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Abstract

There has been a longstanding interest in deriving conditions under which
dynamic optimization problems are normal, that is, the necessary conditions
of optimality (NCO) can be written with a nonzero multiplier associated
with the objective function. This paper builds upon previous results on
nondegenerate NCO for trajectory constrained optimal control problems to
provide even stronger, normal forms of the conditions. The NCO developed
may address problems with nonsmooth, less regular data. The particular
case of calculus of variations problems is here explored to show a favorable
comparison with existent results.
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1. Introduction

In this paper, we study Necessary Conditions of Optimality (NCO) for
Dynamic Optimization Problems with pathwise inequality constraints. In
particular, we are interested in normal forms of the NCO, i.e., forms in which
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the scalar multiplier associated with the objective function � here called λ
� is nonzero. The normal forms of the NCO are guaranteed to supply
non-trivial information, in the sense that they guarantee that the objective
function is taken into account when selecting candidates to optimal processes.

Many important applications of NCO would bene�t or even require nor-
mal forms. In engineering applications or in decision making contexts, the
NCO are used to select a candidate (or a small number of candidates) to
optimal solution. If we do not guarantee normality and allow λ = 0, then
the NCO identify a set of candidates in which the objective function is not
used in the selection, and such identi�ed set is typically too large. This is
even more critical in applications where the NCO are used to �nd a solu-
tion without human intervention (e.g synthesis of controls for autonomous
vehicles), and thus we have to guarantee that the NCO remain informative.

Normal forms of NCO are also important in establishing results on the
regularity properties of optimal solutions and to establish second-order con-
ditions. In most results of such nature, the possibility of selecting λ 6= 0
has to be assumed (e.g. [1, 2, 3, 4, 5]) or conditions are imposed so as to
guarantee that the system of �rst-order conditions is normal (e.g [6, 7]).

The importance of studying normal forms of NCO is well illustrated in the
history of Mathematical Programming ([8],[9]). The Kuhn-Tucker conditions
[10], one of the most cited results in optimization, are a strengthened, non-
degenerate version of some earlier conditions, now less known, of Fritz-John
[11].

There has been a growing interest and literature on strengthened forms
of NCO for Optimal Control Problems (OCP), reporting both nondegenerate
and normal forms of the maximum principle (MP). (See e.g. [12] for what ap-
pears to be the �rst result on the subject, the recent works [13, 14] and refer-
ences therein, as well as [15] which provides references to an extensive Russian
literature on the subject). The normality results reported in literature require
di�erent degrees of regularity on the problem data [16, 17, 18, 19, 20, 21].
Requiring very little regularity on the data, we can �nd strengthened NCO in
[22] which, although not ensuring normality, are able to avoid certain sets of
degenerate multipliers. Building upon the nondegeneracy results in [22], we
develop here an even stronger form of NCO: a normal form. An advantage of
our result comparing with similar results in literature is the fact that it ad-
dresses problems with less regular, nonsmooth data. However, the additional
hypotheses under which our result is valid, known as constraint quali�cation
(CQ), involve the optimal control which we do not know in advance, and con-
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sequently, in general, it is not so easy to verify whether the CQ is satis�ed for
the problem we have in hands. Nevertheless, in some cases, the conditions
we propose compare favorably with existent results. One such case is the
application of our result to calculus of variations problems (CVP). We study
normality of NCO for CVP as a consequence of the results on normality of
NCO for OCP here developed. The special structure of CVP permits the
derivation of CQ that are much easier to verify than in the optimal con-
trol case. The conditions thereby obtained generalize a result in [16] to the
nonsmooth case.

This paper is organized as follows. In a brief Preliminaries section, we
provide some of the concepts and notation that are used throughout the
paper. Section 3 describes the context of our results: optimal control prob-
lems with state constraints and the nonsmooth maximum principle that is
to be strengthened in later sections. We also describe the case of CVP with
inequality constraints and its necessary conditions of optimality. Section 4
provides a main result of this paper: a normal form of NCO valid under a
suitable constraint quali�cation. In Section 5, we apply the previous result
to a CVP and deduce CQs which are speci�c for this problem and have the
advantage that they are easy to verify. In Section 6 we compare the results
obtained in the previous section with other results when applied to CVPs.
Finally, in sections 7 and 8, we prove the main results and lemmas of this
paper.

2. Preliminaries

Throughout, B denotes the closed unit ball, co S denotes the convex hull of
a set S, supp{µ} denotes the support of measure µ, and δ{0} denotes the Dirac
unit measure concentrated at 0. We also make reference to the space W 1,1 of
absolutely continuous functions, C∗ the dual space of continuous functions,
and C1,1 the space of functions which are continuously di�erentiable with
locally Lipschitz continuous derivatives.

The limiting normal cone of a closed set C ⊂ IRn at x̄ ∈ C is de�ned to
be

NL
C (x̄) :=

{
η ∈ IRn : ∃ sequences {Mi} ∈ IR+, xi → x̄, ηi → η such that
xi ∈ C and ηi · (y − xi) ≤Mi‖y − xi‖2 for all y ∈ IRn, i = 1, 2, ...} .

Given a lower semicontinuous function f : IRn −→ IR ∪ {∞} the limiting
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subdi�erential of f at a point x̄ ∈ IRn such that f(x) < +∞ is the set

∂Lf(x̄) = {η ∈ IRn : (η,−1) ∈ NL
epi f (x̄, f(x̄))};

where epi f := {(x, α) : α ≥ f(x)}. We also make use of the hybrid partial
subdi�erential of h in the x-variable de�ned as

∂>x h(t, x) := co{ξ : there exist (ti, xi)→ (t, x) s.t.

h(ti, xi) > 0, h(ti, xi)→ h(t, x), and hx(ti, xi)→ ξ}.

We refer to [23], [24], and [25] for further concepts of nonsmooth analysis
and optimal control. See also [26] for a review using a notation similar to
the one used here.

3. Context

Consider the �xed left-endpoint Optimal Control Problem (OCP) with
inequality state constraints:

(OCP1)



Minimize g(x(1))
subject to

ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [0, 1]
x(0) = x0
u(t) ∈ Ω(t) a.e. t ∈ [0, 1]
h (t, x(t)) ≤ 0 for all t ∈ [0, 1].

The data for this problem comprise functions g : IRn 7→ IR, f : [0, 1] ×
IRn × IRm 7→ IRn, h : [0, 1] × IRn 7→ IR, an initial state x0 ∈ IRn, and a
multifunction Ω : [0, 1] ⇒ IRm.

The set of control functions for (OCP1), denoted U , is the set of measur-
able functions u : [0, 1] → Rm such that u(t) ∈ Ω(t) a.e. t ∈ [0, 1]. A state
trajectory is an absolutely continuous function which satis�es the di�erential
equation in the constraints for some control function u. The domain of the
above optimization problem is the set of admissible processes, namely pairs
(x, u) comprising a control function u and a corresponding state trajectory x
which satisfy the constraints of (OCP1). We say that an admissible process
(x̄, ū) is a local minimizer if there exists δ > 0 such that

g(x̄(1)) ≤ g(x(1)),
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for all admissible processes (x, u) satisfying

‖x(t)− x̄(t)‖L∞ ≤ δ.

We develop here re�nements of the nonsmooth maximum principle be-
low which is valid under the following hypotheses, some of which refer to a
minimizer (x̄, ū) or a δ′ neighbourhood of it.

H1 The function (t, u)→ f(t, x, u) is L×Bm measurable for each x. (L×Bm
denotes the product σ-algebra generated by the Lebesgue subsets L of
[0, 1] and the Borel subsets of IRm.)

H2 There exists a L×Bm measurable function k(t, u) such that t 7→ k(t, ū(t))
is integrable and

‖f(t, x, u)− f(t, x′, u)‖ ≤ k(t, u)‖x− x′‖

for x, x′ ∈ x̄(t) + δ′B, u ∈ Ω(t) a.e. t ∈ [0, 1].

H3 The function g is Lipschitz continuous on x̄(1) + δ′B.

H4 The graph of Ω is L × Bm measurable.

H5 The function h is upper semicontinuous in t and there exists a scalar
Kh > 0 such that the function x → h(t, x) is Lipschitz of rank Kh for
all t ∈ [0, 1].

Theorem 3.1 (Thm. 9.3.1 [26]). Let (x̄, ū) be a local minimizer for (OCP1).
Assume hypotheses H1-H5. Then, there exist p ∈ W 1,1([0, 1] : IRn), a mea-
surable function γ, a non-negative measure µ in C∗([0, 1] : IR) and a scalar
λ ∈ {0, 1} such that

µ{[0, 1]}+ ‖p‖L∞ + λ > 0, (1)

−ṗ(t) ∈ co ∂Lx (q(t) · f(t, x̄(t), ū(t))) a.e. t ∈ [0, 1], (2)

−q(1) ∈ λ∂Lg(x̄(1)),

γ(t) ∈ ∂>x h(t, x̄(t)) µ− a.e.,

supp{µ} ⊂ {t ∈ [0, 1] : h (t, x̄(t)) = 0},
and, for almost every t ∈ [0, 1], ū(t) maximizes over Ω(t)

u 7→ q(t) · f(t, x̄(t), u),
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where

q(t) =


p(t) +

∫
[0,t)

γ(s)µ(ds) t ∈ [0, 1)

p(t) +

∫
[0,1]

γ(s)µ(ds) t = 1.

When the pathwise constraint is active at the initial instant of time, i.e.
when

h(0, x0) = 0,

the set of multipliers (degenerate multipliers)

λ = 0, µ = βδt=0, p = −βγ with γ ∈ ∂>x (0, x0) for some β > 0 (3)

satisfy the maximum principle (MP) for any admissible process (x, u). This
can be easily seen by noting that the quantity

p(t) +

∫
[0,t)

γ(s)µ(ds)

vanishes almost everywhere and all conditions of the MP, (Theorem 3.1), are
satis�ed independently of the value of x̄ or ū. In this case, the NCO are said
to degenerate.

In the literature, there exist strengthened forms of the MP to avoid this
kind of degenerate multipliers, see for example [27], [15], [22] and [28]. Here,
we are interested in developments of the strengthened form introduced by
Ferreira, Fontes and Vinter in [22], which will be extended to guarantee
normality.

The strengthened MP in [22], ensures that the nontriviality condition of
the MP can be written as

µ{(0, 1]}+ ‖q‖L∞ + λ > 0,

in place of (1) µ{[0, 1]}+‖p‖L∞ +λ > 0, eliminating this way the degenerate
multipliers (3). This nondegenerate result holds when the data of the problem
satis�es, besides the basic hypotheses, a slightly stronger form of H2, as
follows:

H2′ there exist scalars Kf > 0 and ε′ > 0 such that

‖f(t, x, u)− f(t, x′, u)‖ ≤ Kf‖x− x′‖,

for x, x′ ∈ x̄(0) + δ′B, u ∈ Ω(t) a.e. t ∈ [0, ε′]
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and the constraint quali�cation:

CQ if h(0, x0) = 0, then there exist positive constants Ku, ε, ε1, δ, and a
control û ∈ U such that for a.e. t ∈ [0, ε)

‖f(t, x0, ū(t))‖ ≤ Ku, (4)

‖f(t, x0, û(t))‖ ≤ Ku, (5)

and
ζ · [f(t, x0, û(t))− f(t, x0, ū(t))] < −δ, (6)

for all ζ ∈ ∂>x h(s, x), s ∈ [0, ε), x ∈ {x0}+ ε1B.

Theorem 3.2. [22] Assume hypotheses H1�H5, H2′ and the constraint
quali�cation CQ. Then, in Theorem 3.1, the nontriviality condition (1) can
be replaced by

µ{(0, 1]}+ ‖q‖L∞ + λ > 0.

In a recent publication [13], we discuss this and other forms of constraint
quali�cation that guarantee nondegeneracy. In the next section, we provide
an even stronger form of these necessary conditions: a form guaranteeing
normality, i.e. λ > 0.

4. Normality in Optimal Control Problems

The main result here is that for all problems satisfying the constraint
quali�cation CQn below, we can write the NCO with the assurance that the
multiplier λ (the scalar associated with the objective function) can always
be chosen to be positive. First we provide the more general result and then
we provide a corollary for which it is easier to verify whether the problem
satis�es the conditions for the result to be applied.

CQn (Constraint Quali�cation for Normality)

There exist a positive constants ε, δ, Ku, and a control û ∈ U such that

‖f(t, x̄(t), ū(t))− f(t, x̄(t), û(t))‖ ≤ Ku, (7)

and
ζ · [f(t, x̄(t), û(t))− f(t, x̄(t), ū(t))] < −δ, (8)
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for all ζ ∈ ∂>x h(s, x̄(s)), a.e. t, s ∈ (τ − ε, τ ] ∩ [0, 1] where τ is de�ned
as

τ = inf

{
t ∈ [0, 1] :

∫
[t,1]

µ(ds) = 0

}
.

Remark 4.1. Condition (7) is satis�ed for all problems with Ω bounded and
u 7→ f(·, ·, u) continuous. The last condition (8) in CQn says that there is a
control that can pull the trajectory away from the boundary (faster than the
optimal control) near to the last instant, τ , in which the measure µ is active.

Theorem 4.2. Assume hypotheses H1�H5 and H2′. Assume also that the
constraint quali�cations CQ and CQn hold. Then, the conditions of Theorem
3.1 are satis�ed with λ = 1.

A somewhat stronger but easier to verify constraint quali�cation is the
following

CQ′n There exist a positive constants ε,δ, Ku, and a control û ∈ U such that

‖f(t, x̄(t), ū(t))− f(t, x̄(t), û(t))‖ ≤ Ku, (9)

and
ζ · [f(t, x̄(t), û(t))− f(t, x̄(t), ū(t))] < −δ, (10)

for all ζ ∈ ∂>x h(s, x̄(s)), a.e. t, s ∈ (τ − ε, τ ] ∩ [0, 1], and for all

τ ∈ {σ ∈ [0, 1] : h(σ, x̄(σ)) = 0}.

Note that in this case, the constraint quali�cation becomes independent
of the multipliers, making the condition CQ′n much easier to verify a priori
than CQn. Because the measure µ is supported on the set of points where
the constraint is active, the value of τ de�ned in CQn must be in the set
{σ ∈ [0, 1] : h(σ, x̄(σ)) = 0}. Furthermore, assuming that the trajectory does
not enter and leave the boundary of the state constraints an in�nite number
of times in �nite time, CQ′n can be even more simpli�ed by considering ε = 0.
We have proved the following corollary.

Corollary 4.3. Assume hypotheses H1�H5 and H2′. Assume also that the
constraint quali�cations CQ and CQ′n hold. Then, the conditions of Theorem
3.1 are satis�ed with λ = 1.
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5. Normality in Calculus of Variations

The main result in this section is a normal form of the NCO for the
calculus of variations problem (CVP) with pathwise inequality constraints.
It improves on the result of [16] by allowing the data to be nonsmooth. It is
valid under a condition � a constraint quali�cation � that is much easier
to verify than in the general case of optimal control problems.

Consider the problem

(CV P1)


Minimize J [x] =

∫ 1

0

L(x(t), ẋ(t))dt

subject to
x(0) = x0
h(x(t)) ≤ 0 for all t ∈ [0, 1].

Assume that the following hypotheses are satis�ed:

H1CV The function x → L(x, u) is locally Lipschitz continuous for all u ∈
IRn.

H2CV The function u→ L(x, u) is convex and bounded for all x ∈ IRn.

H3CV There exists an increasing function θ : [0,∞)→ [0,∞) such that

lim
α→∞

θ(α)

α
= +∞,

and a constant β such that L(x, v) > θ(‖v‖)−β‖v‖ for all x ∈ IRn, v ∈
IRn.

H4CV There exists a scalar Kh > 0 such that the function x → h(x) is
Lipschitz continuous of rank Kh.

Consider also the following constraint quali�cations:

CQCV There exist positive constants δ, and ε such that

• If h(x̄(0)) = 0, then for all x1, x2 ∈ {x0}+ εB

γ1 · γ2 > δ, (11)

for all γ1 ∈ ∂>x h(x1) and all γ2 ∈ ∂>x h(x2).
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• For all τ ∈ {s : h(x̄(s)) = 0} and for all x1, x2 ∈ {x̄(s) : s ∈
(τ − ε, τ ] ∩ [0, 1]}

γ1 · γ2 > δ, (12)

for all γ1 ∈ ∂>x h(x1) and all γ2 ∈ ∂>x h(x2).

Theorem 5.1. Let (x̄, ū) be a local minimizer for (CV P1). Assume that
hypotheses H1CV −H4CV and CQCV are satis�ed. Then, there exist p ∈
W 1,1([0, 1] : IRn), a measurable function γ and a nonnegative Radon measure
µ ∈ C∗([0, 1], IR) such that

ṗ(t) ∈ co ∂LxL(x̄(t), ˙̄x(t)) and q(t) ∈ co ∂LuL(x̄(t), ˙̄x(t)), (13)

q(1) = 0, (14)

γ(t) ∈ ∂>x h(x̄(t)) µ− a.e., (15)

supp {µ} ⊂ {t ∈ [0, 1] : h(x̄(t)) = 0}, (16)

where

q(t) =


p(t) +

∫
[0,t)

γ(s)µ(ds), t ∈ [0, 1)

p(1) +

∫
[0,1]

γ(s)µ(ds), t = 1.

Remark 5.2. A major feature of this result is the nonexistence of a multi-
plier λ associated with the objective function (i.e. λ = 1). In the case when
h is continuously di�erentiable, the set ∂>x h(x̄(s)) is a singleton. Therefore,
the constraint quali�cation reduces to hx(x̄(s)) 6= 0, con�rming the CQ and
the result in [16].

6. Comparison of Normal forms of NCO Applied to CVP

The normal form of NCO for CVP (Theorem 5.1) is a consequence of the
normal form of the MP for OCP, using Corollary 4.3 and the fact that CVP
can be seen as a particulary case of OCP.

For that it is enough to consider a new absolutely continuous state vari-
able

z(t) =

∫ t

0

L(x(s), ẋ(s))ds

and a change of variable ẋ(t) = u.
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The (CV P1) can then be written as:

(OCP2)



Minimize z(1)
subject to

η̇(t) = f(η(t), u(t)) a.e. t ∈ [0, 1]
(x(0), z(0)) = (x0, 0)
u(t) ∈ IRn

h(x(t)) ≤ 0 for all t ∈ [0, 1]

with η(t) =

(
x(t)
z(t)

)
and f(η(t), u(t)) =

(
u(t)

L(x(t), u(t))

)
.

Since the special structure of CVP permits the derivation of CQ that
can be much easier to verify than in the optimal control case, the following
question arises: if we apply the normal form of the MP, valid under a CQ
that no longer involves the minimizing ū, for a CVP, do we have weaker CQ?

Normal forms of MP for OCP valid under a CQ that no longer involves
the minimizing ū, appear in [17] and [19]. Such CQ are typically of the form1:

CQ′′n ∃ε > 0 and û(t) ∈ U :

hx(x̄(t)) · f(x̄(t), û(t)) < −δ,

for t ∈ (s− ε, s+ ε) where s ∈ {t ∈ [0, 1] : h(x̄(t)) = 0}.

Applying the constraint quali�cation CQ′′n to (OCP2), we conclude that
∃û ∈ IRn such that

hη(x̄) · f((x̄, z), û) < −δ,

for a constant δ > 0.
Consequently,

(hx(x̄), 0) ·
(
û
L(x̄, û)

)
< −δ.

Considering û(t) = −hx(x̄(t)), we have hx(x̄) · (−hx(x̄)) = −‖hx(x̄)‖2.
It follows that, for CVP, the constraint quali�cation CQ′′n reduces to

hx(x̄) 6= 0.

1In [17], this CQ also has to be satis�ed on a neighborhood of the state constraint
boundary.
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Comparing this CQ with the CQCV, we conclude that the latter is more
general; it can be applied to problems with less regularity on the data.

In summary, we can say that, in the case of optimal control problems, the
NCO of [17] and [19], when compared with the results here, do not involve
the control function explicitly, and therefore are easier to verify. However, in
the special case of calculus of variations problems, the CQCV proposed here
and the corresponding result, (obtained from the results in Corollary 4.3 for
OCP) can be applied to a wider class of problems, requiring less regularity.

7. Proof of Theorem 4.2

Expanding the internal product and applying a well-known nonsmooth
calculus rule (see [23, Prop. 2.3.3]) to the adjoint inclusion (2), we obtain

−ṗ(t) ∈ co ∂Lx

(
n∑
i=1

qi(t)fi(t, x̄(t), ū(t))

)
⊂

n∑
i=1

qi(t)co ∂Lx fi(t, x̄(t), ū(t)) a.e. t ∈ [0, 1].

De�ne the matrix ξ(t) =

 ξ1(t)
· · ·
ξn(t)

 for some ξi(t) ∈ co ∂Lx fi(t, x̄(t), ū(t))

conveniently selected such that

−ṗ(t) = q(t) · ξ(t) a.e. t ∈ [0, 1].

It follows that

p(t) = p(1) +

∫ 1

t

q(s)ξ(s)ds

or equivalently

q(t) = q(1) +

∫ 1

t

q(s)ξ(s)ds−
∫
[t,1]

γ(s)µ(ds).

We can establish the following necessary conditions of optimality:
if (x̄, ū) is an optimal process, then there exist a function q of bounded

variation and continuous from left, a scalar λ ≥ 0, and a nonnegative Radon
measure µ ∈ C∗([0, 1], IR) such that

µ{(0, 1]}+ ||q||∞ + λ > 0, (17)
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q(t) = q(1) +

∫ 1

t

q(s)ξ(s)ds−
∫
[t,1]

γ(s)µ(ds),

where γ(t) ∈ ∂>x h(t, x̄(t)) µ-a.e.,

−q(1) ∈ λ∂Lx g(x̄(1)),

supp{µ} ⊂ {t ∈ [0, 1] : h (t, x̄(t)) = 0} ,

and

q(t) · [f(t, x̄(t), u)− f(t, x̄(t), ū(t))] ≤ 0, (18)

for all u ∈ Ω(t), a.e. t ∈ [0, 1].
Now suppose in contradiction that λ = 0. In this case we can write

q(1) = 0 and

q(t) =

∫ 1

t

q(s)ξ(s)ds−
∫
[t,1]

γ(s)µ(ds).

Let τ = inf{t ∈ [0, 1] :
∫
[t,1]

µ(ds) = 0}. If τ = 0, then
∫
(0,1]

µ(ds) = 0. This

implies that q(t) = 0 for all t ∈ [0, 1]. Hence µ{(0, 1]} + ||q||∞ + λ = 0 and
we arrive at a contradiction with the nontriviality condition (17).

It remains to consider the case when τ > 0. We show that when λ = 0
and CQn is veri�ed, the maximization condition (18) can not be satis�ed.

De�ning Φ(t, s) as the transition matrix for the linear system ż(t) =
ξ(t)z(t), the function q can be written as

q(t) = −
∫
[t,1]

γ(s)Φ(s, t)µ(ds).

Let ∆f(t, x̄(t)) = f(t, x̄(t), û(t)) − f(t, x̄(t), ū(t)), where û is the control
function chosen in CQn for t ∈ (τ − ε, τ ] ∩ [0, 1] and is equal to ū a.e. on
[τ, 1]. We have
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q(t) ·∆f(t, x̄(t)) = −
∫
[t,1]

γ(s)Φ(s, t)∆f(t, x̄(t))µ(ds)

= −
∫
[t,τ ]

γ(s)Φ(s, t)∆f(t, x̄(t))µ(ds)

= −
∫
[t,τ ]

γ(s)∆f(t, x̄(t))µ(ds)

−
∫
[t,τ ]

γ(s)[Φ(s, t)− Φ(τ, τ)]∆f(t, x̄(t))µ(ds)

> δµ{[t, τ ]} −
∫
[t,τ ]

γ(s)[Φ(s, t)− Φ(τ, τ)]∆f(t, x̄(t))µ(ds).

As Φ is continuous we can assure the existence of a positive scalar δ1 such

that ‖Φ(s, t)−Φ(τ, τ)‖ < δ

2KuKh

for all (s, t) satisfying ‖(s, t)−(τ, τ)‖ < δ1.

Hence, for a.e. t ∈ (τ − ε, τ ] ∩ (τ − δ1, τ ] we have

q(t) ·∆f(t, x̄(t)) > δµ{[t, τ ]} − δ

2
µ{[t, τ ]} > 0

contradicting the maximization condition (18). �

8. Proof of Theorem 5.1

As mentioned before, here we discuss the normality results of OCP, in the
particular case of CVP. Therefore, we start by seeing (CV P1) as a special case
of (OCP1). For that, it is enough to consider a new absolutely continuous
state variable

z(t) =

∫ t

0

L(x(s), ẋ(s))ds

and the dynamics ẋ(t) = u.
The (CV P1) can then be written as (OCP2). Recalling the problem

formulation

(OCP2)


Minimize z(1)
subject to η̇(t) = f(η(t), u(t)) a.e. t ∈ [0, 1]

(x(0), z(0)) = (x0, 0)
u(t) ∈ IRn

h(x(t)) ≤ 0 ∀t ∈ [0, 1]
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with η(t) =

(
x(t)
z(t)

)
and f(η(t), u(t)) =

(
u(t)

L(x(t), u(t))

)
.

In order to apply Corollary 4.3, we need to verify CQ and CQ′n. In Step
1 of the proof, below, we show that these constraint quali�cations are implied
by CQCV. In Step 2, we apply Corollary 4.3 to (OCP2) and thereby obtain
the assertions (13)�(16) of Theorem 5.1.

Step 1: We start by establishing regularity of the minimizers for (CV P1).
Although we consider that the minimizers are arcs, we can conclude that they
are actually Lipschitz continuous functions.

Lemma 8.1. (See Thm. 11.5.1 [26]) Let x̄ be a local minimizer for (CV P1).
Assume that hypotheses H1CV - H4CV are satis�ed. Then x̄ is a Lipschitz
continuous function.

The proof of this lemma can be found in [26, pages 422-425].
So, we have that the minimizer x̄ for (CV P1) is a Lipschitz continuous

function, or equivalently

‖ ˙̄x(t)‖ ≤ K1 a.e. t ∈ [0, 1], (19)

where K1 is any number strictly greater than ‖ ˙̄x‖∞.
By hypothesis, we have that the function u → L (·, u) is bounded and

having in consideration condition (19), we conclude that condition (4) is
satis�ed.

Let us de�ne the following function and sets.

∆fη,û(t) = [f (η(t), û(t))− f (η(t), ū(t))] ,

Aε = {x0 + εB : h(x0) = 0},

Γ = {τ ∈ [0, 1] : h(x̄(τ)) = 0},

Bε(τ) = {x̄(s) : s ∈ (τ − ε, τ ] ∩ [0, 1]}.

Note that, CQCV can be decomposed into the following conditions:

CQCV1 There exist positive scalars δ and ε such that for all x1, x2 ∈ Aε,

γ1 · γ2 > δ, (20)

∀γ1 ∈ ∂>x h(x1) and ∀γ2 ∈ ∂>x h(x2).
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CQCV2 There exist positive scalars δ and ε such that for all τ ∈ Γ and all
x1, x2 ∈ Bε(τ),

γ1 · γ2 > δ, (21)

∀γ1 ∈ ∂>x h(x1) and ∀γ2 ∈ ∂>x h(x2)

On the other hand, CQCV1 implies that

CQ′CV1 ∃δ > 0, ε > 0 and ∃x2 ∈ Aε such that ∀x1 ∈ Aε,

γ1 · γ2 > δ, (22)

∀γ1 ∈ ∂>x h(x1) and ∀γ2 ∈ ∂>x h(x2).

We would like to stress that CQCV1 and CQ′CV1 are trivially satis�ed in
the case of h(x0) 6= 0, and so is CQ.

We now show that CQ′CV1 implies (6) when h(x0) = 0.
Let γη be an element of the hybrid partial subdi�erential

γη ∈ ∂>η h (x1) .

From the de�nition, we have

∂>η h (x1) = co { (ε1, ε2) : exist xi → x1 such as h (xi) > 0 ∀i,
h (xi)→ h(x1) and hη (xi)→ (ε1, ε2)}

with x1 ∈ {x0}+ εB.
Since hz (xi) = 0, we have

(hx(xi), 0)→ (ε1, ε2) .

It follows that,

γη ∈ (co {ε1 : exist xi → x1 such as
h(xi) > 0∀i, h (xi)→ h(x1) and hx (xi)→ ε1}, 0).

We conclude that

γη = (γ1, 0) , where γ1 ∈ ∂>x h (x1)

with x1 ∈ {x0}+ εB.
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Therefore
γη ·∆fη,û(t) = γ1 · (û(t)− ˙̄x(t)) .

So, in the context of (OCP2), condition (6) is equivalent to: if h(x0) = 0,
then there exist positive constants ε, ε1, δ and a control û : [0, ε]→ Rm such
that

γ1 · [û(t)− ˙̄x(t)] < −δ, (23)

for all γ1 ∈ ∂>x h (x1), x1 ∈ x0 + ε1B.
If inequality (22) holds, then we can consider the control function û(t) =

˙̄x(t) − %1γ2, where γ2 ∈ ∂>x h (x2) and %1 is a positive number chosen small
enough to ensure that ‖û(t)‖ ≤ K2, for all t ∈ [0, 1], where K2 is constant.
We have

γη ·∆fη,û(t) = γ1 · (−%1γ2).

From the inequality (22),

γη ·∆fη,û(t) = −%1γ1 · γ2 < −δ

for some δ > 0 and for any x1 ∈ {x0}+ εB, we conclude that the inequality
(6) is con�rmed.

In a similar way, we prove that if CQCV 2 holds, then condition (10) is
satis�ed.

Let Tε(τ) = {s : s ∈ (τ−ε, τ ]∩[0, 1]}. Condition CQCV 2 is then equivalent
to:

CQ′CV2 ∃δ > 0, ε > 0 such that ∀τ ∈ Γ and ∀t1, t2 ∈ Tε(τ)

γ1 · γ2 > δ, (24)

∀γ1 ∈ ∂>x h(x̄(t1)) and ∀γ2 ∈ ∂>x h(x̄(t2)).

Let γη be an element of the hybrid partial subdi�erential

γη ∈ ∂>η h (x̄(t1)) .

From the de�nition, we have

∂>η h (x̄(t1)) = co { (ε1, ε2) : exist si → t1 such as h (x̄(si)) > 0∀i,
h (x̄(si))→ h(x̄(t1)) and hη (x̄(si))→ (ε1, ε2)}
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with t1 ∈ (τ − ε, τ ] ∩ [0, 1], such that h(x̄(τ)) = 0.
Since hz (x̄(si)) = 0, we have

(hx(x̄(si)), 0)→ (ε1, ε2) .

It follows that,

γη ∈ (co {ε1 : exist si → t1 such as
h(x̄(si)) > 0∀i, h (x̄(si))→ h(x̄(t1)) and hx (x̄(si))→ ε1}, 0).

We conclude that

γη = (γ1, 0) , for all γ1 ∈ ∂>x h (x̄(t1))

with t1 ∈ (τ − ε, τ ] ∩ [0, 1] such that h(x̄(τ)) = 0.
Therefore,

γη ·∆fη,û(t) = γ1 · (û(t)− ˙̄x(t)) .

So, in the context of (OCP2), condition (10) is equivalent to: there exist
positive constants ε, δ and a control function û such that

γ1 · [û(t2)− ˙̄x(t2)] < −δ, ∀γ1 ∈ ∂>x h(x̄(t1)) (25)

for a.e. t1, t2 ∈ Tε(τ) and all τ ∈ Γ.
If inequality (24) holds, then for any τ ∈ Γ and any t2 ∈ Tε(τ) we can

consider the control û(t2) = ˙̄x(t2)− %2γ2, for some γ2 ∈ ∂>x h (x̄(t2)) where %2
is a positive number chosen small enough to ensure that ‖û(t2)‖ ≤ K3, with
K3 constant. We have

γη(t1) ·∆fη,û(t2) = γ1 · (−%2γ2)).

From inequality (24),

γη(t1) ·∆fη,û(t2) = −%2γ1 · γ2 < −δ

for some δ > 0 and any t1, t2 ∈ Tε, we conclude that inequality (10) holds.
Since ‖û(t)‖ ≤ K for some positive, su�ciently small %1 and %2, and the

function L(x(t), ẋ(t)) is bounded, the conditions (5) and (9) are satis�ed.
Consequently, we can apply Corollary 4.3.

Step 2: Let ((x̄(t), z̄(t)) , ū(t)) be a local minimizer for (OCP2). Then
there exist two absolutely continuous function, p1 : [0, 1] → IRn and p2 :
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[0, 1] → IR, a measurable function γ and a nonnegative Radon measure
µ ∈ C∗ ([0, 1], IR) such that

(−ṗ1(t),−ṗ2(t)) ∈ co
(
∂Lη ((q1(t), q2(t)) · f (η̄(t), ū(t)))

)
a.e. t ∈ [0, 1],

(26)
(−q1(1),−q2(1)) ∈ ∂Lη z̄(1), (27)

γ(t) ∈ ∂>x h(x̄(t))µ− a.e., (28)

supp{µ} ⊂ {t ∈ [0, 1] : h (x̄(t)) = 0}, (29)

a.e. t ∈ [0, 1], ū(t) maximize

u→ (q1(t), q2(t)) · f (η̄(t), u) , (30)

where

q1(t) =


p1(t) +

∫
[0,t)

γ(s)µ(ds), t ∈ [0, 1)

p1(1) +

∫
[0,1]

γ(s)µ(ds), t = 1

and
q2(t) = p2(t), t ∈ [0, 1]. (31)

Applying a nonsmooth rule to the transversality condition (27), we obtain

(−q1(1),−q2(1)) ∈ ∂Lx z̄(1)× ∂Lz z̄(1). (32)

that implies:{
q1(1) = 0
−q2(1) = 1

⇐⇒
{
p1(1) +

∫
[0,1]

γ(s)µ(ds) = 0

p2(1) = −1,
(33)

On other hand, we can write condition (26), as

(−ṗ1(t),−ṗ2(t)) ∈ co ∂Lη (q1(t) · ū(t) + q2(t) · L(x̄(t), ū(t))) .

Using a nonsmooth calculus propriety, it follows that

(−ṗ1(t),−ṗ2(t)) ∈ q2(t)co ∂Lη (L (x̄(t), ū(t))) .

Consequently, we have

(−ṗ1(t),−ṗ2(t)) ∈ {q2(t)co ∂Lx (L (x̄(t), ū(t)))× 0},
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hence, {
−ṗ1(t) ∈ q2(t)co ∂Lx (L (x̄(t), ū (t)))
ṗ2(t) = 0.

(34)

By (31), (33) and (34), we know that q2(t) = −1, then the condition (30)
can be written as:

˙̄x(t) maximize

u→
(
p1(t) +

∫
[0,t)

γ(s)µ(ds)

)
· u− L (x̄(t), u)

a.e. t ∈ [0, 1].
H2CV is satis�ed, the �maximization of the Hamiltonian" property im-

plies

0 ∈ co ∂Lu

((
p1(t) +

∫
[0,t)

γ(s)µ(ds)

)
· ˙̄x− L (x̄(t), ˙̄x(t))

)
.

By a nonsmooth calculus property, we have(
p1(t) +

∫
[0,t)

γ(s)µ(ds)

)
∈ co ∂Lu (L (x̄(t), ˙̄x(t))) . (35)

The conditions (28), (29), (33), (34) and (35) may be assembled to give
the assertions (13), (14), (15) and (16) of the theorem. �
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