of the ratio of zeta poten-
tials (Rζ) are similar to what was seen before, but now the viscoelastic
flow exhibits a shear-thinning viscosity and the velocities have increased
significantly near the bottom wall (see the higher values of u/ush) lead-
ing to higher volumetric flow rates of Figures 7.35 and 7.36, than in the
corresponding constant viscosity case.

(a) (b)

Figure 7.34: Effect of the dynamic viscosity ratio (β = 10−2, 10−1, 1, 10 and
100) on dimensionless (a) velocity profiles and (b) volumetric flow
rate for Newtonian-Viscoelastic flow configuration.

7.4.5 Conclusions

An analytical solution of the steady two-fluid electro-osmotic stratified
flow in a planar microchannel is presented by assuming a planar in-
terface between the two viscoelastic immiscible fluids. The PTT fluid
model was used, and the effects of fluid rheology, viscosity ratio, fluid
holdup and interfacial zeta potential were analyzed to show the viability
of this technique.
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(a) (b)

Figure 7.35: Effect of the ratio of zeta potentials (Rζ = −0.2, −0.1, 0, 0.1 and
0.2) on dimensionless (a) velocity profiles and (b) volumetric flow
rate for Newtonian-Viscoelastic flow configuration.

The flow can be induced by a combination of both electrical and pres-
sure potentials, but in addition to the single contributions from these
two mechanisms, when the conducting fluid is viscoelastic, there is an
extra term in the velocity profile that simultaneously combines both
effects, which is absent from conducting Newtonian fluids where the
linear superposition principle applies. Hence, for non-linear viscoelastic
fluids the superposition principle is not valid.

This work demostrated that higher volumetric flow rates of a non-
conducting Newtonian fluid can be acheived in EOF pumping when
the conducting fluid is viscoelastic rather than Newtonian, due to the
increasing of the shear-thinning effects.

(a) (b)

Figure 7.36: Effect of the nonconducting fluid holdup on dimensionless (a)
velocity profiles (RA = 1/3, 1/2 and 2/3) and (b) volumetric flow
rate for Newtonian-Viscoelastic flow configuration.
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7.5 electro-osmotic flows of viscoelastic fluids : a nume-
rical study

Abstract5

In this work we present a finite volume method (FVM) used to solve the
relevant coupled equations for electro- osmotic flows (EOF) of viscoelastic flu-
ids, using the Upper-Convected Maxwell (UCM) and the simplified Phan-
Thien—Tanner (sPTT) models. Studies were undertaken in the cross-slot ge-
ometry, to investigate the possible appearance of purely-elastic instabilities, by
considering the effect of the electric field. We found that even for pure electro-
osmotic flow, i.e., in absence of an imposed pressure gradient, we were able
to capture the onset of an asymmetric flow above a critical Deborah number,
which is lower than the corresponding value for pressure gradient forcing.

Keywords: Electro-osmosis, Viscoelastic fluids, Finite-Volume Method.

7.5.1 Introduction

Accurate flow control in microfluidic devices requires techniques that
can easily be miniaturized and an obvious candidate is electrokinetic
forcing through such mechanisms as electro-osmosis or electrophoresis.
An overview of these and other electrokinetic techniques can be found
in (Bruss, 2008).

Electro-osmosis is an electrokinetic phenomenon, first demonstrated
by Reuss (1809) early in the 19th century, where the channel flow of
a polar fluid is forced by an external electric field applied between
the inlet and outlet and acting on ions existing near the channel walls.
von Helmholtz (1879) proposed the electric double layer (EDL) the-
ory that relates the electrical and flow parameters for electrokinetic
transport in 1879. Subsequently, von Smoluchowski (1903) generalized
von Helmholtz’s double layer theory by taking into account the actual
charge/ potential distributions in a capillary channel. A more realistic
concept of these distributions in the fluid adjacent to the capillary wall
was introduced by Gouy (1910) in 1910. Debye and Hückel (1923) deter-
mined the ionic number concentration in a solution of low ionic energy,
by means of a linearization of the exponential Boltzmann ion energy
distribution.

For Newtonian fluids, rigorous modeling of the electro-osmotic flow
in microchannels has been the subject of several studies (Burgreen
and Nakache, 1964; Rice and Whitehead, 1965; Arulanandam and Li,
2000; Dutta and Beskok, 2001), and a thorough review on various
other aspects of electro-osmosis can be found in Karniadakis et al.
(2005). The theoretical study of electro-osmotic flows of non-Newtonian
fluids is recent and most works have been limited to simple inelastic
fluid models, such as the power-law, due to the inherent analytical
difficulties introduced by more complex constitutive equations (Das
and Chakraborty, 2006; Park and Lee, 2008b; Berli and Olivares, 2008;
Zhao et al., 2008). Recently these studies were extended to viscoelastic
fluids by Afonso et al. (2009c), who presented analytical solutions for

5 A.M. Afonso, F.T Pinho and M.A Alves (2010). Electro-osmotic flows of viscoelastic
fluids: a numerical study, Proceedings of the 3rd National Conference on Fluid Mechanics,
Thermodynamics and Energy, Bragança, Portugal.
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channel and pipe flows of viscoelastic fluids under the mixed influence
of electrokinetic and pressure forces, using two constitutive models:
the simplified Phan-Thien—Tanner model (sPTT) (Phan-Thien and
Tanner, 1977), with linear kernel for the stress coefficient function
and zero second normal stress difference (Phan-Thien, 1978), and the
FENE-P model, based on the kinetic theory for Finitely Extensible
Non-linear Elastic dumbbells with a Peterlin approximation for the
average spring force (cf. Bird et al. (1987a)). Their analysis (Afonso
et al., 2009c) was restricted to cases with small electric double-layers,
where the distance between the walls of a microfluidic device is at
least one order of magnitude larger than the EDL, and the fluid had a
uniform distribution across the channel. Afonso et al. (2010c) extended
this study to the flow of viscoelastic fluids under asymmetric zeta
potential forcing.

In the recent years the efforts for numerical modeling and simula-
tion of EOF has also increased, especially when applied to Newtonian
fluids. Yang and Li (1998) developed a numerical algorithm for ele-
crokinetically driven Newtonian liquid flows, using the Debye-Hückel
approximation (Debye and Hückel, 1923). The same approximation was
used by Patankar and Hu (1998) in the numerical simulation of microflu-
idic injection of Newtonian fluids, with electro-osmotic forces through
the intersection of two channels. Ermakov et al. (1998) developed a finite
difference method (FDM) for electro-osmotic and electrophoretic trans-
port and species diffusion for two-dimensional complex geometry flows
of Newtonian fluids. Using the Gouy-Chapman approximation (Gouy,
1910), Bianchi et al. (2000) developed a finite-element method (FEM) to
study electro-osmotically driven microflows of Newtonian fluids in T-
junctions. Dutta et al. (2002b) used a spectral element method (SEM) for
solution of the Poisson–Boltzmann and incompressible Navier–Stokes
equations, to analyze mixed electro-osmotic/pressure driven flows of
Newtonian fluids in two-dimensional geometries, such as straight chan-
nels and T-junction geometry. The previous work was later extended to
complex microgeometries (cross-flow and Y-split junctions) by Dutta
et al. (2002a). Lin et al. (2002) solved the Nernst–Planck and the full
Navier–Stokes equations using FDM to model the EOF of Newtonian
fluids in microfluidic focusing chips.

For non-Newtonian fluids the efforts for numerical modeling of EOF
are now gathering momentum, with limited advance having been made,
still for very simple geometries such as straight microchannels. Recently,
Park and Lee (2008a) calculated numerically the electro-osmotic veloc-
ity of viscoelastic fluids in a square microchannel with and without
externally imposed pressure gradient, using a generalized constitutive
equation, which encompasses the upper-convected Maxwell (UCM)
model, the Oldroyd-B model and the PTT model. Very recently, Tang
et al. (2009), presented a numerical study of EOF in microchannels
of non-Newtonian purely viscous fluids described by the power law
model, using the lattice Boltzmann method. Zimmerman et al. (2006)
presented two-dimensional FEM simulations of EOF in a microchan-
nel T-junction of a purely viscous fluid described by a Carreau-type
nonlinear viscosity. The motion within the electrical double layer at
the channel walls was approximated by velocity wall slip boundary
conditions.

In this work, and for the first time to our best knowledge, we per-
form numerical EOF simulations of viscoelastic fluids in more complex



7.5 electro-osmotic flows of viscoelastic fluids: a numerical study 247

geometries. We use an FVM to solve the relevant coupled equations
for electro-osmotic flows of viscoelastic fluids, namely the nonlinear
Poisson– Nernst–Planck equation that governs the electrical double-
layer field, the Cauchy equation with a body force due to the applied
electrical potential field and a variety of constitutive equations for the
viscoelastic fluids, in particular the UCM and sPTT models. In addition
to the simulations in a complex geometry (Cross-Slot geometry), and
in order to test the implementation of the numerical method, some
predictions are compared with existing analytical solutions for the flow
in a two-dimensional microchannel under symmetric and asymmetric
boundary conditions for the zeta potential at the walls (Afonso et al.,
2009c, 2010c).

The remaining of the paper is organized as follows: in sections
7.5.2 and 7.5.3 we briefly present the governing equations and outline
the numerical method used to simulate the EOF of the viscoelastic
fluids, respectively. In section 7.5.4, the main results of the numerical
implementation tests and of the EOF in a cross-slot geometry are
presented, respectively. A summary of the main findings closes the
paper in section 7.5.5.

7.5.2 Governing equations

The flow is assumed to be steady, laminar and the fluid is incompress-
ible. The governing equations describing the flow are the continuity
equation,

∇ · u = 0 (7.174)

and the Cauchy equation:

ρ

[
∂u
∂t

+∇ · uu
]
= −∇p+βη0∇2u +

η0
λ

(1−β)∇ ·A + F (7.175)

where u is the velocity vector, p the pressure, t the time, ρ the fluid
density, ηs the Newtonian solvent viscosity and A is the conformation
tensor. The polymer solution either obeys the UCM or the sPTT models,
hence the total fluid extra stress is the sum of the solvent and polymer
stress contributions. The equations are written in general form. The
polymer has a relaxation time λ and a viscosity coefficient ηp, defining
a zero-shear rate total viscosity η0 = ηp + ηs. The coefficient β in
equation (7.175) is the ratio between the solvent viscosity and η0 (β =

ηs/η0) and is a measure of the concentration of polymer additive (β = 0

implies no solvent and β = 1 means that the fluid is Newtonian and
there is no polymer additive).

The polymer extra-stress τ can be related to the conformation tensor
A using

τ =
η

λ
(A − I) (7.176)

which requires the solution of an evolution equation of the form,

λ

[
∂A
∂t

+∇ · uA
]
+ Y (trA)A = Y (trA) I+ λ

(
A · ∇u +∇uT ·A

)
(7.177)

where I is the unitary tensor. When Y (trA) = 1 we recover the Oldroyd-
B model which further simplifies to the UCM equation if β = 0. Oth-
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erwise, we are in the presence of the sPTT model with a Newtonian
solvent and Y (trA) imparts to the fluid shear-thinning behavior and
bounds the extensional viscosity as explained in the original papers of
Phan-Thien and Tanner (1977) and Phan-Thien (1978).

In its general form function Y (trA) is exponential, but in this work
we use its linear form

Y (trA) = 1+ ε (trA − 3) (7.178)

The F term in the Cauchy equation (7.175) represents a body force per
unit volume, given as

F = ρeE (7.179)

where E is the applied external electric field and ρe is the net electric
charge density. The electric field intensity is related to the electric
potential, Φ, by

E = −∇Φ (7.180)

while the electric potential is governed by,

∇2Φ = −
ρe

ε
(7.181)

where ε is the electrical permittivity of the solution. Two types of
electric fields can be identified in EOF flows, depending on their origin.
One is the applied electric field generated by the electrodes at the inlet
and the outlet of the flow geometry, φ. The other electric field is due to
the net charge distribution in the EDL, due to the charge acquired at
the wall, ψ. The total electric field is simply a linear superposition of
these two contributions, and this can be written as

Φ = φ+ψ (7.182)

Consequently, equation (7.181) can be rewritten as two separate equa-
tions,

∇2φ = 0 (7.183)

and

∇2ψ = −
ρe

ε
(7.184)

Finally, we need to quantify the electric charge density in order to have
a closed-form equation. For a symmetric electrolyte the ions and the
counter-ions have the same charge valence, z+ = −z− = z, and the net
electric charge density is given by:

ρe = ez
(
n+ −n−

)
(7.185)

where n+ and n− are the concentrations of the positive and negative
ions, respectively, and e is the elementary electric charge. In order to
find the net charge density ρe, the distributions of ionic concentra-
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tions n+ and n− must be determined. This is achieved by solving the
following transport equation, known as the Nernst-Planck equations:

∂n±

∂t
+u ·∇n± = ∇·

(
D±∇n±

)
±∇·

[
D±n±

ez

kBT
∇ (φ+ψ)

]
(7.186)

where D+ and D− are the diffusion coefficients of the positive and
negative ions, respectively. The set of equations (7.183) to (7.186) is
usually called the Poisson-Nernst-Planck equations (PNP).

Another way to quantify the electric charge density is using the
widely adopted Poisson–Boltzmann equation derived from the Nernst–
Planck equations. From the ionic transport equations (7.186), when the
ionic distribution is stationary, the electric double layer does not overlap
at the center of the channel and significant variations of n± and ψ occur
only in the normal direction to the channel walls, the stable Boltzmann
distribution of ions in the electric double layer can be assumed, that
according to Bruss (2008) is given by

ρe = −2noez sinh
(
ez

kBT
ψ

)
(7.187)

where no = CNA is the bulk number concentration of ions in the elec-
trolyte solution, C is the molar concentration of ions, NA is Avogadro’s
number, T is the temperature and kB is the Boltzmann constant. The
set of equations (7.183), (7.184) and (7.187) is usually called the Poisson-
Boltzmann equations (PB).

For small values of ezψ0/kBT , synonymous of a small ratio of
electrical to thermal energies, equation (7.187) can also be linearized,
sinh x ≈ x, using the so-called Debye-Huckel approximation. Then, the
electric charge density equation, becomes

ρe = −εκ2ψ (7.188)

where κ2 = 2noe
2z2

εkBT
is the Debye-Huckel parameter, related to the

thickness of the Debye layer, (also referred to as the EDL thickness).
The set of equations (7.183), (7.184) and (7.188) is usually called the
Poisson- Boltzmann-Debye-Huckel equations (PBDH).

Finally, we can rewrite the Cauchy equation (7.175) as,

Du
Dt

= −∇p++βη0∇2u +
η0
λ

(1−β)∇ ·A + ρe∇ (φ+ψ) (7.189)

keeping in mind that the electric charge density equation can be ob-
tained by equations (7.185), (7.187) or (7.188), depending on the desired
level of approximation.

7.5.3 Numerical method

In the past, our group adapted a Newtonian FVM to calculate pressure
driven flows of viscoelastic fluids. The method is based on a time
marching pressure-correction algorithm formulated with the collocated
variable arrangement and is explained in detail in Oliveira et al. (1998)
and Alves et al. (2003a). For improved convergence, the FVM was
modified with the matrix logarithmic of the conformation tensor (Fattal
and Kupferman, 2004), and details of that implementation have been
previously given by Afonso et al. (2009b).
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Here, the existing method was extended to mixed electro-osmotic/
pressure driven flows, and the modifications are explained below. As
observed in the previous section, the new set of equations depends on
the approximations applied to the closed-form equation for the electric
charge density, i.e., the PNP, PB or PBDH equations. This fact also
reflects on the numeric implementation, and we chose to implement
all the three approximations. Briefly, the PNP, PB or PBDH equations
are transformed first to a non-orthogonal system (σl), but keeping
the Cartesian velocity and stress components. This is advantageous
from a numerical point of view, because the equations are written in a
strong conservation form which helps to ensure that the final algebraic
equations retain conservativeness. Then, the equations are integrated
in space over the control volumes (cells with volume Vp) forming the
computational mesh, and in time over a time step (δt), so that sets of
linearised algebraic equations are obtained, having the general form:

aΘPΘP =

6∑
F=1

aΘF ΘF + S
Θ (7.190)

to be solved for all variables (Θ = u, v, w, θ, ψ, n+ or n−). The
equations for the pressure and extra stress components (or the Log-
conformation tensor) are similar to equation (7.190) and are the same
used in the pressure driven flow version of the code (see Oliveira et al.,
1998; Alves et al., 2003a), and so they are not included in this descrip-
tion. In these equations aF are coefficients accounting for convection
and diffusion, SΘ are source terms encompassing all contributions
not included in the coefficients, the subscript P denotes the cell under
consideration and subscript F its corresponding neighbouring cells. The
coefficients of the PNP equations are given by:

φ ⇒
{
a
φ
F = Df; a

φ
P =

∑6
F=1 a

φ
F ; Sφ = 0

ψ ⇒
{
a
ψ
F = Df; a

ψ
P =

∑6
F=1 a

ψ
F ; Sψ = ez

ε (n+ −n−)VP

n± ⇒


an
±
F = Df +Cf; an

±
P = VP

δt +
∑6
F=1 a

n±
F

Sn
±
= Sn

±
HRS +

[
n±
δt ±

(
D±n±
2 κ2 (n− −n+)

+
∑3
i=1

∂
(
D±n± ze

kBT

)
∂xi

∂(φ+ψ)
∂xi

)]
VP

u, v, w ⇒
{
SuvwE = ez (n+ −n−)∇ (φ+ψ)VP

(7.191)

where Df and Cf are the diffusive and convective conductance, respec-
tively. The term SuvwE is the electric body force term in the momentum
equations (7.189), and is added to the other source terms in the mo-
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mentum equation (see Oliveira et al., 1998; Alves et al., 2003a). The
coefficients of the PB equations are given by:

φ ⇒
{
a
φ
F = Df; a

φ
P =

∑6
F=1 a

φ
F ; Sφ = 0

ψ ⇒

a
ψ
F = Df; a

ψ
P =

∑6
F=1 a

ψ
F + κ2 cosh

(
ez
kBT

ψ
)
VP

Sψ =
[
κ2ψ cosh

(
ez
kBT

ψ
)
− 2noez∈ sinh

(
ez
kBT

ψ
)]
VP

u, v, w ⇒
{
SuvwE = 2noez sinh

(
ez
kBT

ψ
)
∇ (φ+ψ)VP

(7.192)

In the coefficients for the potential ψ, especial attention was given
to the hyperbolic function sinh (ezψ/kBT), especially at high values
of ezψ/kBT , due to the exponential behavior of the function. So, a
linearization of the source term, Sψ was introduced in equation (??).
Finally, the coefficients of the PBDH equations are given by:

φ ⇒
{
a
φ
F = Df; a

φ
P =

∑6
F=1 a

φ
F ; Sφ = 0

ψ ⇒
{
a
ψ
F = Df; a

ψ
P =

∑6
F=1 a

ψ
F + κ2VP; Sψ = 0

u, v, w ⇒
{
SuvwE = εκ2ψ∇ (φ+ψ)VP

(7.193)

The CUBISTA high-resolution scheme (Alves et al., 2003a) was used
in the discretization of the convective terms of the momentum, of the
Log-conformation tensor and of the ionic transport equations (7.186)
(see term Sn

±
HRS in equations (7.193)). This scheme is formally of third-

order accuracy and was especially designed for differential constitutive
relations (see Alves et al. 2003a). Due to the lack of space and because
we will use small EDL thickness (and so the electric double layer does
not overlap at the center of the channels), and we also assume that
significant variations of n± and ψ occur only in the normal direction
to the channel walls, then only the PB version of the code is used in the
present work.

7.5.4 Results and discussion

7.5.4.1 Accuracy tests

To test the implementation of the numerical method some predictions
are compared with existing analytical solutions for the flow in a two-
dimensional microchannel under symmetric and asymmetric boundary
conditions for the zeta potential at the walls (Afonso et al., 2009c, 2010c).
In those works the so-called standard electrokinetic model assumptions
were used, along with the sPTT model for the viscoelastic fluid. When
the flow is fully-developed the velocity and stress fields only depend
on the transverse coordinate y, and on some dimensionless parameters,
such as the ratio of microchannel to Debye layer thicknesses κ̄ = κH, the
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(a) Channel geometry.

(b) mesh M3.

Figure 7.37: Schematic representation of the channel geometry and computa-
tional mesh.

Table 7.1: Mesh details.

NC ∆xmin ∆ymin
M1 1800 0.2 8.0x10−4

M2 3600 0.2 4.0x10−4

M3 7200 0.2 2.0x10−4

MCS 12801 4.0x10−4 4.0x10−4

Helmholtz-Smoluchowski electro-osmotic velocity ush = −εζiEx/η,
the rheological properties of the fluid via a Deborah number based
on the EDL thickness and ush, Dek = λush/λD = λushκ (or based in
the channel length, DeH = λush/H as in Afonso et al., 2009c) and the
fluid extensibility parameter ε. To account for the combined forcing
of pressure gradient and electro-osmosis, the non-dimensional ratio
between these two forcings is given by Γ = −

(
H2/εζi

)
(p,x/Ex).

The channel geometry is represented in Figure 7.37(a). At the walls
the no-slip condition applies (u = 0 at y = ±H), along with ∂φ/∂y|wall =

0 and ψ = ζi. Depending on the value of ζi on the walls, we can de-
termine if the flow is symmetric (Rζ = ζ1/ζ2 = 1, i.e. ζ1 = ζ2) or
asymmetric (Rζ = ζ1/ζ2 6= 1, i.e. ζ1 6= ζ2). At the inlets fully-developed
velocity and stress profiles are imposed and at the outlet planes Neu-
mann boundary conditions are applied, i.e. ∂θ/∂x = 0).

The main characteristics of the three meshes used in this work for the
accuracy test are given in Table 7.1, including the total number of cells
(NC) and the minimum cell spacing (∆xmin and ∆ymin). Note that the
refinement in the transverse direction is very high, in order to obtain
accurate results in the sharp zone of the EDL. This high refinement is
shown in Figure 7.37(b), here for mesh M3.

The results for the accuracy tests are presented in Figure 7.38. When
Rζ = 1, i.e., for symmetric conditions, Figure 7.38(a), presents the
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fully-developed dimensionless velocity profiles obtained with ε =

0.25,Dek = 1, κ̄ = 200 and Γ = 0 (pure EOF). As observed, both the
analytical and numerical results collapse, showing excellent accuracy,
even at a very sharp EDL (κ̄ = 200). For complete asymmetric flow
(Rζ = −1), with ε = 0.25,Dek = 1, κ̄ = 50 and in the presence of a
favourable pressure gradient (with Γ = −2), the comparison between
the analytical and numeric results is also excellent, as observed in
Figure 7.38(b). These results show that the refinement near the wall for
mesh M2 is sufficient to obtain accurate results, even for very small
EDL thickness.

(a) (b)

Figure 7.38: Dimensionless velocity profiles for (a) symmetric zeta potential for
pure EOF (Γ = 0) and (b) asymmetric zeta potential for favourable
pressure gradient (Γ = −2).

7.5.4.2 Cross-Slot flow results

Further studies were undertaken in a more complex geometry, usually
described as cross-slot geometry (see Figure 7.39). We are particularly
interested in investigating the possible appearance of purely-elastic
instabilities, as observed recently in a three-dimensional cross-slot
microchannel flow by Arratia et al. (2006), under pure Poiseuille flow.
Poole et al. (2007c) simulated the two-dimensional cross-slot flow of an
UCM fluid under creeping-flow conditions, and were able to capture
qualitatively the onset of a bistable steady asymmetric flow above a
first critical Deborah number followed by a later transition to a time
dependent flow, in agreement with the experimental findings of Arratia
et al. (2006). Poole et al. (2007b) extended the earlier study of Ref. Poole
et al. (2007c) by considering the three-dimensional nature of a real
microfluidic cross slot flow and investigated in detail the effect of the
aspect ratio of the geometry, by varying the depth of the cross slot from
low values (quasi-Hele Shaw flow) up to very large values (quasi-two
dimensional flow). Later, Poole et al. (2007a) incorporated the effect of
solvent viscosity (β 6= 0 in the Oldroyd-B) and finite extensibility (ε 6= 0
in the sPTT model), presenting some β−Re−De and ε−Re−Demaps
of flow pattern types, showing the existence of a narrow region where
steady asymmetric flow can emerge, and identified the limiting De for
onset of time-dependent flow. The effect of finite extensibility was also
studied by Rocha et al. (2009), using FENE models. Afonso et al. (2010b)
presented a numerical study of the creeping flow of an UCM fluid in a
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three-dimensional cross-slot geometry with six arms and studied the
influence of the different types of extensional flow near the stagnation
point. They found that the uniaxial extension flow configuration is
prone to the onset of steady flow asymmetries, while in the biaxial
extension flow configuration the flow was perfectly symmetric.

In this work we further extend the previous investigations by con-
sidering the effect of the electric field in the appearance of the flow
instabilities. The cross-slot geometry is shown schematically in Fig-
ure 7.39 together with the mesh used in this work. All branches have
the same width (H) and the inlet and outlet branches have lengths of
twenty channel widths (20H). At the inlets fully-developed velocity and
stress profiles are imposed and the inlet length is more than sufficient
for the flow at the junction to be independent of the inlet condition.
Similarly, the outlets are sufficiently long to avoid any effect of the
outflow boundary condition upon the flow in the central region. At the
outlet planes vanishing axial gradients are applied to all variables (Neu-
mann boundary conditions, i.e. ∂ψ/∂y = 0), and no-slip conditions are
imposed at all channel walls. For the potential at the walls, we assume
∂φ/∂n|wall = 0 and ψ = ζi. The mesh used in these calculations has
the same refinement near the walls as mesh M2 of the accuracy tests,
and the main characteristics of that mesh are also given in Table 7.1.
Near the central square, and as observed in Figure 7.39(b), the mesh
in the axial direction is also very refined, with both minimum cell
spacings equal ∆xmin = ∆ymin = 4.0x10−4. All the calculations were
carried out at a vanishing Reynolds number, Re = ρUH/η = 0 (creeping
flow conditions – imposed by dropping out the convective term in the
momentum equation).

(a) Cross-slot geometry. (b) mesh MCS.

Figure 7.39: Schematic representation of the Cross-slot geometry and computa-
tional mesh.

As already described, we are particularly interested in the effect
of the electric field in the possible appearance of asymmetries in the
cross-slot flow. We start presenting the effect of the combined forcing
by pressure gradient and electro-osmosis in the flow characteristics.
Theoretically, for Newtonian fluid flow in a straight channel, when
the non-dimensional ratio between these two forcings is Γ = 2, the
dimensionless velocity at the center line is zero (due to the adverse
effect of both forcing terms, i.e., pressure is driving the flow in one
direction while electric potential drives it in the opposite direction).
Figure 7.40(a), shows the streamlines superimposed with the u-velocity
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contours for this situation. We can observe that near the walls the EOF
is driving the flow towards the central square while in the center line of
the channel the backpressure drives the flow out in the channel. This is
also evident if the adverse pressure gradient is increased, as observed
in Figure 7.40(b), here for Γ ≈ 2.5.

(a) (b)

Figure 7.40: Streamlines superimposed over axial velocity field for Newtonian
flow for adverse pressure gradients: (a) Γ ≈ 2 and (b) Γ ≈ 2.5.

For viscoelastic fluids we performed additional simulations with
Γ ≈ 0, i.e., for pure EOF, and κ̄ = 20 using the UCM model. Figure
7.41 presents the streamlines superimposed over u-velocity contour
maps for UCM flow for several Deborah numbers, showing that above
a critical Deborah number (DeH = 0.275) the flow becomes asymmetric.
The differences between the results for the cross slot with pure EOF
and pure pressure gradient flows may be understood from the role
of the amount of stabilizing shear flow in the stagnation point region
which is less in the case of EOF. This difference may also be important
for understanding the appearance of the purely-elastic instabilities in
the cross slot geometry. At higher Deborah numbers the flow becomes
unsteady, with the formation of vortical structures in the central square,
but these flow conditions require further studies, to be undertaken in
the future.

7.5.5 Conclusions

In this work we present a finite volume method that can be used to solve
the relevant coupled equations for electro-osmotic flows of viscoelastic
fluids, namely the nonlinear Poisson–Boltzmann equation that governs
the electrical double-layer field, the Cauchy equation with a body
force due to the applied electrical potential field and the constitutive
equations for the viscoelastic fluids.

To describe the rheological behavior of viscoelastic fluids we use
the Upper-Convected Maxwell (UCM) model and the simplified Phan-
Thien—Tanner model (sPTT) (Phan-Thien and Tanner, 1977). We tested
the implementation of the numerical method against existing analytical
solutions for the flow in a two-dimensional microchannel under sym-
metric and asymmetric boundary conditions for the zeta potential at
the walls (Afonso et al., 2009c, 2010c), and the comparison between the
analytical and numeric results collapsed within numerical uncertainty,
even for very small EDL thickness.

In this work we further extend the previous investigations in the
cross-slot geometry by considering the effect of the electric field in
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the appearance of the flow instabilities, and found that even for pure
electro-osmotic flow (in absence of any imposed pressure gradient) we
were able to capture the onset of an asymmetric steady flow above a
critical Deborah number, DeH = 0.275, which was lower than for pure
pressure gradient forcing.

(a) (b)

(c) (d)

(e) (f)

Figure 7.41: Streamlines superimposed over u-velocity field for pure EO flow of
UCM fluid: (a) steady symmetric flow at DeH = 0; (b) DeH = 0.1,
(c) DeH = 0.2; (d) DeH = 0.25 and steady asymmetric flow at (e)
DeH = 0.275 and (f) DeH = 0.3.
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C O N C L U S I O N S

I don’t know!
I don’t know why I did it,

I don’t know why I enjoyed it,
and I don’t know why I’ll do it again!

— Bart Simpson

Who would also think that the simplicity of Heraclitus of Ephesus
(540–475 BC) philosophical statement “Panta rhei” (everything flows),
could lead into this PhD thesis? So let us ascend (or descend, following
again Heraclitus’s ideas “The road up and the road down is one and
the same”) to the closing conclusions of this dissertation.

The present thesis, was aimed to increasing the current knowledge
about several distinct, but complementary, subjects. This was accom-
plished by a numerical and theoretical investigation, with four main
objectives/questions introduced in Part I, Section 1.2 (on page 15). The
following answers resume the main conclusions:

obj. 1 Is it possible to development robust and highly accurate nu-
merical schemes to overcome the High Weissenberg Number

Problem?

ans. 1 Not completely, but the developments of this thesis albeit small
were a firm step into the possible solution of the High Weis-
senberg Number Problem. This was accomplished within the
framework of finite volume method, with the incorporation into
the in-house code of the numerical stabilization methodology
recently proposed by Fattal and Kupferman (2004). After this
implementation, the code was able to obtain very precise results
in computational rheology benchmark flows (cylinder and con-
traction flows), with the calculations at very high Weissenberg
numbers showing the tendency to become unsteady.

In the computational rheology benchmark flow around a con-
fined cylinder with a blockage ratio of 0.5 the results obtained
in the most refined mesh (with a minimum cell size of the or-
der O(10−3, 10−4)), presented no limiting bound for the attained
Deborah number, although only simulations up to De = 1.9 were
performed. This represents an increase of about 90% in the max-
imum attainable De when compared with the actual literature,
and an outstanding step into the High Weissenberg Number

Problem solution.

The achievements were even more impressive in the results ob-
tained in the 4:1 contraction benchmark flow. For this flow, again

261
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no limiting bound for the attained Deborah number was ob-
served, with stable solutions obtained up to De = 100 in the 2D
case with the Oldroyd-B model and up to De ≈ 10, 000 in the
3D square/square contraction flow with the PTT model. A rich
succession of dynamical transitions, from steady to unsteady flow
with lip and corner vortex enhancement, and from symmetric
to asymmetric patterns with alternating vortex pulsation, up to
almost chaotic regime of back-shedding upstream of the contrac-
tion plane, were also presented, to the author’s best knowledge,
for the first time in the literature.

The energy losses in the flow of the Oldroyd-B fluid through the
abrupt contraction, evaluated by the Couette correction coefficient
(Ccorr) that represents a dimensionless extra pressure drop due
to flow redevelopment at the entrance of the smaller channel, pre-
sented a non-monotonical variation with elasticity. The increase
in Ccorr occurred for De > 20, as had been seen in earlier studies
for the PTT fluid (Alves et al., 2003b) and in close agreement with
the experimental findings of McKinley et al. (1991b) and Rothstein
and McKinley (2001).

obj. 2 Is it possible to use these robust and highly accurate nume-
rical schemes to simulate complex flows of complex fluids that
originate purely elastic Flow Instabilities?

ans. 2 Yes. Here this was accomplished by the application of the log-
conformation method for the three-dimensional cross-slot flow
and in the mixing-separating geometries, in which purely elastic
instabilities are present.

In the three-dimensional cross-slot geometries, the uniaxial ex-
tensional flow configuration (a configuration with four inlets and
two outlets) is prone to the onset of steady flow asymmetries
and at a higher Deborah number there is a second transition
from steady asymmetric to unsteady flow, as in the corresponding
two-dimensional cross slot geometry.

On the other hand, for the biaxial extensional flow configura-
tion (a configuration with two inlets and four outlets) a perfectly
symmetric flow was observed up to a critical Deborah number,
at which the flow becomes unsteady and asymmetric without
transitioning through a steady asymmetric flow. Inertia was found
to stabilize the first type of transition (for the uniaxial extensional
flow) and to destabilize the second transition in both flow configu-
rations, although to a much lesser degree in the biaxial extensional
flow configuration.

In the mixing-separating geometry, and for a combination of
critical flow parameters, it was possible to identify a new steady
and stable bifurcation in the flow patterns at low inertia and high
elasticity.

For large dimensionless gap sizes, but below a critical value (θ 6
1.6), the reversed flow is initially slightly enhanced with elasticity,
followed by a significant decrease towards zero when the Deborah
number further increases. This behaviour is characterized by a
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significant departure from streamline parallelism in the mixing-
separating gap region, although with the fluid still tending to
flow unidirectionally in agreement with experiments (Cochrane
et al., 1981; Walters and Webster, 1982).

For a supercritical dimensionless gap size (θ > 1.84), elasticity
is responsible for a continuous increase of flow reversal relative
to the unidirectional flow with Deborah number. This type of
supercritical pattern has not yet been observed experimentally
primarily due to the stabilising effect of inertia.

At an intermediate gap width range (1.6 6 θ 6 1.84), a steady bi-
furcation flow pattern emerges, with a sudden jump between two
widely different flow configurations, ranging from almost unidi-
rectional to almost fully reversed, at Deborah numbers slightly
higher than the critical Deborah number. The bifurcation between
these two flow patterns is due to a purely-elastic instability since
inertia has no role (Re = 0) in the present simulations (we have
also observed such purely elastic instabilities in the works of
Poole et al., 2007c,a and Rocha et al., 2009). Further stability anal-
ysis suggested that in this bifurcation flow pattern, and although
both flow configurations are steady and stable, the unidirectional
configuration is preferred.

obj. 3 Is it possible to use these robust and highly accurate numerical
schemes to simulate complex flows of complex fluids driven by
New Forcing Terms, such as electro-osmosis, and do these flows
lead to elastic Flow Instabilities?

ans. 3 Yes. Here this was accomplished by the application of the log-
conformation method in electro-osmostic flows (EOF). Up to the
beginning of this thesis, numerical investigations on modelling
of EOF were nonexistent. Meanwhile, these are now gathering
momentum, with limited advance having been made, still for very
simple geometries such as in straight microchannels.

Three different implementations of physical models were car-
ried out, which depend on the desired level of approximation.
In the first implementation, the Poisson-Nernst–Planck (PNP)
equations were incorporated into the code and the electric charge
distribution required to quantify the electric field forcing of the
momentum equation is calculated from the most fundamental
equations. The second implementation is realy an approximation
in which a stable Boltzmann distribution of ions is assumed to
occur in the electric double layer. Here, the Poisson-Boltzmann
equations were implemented. Finally, the so-called Debye-Hückel
approximation was also implemented in the Poisson-Boltzmann-
Debye-Hückel (PBDH) model, which is valid for cases with a
small ratio of electrical to thermal energies. To test each numerical
implementation, some predictions are compared with existing
analytical solutions for the flow in a two-dimensional microchan-
nel under symmetric and asymmetric boundary conditions for
the zeta potential at the walls (Afonso et al., 2009c, 2010c).

New types of flow instabilities, a combination of electrokinetic
and elastic instabilities, were obtained in the electro-osmosis flow
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of viscoelastic fluids, such as the observed in the cross-slot flow.
For the UCM fluid flow above a critical Deborah number (DeH =

0.275) the flow becomes asymmetric, and the differences between
the results for the cross slot with pure EOF and pure pressure
gradient flows by Poole et al. (2007c), were related with the role
of the amount of stabilizing shear flow in the stagnation point
region which is less significant in the case of EOF. This difference
may also be important for understanding the onset of the purely-
elastic instabilities. At higher Deborah numbers the flow becomes
unsteady, with the formation of vortical structures in the central
square.

obj. 4 Is it possible to obtain analytical solutions for simple flows of
complex fluids driven by New Forcing Terms, such as electro-
osmosis?

ans. 4 Yes. Up to the beginning of this thesis, there were no analytical
solutions for fully-developed electro-osmotic flows of non-linear
viscoelastic fluids. The present dissertation aimed at fulfilling
this gap in the literature, and various analytical solutions were
presented for combined pressure/electro-osmosis forced flows
of viscoelastic fluids in a channel under a variety of boundary
conditions of practical relevance, such as those observed in the
case of electro-osmotic pumps.

An analytical solution for the flow of viscoelastic fluids in micron
sized ducts, namely between parallel plates and pipes under the
combined influence of electrokinetic and pressure forces using
the Debye–Hückel approximation was presented. This study also
included the limit case of pure electro-osmotic flow. Using the
simplified Phan-Thien–Tanner and the FENE-P models, the pre-
sented solution was non-linear with a significant contribution
arising from the coupling between the electric and pressure poten-
tials. This new term acts as a drag reducer and a drag increaser
under favourable and adverse pressure gradients, respectively
and contrasts with the Newtonian flow case, for which it does
not exist, demonstrating that the superposition principle valid for
Newtonian fluids no longer applies when non-linear viscoelastic
fluid models are considered.

The solution for the mixed pressure/EO flows was extended as-
suming asymmetric boundary conditions, in which different zeta
potentials at the walls were considered. This situation can be
found, for instance, in soft lithography where the channels are of-
ten made of polydimethylsiloxane (PDMS) except for the top wall
that is often made of glass for optical access, or other material for
other purpose. The fluids were z− z symmetric electrolytes, and
again the simplified Phan-Thien–Tanner and the FENE-P mod-
els were used. The combined effects of fluid rheology, electrical
double-layer thickness, ratio of the wall zeta potentials and ratio
between the applied streamwise gradients of electrostatic poten-
tial and pressure on the fluid velocity and stress distributions
were discussed.

Analytical studies of electro-osmotic flow of a viscoelastic fluid
described by the complete Phan-Thien-Tanner model was also
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presented. This PTT model uses the Gordon-Schowalter convected
derivative, which leads to a non- zero second normal stress differ-
ence in pure shear flow. Equations for the critical shear rates and
maximum electrical potential required to maintain a steady fully
developed flow were derived and discussed. When the shear rate
and Deborah number exceed a critical value a constitutive flow
instability occurs for ξ 6= 0, and this critical shear rate is found
to be dependent of ε and ξ, whereas the critical Deborah number
is only dependent on ξ for large κ. The critical Deborah number
increases with decrease in ξ tending to infinity as ξ tends to zero.

An applied theoretical study of practical relevance in the transport
of non-polar fluids was also presented. The theoretical study of
a two-fluid electro-osmotic pump, in which the work fluid is
viscoelastic. This is the principle of operation of an EO two-fluid
pump, presented by Brask et al. (2003), in which an electrically
nonconducting fluid is transported by the interfacial dragging
viscous force of a conducting fluid that is directly driven by
electro-osmosis. The effects of fluid rheology, dynamic viscosity
ratio, holdup and interfacial zeta potential are analysed to show
the viability of this technique, where a higher volumetric flow
rate of a nonconducting Newtonian fluid can be achieved in EOF
pumping when the conducting fluid is viscoelastic rather than
Newtonian, due to lower wall viscosities of the shear-thinning
fluids.

These analytical solutions were also of significant importance in
order to test the proposed code implementations and demonstrate
their high stability and accuracy, as described in Ans. 3.
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O U T L O O K

How often I found where I should be going
only by setting out for somewhere else.

Whenever I draw a circle,
I immediately want to step out of it.

— Buckminster Fuller

If some of the questions posed in this work were fully answered,
there are even more open questions that are still waiting for a solution
or even to be formulated. Let us close this dissertation by addressing
the expectations for possible future outcomes.

- There are plenty of new clever ideas to be tested in the numerical
solution of the High Weissenberg Number Problem.

In the mid-term outlook, a more detailed investigation on the new
square-root formalism introduced by Balci et al. (2010) (See Section
2.1, on page 22) should be carried out. We have implemented this
square-root formalism in our code (Afonso et al., 2010a), and a
comparative study with the log-conformation will be performed,
using the cylinder flow problem.

In order to optimize the mesh refinement near critical zones,
such as near walls and other singular points, some numerical
techniques need to be implemented. An adaptive-grid method is
planned for implementation in the near term in the same in-house
code.

The adoption of fine-grain constitutive equations will be also
implemented, in order to improve the physical level of approxi-
mation of the numerical methods. The parallelization of the code
will be very helpful for this purpose.

- Viscoelastic flow instabilities are still a stimulating and provocative
subject.

Numerical investigation of viscoelastic instabilities in multiphase
flows and in flows with electrokinetic forcing in microfluidic
systems will also be carried out. For such endeavour, the Level-
Set method, to compute liquid-gas and liquid-liquid flows, with
viscoelastic continuous phase, will be implemented in the near
future.

267
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- Explore the gathering momentum of electro-osmotic flow of complex
fluids.

Even though electro-osmotic flow of complex fluids in microflu-
idics is still in a state of exploratory research, there are industrial
applications where its advantages stand out clearly, such as in
screening for protein crystallization, bio-analyses or the manipu-
lation of multiphase flows. Electrokinetic forcing can lead to the
onset of flow instabilities, called electrokinetic instabilities (EKI).
When used in combination with viscoelastic fluids, new phenom-
ena arise, as recently discovered Bryce and Freeman (2010) and a
sound understanding of the instability driving mechanism needs
to be obtained.
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