Air Traffic Flow Management using multi-agent system

Álvaro Câmara
Porto, September 29th 2016
Outline

- World Air Traffic Control
- Some developed projects
- Project Proposals
- Conclusion
Part I - World Air Traffic Control

Basic Concepts
Basic Concepts

- **Runway**
 - Main runway of an airport
 - Landing and Takeoff

- **Single Runway**
 - most basic runway
 - Low traffic
 - 99 operations VFR (visual flight rules)
 - 42 to 53 operations IFR (instrument flight rules)
Basic Concepts

- Parallel runways
 - More complex scenarios
 - They are named according to the degree of closeness
 - 64-128 operations IFR
Basic Concepts

- **Taxiway**
 - used to maneuver the aircraft
 - to connect runway, parking and hangar
Basic Concepts

- Air traffic control
 - Prevent collisions between aircraft
 - Maintain an orderly and expeditious flow of air traffic
 - Provide suggestions and information
 - Warn of accidents

- Tower of control – TWR
 - Near the track
 - maneuvers, takeoff, landing or overflight
Basic Concepts

- **Air Traffic Controller - ATCO**
 - Responsible for coordinating aircraft - Air or Ground

- **Workload for professionals (Majumdar & Ochieng, 2012).**
 - Safety
 - Delay

- **The increased workload:**
 - Status of the airspace
 - Equipment condition (design, reliability and accuracy)
 - The current state (age, experience)

- **Excessive increase in the workload:**
 - Amount of information exchanged
 - Cause physical and mental exhaustion
Basic Concepts

- Flight Profile
 - Preflight: pilot receives the flight plan, “check list”, go to runway
 - Takeoff: receives permission to take off
 - Departure: the pilot is instructed by the ATC, climbs to a cruising altitude.
 - En Route: The aircraft travels through one or more center airspaces and nears the destination airport.
Basic Concepts

- **Flight Profile**
 - **Descent:** The pilot descends and maneuvers the aircraft to the destination airport.
 - **Approach:** The pilot aligns the aircraft with the designated landing runway.
 - **Landing:** The aircraft lands on the designated runway, taxis to the destination gate and parks at the terminal.
Part II - World Air Traffic Control

Organisation of ATM
Basic Concepts

- **American model**
 - **Federal Aviation Administration - FAA**
 - Regulating civil aviation to promote **safety**
 - Encouraging and developing civil aeronautics, including **new aviation technology**
 - Developing and operating a **system of air traffic control** and navigation for both civil and military aircraft
 - Researching and developing the **National Airspace System** and civil aeronautics
 - Developing and carrying out programs to control aircraft noise and other environmental effects of civil aviation
 - Regulating U.S. commercial space transportation
Basic Concepts

- Air Route Traffic Control Center (ARTCC)
 - 21 zones
 - "Centers"
 - IFR
 - provide Air Traffic Service
 - en route
 - It includes all sorts of different types of aircraft
 - privately owned single engine aircraft, commuter airlines, military jets and commercial airlines
 - Safe Separation Standards
 - Laterally -- 5 miles
 - Vertically
 - 1,000 feet (below 29,000 feet)
 - 2,000 feet (at 29,000 feet or above)
 - ZFW – 350 controllers
Basic Concepts

- Terminal Radar Approach Control (TRACON)
 - departure, descent and approach phases of the flight
 - One TRACON can handle the air traffic for several different airports in its sector.
 - Types of traffic controllers
 - high altitude descent controller
 - low altitude descent controller
 - approach controller - 50 milhas
 - feeder controller
 - 185 TRACONs
Basic Concepts

- **Brazilian model**
 - **DECEA (Control Department Airspace)**
 - Military
 - main objectives are to plan, manage and control related activities the control of the airspace
 - protection of the flight
 - the search and rescue service
 - Telecommunications of Air Force Command
 - **CINDACTA**
 - Controlled Airspace
 - **Destacamentos de Telecomunicações e Controle do Espaço Aéreo (DTCEA)**
 - CINDACTA I – 18 units
 - CINDACTA II – 15 units
 - CINDACTA III – 10 units
 - CINDACTA IV – 27 units
Basic Concepts

- Controlled Airspace
 - ATZ - Aerodrome Traffic Zones
 - Airport
 - CTR - Traffic Control Zone
 - TMA - Terminal Control Area
 - Approach Control Center - app
Basic Concepts

- **CTA - Control Area**
 - lower airways
 - lower vertical limit: 500 ft
 - upper limit: FL 245 - 7,500 m
 - side limit: 16NM – narrow – 54NM

- **UTA - Superior Control Area**
 - upper airways
 - lower vertical limit: FL 245
 - upper limit: unlimited
 - side limit: 43NM – narrow – 216NM
Basic Concepts

- Comparison of Air Traffic Management-Related Operational Performance: U.S./Europe
 - European air traffic control is currently fragmented
 - Each country provide your air traffic control
 - Respecting the territorial boundaries

- European system are operated by:
 - similar technology
 - operational concepts

- USA
 - US system is operated by one single service provider
 - same tools and equipment
Basic Concepts

- **Comparison of Air Traffic Management-Related Operational Performance: U.S./Europe**

- **Single European Sky (SES)**
 - **Reduction** this fragmentation
 - **Efficiency** and **interoperability** of the ATM system in Europe were improved

- 2-3 billion dollars

![Figure 5-4: Breakdown of en-route ATFM delay by cause (2015)](image1)

![Figure 5-5: Breakdown of airport arrival ATFM delay by cause (2015)](image2)
Part I - Some developed projects

Scenery, Difficulties and Tools
Research Scope and Motivation

- **Expectations for the future**
 - Demand of Service for Airlines
 - 2.8% Growth per year (2030)
 - 500-1500 new flights

- **Enormous strain on the aviation system**
 - Congestion phenomena are persistent
 - Additional operational cost
 - European: €1.25 billion (2011)
 - American: $5.9 billion (2009)
Research Scope and Motivation

- **Air traffic flow management (ATFM)**
 - has become crucial
 - Prevent local demand-capacity imbalances
 - Adjusting the flows of aircraft on a national or regional basis.

- **Mismanagement**
 - What is the effect of this?

 ![Diagram showing the effects of ATM management and mismanagement on Safety, Aerial Capacity, Cost, and Delay.]
Research Scope and Motivation

- **Difficulties**
 - Hard to predict traffic flow changes
 - Dynamic System
 - Restrictive measures applied in unpredictable situations
 - Based on the original flight plan
 - current scenario of the system
 - ignores current capacity of airports and aviation sectors
Tools

- Simulation Platform
 - Over 30 years of existence
 - Graphic and physical engine
 - Vast amount of vehicles
 - land air and sea vehicle
 - System missions
 - Fault Injection

- SimConnect (API)
 - external applications
Part III - Some developed projects

Air Traffic Control using Microsoft Flight Simulator X
Air Traffic Controller

- Responsible for coordinating aircraft - Air or Ground
- The increased workload:
 - Status of the airspace
 - Equipment condition (design, reliability and accuracy)
 - The current state (age, experience)

- Excessive increase in the workload:
 - Amount of information exchanged
 - Cause physical and mental exhaustion

- Conflict Detection and Resolution Systems
 - Centralized, Decentralized and Hybrid

- Taxiways management
Centralized Approach

- **Agent ATC**
 - Monitoring aircraft
 - Detect and apply solutions to air conflicts
 - Propose multiple secondary routes
 - Some attributes

- **AgentAirPlane**
 - Control the aircraft and execute orders
Centralized Approach

- **Advantages**
 - Provides a better view of the airspace
 - Identifies problematic areas

- **Disadvantages**
 - Catastrophic failure

- **Simulation**
 - Agent ATC has a “Radar”
 - Spheres of radius R and 2R
 (Valkanas et al., 2009) and (Pechoucek et al., 2006)
Centralized Approach

- AgentATC
- Monitoring of the airspace
- Create new Routes
 - Critical time
- Check new Collisions
- Apply Solutions

Diagram:

1. Monitor Traffic
2. Collision detected?
3. U(x1,x2,x3,...,xn) >= 0.75?
 - Yes
 - Generate alternative routes and calculate utilities
 - New collision generated?
 - Yes
 - Execute maneuver
 - No
 - Conflict resolved?
 - Yes
 - Stop
 - No
 - [Loop]
 - No
 - [Loop]
Decentralized Approach

- AgentAirPlane
 - Monitoring the airspace around it
 - In case of air conflicts
 - Its Starts a negotiation process

- Agent ATC
 - Does not interfer during the negotiation
Decentralized Approach

- **Advantages**
 - Autonomy and independence of Aircraft
 - Increasing airspace capacity
 - Decrease workload

- **Disadvantages**
 - Lower airspace monitoring capability
 - Lack of a redundant system
Decentralized Approach

- AgentAirPlane
- Monitoring of the airspace
- Negotiation between Airplane
- Apply Solutions

[Diagram: Flowchart showing the process of monitoring traffic, detecting collisions, generating alternative routes, and resolving conflicts.]
Hybrid Approach

- Combine both techniques
- AgentAirPlane
- Monitoring of the airspace
- Negotiation between Airplanes
- Consult the ATC agent
- Apply Solutions
Utility Functions

- Multi-Attribute Utility Theory (MAUT)
 - Decision-making processes

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Worst</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heading variation (HV)</td>
<td>≥ 25 degrees</td>
<td>0 degrees</td>
</tr>
<tr>
<td>Speed Variation (SV)</td>
<td>$\geq 30%$ of actual speed</td>
<td>Speed doesn't change</td>
</tr>
<tr>
<td>Traffic density of the new route (TD)</td>
<td>Half the testing aircrafts</td>
<td>0</td>
</tr>
</tbody>
</table>

- Ratio 6/1/3 for HV, SV and TD respectively

\[
U(x_1, x_2, x_3, \ldots, x_n) = \sum_{i=0}^{n} K_i U_i(x_i)
\]
Experimental Settings

- **Nº of AirCraft**: 2x
 - Cessna skyhawk (128 Knos)
 - Beech baron 58 (151 Knos)

- **Test Zone**
 - 49 km² (a circle with a radius of 3945m)

- **Red Zone**
 - Radius = 1800 m

- **Blue Zone**
 - Radius = 3600 m
Experimental Settings

- The collision is considered
 - less than 30m

- The aircraft will not be excluded
 - fixed number of aircraft during the simulation

- Real Time (10 hours)
Results

- With larger number of aircrafts
 - 8 and 10 agents
 - 65% more detected conflicts
Results

- With larger number of aircrafts
 - 229% more collisions
Results

- Minimum safety requirement - 12.25 km² per aircraft
- Multi-agent systems can be a potential technique
- Future work - Changing dynamics of the weights
Part IV - Some developed projects

A Comparative Study of Meta-Heuristics for the Aircraft Landing Scheduling Problem
The Landing Problem

- The Air Traffic Controller (ATCO) is responsible for creating a schedule of plane landings.
 - Separation Times
 - Time window
 - Plane’s cruise speed
- Little tactical planning is currently done
- “First coming, first serving” (FCFS)
The Landing Problem

- Aircraft Landing Scheduling (ALS): Sequencing and scheduling of aircraft which are landing into the available runways at the airport.

- Objective of the ALP is to minimize the total delay

- There are costs associated with landing

- Important problems in Air Traffic Control (ATC)

- Rate landing and takeoff
Requirements for Aircraft Separation

- To assure safety during landing and takeoff
- wake turbulence

<table>
<thead>
<tr>
<th>Last landing</th>
<th>Next aircraft on the queue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heavy</td>
</tr>
<tr>
<td>Heavy</td>
<td>1.0</td>
</tr>
<tr>
<td>Large</td>
<td>1.0</td>
</tr>
<tr>
<td>Small</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Neighborhood Function and Cost Calculation

- New solution from changes between adjacent pairs of planes

- **Cost Calculation**
 - ETA (Estimated Time of Arrival) - STA (Station Time of Arrival)

\[
\begin{align*}
\text{(1)} & \quad \sum_{i=1}^{n-1} f(A_i + A_{i+1}) \\
\text{(2)} & \quad f(A_i + A_{i+1}) \begin{cases}
\text{STA} = \text{STA} - \text{ETA}, \text{if ETA} < \text{STA} \\
0, \text{if ETA} = \text{STA}
\end{cases}
\end{align*}
\]
Analysis of Meta-Heuristics

- **Tabu Search**
- **Simulated Annealing**

Experiment 1.
- Number of aircraft = 10 and 40
- Best result neighbor function on TS
- *Tabu list sizes of 2 to 20, with increments of 2.*

Experiment 2.
- Number of aircraft = 10, 20, 30 and 40
- We ran = 1000
Performace Analysis - Experiment 1.

- $m=18$ gives the lower costs
- Cost approximately 5% less than the average
- Tabu list size with a ratio of 0.45 for each aircraft

![Figure 3. Neighbor solutions set](image)
Performace Analysis - Experiment 1.

- **mixed** approach had the best performance
 - cost of 19.48
 - standard deviation of 1.25

- The **Lower Cost** approach obtained the worst performance
 - cost of 32.37
 - standard deviation of 13.72

- The random approach obtained intermediate values
 - cost of 27.41
 - standard deviation of 4.78
Performace Analysis - Experiment 2.

- SA achieved better results

 - **TS**
 - 9%, n=20
 - 15%, n=30
 - 55%, n=40

 - **FCFS**
 - 12%, n=10
 - 19%, n=20
 - 15%, n=30
 - 5%, n=40

![Algorithm comparison graph](image_url)

Figure 4. Solution cost (average/standard deviation) vs different problem sizes
Part V - Some developed projects

A collaborative approach to management air traffic flow using multi-agent systems
The Proposal

- Develop a multi-agent system able to work mainly tactical planning ATFM
 - strategic planning; - 24h
 - pre-tactical planning; - 24 hours and 06 hours
 - tactical operations – 6 hours and during the flight

- Propose solutions that optimize air traffic flow in catastrophic situations
 - Sectors capacity management
 - Negotiation between airports
 - Deviations routes
4 types of agents are envisioned

- **Airport Agent**
 - Interests of an airport or coalitions
 - Negotiate air traffic flow demands

- **Airlines Agent**
 - Minimize delays

- **ATC Agent**
 - Management of services
 - Ensure the operational viability

- **Sector Agent**
 - Management of the national or regional
 - Join in the negotiation in special situations
Architecture

- The ATC Agent starts the negotiation
 - Intervention

- The Airport Agent changes proposals
 - Negotiation with Airline Agent

- The ATC checks the viability of proposal

- New Schedule is created
Infrastructure and Agents

- Construction of airports and jetways
 - Route network
 - services of ATC
 - Approach and Taxiway
 - ATC network

- Construction of internal agent modules
 - knowledge base
 - Kernel
 - Connection

- Construction of secondary agents
Part I - Project Proposals

Aircraft Formation
Aircraft Formation

- Construction of aircraft formation
 - Various geometric shapes

- Coordination between aircraft
 - Team Leader
 - choice of new leader
 - Group division

- Message exchange

- May be used to
 - To search and rescue
 - To combat
 - By Airspace Organization
Part II - Project Proposals

ATC network - Jetways
ATC network

- Route network - Graph
- Convert database information to XML
- Improvements in the simulation environment
 - Control Panel
- Air network View Screen
 - Google maps
Part III - Project Proposals

Load test in the simulator
Load test in the simulator

- Create a set of test scenarios
- Performance in different types of simulation tools
- Check the maximum capacity of aircraft in the virtual machine
- Propose an overload mechanism in simulation
- Delay between communication and maneuver
Conclusion
Conclusions

- Modern aviation needs constant technological updates
 - Congestion phenomena are persistent
- There are numerous challenges
- Use your tools
- Thank you for flying with us
Thank you.
Suggestions are welcome.

Álvaro Câmara
Porto, 20th April 2015