Nondegenerate and Normal forms of the Maximum Principle for Control Problems with State Constraints

Fernando ACC Fontes,
Universidade do Porto
faf@fe.up.pt

Workshop ’Nonlinear Analysis and Optimization’,
On the 65th birthday of Francis Clarke and Richard Vinter,
The Royal Society, London, 7–8 September 2015
Outline

Optimal Control in Critical Decision Making Scenarios

Abnormality in Mathematical Programming
- Necessary Conditions of Optimality (NCO)
- Normal form of NCO

The Quest

Abnormality/Degeneracy in Optimal Control
- Maximum Principle (MP)
- The abnormality phenomenon
- The degeneracy phenomenon

Nondegenerate forms of the MP
- Constraint Qualification of Integral Type: CQ_I
- Constraint Qualification at outward pointing velocities: CQ_{out}

Normal forms of the MP
Outline

Optimal Control in Critical Decision Making Scenarios

Abnormality in Mathematical Programming

The Quest

Abnormality/Degeneracy in Optimal Control

Nondegenerate forms of the MP

Normal forms of the MP
Optimal Control in Critical Decision Making Scenarios

- In the early years, optimal control was mainly used for planning, solved off-line (e.g. devising spaceship trajectories, economic growth, fishing policies, ...)

- Recently, it is increasingly being used in real-time to control processes (mainly within MPC, e.g. control of distillation columns in the petrol refining industry, ...) .

- More recently, it is being used in real-time to make decisions autonomously (e.g. autonomous underwater vehicles: minimum energy consumption is a key factor in data-gathering missions, communication is limited; optimal storage strategies in electrical power systems: requires fast, autonomous decisions for integration of variable and uncertain renewable generation

⇒ When NCO are being used, we must guarantee that they help selecting the minimizers
Necessary Conditions of Optimality (NCO), Degeneracy and Abnormality

Structure: If \bar{x} is a minimizer, then it satisfies the NCO.

(Example in unconstrained function optimization: If \bar{x} is a minimizer for f, then $\nabla f(\bar{x}) = 0$)

Aim: To identify a (“small”) set containing all the minimizers.
(The stricter the better. Ideally, if the NCO are also sufficient, then $M = N$.)

Degeneracy phenomenon: All admissible solutions satisfy the NCO: $N = A$.
(NCO are useless in this case.)

Abnormality phenomenon: the NCO are merely state a relation between the constraints and do not use the objective function to select candidates to minimizers.
Outline

Optimal Control in Critical Decision Making Scenarios

Abnormality in Mathematical Programming
 Necessary Conditions of Optimality (NCO)
 Normal form of NCO

The Quest

Abnormality/Degeneracy in Optimal Control

Nondegenerate forms of the MP

Normal forms of the MP
Necessary Conditions of Optimality in Mathematical Programming

Nonlinear Programming problem with inequality constraints:

\[
\begin{align*}
(\text{MP}) \quad & \text{Minimize}_{x \in \mathbb{R}^n} \quad g(x) \\
& \text{subject to} \quad h_i(x) \leq 0 \quad i = 1, 2, \ldots, k.
\end{align*}
\]

\textit{Fritz-John Necessary Conditions of Optimality (1948):} If \(\bar{x} \) solves (MP) then \(\exists (\lambda, \mu) \in \mathbb{R} \times \mathbb{R}^k \) s.t.

\[
\begin{align*}
(\lambda, \mu) & \neq 0 \\
\lambda, \mu_i & \geq 0 \quad i = 1, 2, \ldots, k \\
\lambda \nabla g(\bar{x}) + \sum_{i=1,2,\ldots,k} \mu_i \nabla h_i(\bar{x}) & = 0 \\
\sum_{i=1,2,\ldots,k} \mu_i h_i(\bar{x}) & = 0.
\end{align*}
\]

Is this useful if \(\lambda = 0 \)? Can we choose \(\lambda > 0 \)? When?
Can we always choose λ positive?

Ans: Not always
A counter-example (Kuhn-Tucker 1951)

\[(MP1)\] Minimize $-x_1$

subject to

\[x_2 + (x_1 - 1)^3 \leq 0\]
\[-x_2 \leq 0.\]

Solution is $\bar{x} = (x_1, x_2) = (1, 0)$.

With $\lambda > 0$ it is impossible to satisfy

\[\lambda \nabla g(\bar{x}) + \mu_1 \nabla h_1(\bar{x}) + \mu_2 \nabla h_2(\bar{x}) = 0.\]
Can we always choose λ positive?

Ans: Not always

A counter-example (Kuhn-Tucker 1951)

\[(MP1)\]

Minimize $-x_1$

subject to

\[x_2 + (x_1 - 1)^3 \leq 0\]
\[-x_2 \leq 0.\]

Solution is $\bar{x} = (x_1, x_2) = (1, 0)$.

With $\lambda > 0$ it is impossible to satisfy

\[\lambda \nabla g(\bar{x}) + \mu_1 \nabla h_1(\bar{x}) + \mu_2 \nabla h_2(\bar{x}) = 0.\]
We can choose \(\lambda > 0, (\lambda = 1) \) for all problems satisfying a Constraint Qualification [Kuhn Tucker 1951] (one of the most cited results in optimization)

For example

Constraint Qualification (Mangasarian-Fromovitz) There is a vector \(v \in \mathbb{R}^k \) satisfying

\[
\nabla h_i(\bar{x}) \cdot v < 0
\]

for all \(i \) such that \(h_i(\bar{x}) = 0 \).
Outline

Optimal Control in Critical Decision Making Scenarios

Abnormality in Mathematical Programming

The Quest

Abnormality/Degeneracy in Optimal Control

Nondegenerate forms of the MP

Normal forms of the MP
The Quest

In Optimal Control, the NCO - the Pontryangin Maximum Principle (PMP) - can also be abnormal or degenerate.

Our quest is to devise Nondegenerate and Normal forms of the PMP, valid under a constraint qualifications;

Obtain for Optimal Control a result analogous to what Kunh and Tucker have done for Nonlinear Programming.
Outline

Optimal Control in Critical Decision Making Scenarios

Abnormality in Mathematical Programming

The Quest

Abnormality/Degeneracy in Optimal Control
 Maximum Principle (MP)
 The abnormality phenomenon
 The degeneracy phenomenon

Nondegenerate forms of the MP

Normal forms of the MP
The problem

Optimal control problem with (pathwise inequality) state constraints:

Minimize \(g(x(1)) \)

subject to

\[\dot{x}(t) = f(t, x(t), u(t)) \]
\[x(0) = x_0 \]
\[x(1) \in C \]
\[u(t) \in \Omega(t) \]
\[h(t, x(t)) \leq 0 \]
Model Predictive Control

Consider a sequence \(\{t_i\}_{i \geq 0} \) s.t. \(t_{i+1} = t_i + \delta, \delta > 0 \):

1. Measure state of the plant \(x_{t_i} \)
2. Get \(\bar{u} : [t_i, t_i + T] \mapsto \mathbb{R}^m \) solution to the OCP:

\[
\text{Minimize } \int_{t_i}^{t_i+T} L(t, x(t), u(t))dt + W(x(t_i + T))
\]
subject to
\[
\begin{align*}
\dot{x}(t) &= f(t, x(t), u(t)) \quad \text{a.e. } t \in [t_i, t_i + T] \\
x(t_i) &= x_{t_i} \\
u(t) &\in U(t) \quad \text{a.e. } t \in [t_i, t_i + T] \\
x(t) &\in X \quad \text{a.e. } t \in [t_i, t_i + T] \\
x(t_i + T) &\in S
\end{align*}
\]

3. Apply to the plant the control \(u^*(t) := \bar{u}(t) \) in the interval \([t_i, t_i + \delta] \). (the remaining control \(\bar{u}(t), t > t_i + \delta \) is discarded)
4. Repeat for the next sampling time \(t_i = t_i + \delta \)
Necessary Conditions of Optimality: Maximum Principle (smooth version)

If \((\bar{x}, \bar{u})\) solves \((P)\) then \(\exists \lambda \in \mathbb{R}, \, p \in AC, \, \mu \in C^*\) s.t.
\[
\mu\{[0,1]\} + \|p\|_{L^\infty} + \lambda > 0,
\]
\[
-p(t) = \left(p(t) + \int_{[0,t]} h_x(s, \bar{x}(s)) \mu(ds) \right) \cdot f_x(t, \bar{x}(t), \bar{u}(t)) \quad \text{a.e. } t \in [0,1],
\]
\[
-\left(p(1) + \int_{[0,1]} h_x(s, \bar{x}(s)) \mu(ds) \right) \in N_C(\bar{x}(1)) + \lambda g_x(\bar{x}(1)),
\]
\[
\text{supp}\{\mu\} \subset \{ t \in [0,1] : h(t, \bar{x}(t)) = 0 \},
\]
and for almost every \(t \in [0,1], \, \bar{u}(t)\) maximizes over \(\Omega(t)\)
\[
u \mapsto \left(p(t) + \int_{[0,t]} h_x(s, \bar{x}(s)) \mu(ds) \right) \cdot f(t, \bar{x}(t), \nu).
\]
The abnormality Phenomenon:
When $\lambda = 0$, the objective function is not taken into account

If (\bar{x}, \bar{u}) solves (P) then $\exists \lambda \in \mathbb{R}$, $p \in AC$, $\mu \in C^*$ s.t.

$$
\mu \{ [0, 1] \} + \| p \|_{L^\infty} + \lambda > 0,
$$

$$
-\dot{p}(t) = \left(p(t) + \int_{[0,t]} h_x(s, \bar{x}(s)) \mu(ds) \right) \cdot f_x(t, \bar{x}(t), \bar{u}(t)) \quad \text{a.e. } t \in [0, 1],
$$

$$
-\left(p(1) + \int_{[0,1]} h_x(s, \bar{x}(s)) \mu(ds) \right) \in N_C(\bar{x}(1)) + \lambda g_x(\bar{x}(1)),
$$

$$
supp\{ \mu \} \subset \{ t \in [0, 1] : h(t, \bar{x}(t)) = 0 \},
$$

and for almost every $t \in [0, 1]$, $\bar{u}(t)$ maximizes over $\Omega(t)$

$$
u \mapsto \left(p(t) + \int_{[0,t]} h_x(s, \bar{x}(s)) \mu(ds) \right) \cdot f(t, \bar{x}(t), u).
$$
The Degeneracy Phenomenon

Suppose the trajectory starts on the boundary of the admissible region

\[h(0, x_0) = 0, \]

(happens in problems of interest, e.g. Model Predictive Control)

The **Degenerate Multipliers**

\[\lambda = 0, \quad \mu = \delta_{\{0\}}, \quad p = -h_x(0, x_0). \]

(or scalar multiples of these) satisfy the MP for every pair \((x, u)\) we might test. Note that as

\[
\lambda = 0, \quad \text{and} \quad q(t) := \left(p(t) + \int_{[0,t]} h_x(s, \bar{x}(s))\mu(ds) \right) = 0 \quad \text{a.e.}
\]

the Maximum Principle gives us no information.
The Maximum Principle trivially satisfied for the degenerate multipliers

If \((\bar{x}, \bar{u})\) solves (P) then \(\exists \lambda \in \mathbb{R}, \ p \in AC, \ \mu \in C^*\) s.t.

\[
\mu\{[0, 1]\} + \|p\|_{L^\infty} + \lambda > 0,
\]

\[
-\dot{p}(t) = \left(p(t) + \int_{[0,t]} h_x(s, \bar{x}(s)) \mu(ds) \right) \cdot f_x(t, \bar{x}(t), \bar{u}(t)) \quad \text{a.e.} \ t \in [0, 1],
\]

\[
-\left(p(1) + \int_{[0,1]} h_x(s, \bar{x}(s)) \mu(ds) \right) \in N_C(\bar{x}(1)) + \lambda g_x(\bar{x}(1)),
\]

\[
\text{supp}\{\mu\} \subset \{t \in [0, 1] : h(t, \bar{x}(t)) = 0\},
\]

and for almost every \(t \in [0, 1], \ \bar{u}(t)\) maximizes over \(\Omega(t)\)

\[
u \mapsto \left(p(t) + \int_{[0,t]} h_x(s, \bar{x}(s)) \mu(ds) \right) \cdot f(t, \bar{x}(t), u).
\]
How to avoid Degeneracy?

Ans: Strengthening the MP

For example, strengthening the nontriviality condition to

\[\mu \{ (0,1] \} + \lambda + \left\| p(t) + \int_{[0,t]} h_x(s, \bar{x}(s)) \mu(ds) \right\|_\infty > 0, \]

- Eliminates only the **Degenerate Multipliers**
- But we have to guarantee that the Strengthened MP is still satisfied for all local minimizers.
How to avoid Degeneracy?

Ans: Strengthening the MP

For example, strengthening the nontriviality condition to

\[\mu\{(0,1]\} + \lambda + \left\| p(t) + \int_{[0,t]} h_x(s, \bar{x}(s)) \mu(ds) \right\|_\infty > 0, \]

- Eliminates only the **Degenerate Multipliers**
- But we have to guarantee that the Strengthened MP is still satisfied for all local minimizers.
Is the Strengthened MP satisfied for every Problem?

Ans: NO!

Example: [Dubovitskii, in ArutyonovAseev97]

Minimize $x_2(1)$

subject to

$(\dot{x}_1(t), \dot{x}_2(t)) = (tu(t), u(t))$

$(x_1(0), x_2(0)) = (0, 0)$

$u(t) \in [-1, 1]$

$x_1(t) \geq 0$

- Here the degenerate multipliers are the only possible choice
- We need condition that identify the problems under which we can Strengthen the MP: a Constraint Qualification.
Is the Strengthened MP satisfied for every Problem?

\textbf{Ans:} NO!

\textbf{Example:} [Dubovitskii, in ArutyonovAseev97]

Minimize \(x_2(1) \)

subject to

\[(\dot{x}_1(t), \dot{x}_2(t)) = (tu(t), u(t))\]
\[(x_1(0), x_2(0)) = (0, 0)\]
\[u(t) \in [-1, 1]\]
\[x_1(t) \geq 0\]

- Here the degenerate multipliers are the only possible choice
- We need condition that identify the problems under which we can Strengthen the MP: a \textbf{Constraint Qualification}.
Outline

Optimal Control in Critical Decision Making Scenarios

Abnormality in Mathematical Programming

The Quest

Abnormality/Degeneracy in Optimal Control

Nondegenerate forms of the MP

Constraint Qualification of Integral Type: CQ_I
Constraint Qualification at outward pointing velocities: CQ_{out}

Normal forms of the MP
Nondegenerate forms of the MP in the literature (< 2010)

- Early russian references: Dubovitskii, Dubovitskii 85, Arutyunov, Tynianskii 85
- Ferreira, Vinter 94 (first reference in English)
- Arutyunov, Aseev 97
- Ferreira, Fontes, Vinter 99
- Arutyunov 2000
- Rampazzo, Vinter 2003
- dePinho, Ferreira, Fontes 2004
- Bettiol, Frankowska 2007
- Lopes, Fontes 2007
- ...
Nondegeneracy and Normality of the Maximum Principle (FACC Fontes)

Two groups of Constraint Qualifications

[CerneaFrankowska05, Bettiol-Frankowska07 ...]

(CQ1) \(\exists \delta > 0, \exists u \) such that for \(t \) near 0

\[h_x(x_0) \cdot f(x_0, u) < 0 \]

- Not involving the optimal control (easier to verify)
- Typically require more regularity.

[ArutyunovAseev97, RampazzoVinter03, ...]

(FerreiraVinter94, FerreiraFontesVinter99, dePinhoFerreiraFontes04, LopesFontes07, ...]

(CQ2) \(\exists \delta > 0, \exists u \) such that for \(t \) near 0

\[h_x(x_0) \cdot (f(x_0, u) - f(x_0, \bar{u}(t))) < -\delta \]

- Involving the optimal control (more difficult to verify except in special cases such as CV)
- Applicable to wider/less regular class of problems
How do CQ1 and CQ2 relate?

Theorem

Let \((\bar{x}, \bar{u})\) be a local minimizer in the class of piecewise continuous controls. Assume that hypotheses H1-H5 are satisfied. If the trajectory does not leave the boundary immediately then CQ2 implies CQ1.

Nondegeneracy and Normality of the Maximum Principle (FACC Fontes)

Constraint Qualification of Integral Type: CQ_I

Constraint Qualification of Integral Type

CQ_I: if $h(0, x_0) = 0$, then there exist positive constants $\epsilon, \epsilon_1, \delta$ and a control function $\hat{u}(t) \in \Omega(t)$ such that for all $t \in [0, \epsilon)$

$$
\int_{0}^{t} \zeta \cdot [f(\tau, x_0, \hat{u}(\tau)) - f(\tau, x_0, \bar{u}(\tau))] d\tau \leq -\delta t,
$$

for all $\zeta \in \partial_x^> h(s, x)$, $s \in [0, \epsilon)$, $x \in x_0 + \epsilon_1 B$.

Remark

In this constraint qualification, the inward pointing condition has to be satisfied for some, not all, instants of a neighbourhood of the initial time.

Theorem

If constraint qualifications CQ_I is satisfied, then a stronger (nondegenerate) version of the maximum principle holds with

$$
\mu\{(0, 1]\} + \|q\|_{L^\infty} + \lambda > 0.
$$

Comparison with previous CQ

\textbf{CQI} : if \(h(0, x_0) = 0 \), then there exist positive constants \(\epsilon, \epsilon_1, \delta \) and a control function \(\hat{u} \in \mathcal{U} \) such that for all \(t \in [0, \epsilon) \)

\[
\int_0^t h_x(s, x(s)) \cdot [f(\tau, x_0, \hat{u}(\tau)) - f(\tau, x_0, \bar{u}(\tau))] d\tau \leq -\delta t,
\]

for all \(s \in [0, \epsilon), \ x \in x_0 + \epsilon_1 B \).

\textbf{CQ}_{FFV99} : if \(h(0, x_0) = 0 \), then there exist positive constants \(\epsilon, \epsilon_1, \delta \) and a control function \(\hat{u} \in \mathcal{U} \) such that for a.e. \(t \in [0, \epsilon) \)

\[
h_x(s, x(s)) \cdot [f(t, x_0, \hat{u}(t)) - f(t, x_0, \bar{u}(t))] < -\delta,
\]

for all \(s \in [0, \epsilon), \ x \in x_0 + \epsilon_1 B \).

The inequality \(h_x \cdot \Delta f < -\delta \) does not have to be satisfied at a.e. points \(t \in [0, \epsilon) \), but just on a subset of \(t \in [0, \epsilon) \) of positive measure!
Example (in which CQI is satisfied and CQ-ffv is not)

Minimize \(-x(1)\)
subject to

\[\dot{x}(t) = u(t) \quad \text{a.e. } t \in [0, 1] \]
\[x(0) = 0, \quad x(1) \in \mathbb{R} \]
\[u(t) \in \Omega(t) \quad \text{a.e. } t \in [0, 1] \]
\[x(t) \leq 0 \quad \text{for all } t \in [0, 1], \]

where \(\Omega(t) = \{ u \in \mathbb{R} : g(t) \leq u \leq 0 \} \)
and \(g \) is the function:

\[g(t) = \begin{cases}
-1, & t = 0 \\
2 - \frac{4}{2^n} t, & t \in \left[\frac{1}{2} 2^{-n}, \frac{3}{4} 2^{-n} \right), n \in \mathbb{N} \\
\frac{4}{2^n} t - 4, & t \in \left[\frac{3}{4} 2^{-n}, 2^{-n} \right), n \in \mathbb{N}
\end{cases} \]

The optimal solution is \(\bar{u}(t) = 0 \) and \(\bar{x}(t) = 0 \).
Nondegeneracy and Normality of the Maximum Principle (FACC Fontes)

Nondegenerate forms of the MP

Constraint Qualification of Integral Type: CQI

Example (in which CQI is satisfied and CQ-ffv is not)

Minimize \(-x(1)\)
subject to \(\dot{x}(t) = u(t)\)
\(x(0) = 0, \quad x(1) \in \mathbb{R}\)
\(u(t) \in \Omega(t)\) a.e. \(t \in [0, 1]\)
\(x(t) \leq 0\) for all \(t \in [0, 1]\),

where \(\Omega(t) = \{u \in \mathbb{R} : g(t) \leq u \leq 0\}\)

and \(g\) is the function:

\[
g(t) = \begin{cases}
-1, & t = 0 \\
2 - \frac{4}{2^n} t, & t \in \left[\frac{1}{2}2^{-n}, \frac{3}{4}2^{-n}\right), n \in \mathbb{N} \\
\frac{4}{2^n} t - 4, & t \in \left[\frac{3}{4}2^{-n}, 2^{-n}\right), n \in \mathbb{N}
\end{cases}
\]

The optimal solution is \(\bar{u}(t) = 0\) and \(\bar{x}(t) = 0\).
Example (in which CQI is satisfied and CQ-ffv is not)

Minimize
\[-x(1)\]
subject to
\[\dot{x}(t) = u(t)\quad \text{a.e. } t \in [0, 1]\]
\[x(0) = 0, \quad x(1) \in \mathbb{R}\]
\[u(t) \in \Omega(t) \quad \text{a.e. } t \in [0, 1]\]
\[x(t) \leq 0 \quad \text{for all } t \in [0, 1],\]

where \(\Omega(t) = \{ u \in \mathbb{R} : g(t) \leq u \leq 0 \} \)

and \(g \) is the function:

\[
g(t) = \begin{cases}
-1, & t = 0 \\
2 - \frac{4}{2^n} t, & t \in \left[\frac{1}{2} 2^{-n}, \frac{3}{4} 2^{-n}\right), n \in \mathbb{N} \\
\frac{4}{2^n} t - 4, & t \in \left[\frac{3}{4} 2^{-n}, 2^{-n}\right), n \in \mathbb{N}
\end{cases}
\]

The optimal solution is \(\bar{u}(t) = 0 \) and \(\bar{x}(t) = 0 \).
Example (cont.)

For this example

\[h_x(s, x(s)) \cdot [f(t, x_0, \hat{u}(t)) - f(t, x_0, \bar{u}(t))] = \hat{u}(t), \]

Thus, the constraint qualifications reduce to:

CQ-ffv: \(\exists \delta, \epsilon > 0 \) and a control function \(\hat{u} \) such that for a.e. \(t \in [0, \epsilon) \):

\[\hat{u}(t) < -\delta \quad \text{a.e.} \quad t \in [0, \epsilon) \] \quad (1)

CQI \(\exists \delta, \epsilon > 0 \) and a control function \(\hat{u} \) such that for a.e. \(t \in [0, \epsilon) \)

\[\int_0^t \hat{u}(\tau) d\tau \leq -\delta t \quad \forall t \in [0, \epsilon), \] \quad (2)

But, for any \(\epsilon > 0 \), \(g(t) = 0 \) and \(\Omega(t) = \{0\} \) for an infinite number of points \(t \in [0, \epsilon) \).

So **CQ\text{FFV99}** cannot be satisfied.
Example (cont.) II

On the other hand, considering $\hat{u}(t) = g(t)$ then CQ_I is satisfied. For any $t \in (0, 1]$ we can find an (unique) $k = 2^n, n \in \mathbb{N}$ such that

$$\frac{1}{2k} < t \leq \frac{1}{k}.$$

Now

$$\int_0^t g(s) ds = \int_0^{\frac{1}{2k}} g(s) ds + \int_{\frac{1}{2k}}^t g(s) ds.$$

It can be seen that the first term is equal to $-\frac{1}{4k}$ and the second term is negative. So, since

$$\int_0^t g(s) ds \leq -\frac{1}{4k} \leq -\frac{1}{4}t,$$

CQ_I is satisfied.
The inequality in \(CQ_I \) just has to be satisfied on *some*, *not all* instants of time in the initial interval.

But, can we identify which are the instants of time in which it has to be satisfied?
Constraint Qualification at outward pointing velocities (F. Fontes, H. Frankowska 2015)

\begin{align*}
(CQd1_{out}) \exists \delta > 0, \exists u \text{ such that } \\
&h_x(x_0) \cdot [f(t, x_0, u) - f(t, \bar{x}(t), \bar{u}(t))] < -\delta, \\
\text{for a.e. } t \in \{r \in [0, \epsilon] \cup [0, 1] : h_x(\bar{x}(r)) \cdot f(t, \bar{x}(r), \bar{u}(r)) \geq 0\}.
\end{align*}

Remark

The inward pointing inequality just has to be satisfied for the times at which \(\bar{x} \) has an outward pointing velocity.
Nondegeneracy and Normality of the Maximum Principle (FACC Fontes)

Nondegenerate forms of the MP

Constraint Qualification at outward pointing velocities: \(C_{Qout} \)

Constraint Qualification at outward pointing velocities

\((CQ_{d1_{out}})\) \(\exists \delta > 0, \exists u \) such that

\[h_x(x_0) \cdot f(t, x_0, u) < -\delta, \]

for a.e. \(t \in \{ r \in [0, \epsilon] \cup [0, 1] : h_x(\bar{x}(r)) \cdot f(t, \bar{x}(r), \bar{u}(r)) \geq 0 \} \).

\[\Rightarrow \]

\((CQ_{d1_{out}})\) \(\exists \delta > 0, \exists u \) such that

\[h_x(x_0) \cdot [f(t, x_0, u) - f(t, \bar{x}(t), \bar{u}(t))] < -\delta, \]

for a.e. \(t \in \{ r \in [0, \epsilon] \cup [0, 1] : h_x(\bar{x}(r)) \cdot f(t, \bar{x}(r), \bar{u}(r)) \geq 0 \} \).

Remark

When \(h \) is \(C^1 \), the constraint qualification \(CQ_{1_{out}} \) implies \(CQ_{2_{out}} \).

Theorem

3 If constraint qualifications \(C_{Qout} \) is satisfied, then a stronger (nondegenerate) version of the maximum principle holds with

\[\mu \{(0, 1]\} + \|q\|_{L^\infty} + \lambda > 0. \]

Outline

Optimal Control in Critical Decision Making Scenarios

Abnormality in Mathematical Programming

The Quest

Abnormality/Degeneracy in Optimal Control

Nondegenerate forms of the MP

Normal forms of the MP
Normal forms of the Maximum Principle (FACC Fontes)

Normality

CQ$_n$ (Constraint Qualification for Normality)
There exist a positive constants ϵ, δ, K_u, and a control $\hat{u} \in U$ such that

$$\zeta \cdot [f(t, \bar{x}(t), \hat{u}(t)) - f(t, \bar{x}(t), \bar{u}(t))] < -\delta,$$

for all $\zeta \in \partial_x^> h(s, \bar{x}(s))$, all $t, s \in (\tau - \epsilon, \tau] \cap [0, 1]$ where τ is defined as

$$\tau = \inf \left\{ t \in [0, 1] : \int_{[t,1]} \mu(ds) = 0 \right\}.$$

Theorem

Assume hypotheses ..., **CQ**$_n$ and $x(1) \in \text{int} C$. Then, the maximum principle is satisfied with $\lambda = 1$.

Constraint qualification for Normality

\((\text{CQn}_{out})\) Define

\[
\tau = \inf \left\{ t \in [0, 1] : \int_{[t,1]} \mu(ds) = 0 \right\}.
\]

\(\exists \delta > 0, \exists u\) such that

\[
h_x(\bar{x}(\tau)) \cdot [f(t, \bar{x}(t), u) - f(t, \bar{x}(t), \bar{u}(t))] < -\delta,
\]

for a.e. \(t \in \{ r \in [\tau - \epsilon, \tau] \cup [0, 1] : h_x(\bar{x}(r)) \cdot f(t, \bar{x}(r), \bar{u}(r)) \geq 0 \} \).

Theorem

\(^5\) If constraint qualifications \(\text{CQn}_{out}\) is satisfied, then a stronger (normal) version of the maximum principle holds with \(\lambda + |q(1)| \neq 0\). In particular, if \(x(1) \in \text{int}C\), then \(\lambda = 1\).

Thank you!
...and happy birthday

60th birthday, Porto
Some references

