Thermal development of high Prandtl channel flows of single-mode linearised Phan-Thien–Tanner fluids

P. M. Coelho¹, F. T. Pinho¹, P. J. Oliveira²

¹ Centro de Estudos de Fenómenos de Transporte, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias s/n, 4200-465 Porto (Portugal).
² Departamento de Engenharia Electro-Mecânica, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã (Portugal)

Introduction
Polymer melts are very viscous fluids that can often be accurately described in shear flow by a single mode simplified linearised Phan-Thien–Tanner (SPTT) constitutive equation [1,2]. Of practical relevance, as in mold filling, is the thermal development of this fluid in a channel which takes place for a condition of fully-developed hydrodynamic inlet flow because the Prandtl number is well in excess of 1000. This is known as the Graetz problem and has been solved in the past for Newtonian fluids [3], with viscous dissipation [4], for power law fluids [5], but not for viscoelastic fluids.

In this work, the Graetz problem for the channel flow of an SPTT with constant wall temperature and viscous dissipation is presented.

Governing Equations
The channel is aligned with the x-axis, y is the transverse coordinate and H is its half-width. The flow is fully-developed at inlet with local velocity \(u(y) \) and bulk velocity \(U \). The rheological equation determines the stress field and is given [1] by:

\[
\left(1 + \frac{\lambda \varepsilon}{\eta} \tau_{kk}\right)\tau_{ij} + \lambda \tau_{ij}^{(1)} = \eta \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
\]

where \(\tau_{ij}^{(1)} \) is Oldroyd’s upper convected derivative, \(\lambda \) is the relaxation time, \(\eta \) is the viscosity coefficient and \(\varepsilon \) is an elongational parameter.

Oliveira and Pinho [6] solved, for this fluid, the momentum and continuity equations to give the fully-developed hydrodynamic channel flow

\[
u^* = \frac{u}{U} = \frac{3}{2} \frac{U_N}{U}(1 - y^*^2) \left[1 + a(1 + y^*^2) \right]
\]

\[
\tau_{xy}^* = -\frac{\tau_{xy}}{\eta U H} = -3 \frac{U_N}{U} y^*
\]

where \(y^* = y/H \). So, starred quantities are nondimensional and \(U_N \) represents the bulk velocity for the Newtonian fluid subjected to the same pressure gradient (i.e. \(U_N = -H^2 (dp/dx)/(3\eta) \)) thus defining the dimensionless pressure gradient \(\chi = U_N/U \) given as the solution of the following cubic equation

\[
\frac{54}{5} \varepsilon We^2 \left(\frac{U_N}{U} \right)^3 + \frac{U_N}{U} = 1
\]

Flow viscoelasticity is usually characterised by the Weissenberg number \(We = \frac{\lambda U H}{\eta} \). Here, elastic and elongational characteristics are accounted for together in nondimensional parameter:

\[
a = 9 \varepsilon We^2 \left(\frac{U_N}{U} \right)^2
\]

Following previous work [5,7] the Fourier law for heat conduction is assumed valid for the PTT viscoelastic fluid and all fluid properties are constant and independent of temperature. The energy conservation equation is written in nondimensional form as

\[
u^* \frac{\partial \theta}{\partial x} = \frac{\partial}{\partial y} \left(\frac{\partial \theta}{\partial y} \right) + Br \tau_{xy}^* \frac{du^*}{dy}
\]

where \(x^* = x \alpha / R^2 U \) and \(\alpha \) is the thermal diffusivity. The temperature and the Brinkman...
number (this term accounts for viscous dissipation) are defined as
\[\theta \equiv \frac{T - T_i}{T_w - T_i} \]
(7)

\[Br \equiv \frac{\eta U^2}{k(T_w - T_i)} \]
(8)

where \(T_w \) and \(T_i \) are the wall and inlet bulk temperatures. The boundary conditions are: Inlet:
\[\theta(y^*,0) = 0 \]
(9)

Symmetry plane:
\[\frac{\partial \theta}{\partial y^*} = 0 \]
(10)

Wall: \(\theta(1,x^*) = 1 \)
(11)

Method of Solution

The set of equations (6,9-11) is similar to that found in the classical Graetz problem, albeit more complicated due to the inclusion of viscous dissipation, and the fact that the velocity profile for the viscoelastic fluid is not as simple as that for the Newtonian fluid. The separation solution method explained by Mikhailov and Ösizik [8] is adopted here and leads to an eigenvalue problem. The method is particularly appropriate for a nonhomogeneous problem like the one at hand, and gives the solution of the temperature distribution \(\theta(y^*,x^*) \) as a sum of three terms: a particular solution of the nonhomogeneous energy equation (due to viscous dissipation), a term related to the asymptotic (long \(x^* \)) transverse distribution of temperature and the general solution of the homogeneous energy balance (setting \(Br = 0 \)) which becomes an infinite series of eigenvalues and eigenfunctions of the corresponding Sturm-Liouville problem.

We shall omit the full details of the derivation which are very cumbersome and limit ourselves to giving the final expressions for the solution in terms of the temperature distribution and the Nusselt number variation. These expressions are in terms of eigenvalues \(\mu_k \) and functions \(y_k \) to \(y_4 \), and the numerical methods used for these calculations are briefly explained next.

Eigen value problem

The solution of Eq. (6) is the sum of the general solution of the corresponding homogeneous equation with a particular solution of the equation. To solve the homogeneous equation, separation of variables is used leading to
\[\theta(y^*,x^*) = \psi(y^*) \phi(x^*) \]
(12)

where
\[\frac{d\phi(x^*)}{dx^*} + \mu^2 \phi(x^*) = 0 \]
(13)

\[\frac{d}{dy^*} \left(\frac{d\psi(\mu,y^*)}{dy^*} \right) + \mu^2 u^* \psi(\mu,y^*) = 0 \]
(14)

Eq. (13) is readily integrated and gives rise to the inverse exponential function on \(x^* \), but depends on the eigenvalues \(\mu^2 \) that are determined as part of the solution of Eq. (14). Eq. (14) is a Sturm-Liouville type equation, the solution of which is subject to boundary conditions
\[y^* = 0, \frac{d\psi(\mu,y^*)}{dy^*} = 0 \]
(15)

\[y^* = 1, \psi(\mu,y^*) = 0 \]
(16)

The eigenvalues for this problem have been evaluated numerically by means of a freeware Fortran code SLEDGE (Pruess and Fulton, Netlib, cited by Pryce [9]. This code solves the general problem:
\[\frac{d}{dX} \left(X^n \frac{dY}{dX} \right) + \mu^2 f(X)Y = 0 \]
(17)

and provides very accurate results for the eigenvalues. The calculated eigenvalues were accurate to at least 12 significant digits and for accurate thermal results, in each case the infinite series was only truncated at 161th term. In this problem, Eq. (6) depends on \(\varepsilon We^2 \) via parameter \(\varepsilon \), and on the mean velocity ratio \(\chi \). Thus, everytime those parameters are changed the equations must be numerically solved to calculate a new set of eigenvalues. Clearly the amount of work is greatly enhanced on passing from the Newtonian to the viscoelastic case, in view of the increased number of free parameters.

Once the eigenvalues are known, the normalised temperature distribution and the Nusselt number can be determined which also depends on four functions \(y_k(\mu,y^*) \) (\(k = 1 \) to 4) and its derivatives [8]. To determine these functions four ODE’s had
to be numerically solved by means of a standard ODE solver based on a fourth-order Runge-Kutta method.

Results

The temperature distribution is given by:

\[
\theta(y^*, x^*) = 1 - \frac{12a(y^{*6} - 1) + 15(y^{*4} - 1)}{20} Br \chi^2
\]

\[
+ 2 \times \sum_{i=1}^{\infty} e^{-\mu_i^2 x^*} y_2(\mu_i, y^*) \left\{ y_1(\mu_i, 1) - 9 Br \times
\int_0^1 \chi^2 y^{*2} \left(2 a y^{*2} + 1 \right) y_2(\mu_i, y^*) dy^* \right\}
\]

(18)

where the first two terms correspond to the asymptotic solution \((x^* \to \infty)\) with viscous dissipation and the last term is the infinite series resulting from the Sturm-Liouville problem with eigenvalues \(\mu_i^2\). In engineering calculations one is generally more interested in knowing how the heat flux at the duct wall varies with the axial distance. This can be expressed in a nondimensional way by means of a local Nusselt number defined as:

\[
Nu = \frac{hD_H x}{k} = \frac{4}{1 - \theta_b} \left(\frac{\partial \theta}{\partial y} \right)_{y^*=1}
\]

(19)

where \(D_H = 4H\). On calculating \(\theta_b\) and the temperature derivative we arrive at

\[
Nu(x^*) = -12 Br \chi^2 + 8 S_1 - 24(54a^2 + 110a + 55) \frac{Br \chi^2}{1925} + 2 S_2
\]

(20)

where we define the sums

\[
S_1 = \sum_{i=1}^{\infty} e^{-\mu_i^2 x^*} \left(y_1(\mu_i, 1) - 9 Br \chi_i \right)
\]

(21)

\[
S_2 = \sum_{i=1}^{\infty} e^{-\mu_i^2 x^*} \left(y_1(\mu_i, 1) - 9 Br \chi_i \right)
\]

(22)

and the integral

\[
I_1 = \int_0^1 \chi^2 y^{*2} \left(2 a y^{*2} + 1 \right) y_2(\mu_i, y^*) dy^*
\]

(23)

The numerical integration of Eq. (23) was performed by Romberg’s integration procedure applied on the extended trapezoidal method.

For engineering purposes it is more advantageous to use the average Nusselt number from the inlet, derived from an energy balance and here referred to as \(\overline{Nu}(x^*)\). This implicit equation must be solved numerically.

\[
x^* \overline{Nu} = 4 \ln \left(\frac{-12 Br \chi - \overline{Nu}}{\left(\theta - 1 \right) \overline{Nu} - 12 Br \chi} \right)
\]

(24)

Discussion

It is convenient to separate the analysis of the results of channel heating \((Br>0)\) and cooling \((Br<0)\).

Fluid heating \((Br>0)\)

This situation is represented in Fig. 1 and corresponds to \(T_w > T_i\). The direction of heat transfer at the wall varies along the pipe when viscous dissipation is accounted for.

![Figure 1- Effects of viscous dissipation and elasticity/extensibility on the Nusselt number variation for fluid heating \((Br>0)\).](image)

Initially, \((low x')\), where \(x' = x/D_H \text{RePr} = x^{*}/16\), heat transfer is from the wall to the fluid and the Nusselt number is positive because \(T_w > T_b\) \(\left(Nu = D_H \chi_{in}/k(T_w - T_b) \right)\). Viscous dissipation increases the fluid temperature especially near the wall where the velocity gradients are steeper. At \(x' = x'_1\) the wall radial temperature gradient vanishes \((\partial T/\partial y)_{w} = 0 \Rightarrow \chi_{w} = 0\), but since \(T_w > T_b\), then \(Nu=0\) and becomes negative for \(x' > x'_1\). Viscous dissipation keeps increasing \(T_b\).
so that at $x' = x_2'$, $T_b = T_w$, resulting in a singular Nu. The Nu vs. x' variation for Newtonian fluids was discussed by [10] and is also plotted in Fig. 1.

The effect of shear thinning ($\alpha \neq 0$) is to increase Nu and to delay the above transitions (x_1' and x_2'), as shown in Fig. 1.

With viscous dissipation, the asymptotic Nu is independent of Br and the values found correspond to those in the literature for Newtonian [4] and the PTT fluid [7].

Another feature seen in Fig. 2 regards the effect of viscoelastic/elongational fluid properties. Whereas under fully-developed flow Nu increases with δWe^2, during flow development the trend is reversed.

References

Contact Address:
F. T. Pinho (fpinho@fe.up.pt)
Centro de Estudos de Fenômenos de Transporte
dEMEGI, Faculdade de Engenharia
Universidade do Porto, Rua Dr. Roberto Frias s/n
4200-465 Porto (Portugal)
Telf.: +351 22 5081762; Fax:+351 22 5081763;

Fluid cooling case ($Br < 0$)

Here, $T_w < T_i$ so $Br < 0$. The influence of Br is similar for the Newtonian and the PTT fluids, as shown in Fig. 2 (for $\delta We^2 = 0$ and 10; $Br = 0, 1, -1, -10$ and -100), and results from a balance between the opposite effects of wall cooling and heating by viscous dissipation. For Newtonian fluids there are two behaviours separated by the critical Brinkman number $Br_1 = 6.5$ [4]. For $Br < Br_1$, viscous dissipation dominate and Nu decays monotonically with x' except at very low x' and high absolute Br. For $Br_1 < Br < 0$, the Nu vs. x' variation goes through a minimum at a certain critical axial position x'_{c}: for $x' < x'_{c}$, wall cooling is dominant and Nu decreases with x' whereas for $x' > x'_{c}$ viscous dissipation predominates and induces a raising tendency on the Nu vs. x' variation. At high x', when the thermal condition becomes fully-developed, Nu tends to a constant value independent of Br. Again, these asymptotic values of Nu coincide with those in the literature for the Newtonian [10] and the PTT cases [7].